dc.contributor.author | Taskinen, Sara | |
dc.contributor.author | Croux, Christophe | |
dc.contributor.author | Kankainen, Annaliisa | |
dc.contributor.author | Ollila, Esa | |
dc.contributor.author | Oja, Hannu | |
dc.date.accessioned | 2012-11-29T12:26:08Z | |
dc.date.available | 2012-11-29T12:26:08Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Taskinen, S., Croux, C., Kankainen, A., Ollila, E., & Oja, H. (2006). Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices. <i>J. Multivariate Anal.</i>, <i>97</i>(2,), 359-384.. <a href="https://doi.org/10.1016/j.jmva.2005.03.005" target="_blank">https://doi.org/10.1016/j.jmva.2005.03.005</a> | |
dc.identifier.other | CONVID_15546427 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/40460 | |
dc.description.abstract | In this paper, the influence functions and limiting distributions of the canonical correlations and coefficients based on affine equivariant scatter matrices are developed for elliptically symmetric distributions. General formulas for limiting variances and covariances of the canonical correlations and canonical vectors based on scatter matrices are obtained. Also the use of the so-called shape matrices in canonical analysis is investigated. The scatter and shape matrices based on the affine equivariant Sign Covariance Matrix as well as the Tyler's shape matrix serve as examples. Their finite sample and limiting efficiencies are compared to those of the Minimum Covariance Determinant estimators and S-estimator through theoretical and simulation studies. The theory is illustrated by an example. | fi |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | J. Multivariate Anal. | |
dc.subject.other | Kanoniset korrelaatiot ja vektorit | |
dc.title | Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201211293121 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2012-11-29T10:39:50Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 359-384. | |
dc.relation.issn | 0047-259X | |
dc.relation.numberinseries | 2, | |
dc.relation.volume | 97 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Elsevier. This is an author's final draft version of an article whose final and definitive form has been published by Elsevier. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.1016/j.jmva.2005.03.005 | |
dc.type.okm | A1 | |