Show simple item record

dc.contributor.advisor
dc.contributor.authorHeikinheimo, Matti
dc.date.accessioned2010-10-22T13:48:54Z
dc.date.available2010-10-22T13:48:54Z
dc.date.issued2010
dc.identifier.isbn978-951-39-4052-2
dc.identifier.otheroai:jykdok.linneanet.fi:1138690
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/25508
dc.description.abstractThis work consists of an overview part and three research papers. The subject of this work is a class of models for dynamical electroweak symmetry breaking, and new generations of fermionic matter. An introductory overview of the standard model of electroweak interactions is given, as well as an overview of some of the recent developments in the field of walking technicolor models. We study some recently proposed models for dynamical electroweak symmetry breaking, namely the minimal walking technicolor (MWT) and next to minimal walking technicolor (NMWT) model. We show that, as a result of cancellation of the global and gauge anomalies associated with the technicolor sector, a non sequential SM-like matter generation may naturally arise. We study the effects of this new matter generation on electroweak and flavor observables and derive constraints for the masses of the new fermions. We show that the new fermions may have a significant impact on the physics of the composite Higgs boson of the technicolor theory. We present the resulting decay branching ratios and production cross sections of the composite Higgs boson. We also find that the fermions themselves should be visible in the LHC experiment, and outline basic search strategies. We construct a model framework for the origin of fermion masses, in which a technicolor sector is accompanied by a scalar boson. In this bottom-up-approach the scalar represents the low energy spectrum of the yet unkown full gauge theory responsible for fermion masses. We construct a low energy effective Lagrangian and use electroweak and flavor precision observables, as well as direct detection limits, to constrain the parameters of the model. We find that the low energy particle spectrum of the model consists of one light and one heavy Higgs-like scalar, accompanied by three massive technipions. We find that all of the models studied in this work are viable in the light of all existing electroweak and flavor precision data. The LHC experiment will be able to give crucial information on the subject, and possibly confirm or rule out some of the models studied in this work.en
dc.format.extent54 sivua
dc.language.isoeng
dc.publisherUniversity of Jyväskylä
dc.relation.ispartofseriesResearch report / Department of Physics, University of Jyväskylä
dc.relation.isversionofISBN 978-951-39-4051-5
dc.subject.otherfermionit
dc.subject.othervektoribosonit
dc.subject.othertekniväri
dc.subject.otherainesukupolvet
dc.titleTechnicolor and new matter generations
dc.typeDiss.fi
dc.identifier.urnURN:ISBN:978-951-39-4052-2
dc.type.dcmitypeTexten
dc.type.ontasotVäitöskirjafi
dc.type.ontasotDoctoral dissertationen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Mathematics and Scienceen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineFysiikkafi
dc.relation.issn0075-465X
dc.relation.numberinseriesno. 10/2010
dc.rights.accesslevelopenAccessfi
dc.subject.ysohiukkasfysiikka
dc.subject.ysoperustutkimus
dc.subject.ysovälittäjäaineet
dc.subject.ysoHiggsin hiukkanen
dc.subject.ysoalkeishiukkaset
dc.subject.ysokvarkit


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record