dc.contributor.author | Banichuk, Nikolay | |
dc.contributor.author | Barsuk, Alexander | |
dc.contributor.author | Tuovinen, Tero | |
dc.contributor.author | Jeronen, Juha | |
dc.date.accessioned | 2015-01-29T09:01:12Z | |
dc.date.available | 2015-01-29T09:01:12Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Banichuk, N., Barsuk, A., Tuovinen, T., & Jeronen, J. (2014). Variational approach for analysis of harmonic vibration and stabiligy of moving panels. <i>Rakenteiden mekaniikka</i>, <i>47</i>(4), 148-162. <a href="http://rmseura.tkk.fi/rmlehti/2014/nro4/RakMek_47_4_2014_2.pdf" target="_blank">http://rmseura.tkk.fi/rmlehti/2014/nro4/RakMek_47_4_2014_2.pdf</a> | |
dc.identifier.other | CONVID_24475647 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/45185 | |
dc.description.abstract | In this paper, the stability of a simply supported axially moving elastic panel (plate
undergoing cylindrical deformation) is considered. A complex variable technique and bifurcation
theory are applied. As a result, variational equations and a variational principle are derived.
Analysis of the variational principle allows the study of qualitative properties of the bifurcation
points. Asymptotic behaviour in a small neighbourhood around an arbitrary bifurcation point
is analyzed and presented.
It is shown analytically that the eigenvalue curves in the (ω, V0) plane cross both the ω and
V0 axes perpendicularly. It is also shown that near each bifurcation point, the dependence ω(V0)
for each mode approximately follows the shape of a square root near the origin.
The obtained results complement existing numerical studies on the stability of axially moving
materials, especially those with finite bending rigidity. From a rigorous mathematical viewpoint,
the presence of bending rigidity is essential, because the presence of the fourth-order term in the
model changes the qualitative behaviour of the bifurcation points. The results are applicable to
both axially moving panels and axially moving beams. | |
dc.language.iso | eng | |
dc.publisher | Rakenteiden Mekaniikan Seura ry | |
dc.relation.ispartofseries | Rakenteiden mekaniikka | |
dc.relation.uri | http://rmseura.tkk.fi/rmlehti/2014/nro4/RakMek_47_4_2014_2.pdf | |
dc.subject.other | axially moving panel | |
dc.subject.other | axially moving beam | |
dc.subject.other | bifurcation theory | |
dc.subject.other | complex variable techniques | |
dc.subject.other | variational principle | |
dc.title | Variational approach for analysis of harmonic vibration and stabiligy of moving panels | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201501161122 | |
dc.contributor.laitos | Tietotekniikan laitos | fi |
dc.contributor.laitos | Department of Mathematical Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-01-16T16:30:05Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 148-162 | |
dc.relation.issn | 0783-6104 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 47 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © the Authors © Rakenteiden Mekaniikan Seura ry. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.type.okm | A1 | |