Näytä suppeat kuvailutiedot

dc.contributor.authorSaksa, Tytti
dc.contributor.authorBanichuk, Nikolay
dc.contributor.authorJeronen, Juha
dc.contributor.authorKurki, Matti
dc.contributor.authorTuovinen, Tero
dc.date.accessioned2012-09-27T12:07:53Z
dc.date.available2012-09-27T12:07:53Z
dc.date.issued2012
dc.identifier.citationSaksa, T., Banichuk, N., Jeronen, J., Kurki, M., & Tuovinen, T. (2012). Dynamic analysis for axially moving viscoelastic panels. <i>International Journal of Solids and Structures</i>, <i>49</i>(23-24), 3355-3366. <a href="https://doi.org/10.1016/j.ijsolstr.2012.07.017" target="_blank">https://doi.org/10.1016/j.ijsolstr.2012.07.017</a>
dc.identifier.otherCONVID_21624168
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/38652
dc.description.abstractIn this study, stability and dynamic behaviour of axially moving viscoelastic panels are investigated with the help of the classical modal analysis. We use the flat panel theory combined with the Kelvin–Voigt viscoelastic constitutive model, and we include the material derivative in the viscoelastic relations. Complex eigenvalues for the moving viscoelastic panel are studied with respect to the panel velocity, and the corresponding eigenfunctions are found using central finite differences. The governing equation for the transverse displacement of the panel is of fifth order in space, and thus five boundary conditions are set for the problem. The fifth condition is derived and set at the in-flow end for clamped–clamped and clamped-simply supported panels. The numerical results suggest that the moving viscoelastic panel undergoes divergence instability for low values of viscosity. They also show that the critical panel velocity increases when viscosity is increased and that the viscoelastic panel does not experience instability with a sufficiently high viscosity coefficient. For the cases with low viscosity, the modes and velocities corresponding to divergence instability are found numerically. We also report that the value of bending rigidity (bending stiffness) affects the distance between the divergence velocity and the flutter velocity: the higher the bending rigidity, the larger the distance.fi
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesInternational Journal of Solids and Structures
dc.subject.otherLiikkuva
dc.subject.otherviscoelastinen
dc.subject.otherpalkki
dc.subject.otherdynaaminen
dc.subject.otherviscoelastic
dc.subject.otherbeam
dc.subject.otherdynamic
dc.subject.otherstability
dc.titleDynamic analysis for axially moving viscoelastic panels
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201209272519
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2012-09-27T03:30:17Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3355-3366
dc.relation.issn0020-7683
dc.relation.numberinseries23-24
dc.relation.volume49
dc.type.versionacceptedVersion
dc.rights.copyright© Elsevier. This is an author's final draft version of an article whose final and definitive version has been published by Elsevier.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoominaisarvot
dc.subject.ysostabiilius
dc.subject.ysoliikkuminen
jyx.subject.urihttp://www.yso.fi/onto/yso/p7087
jyx.subject.urihttp://www.yso.fi/onto/yso/p3071
jyx.subject.urihttp://www.yso.fi/onto/yso/p649
dc.relation.doi10.1016/j.ijsolstr.2012.07.017
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot