Näytä suppeat kuvailutiedot

dc.contributor.authorKauttonen, Janne
dc.date.accessioned2012-10-26T06:54:22Z
dc.date.available2012-10-26T06:54:22Z
dc.date.issued2012
dc.identifier.isbn978-951-39-4787-3
dc.identifier.otheroai:jykdok.linneanet.fi:1233281
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/40099
dc.description.abstractIn this Thesis, transport in complex nonequilibrium many-particle systems is studied using numerical master equation approach and Monte Carlo simulations. We focus on the transport of the center-of-mass of deformable objects with internal structure. Two physical systems are studied in detail: linear polymers using the Rubinstein-Duke model and single-layer metal-on-metal atomic islands using a semi-empirical lattice model. Polymers and islands are driven out of thermodynamic equilibrium by strong static and time-dependent external forces. Topics covered in this work include introductions to nonequilibrium statistical mechanics, master equations and computational methods, with construction and numerical solving of master equations, and numerical optimization. For small systems (up to ∼106 states), solving master equations numerically is found to be efficient, especially when studying parameter sensitive and elusive properties, such as drifts caused by the ratchet effect. Speed and accuracy of the method allows optimization with respect to continuous model parameters and transition cycles, which helps in understanding the coupling between the internal dynamics of deformable objects and their center-of-mass displacement. Firstly, we study transport of polymers in spatially periodic time-dependent potentials using a standard and relaxed versions of the Rubinstein-Duke model. Two types of potentials, flashing and traveling, are considered with stochastic and deterministic time-dependency schemes. Rich non-linear behavior for the transport velocity, diffusion and energetic efficiency is found. By varying the polymer length, we find current inversions caused by a ’rebound’ effect that is only present for objects with internal structure. These results are different between reptating and non-reptating polymers. Transport is found to become more coherent for deterministic time-dependency scheme and as the polymer gets longer. The results show that small changes in the molecule structure (e.g. the charge configuration) and the environment variables can lead to a large change in the velocity.Secondly, we study transport of single-layer metal-on-metal islands using a semiempirical lattice model for Cu atoms on Cu(001) surface. Two types of time-dependent driving are considered: a pulsed rotated field and an alternating field with a zero average force (an electrophoretic ratchet). The main results are that a pulsed field can increase the velocity in both diagonal and axis directions as compared to a static field, and there exists a current inversion in an electrophoretic ratchet. In addition to a ’magic size’ effect for islands in equilibrium, a stronger odd-even effect is found in the presence of large fields. Master equation computations reveal nonmonotonous behavior of the leading relaxation constant and effective Arrhenius parameters. Optimized transition cycles shed light on microscopic mechanisms responsible for island transport in strong fields.fi
dc.format.extentverkkoaineisto (153 sivua).
dc.language.isoeng
dc.publisherUniversity of Jyväskylä
dc.relation.ispartofseriesResearch report / Department of Physics, University of Jyväskylä
dc.subject.otherMaterial physics
dc.subject.otherMany-particle systems
dc.titleNumerical studies of transport in complex many-particle systems far from equilibrium
dc.typeDiss.fi
dc.identifier.urnURN:ISBN:978-951-39-4787-3
dc.type.dcmitypeTexten
dc.type.ontasotVäitöskirjafi
dc.type.ontasotDoctoral dissertationen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Mathematics and Scienceen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineFysiikkafi
dc.relation.issn0075-465X
dc.relation.numberinseriesno. 7/2012
dc.rights.accesslevelopenAccessfi
dc.subject.ysolämpöliike
dc.subject.ysotermodynamiikka
dc.subject.ysooptimointi
dc.subject.ysonumeeriset menetelmät
dc.subject.ysopolymeerit


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot