Learning to learn: Theta oscillations predict new learning, which enhances related learning and neurogenesis

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Nokia, Miriam
dc.contributor.author Sisti, Helene M.
dc.contributor.author Choksi, Monica R.
dc.contributor.author Shors, Tracey J.
dc.date.accessioned 2012-08-21T11:55:13Z
dc.date.available 2012-08-21T11:55:13Z
dc.date.issued 2012
dc.identifier.citation Nokia MS, Sisti HM, Choksi MR, Shors TJ (2012) Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis. PLoS ONE 7(2): e31375. doi:10.1371/journal.pone.0031375
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/123456789/38345
dc.description.abstract Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning. fi
dc.language.iso eng
dc.publisher Public Library of Science
dc.relation.ispartofseries PLoS ONE
dc.rights © 2012 Nokia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.subject.other hippokampus fi
dc.subject.other theeta fi
dc.subject.other neurogeneesi fi
dc.subject.other klassinen ehdollistaminen fi
dc.subject.other muisti en
dc.subject.other hippocampus en
dc.subject.other theta en
dc.subject.other neurogenesis en
dc.subject.other classical conditioning fi
dc.subject.other memory en
dc.title Learning to learn: Theta oscillations predict new learning, which enhances related learning and neurogenesis
dc.type Article en
dc.identifier.urn URN:NBN:fi:jyu-201208212214
dc.subject.kota 515
dc.contributor.laitos Psykologian laitos fi
dc.contributor.laitos Department of Psychology en
dc.type.uri http://purl.org/eprint/type/JournalArticle
dc.identifier.doi doi:10.1371/journal.pone.0031375
dc.description.version Publisher's PDF
eprint.status http://purl.org/eprint/type/status/PeerReviewed

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record