Näytä suppeat kuvailutiedot

dc.contributor.authorHub, Jochen S.
dc.contributor.authorDe Groot, Bert L.
dc.contributor.authorGrubmüller, Helmut
dc.contributor.authorGroenhof, Gerrit
dc.date.accessioned2014-08-18T08:32:36Z
dc.date.available2015-01-14T22:45:08Z
dc.date.issued2014
dc.identifier.citationHub, J. S., De Groot, B. L., Grubmüller, H., & Groenhof, G. (2014). Quantifying artifacts in Ewald simulations of inhomogeneous systems with a net charge. <i>Journal of Chemical Theory and Computation</i>, <i>10</i>(1), 381-390. <a href="https://doi.org/10.1021/ct400626b" target="_blank">https://doi.org/10.1021/ct400626b</a>
dc.identifier.otherCONVID_23652563
dc.identifier.otherTUTKAID_61723
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/44043
dc.description.abstractEwald summation, which has become the de facto standard for computing electrostatic interactions in biomolecular simulations, formally requires that the simulation box is neutral. For non-neutral systems the Ewald algorithm implicitly introduces a uniform background charge distribution that e ectively neutralizes the simulation box. Because a uniform distribution of counter charges typically deviates from the spatial distribution of counterions in real systems, artifacts may arise, in particular in systems with an inhomogeneous dielectric constant. Here we derive an analytical expression for the e ect of using an implicit background charge instead of explicit counterions, on the chemical potential of ions in heterogeneous systems, which (i) provides a quantitative criterium for deciding if the background charge o ers an acceptable trade-o between artifacts arising from sampling problems and artifacts arising from the homogeneous background charge distribution; and (ii) can be used to correct this artifact in certain cases. Because the artifact is due to the di erence in charge density between the non-neutral system with a uniform neutralizing background charge and the real neutral system with a physically correct distribution of explicit counterions, our model quanti es the artifact in terms of this di erence. We show that for inhomogeneous systems, such as proteins and membranes in water, the artifact manifests itself by an overstabilization of ions inside the lower dielectric by tens to even hundreds kilojoules per mole. We have tested the accuracy of our model in molecular dynamics simulations and found that the error in the calculated free energy for moving a test charge from water into a hexadecane/water slab at di erent net charges of the system and di erent simulation box sizes, is correctly predicted by the model, con rming that the incorrect distribution of counter charges in the simulation box is solely responsible for the errors in the PMFs.fi
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesJournal of Chemical Theory and Computation
dc.relation.urihttp://pubs.acs.org/journal/jctcce
dc.subject.otherEwald simulations
dc.subject.otherinhomogeneous systems
dc.titleQuantifying artifacts in Ewald simulations of inhomogeneous systems with a net charge
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201407312271
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineEpäorgaaninen ja analyyttinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineInorganic and Analytical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2014-07-31T03:30:30Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange381-390
dc.relation.issn1549-9618
dc.relation.numberinseries1
dc.relation.volume10
dc.type.versionacceptedVersion
dc.rights.copyright© 2013 American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.rights.urlhttp://www.acs.org/content/acs/en/copyright.html
dc.relation.doi10.1021/ct400626b
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

Ellei muuten mainita, aineiston lisenssi on © 2013 American Chemical Society