University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Julkaisusarjat
  • Matemaattis-luonnontieteellinen tiedekunta
  • Jyväskylä Lectures in Mathematics
  • View Item
JYX > Julkaisusarjat > Matemaattis-luonnontieteellinen tiedekunta > Jyväskylä Lectures in Mathematics > View Item

Hyperbolic spaces

Thumbnail
View/Open
569.9 Kb

Downloads:  
Show download detailsHide download details  
Published in
Jyväskylä lectures in mathematics
Authors
Parker, John R.
Date
2008

 
Publisher
University of Jyväskylä, Department of Mathematics and Statistics
ISBN
978-951-39-3132-2
ISSN Search the Publication Forum
1797-4321
Keywords
hyperbolic spaces matematiikka
URI

http://urn.fi/URN:ISBN:951-39-3132-2

Metadata
Show full item record
Collections
  • Jyväskylä Lectures in Mathematics [3]
  • Matemaattis-luonnontieteellinen tiedekunta [2]

Related items

Showing items with similar title or keywords.

  • A classification of $\protect \mathbb{R}$-Fuchsian subgroups of Picard modular groups 

    Parkkonen, Jouni; Paulin, Frédéric (CEDERAM - Centre de diffusion de revues académiques mathématiques, 2018)
  • Gromov hyperbolicity and quasihyperbolic geodesics 

    Koskela, Pekka; Lammi, Päivi; Manojlovic, Vesna (Societe Mathematique de France; École normale supérieure, 2014)
    We characterize Gromov hyperbolicity of the quasihyperbolic metric space (\Omega,k) by geometric properties of the Ahlfors regular length metric measure space (\Omega,d,\mu). The characterizing properties are called the ...
  • Quasihyperbolic boundary condition: Compactness of the inner boundary 

    Lammi, Päivi (University of Illinois, 2011)
    We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov ...
  • Logarithmic mean inequality for generalized trigonometric and hyperbolic functions 

    Bhayo, Barkat; Yin, Li (Editura Scientia; Universitatea Sapientia Cluj-Napoca, 2015)
    In this paper we study the convexity and concavity properties of generalized trigonometric and hyperbolic functions in case of Logarithmic mean.
  • On some inequalities for the identric, logarithmic and related means 

    Sándor, József; Bhayo, Barkat (Element d.o.o., 2015)
    We offer new proofs, refinements as well as new results related to classical means of two variables, including the identric and logarithmic means.
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre