Asymmetric Synthesis of Chiral Bimetallic \([\text{Ag}_{28}\text{Cu}_{12}(\text{SR})_{24}]^{4-}\) Nanoclusters via Ion Pairing

Yan, Juanzhu; Su, Hai-Feng; Yang, Huayan; Hu, Chengyi; Malola, Sami; Lin, Shui-Chao; Teo, Boon K.; Häkkinen, Hannu; Zheng, Nanfeng

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Asymmetric Synthesis of Chiral Bimetallic [Ag28Cu12(SR)24]- Nanoclusters via Ion Pairing
Juanzhu Yan, Hai-Feng Su, Huayan Yang, Chengyi Hu, Sami Malola, Shui-Chao Lin, Boon K. Teo, Hannu Häkkinen, and Nanfeng Zheng

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b08100 • Publication Date (Web): 14 Sep 2016

Downloaded from http://pubs.acs.org on September 21, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Asymmetric Synthesis of Chiral Bimetallic [Ag_{28}Cu_{12}(SR)_{24}]^{4-}
Nanoclusters via Ion Pairing

Juanzhu Yan,1 Haifang Su,1 Huayan Yang,1 Chengyi Hu,1 Sami Malola,2 Shuichao Lin,1 Boon K. Teo,1 Hannu Häkkinen,2 Nanfeng Zheng1

1 State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
2 Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland

Supporting Information

ABSTRACT: In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, \([\text{Ag}_{28}\text{Cu}_{12}(\text{SR})_{24}]^{4-}\) was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure determination. Mass spectrometric measurements revealed relatively strong ion-pairing interactions between the anionic nanocluster and ammonium cations. Inspired by this observation, the as-prepared racemic mixture was separated into enantiomers by employing chiral quaternary ammonium salts as chiral resolution agents. Subsequently, direct asymmetric synthesis of optically pure enantiomers of \([\text{Ag}_{28}\text{Cu}_{12}(\text{SR})_{24}]^{4-}\) was achieved by using appropriate chiral ammonium cations (such as N-benzylcinchonidinium vs N-benzylcinchonidinium) in the cluster synthesis. These simple strategies, ion-pairing enantiocereparation and direct asymmetric synthesis using chiral counterions, may be of general use in preparing chiral metal nanoparticles.

Chirality is a fundamental property of nature ranging from the microscopic to the macroscopic world. The past two centuries have witnessed tremendous progress in understanding chirality at the molecular scale and its property relationships in various technological applications. Numerous chemical means have been established for the enantioselective synthesis of chiral molecules of importance in chemical, agricultural, materials, and life science industries. Many applications of nanoscaled chiral materials have been demonstrated in fundamental science and practical applications (e.g., optical devices, enantioselective catalysis, separation, and functional self-assembly). However, unlike sophisticated asymmetric syntheses of chiral molecules or assemblies of large chiral architectures (above the sub-micrometer scale), there is currently a paucity of facile synthetic or separation methodology for chiral metal nanoclusters. With increasingly powerful experimental techniques such as X-ray diffraction and mass spectrometry, the chirality of many nanoparticles can now be probed at the molecular level using atomically precise nanoclusters as models.

Within the class of chiral metal nanoclusters, four main types can be identified: (a) the presence of chiral ligands through vicinal effects or through a chiral electrostatic field; (b) asymmetric arrangement of achiral ligands to form a chiral shell; (c) inherently chiral metal framework; and (d) distortion of the structure which lowers the symmetry of the cluster to a chiral point group. The majority of chiral metal nanoclusters known to date are of types (a) and (b), with a few belonging to types (c) and (d). As prepared, many of these chiral metal nanoclusters (types b-d) are racemic mixtures that require separation and purification by various optical resolution methods. Enantioseparation of Au nanoclusters (e.g., Au_{14}, Au_{16}, Au_{24}) has been reported by using chiral HPLC columns. For example, Knoppe et al. separated Au_{131} enantiomers by a phase transfer method using a chiral ammonium salt. In this paper, we wish to demonstrate a facile technique for achieving chirality by enantioseparation of a racemic mixture of a new chiral metal nanocluster via ion pairing with a chiral counterion. Subsequent asymmetric synthesis of optically pure enantiomers was firstly achieved by employing chiral counterions in the synthesis.

