Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens

Abstract
Rapid evolutionary adaptions to new and previously detrimental environmental conditions can increase the risk of invasion by novel pathogens. We tested this hypothesis with a 133-day-long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found that S. marcescens evolved at harsh (80 g/L) and extreme (100 g/L) salt conditions had clearly improved salt tolerance than those evolved in the other three treatments (ancestral conditions, nonsaline conditions, and fluctuating salt conditions). Evolutionary theories suggest that fastest evolutionary changes could be observed in intermediate selection pressures. Therefore, we originally hypothesized that extreme conditions, such as our 100 g/L salinity treatment, could lead to slower adaptation due to low population sizes. However, no evolutionary differences were observed between populations evolved in harsh and extreme conditions. This suggests that in the study presented here, low population sizes did not prevent evolution in the long run. On the whole, the adaptive potential observed here could be important for the transition of pathogenic S. marcescens bacteria from human-impacted freshwater environments, such as wastewater treatment plants, to marine habitats, where they are known to infect and kill corals (e.g., through white pox disease).
Main Authors
Format
Articles Research article
Published
2014
Series
Subjects
Publication in research information system
Publisher
JohnWiley & Sons Ltd.
Original source
http://onlinelibrary.wiley.com/doi/10.1002/ece3.1253/abstract
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201411013154Use this for linking
Review status
Peer reviewed
ISSN
2045-7758
DOI
https://doi.org/10.1002/ece3.1253
Language
English
Published in
Ecology and Evolution
Citation
  • Ketola, T., & Hiltunen, T. (2014). Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens. Ecology and Evolution, 4(20), 3901-3908. https://doi.org/10.1002/ece3.1253
License
CC BY 3.0Open Access

Share