Measurement of jet suppression in central Pb–Pb collisions at √sNN = 2.76 TeV

Abstract
The transverse momentum (pT) spectrum and nuclear modification factor (RAA) of reconstructed jets in 0–10% and 10–30% central Pb–Pb collisions at √sNN = 2.76 TeV were measured. Jets were reconstructed using the anti-kT jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet pT spectra are reported in the pseudorapidity interval of |ηjet| < 0.5 for 40 < pT, jet < 120 GeV/c in 0–10% and for 30 < pT, jet < 100 GeV/c in 10–30% collisions. Reconstructed jets were required to contain a leading charged particle with pT > 5 GeV/c to suppress jets constructed from the combinatorial background in Pb–Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb– Pb collisions had a negligible effect on the RAA. The nuclear modification factor RAA was found to be 0.28 ± 0.04 in 0–10% and 0.35 ± 0.04 in 10–30% collisions, independent of pT, jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching.
Main Author
Format
Articles Research article
Published
2015
Series
Subjects
Publication in research information system
Publisher
Elsevier BV * North-Holland
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201507072544Use this for linking
Review status
Peer reviewed
ISSN
0370-2693
DOI
https://doi.org/10.1016/j.physletb.2015.04.039
Language
English
Published in
Physics Letters B
Citation
License
CC BY 4.0Open Access
Copyright© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Share