Specifically, we report herein the synthesis of a new chiral thiolated bimetallic cluster, \([\text{Ag}_{28}\text{Cu}_{12}(\text{SR})_{24}]^{4-}\) (1) where SR=2,4-dichlorobenzenethiol, its chiral separation and asymmetric synthesis via ion-pairing with chiral quaternary ammonium salts. The 28 Ag atoms in the cluster are arranged in a distorted face-centered cubic (fcc) pattern, while the Ag/Cu interface in distorted hexagonal close packing (hcp). The distortions lower the point-group symmetry of the Ag_{28}Cu_{12} framework from T_d to T, turning it into a chiral cluster. When non-chiral counter cations were used, the as-prepared chiral cluster was a racemic mixture. By capitalizing on the strong ion pairing between the chiral cluster and the counterions, the racemic mixture can readily be separated into enantiomers by employing chiral quaternary ammonium salts, such as N-benzylcinchonidinium chloride (BCDC) and N-benzylcinchonidinium chloride (BCNC), as resolution agents. Subsequent asymmetric synthesis of the chiral cluster 1 using chiral ammonium salts, BCDC and BCNC, gave rise to optically pure enantiomers separately.

To prepare thiolated Ag-Cu bimetallic nanoparticles, the metal precursors (i.e., AgNO_{3}, CuBr) were chemically reduced by NaBH_{4} in the presence of 2,4-dichlorobenzenethiol (HR), tetrabutylammonium bromide (Bu_{4}NB or TBAB) and triethylamine in a mixed solvent of methanol and dichloromethane at 0°C (see SI for details). Transmission electron microscopic (TEM) analyses revealed that the as-prepared AgCu nanoparticles had a uniform size of 2.06 ± 0.22 nm (Figure S1). Single-crystal X-ray structure determination revealed that the formulation of \([\text{Ag}_{28}\text{Cu}_{12}(\text{SR})_{24}]^{4-}\) (1) (Figure 1a), as the Bu_{4}N” salt, which crystallizes in a monoclinic cell of \(P_{2}/m\) space group. The unit cell comprises two pairs \((Z = 4)\) of enantiomeric nanoclusters 1 and four cations (Figure S2).
A detailed analysis of the structure of \([\text{Ag}_6\text{Cu}_{12}](\text{SR})_2\) (1) revealed a two-shell \(\text{Ag}@\text{Ag}_6\) core protected by four nearly planar \(\text{Cu}_6(\text{SR})_6\) moieties. The \(\text{Ag}@\text{Ag}_6\) core can be described as an inner \(\nu_1\) tetrahedral \(\text{Ag}_6\) core capped on its four faces by four \(\nu_1\) triangular \(\text{Ag}_6\) facets in a slightly angular twist (Figure S3a). The \(\text{Ag}_6\) facets are interconnected to form the \(\text{Ag}_6\) shell which is capped by four \(\text{Cu}_6(\text{SR})_6\) moieties in a tetrahedral fashion to form the outer surface layer (Figure 1b). The \(\text{Cu}\) atoms are three-coordinated by thiolates. The pairwise \(\pi-\pi\) interactions between the six thiolates of \(\text{Cu}_6(\text{SR})_6\) motifs are clearly revealed on the surface of 1 (Figure S3b). The \(\text{Cu}\) and \(S\) atoms in the \(\text{Cu}_6(\text{SR})_6\) moieties are practically coplanar. As a result, all the \(\text{Cu}\) atoms in the title cluster are partially exposed, which might be of use as in-situ active sites or reactive centers in catalysis.

Further analysis of the \(\text{Ag}@\text{Ag}_6\) kernel revealed that it resembles a \(\nu_1\) tetrahedron truncated at four vertices (first truncation) and six edges (second truncation). The four \(\nu_1\) triangular \(\text{Ag}_6\) facets thus formed are further capped by four \(\text{Cu}_6(\text{SR})_6\) units, as portrayed in Figure 1d. The resulting geometry conforms to the \(T_d\) symmetry. Concerted rotations of the two outer shells, viz., \(\text{Ag}_6@\text{Ag}_6\) by 16.76° (with respect to the inner \(\nu_1\) tetrahedral \(\text{Ag}_6\) core) about the threefold axes lower the symmetry to the chiral \(T_3\) point group of the observed structure. Due to these rotations, each of the rectangular faces in Figure 1d turns into two triangles in Figures 1c and 1e, resulting in a wide range of the \(\text{Ag}-\text{Ag}\) distances from 2.698 to 3.128 Å between \(\text{Ag}_6\) tetrahedron and the \(\text{Ag}_6\) shell. As shown in Figure 1f (middle), the ACBA \(Ic\) stacking of the layers in the idealized \(\text{Ag}_6\) kernel of \(T_2\) symmetry is capped at the bottom by a \(\text{Cu}_6\) overlayer, making the \(\text{Ag}-\text{Cu}\) interface a BAB hexagonal close-packing \((hcp)\) arrangement. The \(\text{Ag}_6\text{Cu}_{12}\) framework of idealized \(T_2\) symmetry exhibits a mixed \(Ic/hcp\) stacking sequence of ACBAB. The corresponding distorted layer stacking of cluster 1 is depicted in Figure 1f (left and right). It conforms to chiral \(T_3\) symmetry.

