Enclosure method for the p-Laplace equation
dc.contributor.author | Brander, Tommi | |
dc.contributor.author | Kar, Manas | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2015-03-11T09:43:06Z | |
dc.date.available | 2016-04-01T21:45:05Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Brander, T., Kar, M., & Salo, M. (2015). Enclosure method for the p-Laplace equation. <i>Inverse Problems</i>, <i>31</i>(4), Article 045001. <a href="https://doi.org/10.1088/0266-5611/31/4/045001" target="_blank">https://doi.org/10.1088/0266-5611/31/4/045001</a> | |
dc.identifier.other | CONVID_24594355 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/45488 | |
dc.description.abstract | Abstract. We study the enclosure method for the p-Calderon problem, which is a nonlinear generalization of the inverse conductivity problem due to Calderon that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions. | fi |
dc.language.iso | eng | |
dc.publisher | Institute of Physics Publishing Ltd.; Institute of Physics | |
dc.relation.ispartofseries | Inverse Problems | |
dc.subject.other | enclosure method | |
dc.subject.other | Calderón problem | |
dc.subject.other | p-Laplace equation | |
dc.title | Enclosure method for the p-Laplace equation | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201503041419 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Inversio-ongelmien huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Centre of Excellence in Inverse Problems | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-03-04T16:30:03Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0266-5611 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 31 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Institute of Physics Publishing Ltd. and Institute of Physics 2015. This is a final draft version of an article whose final and definitive form has been published by Institute of Physics Publishing Ltd. and Institute of Physics. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.rights.url | http://iopscience.iop.org/info/page/openaccess | |
dc.relation.doi | 10.1088/0266-5611/31/4/045001 | |
dc.type.okm | A1 |
Aineistoon kuuluvat tiedostot
Aineisto kuuluu seuraaviin kokoelmiin
Ellei muuten mainita, aineiston lisenssi on © Institute of Physics Publishing Ltd. and Institute of Physics 2015. This is a final draft version of an article whose final and definitive form has been published by Institute of Physics Publishing Ltd. and Institute of Physics.