Tests and estimates of shape based on spatial signs and ranks
Sirkiä, S., Taskinen, S., Oja, H., & Tyler, D. (2009). Tests and estimates of shape based on spatial signs and ranks. J. Nonparametr. Stat., 21(2), 155-176. https://doi.org/10.1080/10485250802495691
Published in
J. Nonparametr. Stat.Date
2009Copyright
© Taylor & Francis. This is an author's final draft version of an article whose final and definitive form has been published by Taylor & Francis.
Nonparametric procedures for testing and estimation of the shape matrix in the case of multivariate elliptic distribution are considered. Testing for sphericity is an important special case. The tests and estimates are based on the spatial sign and rank covariance matrices. The estimates based on the spatial sign covariance matrix and symmetrized spatial sign covariance matrix are Tyler's [A distribution-free M-estimator of multivariate scatter, Ann. Statist. 15 (1987), pp. 234–251] shape matrix and and Dümbgen's [On Tyler's M-functional of scatter in high dimension, Ann. Inst. Statist. Math. 50 (1998), pp. 471–491] shape matrix, respectively. The test based on the spatial sign covariance matrix is the sign test statistic in the class of nonparametric tests proposed by Hallin and Paindaveine [Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity, Ann. Statist. 34 (2006), pp. 2707–2756]. New tests and estimates based on the spatial rank covariance matrix are proposed. The shape estimates introduced in the paper play an important role in the inner standardisation of the spatial sign and rank tests for multivariate location. Limiting distributions of the tests and estimates are reviewed and derived, and asymptotic efficiencies as well as finite-sample efficiencies of the proposed tests are compared with those of the classical modified John's [Some optimal multivariate tests, Biometrika 58 (1971), pp. 123–127; The distribution of a statistic used for testing sphericity of normal distributions, Biometrika 59 (1972), pp. 169–173] test and the van der Waerden test (Hallin and Paindaveine, [Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity, Ann. Statist. 34 (2006), pp. 2707–2756]). The symmetrised spatial sign- and rank-based estimates and tests seem to have a very high efficiency in the multivariate normal case, and they are much better than the classical estimate (shape matrix based on the regular covariance matrix) and test (John's test) for distributions with heavy tails.
...
Publisher
Taylor & FrancisISSN Search the Publication Forum
1048-5252Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/18025826
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Hyvä merkki tähän taloon (6/8 a)
Unknown author (s. d.) -
Jokainen lause on merkki : novellitulkinta Thomas Pynchonin teoksesta The Crying of Lot 49
Pesu, Maria (2014)Tässä tutkielmassa tarkastellaan, kuinka Thomas Pynchonin teosta The Crying of Lot 49 voidaan lukea novellina ja kuinka se sopii yhteen erilaisten novellimääritelmien kanssa. Novelliteorioiden kenttä on rikkonainen ja ...