University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Rademacherin lause

Thumbnail
View/Open
465.6Kb

Downloads:  
Show download detailsHide download details  
Authors
Niitti, Anssi
Date
2008
Discipline
MatematiikkaMathematics

 
Keywords
Rademacher, Hans Lipschitz-kuvaukset mittateoria analyysi
URI

http://urn.fi/URN:NBN:fi:jyu-200805151472

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [23396]

Related items

Showing items with similar title or keywords.

  • Plenty of big projections imply big pieces of Lipschitz graphs 

    Orponen, Tuomas (Springer, 2021)
    I prove that closed n-regular sets E⊂Rd with plenty of big projections have big pieces of Lipschitz graphs. In particular, these sets are uniformly n-rectifiable. This answers a question of David and Semmes from 1993.
  • Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups 

    Di Donato, Daniela; Fässler, Katrin (Springer, 2022)
    This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group Hn, n∈N. For 1⩽k⩽n, we show that every intrinsic L-Lipschitz graph over a subset ...
  • Intrinsic Lipschitz graphs and vertical β-numbers in the Heisenberg group 

    Chousionis, Vasileios; Fässler, Katrin; Orponen, Tuomas (Johns Hopkins University Press, 2019)
    The purpose of this paper is to introduce and study some basic concepts of quantitative rectifiability in the first Heisenberg group H. In particular, we aim to demonstrate that new phenomena arise compared to the Euclidean ...
  • Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group 

    Fässler, Katrin; Orponen, Tuomas; Rigot, Séverine (American Mathematical Society, 2020)
    A Semmes surface in the Heisenberg group is a closed set $ S$ that is upper Ahlfors-regular with codimension one and satisfies the following condition, referred to as Condition B. Every ball $ B(x,r)$ with $ x \in S$ and ...
  • Lectures on Lipschitz analysis 

    Heinonen, Juha (University of Jyväskylä, 2005)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre