dc.contributor.author | Myllykoski, Mirko | |
dc.contributor.author | Rossi, Tuomo | |
dc.date.accessioned | 2015-09-03T05:38:00Z | |
dc.date.available | 2015-09-03T05:38:00Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Myllykoski, M., & Rossi, T. (2014). A parallel radix-4 block cyclic reduction algorithm. <i>Numerical Linear Algebra with Applications</i>, <i>21</i>(4), 540-556. <a href="https://doi.org/10.1002/nla.1909" target="_blank">https://doi.org/10.1002/nla.1909</a> | |
dc.identifier.other | CONVID_22534584 | |
dc.identifier.other | TUTKAID_57408 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/46747 | |
dc.description.abstract | A conventional block cyclic reduction algorithm operates by halving the size of the linear system at each reduction step, that is, the algorithm is a radix-2 method. An algorithm analogous to the block cyclic reduction known as the radix-q partial solution variant of the cyclic reduction (PSCR) method allows the use of higher radix numbers and is thus more suitable for parallel architectures as it requires fever reduction steps. This paper presents an alternative and more intuitive way of deriving a radix-4 block cyclic reduction method for systems with a coefficient matrix of the form tridiag{ − I,D, − I}. This is performed by modifying an existing radix-2 block cyclic reduction method. The resulting algorithm is then parallelized by using the partial fraction technique. The parallel variant is demonstrated to be less computationally expensive when compared to the radix-2 block cyclic reduction method in the sense that the total number of emerging subproblems is reduced. The method is also shown to be numerically stable and equivalent to the radix-4 PSCR method. The numerical results archived correspond to the theoretical expectations. | |
dc.language.iso | eng | |
dc.publisher | John Wiley & Sons Ltd. | |
dc.relation.ispartofseries | Numerical Linear Algebra with Applications | |
dc.subject.other | syklinen reduktio | |
dc.subject.other | suora ratkaisija | |
dc.subject.other | nopea Poisson ratkaisija | |
dc.subject.other | rinnakkaislaskenta | |
dc.subject.other | osamurtokehitelmätekniikka | |
dc.subject.other | PSCR | |
dc.subject.other | block cyclic reduction | |
dc.subject.other | direct solver | |
dc.subject.other | fast Poisson solver | |
dc.subject.other | parallel computing | |
dc.subject.other | partial fraction technique | |
dc.title | A parallel radix-4 block cyclic reduction algorithm | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201509022792 | |
dc.contributor.laitos | Tietotekniikan laitos | fi |
dc.contributor.laitos | Department of Mathematical Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-09-02T12:15:04Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 540-556 | |
dc.relation.issn | 1070-5325 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 21 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2013 John Wiley & Sons, Ltd. This is a final draft version of an article whose final and definitive form has been published by Wiley. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.doi | 10.1002/nla.1909 | |
dc.type.okm | A1 | |