Advanced performance monitoring for self-healing cellular mobile networks
This dissertation is devoted to development and validation of advanced per-
formance monitoring system for existing and future cellular mobile networks.
Knowledge mining techniques are employed for analysis of user specific logs,
collected with Minimization of Drive Tests (MDT) functionality. Ever increas-
ing quality requirements, expansion of the mobile networks and their extend-
ing heterogeneity, call for effective automatic means of performance monitoring.
Nowadays, network operation is mostly controlled manually through aggregated
key performance indicators and statistical profiles. These methods are are not
able to fully address the dynamism and complexity of modern mobile networks.
Self-organizing networks introduce automation to the most important network
functions, but the opportunity of processing large arrays of user reported perfor-
mance data is underutilized.
Advanced performance monitoring system developed in the presented re-
search considers both numerical and sequential properties of the MDT data for
detection of faults. Network malfunctions analyzed in this study are sleeping
cells in either physical or medium access layer. A full data mining cycle is em-
ployed for identification of problematic regions in the network. Pre-processing
with statistical normalization and sliding window methods, both linear and non-
linear transformation and dimensionality reduction algorithms, together with
clustering and classification methods are used in the discussed research. Sev-
eral post-processing and detection quality evaluation methods are proposed and
applied. The developed system is capable of fast and accurate detection of non-
trivial network dysfunctions and is suitable for future mobile networks, even in
combination with cognitive self-healing. As a result, operation of modern mo-
bile networks would become more robust, increasing quality of service and user
experience.
...
Publisher
University of JyväskyläISBN
978-951-39-6235-7ISSN Search the Publication Forum
1456-5390Contains publications
- Article I: Fedor Chernogorov, Sergey Chernov, Kimmo Brigatti, Tapani Ristaniemi. Sequence-based Detection of Sleeping Cell Failures in Mobile Networks. Wireless Networks, The Journal of Mobile Communication, Computation and Information, 2015. (submitted for review, available on arxiv.org)
- Article II: Sergey Chernov, Fedor Chernogorov, Dmitry Petrov, Tapani Ristaniemi. Data Mining Framework for Random Access Failure Detection in LTE Networks. Proc. 25th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2014. DOI: 10.1109/PIMRC.2014.7136373
- Article III: Fedor Chernogorov, Tapani Ristaniemi, Kimmo Brigatti, Sergey Chernov. N-gram analysis for sleeping cell detection in LTE networks. Proc. 39th IEEE International Conference on Acoustics, Speech and Signal Processing, 2013. DOI: 10.1109/ICASSP.2013.6638499
- Article IV: Fedor Chernogorov, Jussi Turkka, Tapani Ristaniemi, Amir Averbuch. Detection of Sleeping Cells in LTE Networks Using Diffusion Maps. Proc. 73rd IEEE Vehicular Technology Conference (VTC Spring), 2011. DOI: 10.1109/VETECS.2011.5956626
- Article V: Jussi Turkka, Fedor Chernogorov, Kimmo Brigatti, Tapani Ristaniemi, and Jukka Lempiäinen. An Approach for Network Outage Detection from Drive-Testing Databases. Journal of Computer Networks and Communications, Volume 2012 (2012), Article ID 163184. DOI: 10.1155/2012/163184
- Article VI: Fedor Chernogorov, Ilmari Repo, Vilho Räisänen, Timo Nihtilä, Janne Kurjenniemi. Cognitive Self-Healing for Future Mobile Networks. Proc. 11th IEEE International Wireless Communications & Mobile Computing Conference (IWCMC), 2015
Keywords
quality and performance management knowledge mining performance monitoring self-organizing networks data mining anomaly detection sleeping cell sequence-based analysis cellular mobile networks tiedonlouhinta monitorointi sekvensointi häiriöt toimintahäiriöt tietoliikenneverkot matkaviestinverkot rakenteettomat verkot
Metadata
Show full item recordCollections
- Väitöskirjat [3598]
License
Related items
Showing items with similar title or keywords.
-
Detecting cellular network anomalies using the knowledge discovery process
Chernov, Sergey (University of Jyväskylä, 2015)Analytical companies unanimously forecast the exponential growth of mobile traffic consumption over the next five years. The densification of a network structure with small cells is regarded as a key solution to meet growing ... -
Design and evaluation of self-healing solutions for future wireless networks
Asghar, Muhammad Zeeshan (University of Jyväskylä, 2016)This doctoral dissertation is aimed at the creation of comprehensive and innovative Self-Organizing Networks (SON) solutions for the Network Management of future wireless networks. More specifically, the thesis focuses on ... -
Anomaly Detection Algorithms for the Sleeping Cell Detection in LTE Networks
Chernov, Sergey; Cochez, Michael; Ristaniemi, Tapani (IEEE, 2015)The Sleeping Cell problem is a particular type of cell degradation in Long-Term Evolution (LTE) networks. In practice such cell outage leads to the lack of network service and sometimes it can be revealed only after ... -
On data mining applications in mobile networking and network security
Zolotukhin, Mikhail (University of Jyväskylä, 2014) -
Advanced voice and data solutions for evolution of cellular network system
Chen, Tao (University of Jyväskylä, 2014)