The UV-vis spectra (Figure 2a) of both the as-prepared nanoparticles and their single crystals dissolved in CHCl3 displayed four bands at 407 nm, 464 nm, 555 nm, 653 nm (shoulder). The Lambert–Beer plot of 1-TBA is shown in Figure S4. Both products were also characterized by electrospray ionization mass (ESI-MS spectrometry) (Figure 2b). As depicted in Figures 2c and 2d, the high-resolution mass spectra of 1-TBA revealed a perfect match between the observed and the simulated isotopic distribution of \([\text{Ag}_6\text{Cu}_{12}(\text{SR})_2](\text{SR})_2\) and \([\text{Ag}_6\text{Cu}_{12}(\text{SR})_2](\text{SR})_2\) peaks. Both UV-vis and ESI-MS results clearly indicated the presence of high-purity \([\text{Ag}_6\text{Cu}_{12}(\text{SR})_2]\) in the crude product, making it easy to synthesize the nanoclusters in gram-scale (inset, Figure 2a). The high-yield synthesis of \([\text{Ag}_6\text{Cu}_{12}(\text{SR})_2]\) is due to its good stability of 1 which can be attributed to its 20 electron count (i.e., 28+12+24+4+20) being in accordance with the Jelliumatic closed-shell electronic configuration of 1S^1P^1D^1S^2P^2 (Figure S5, see SI for computational details).

As prepared 1 using achiral counteraction, TBA, is a racemic mixture, both in solution and in crystal form. In view of the relatively strong ion pairing between the anionic cluster and the counteraction, TBA, revealed by ESI-MS (Figure 2d), it occurred to us that it may be possible to use chiral quaternary ammonium cations to separate the two enantiomers. Since chiral quaternary ammonium halides such as BCNC and BCDC (Figure S6), are widely used in various asymmetric reactions as phase transfer catalysts, they were selected for the enantiopure separation. Experimentally, in order to exclude the influence of strong ion pairing...
between I and TBA, the racemates of 1-Na(H) were first prepared as
described above by excluding TBA. The as-prepared I solution was then
monitored by UV–vis, CD and ESI-MS spectra as a function of time.

Figure 3. (a, b) Time tracking of CD spectra (a) and UV–vis (b) spectra
during chiral separation in air at 0 °C; (c) calculated CD spectra of the cluster
I (red curve) and the bare Ag2 core (black curve), both conforming to T
symmetry. (d) The DFT optimized L-enantiomer of I used in Figure 3c (L-
(AgCu)4) as defined as the left-hand distortion of Ag2@Cu12 shells with respect
to the v4 tetrahedral Ag2 core, see SI for computational details). Color codes:
orange, Ag; blue, Cu; yellow sphere, S; green, Cl; Pink, O, red; N; grey. C
Hydrogen atoms are omitted for clarity.

