Näytä suppeat kuvailutiedot

dc.contributor.authorBanichuk, Nikolay
dc.contributor.authorBarsuk, Alexander
dc.contributor.authorTuovinen, Tero
dc.contributor.authorJeronen, Juha
dc.date.accessioned2015-01-29T09:01:12Z
dc.date.available2015-01-29T09:01:12Z
dc.date.issued2014
dc.identifier.citationBanichuk, N., Barsuk, A., Tuovinen, T., & Jeronen, J. (2014). Variational approach for analysis of harmonic vibration and stabiligy of moving panels. <i>Rakenteiden mekaniikka</i>, <i>47</i>(4), 148-162. <a href="http://rmseura.tkk.fi/rmlehti/2014/nro4/RakMek_47_4_2014_2.pdf" target="_blank">http://rmseura.tkk.fi/rmlehti/2014/nro4/RakMek_47_4_2014_2.pdf</a>
dc.identifier.otherCONVID_24475647
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/45185
dc.description.abstractIn this paper, the stability of a simply supported axially moving elastic panel (plate undergoing cylindrical deformation) is considered. A complex variable technique and bifurcation theory are applied. As a result, variational equations and a variational principle are derived. Analysis of the variational principle allows the study of qualitative properties of the bifurcation points. Asymptotic behaviour in a small neighbourhood around an arbitrary bifurcation point is analyzed and presented. It is shown analytically that the eigenvalue curves in the (ω, V0) plane cross both the ω and V0 axes perpendicularly. It is also shown that near each bifurcation point, the dependence ω(V0) for each mode approximately follows the shape of a square root near the origin. The obtained results complement existing numerical studies on the stability of axially moving materials, especially those with finite bending rigidity. From a rigorous mathematical viewpoint, the presence of bending rigidity is essential, because the presence of the fourth-order term in the model changes the qualitative behaviour of the bifurcation points. The results are applicable to both axially moving panels and axially moving beams.
dc.language.isoeng
dc.publisherRakenteiden Mekaniikan Seura ry
dc.relation.ispartofseriesRakenteiden mekaniikka
dc.relation.urihttp://rmseura.tkk.fi/rmlehti/2014/nro4/RakMek_47_4_2014_2.pdf
dc.subject.otheraxially moving panel
dc.subject.otheraxially moving beam
dc.subject.otherbifurcation theory
dc.subject.othercomplex variable techniques
dc.subject.othervariational principle
dc.titleVariational approach for analysis of harmonic vibration and stabiligy of moving panels
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201501161122
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2015-01-16T16:30:05Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange148-162
dc.relation.issn0783-6104
dc.relation.numberinseries4
dc.relation.volume47
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors © Rakenteiden Mekaniikan Seura ry.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot