dc.contributor.author |
Nurminen, Miika |
|
dc.contributor.author |
Honkaranta, Anne |
|
dc.contributor.author |
Kärkkäinen, Tommi |
|
dc.date.accessioned |
2011-11-14T10:24:03Z |
|
dc.date.available |
2011-11-14T10:24:03Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Nurminen, M., Honkaranta, A. & Kärkkäinen, T. (2007). ProcMiner: Advancing Process Analysis and Management. In Proceedings of the Workshop on Text Data Mining and Management (TDMM). April 15, Istanbul, Turkey. (pp. 760-769). Istanbul, Turkey: IEEE Computer Society. doi:10.1109/ICDEW.2007.4401065 Retrieved from http://dx.doi.org/10.1109/ICDEW.2007.4401065 |
fi |
dc.identifier.isbn |
1-4244-0832-6 |
|
dc.identifier.other |
TUTKAID_23789 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/36946 |
|
dc.description.abstract |
This paper contributes both to research and practice on process mining. Previous research on process mining has focused on mining patterns from event log files to generate process models. The process mining approach adopted in this paper is focused on producing patterns about process models, not the models themselves. The approach is demonstrated by ProcMiner -an explorative research prototype for management, consolidating, publishing, retrieving, and analyzing process models. Content-based document clustering is applied to process models represented as XML database in order to find topical groups from models. In practice, organizations face numerous challenges in managing their process models. The models may be heterogeneous or ambiguous. The modeling software may change over time or due to differences in departmental purchases. ProcMiner was used in quality system development initiative at the University of Jyvaskyla The findings support previous model engineering research, showing that multiple actions are needed to ensure consistency of process models, and to make them efficiently manageable. |
|
dc.language.iso |
eng |
|
dc.publisher |
IEEE Computer Society |
|
dc.relation.ispartof |
Proceedings of the Workshop on Text Data Mining and Management (TDMM). April 15, Istanbul, Turkey |
|
dc.relation.uri |
http://dx.doi.org/10.1109/ICDEW.2007.4401065 |
|
dc.rights |
openAccess |
fi |
dc.rights |
© Copyright IEEE |
|
dc.subject.other |
process management |
en |
dc.subject.other |
process mining |
en |
dc.subject.other |
XML |
en |
dc.subject.other |
document clustering |
en |
dc.subject.other |
prosessien hallinta |
fi |
dc.subject.other |
prosessitiedon analysonti |
fi |
dc.subject.other |
XML |
fi |
dc.subject.other |
klusterointi |
fi |
dc.title |
ProcMiner: Advancing Process Analysis and Management |
|
dc.type |
Conference paper |
|
dc.identifier.urn |
URN:NBN:fi:jyu-2011111111674 |
|
dc.contributor.laitos |
Tietojenkäsittelytieteiden laitos |
fi |
dc.contributor.laitos |
Tietotekniikan laitos |
fi |
dc.contributor.laitos |
Department of Mathematical Information Technology |
en |
dc.contributor.laitos |
Department of Computer Science and Information Systems |
en |
dc.contributor.oppiaine |
digitaalinen media |
fi |
dc.contributor.oppiaine |
tietotekniikka |
fi |
jyx.tutka.pagetopage |
760-769 |
|
dc.type.uri |
http://purl.org/eprint/type/ConferencePaper |
|
dc.identifier.doi |
10.1109/ICDEW.2007.4401065 |
|
dc.date.updated |
2011-11-11T15:09:09Z |
|
dc.description.version |
Final Draft |
|
eprint.status |
http://purl.org/eprint/type/status/PeerReviewed |
|
dc.type.coar |
conference paper |
|
dc.description.reviewstatus |
peerReviewed |
|
dc.format.pagerange |
760-769 |
|
dc.type.version |
acceptedVersion |
|
dc.rights.accesslevel |
openAccess |
|