dc.contributor.author | Paternain, Gabriel P. | |
dc.contributor.author | Salo, Mikko | |
dc.contributor.author | Uhlmann, Gunther | |
dc.date.accessioned | 2015-01-12T09:22:33Z | |
dc.date.available | 2015-01-12T09:22:33Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Paternain, G. P., Salo, M., & Uhlmann, G. (2014). Spectral rigidity and invariant distributions on Anosov surfaces. <i>Journal of differential geometry</i>, <i>98</i>(1), 147-181. <a href="https://doi.org/10.4310/jdg/1406137697" target="_blank">https://doi.org/10.4310/jdg/1406137697</a> | |
dc.identifier.other | CONVID_23817354 | |
dc.identifier.other | TUTKAID_62681 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/45053 | |
dc.description.abstract | This article considers inverse problems on closed Riemannian surfaces whose geodesic
flow is Anosov. We prove spectral rigidity for any Anosov surface and injectivity of the
geodesic ray transform on solenoidal 2-tensors. We also establish surjectivity results
for the adjoint of the geodesic ray transform on solenoidal tensors. The surjectivity
results are of independent interest and imply the existence of many geometric invariant
distributions on the unit sphere bundle. In particular, we show that on any Anosov
surface (M,g), given a smooth function f on M there is a distribution in the Sobolev
space H-1(SM) that is invariant under the geodesic flow and whose projection to M
is the given function f. | |
dc.language.iso | eng | |
dc.publisher | Lehigh University | |
dc.relation.ispartofseries | Journal of differential geometry | |
dc.relation.isversionof | Journal of differential geometry | |
dc.relation.uri | http://projecteuclid.org/euclid.jdg/1406137697 | |
dc.subject.other | conjugate-points | |
dc.subject.other | isospectral manifolds | |
dc.title | Spectral rigidity and invariant distributions on Anosov surfaces | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201501091064 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-01-09T16:30:10Z | |
dc.type.coar | journal article | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 147-181 | |
dc.relation.issn | 0022-040X | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 98 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © The Authors. © Lehigh University, 2014. This is an authors' final draft version of an article whose final and definitive form has been published by Lehigh University. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.doi | 10.4310/jdg/1406137697 | |