Simple memetic computing structures for global optimization
Julkaisija
University of JyväskyläISBN
978-951-39-5803-9ISSN Hae Julkaisufoorumista
1456-5390Julkaisuun sisältyy osajulkaisuja
- Article I: I. Poikolainen, G. Iacca, F. Neri, E. Mininno, M. Weber. Shrinking Three Stage Optimal Memetic Exploration. Proceedings of the fifth international conference on bioinspired optimization methods and their applications, pages 61-74, 2012.
- Article II: I. Poikolainen, F. Caraffini, F. Neri, M. Weber. Handling Non-Separability in Three Stage Memetic Exploration. Proceedings of the fifth international conference on bioinspired optimization methods and their applications, pages 195-205, 2012.
- Article III: F. Neri, M. Weber, F. Caraffini, I. Poikolainen. Meta-Lamarckian Learning in Three Stage Optimal Memetic Exploration. 12th UK Workshop on Computational Intelligence (UKCI), pages 1-8, 2012. DOI: 10.1109/UKCI.2012.6335770
- Article IV: I. Poikolainen, G. Iacca,F. Caraffini, F. Neri. Focusing the search: a progressively shrinking memetic computing framework. Int. J. Innovative Computing and Applications, pages 3-16, 2013. DOI: 10.1504/IJICA.2013.055929
- Article V: F. Caraffini, F. Neri, I. Poikolainen. Micro-Differential Evolution with Extra Moves Along the Axes. IEEE Symposium on Differential Evolution (SDE), pages 46-53, 2013. DOI: 10.1109/SDE.2013.6601441
- Article VI: I. Poikolainen, F. Neri. Differential Evolution with Concurrent Fitness Based Local Search. IEEE Congress on Evolutionary Computation (CEC), pages 384-391, 2013. DOI: 10.1109/CEC.2013.6557595
- Article VII: I. Poikolainen, F. Neri, F.Caraffini. Cluster-Based Population Initialization for Differential Evolution Frameworks. Information Sciences, 297 (March), pages 216-235, 2015. DOI: 10.1016/j.ins.2014.11.026
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3559]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Parallel global optimization : structuring populations in differential evolution
Weber, Matthieu (University of Jyväskylä, 2010) -
Algorithmic issues in computational intelligence optimization : from design to implementation, from implementation to design
Caraffini, Fabio (University of Jyväskylä, 2016)The vertiginous technological growth of the last decades has generated a variety of powerful and complex systems. By embedding within modern hardware devices sophisticated software, they allow the solution of complicated ... -
Evolutionary design optimization with Nash games and hybridized mesh/meshless methods in computational fluid dynamics
Wang, Hong (University of Jyväskylä, 2012) -
Simultaneous Noise and Impedance Fitting to Transition-Edge Sensor Data Using Differential Evolution
Helenius, A. P.; Puurtinen, T. A.; Kinnunen, K. M.; Maasilta, I. J. (Springer Science and Business Media LLC, 2020)We discuss a robust method to simultaneously fit a complex multi-body model both to the complex impedance and the noise data for transition-edge sensors. It is based on a differential evolution (DE) algorithm, providing ... -
Evolutionary Algorithms and Metaheuristics : Applications in Engineering Design and Optimization
Greiner, David; Periaux, Jacques; Quagliarella, Domenico; Magalhaes-Mendes, Jorge; Galván, Blas (Hindawi Publishing Corporation, 2018)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.