Show simple item record

dc.contributor.authorAiraksinen, Tuomas
dc.date.accessioned2010-10-06T09:30:56Z
dc.date.available2010-10-06T09:30:56Z
dc.date.issued2010
dc.identifier.isbn978-951-39-4037-9
dc.identifier.otheroai:jykdok.linneanet.fi:1137086
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/25456
dc.descriptionArtikkeliväitöskirja. Sisältää yhteenveto-osan ja viisi artikkelia.fi
dc.descriptionArticle dissertation. Contains an introduction part and five articles.en
dc.description.abstractThis dissertation considers numerical methods for wave propagation modelling and noise control. The first part of the dissertation discusses an efficient method for solving time-harmonic wave equations in acoustic (the Helmholtz equation) and elastic domains (the Navier equation). The solver is based on preconditioning a Krylov subspace method, such as GMRES, with approximations of damped variants of the corresponding wave equations. An algebraic multigrid method is used in approximating the inverse of damped operators. The method can be used in complex three-dimensional computational domains with varying material properties. The second part of the dissertation considers noise control problems. Two different noise control problems are discussed in detail. First, a shape optimization of a duct system with respect to sound transmission loss is discussed. The sound transmission loss is maximized at multiple frequency ranges simultaneously, by adjusting the shape of a reactive muffler component. The noise reduction problem is formulated as a multiobjective optimization problem for the NSGA-II genetic algorithm. The discussed method provides an efficient approach to design muffler components. Second, a novel method is introduced for assessing the effectiveness of the optimal anti-noise for local sound control in a stochastic domain. A three-dimensional enclosed acoustic space, for example, a cabin with acoustic actuators in given locations, is modelled using the finite element method in the frequency domain. In a model problem, a significant noise reduction is demonstrated particularly at lower frequencies.en
dc.format.extent58 sivua
dc.language.isoeng
dc.publisherUniversity of Jyväskylä
dc.relation.ispartofseriesJyväskylä studies in computing
dc.relation.haspart<b>Article I:</b> Airaksinen, T., Heikkola, E, Pennanen, A. & Toivanen, J. (2009). An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation. <i>Journal of Computational Physics 226 (2007) 1196-1210</i>. <a href="http://urn.fi/URN:NBN:fi:jyu-20112211790">Full text</a>
dc.relation.haspart<b>Article II:</b> Airaksinen, T., Pennanen, A. & Toivanen, J. (2009). A damping preconditioner for time-harmonic wave equations in fluid and elastic material. <i>Journal of Computational Physics 228 (2009) 1466-1479</i>. <a href="http://urn.fi/URN:NBN:fi:jyu-20112211789">Full text</a>
dc.relation.haspart<b>Article III:</b> Airaksinen, T. & Mönkölä, S. (2010). Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics. <i>Journal of Computational and Applied Mathematics</i>, 234 (6), 1796-1802. <a href="http://urn.fi/URN:NBN:fi:jyu-20112211791">Full text</a>
dc.relation.haspart<b>Article IV:</b> Airaksinen, T., Heikkola, E. & Toivanen, J. (2009). Active noise control in a stochastic domain based on a finite element model. <i>Reports of the Department of Mathematical Information Technology, Series B. Scientific Computing, B 1/2009</i> <a href="http://urn.fi/URN:NBN:fi:jyu-2011090811365">Please see</a> (NB. changed title)
dc.relation.haspart<b>Article V:</b> Airaksinen, T. & Heikkola, E. Multiobjective muffler shape optimization with hybrid acoustics modelling. <i>Reports of the Department of Mathematical Information Technology, Series B. Scientific Computing, B 6/2006</i>. <a href="http://urn.fi/URN:NBN:fi:jyu-2011090611343">Full text</a>
dc.relation.isversionofISBN 978-951-39-4031-7
dc.rightsIn Copyright
dc.subject.otherAcoustics
dc.subject.otherNoise control
dc.subject.othermelunvaimennus
dc.subject.othercomputational acoustics
dc.subject.otheractive noise control
dc.subject.otherfinite element method
dc.subject.otherpassive noise control
dc.subject.othershape optimization
dc.titleNumerical methods for acoustics and noise control
dc.typeDiss.
dc.identifier.urnURN:ISBN:978-951-39-4037-9
dc.type.dcmitypeTexten
dc.type.ontasotVäitöskirjafi
dc.type.ontasotDoctoral dissertationen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineTietotekniikkafi
dc.relation.issn1456-5390
dc.relation.numberinseries120
dc.rights.accesslevelopenAccess
dc.subject.ysoakustiikka
dc.subject.ysomeluntorjunta
dc.subject.ysomallintaminen
dc.subject.ysomatemaattiset mallit
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright