An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation
Abstract
A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower frequencies the growth is milder. The proposed preconditioner is particularly effective for low-frequency and mid-frequency problems.
Main Authors
Format
Articles
Research article
Published
2007
Series
Subjects
Publication in research information system
Publisher
Elsevier
Original source
http://dx.doi.org/10.1016/j.jcp.2007.05.013
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-20112211790Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
0021-9991
DOI
https://doi.org/10.1016/j.jcp.2007.05.013
Language
English
Published in
Journal Of Computational Physics
Citation
- Airaksinen, T., Heikkola, E., Pennanen, A., & Toivanen, J. (2007). An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation. Journal Of Computational Physics, 226(1), 1196-1210. https://doi.org/10.1016/j.jcp.2007.05.013
Copyright© Elsevier