As shown in Figures 3a and 3b, the intensity of CD signal of the
mixture was found to increase gradually while its UV–vis absorption
diminished concomitantly. The mixture exhibited increasing CD signals
(from zero), with two strong bands at 330 and 465 nm, weak peaks at 385,
406 nm, and two broad peaks at 585 and 687 nm. Note that both BCNC
and BCDC in CH2Cl2 exhibit only CD optical activity below 322 nm
(Figure S7). The corresponding ESI-MS (Figure S8) showed the peaks of
ion pairs consisting of L and BCNC, which suggested the increasing CD
signals originated from 1-BCNC. A comparison of the experimental and
theoretical circular dichroism (CD) spectra (Figures 3a and 3c) showed
good agreement, allowing the identification of the cluster as L-(AgCu)4
(3d). A detailed analysis of the CD signals revealed that the
chirality of I stems from the asymmetric stereochemistry of the bare Ag2
core. Interestingly, there is a linear correlation between the enhancement
of the CD signal and the weakening of the UV–vis absorption (Figure
S9a). In other words, one of the enantiomers in the racemate disappears
more easily while the other remains relatively stable due to steric
mismatching and matching, respectively, as a result of ion pairing between
the cluster and the chiral cation. The enantiomer with steric mismatching
was destroyed by air oxidation as well as by reaction with halides present
in the solution during the enantioseparation process. Based on the
increased CD and the decreased UV–vis absorption, the anisotropy factor
of the chiral cluster estimated to be 1×10−4 at 465 nm (Figure S9b).
Though quite stable in solid-state in months (Figure S10) and reasonably
stable in solution in hours (Figure S11) at room temperature,
[Ag3Cu2(SR)2]2+ in solutions was degraded in a rather fast rate by air in
the presence of halides even at 0 °C (Figure S12). Indeed, the time-
dependent ESI-MS (Figure S8) showed gradually diminishing signals of
the parent peaks [Ag5Cu4(SR)2]2+ (1) and [Ag5Cu4(SR)2]4+ when
BCNC was introduced. These latter observations strongly suggest that
one enantiomer of the racemic mixture was being stabilized by the chiral
counterion as a result of steric matching. On the basis of these results,
the resolution of L-(AgCu)4 from the racemic mixture can be attributed
to the selective stabilizing effect of BCNC on L-(AgCu)4 due to their
stereochromically matched ion pairing. Similarly, the use of BCDC allows
the separation of R-(AgCu)4 from the racemic mixture.

Though nearly optically pure enantiomer of I can be obtained by the
above enantioseparation technique, the maximum theoretical yield is
50% (one-half of the racemic mixture). In order to overcome this
disadvantage, we attempted the asymmetric synthesis of enantiomers by
substituting BCDC or BCNC in place of “Bu4NBr in the synthesis.
Indeed, this turned out to be true. The resulting respective enantiomers,
1-BCDC and 1-BCNC, were characterized by UV–vis (Figure S13), CD
and ESI-MS (Figure 4) spectroscopies. The UV–vis spectra are in
agreement with that of I. CD spectra of 1-BCDC and 1-BCNC exhibited
mirror-image optical activities in the visible range. In contrast, the CD of
[Na(H)][Ag3Cu2(SR)2]+ in CH2Cl2 instead showed no signals,
confirming that it was indeed a racemic mixture. However, more work is
still required to quantitatively determine the selectivity of the asymmetric
synthesis induced by the ion pairing.

Figure 4. (a) CD spectra of CH2Cl2 solutions of the enantiomeric pair
1-BCDC and 1-BCNC as well as of 1-Na(H), synthesized by substituting
BCDC and BCNC in place of “Bu4NBr as the counter cations, respectively.
(I is abbreviated here as (AgCu)4. (b) ESI-MS spectrum of crude product of
1-BCNC (N-benzylcinchoninium cation abbreviated as BCN°).

In conclusion, a new mixed-metal nanocluster, [Ag3Cu2(SR)2]2+ (1)
as the ‘Bu4N salt, was synthesized and characterized by single-crystal X-
ray structure determination, ESI-MS and UV–vis spectroscopies. The
tetraanionic cluster can be described as a chiral three concentric core-
shell structure of Ag4@Ag2@Cu12, shells with respect to the v4 tetrahedral Ag2
core. The exposed Cu atoms of the four Cu2(SR)2 units on the surface, along with T
point-group symmetry and the associated chirality, raise the prospects of the utility of the title
cluster in chiral reactions or chiral catalysis. Considering the unique
interaction between the cluster and the counterion “Bu4N", chiral
quaternary ammonium halides were introduced as chiral resolving agents
which successfully enantioseparated the racemate of 1. Subsequent
asymmetric synthesis of optically pure enantiomers of 1 was achieved by
using chiral phase transfer catalysts BCDC or BCNC as the counter
cations. It is hoped that these two simple techniques, post-synthesis
enantioseparation and direct asymmetric synthesis, will allow for preparing
optimally pure chiral nanoclusters via ion pairing with a chiral counterion
will find applications in the separation or synthesis of other chiral metal clusters of importance in fields such as catalysis and drug manufacturing.

ASSOCIATED CONTENT

Supporting Information. Experimental details, detailed crystallographic structure and data including the CIF file, computational details, analysis of the cluster electronic structure, and more mass spectra. This information is available free of charge via the internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

nfzheng@xmu.edu.cn, boonkтео@xmu.edu.cn

Notes

† J. Z. Yan and H. F. Su contributed equally to this work.

ACKNOWLEDGMENT

We thank the MOST of China (2015CB932303) and the NSFC of China (2142010201, 21313105, 21303930, 21227001, 21333008) for financial support. The financial support (to BKT) from iChEM, Xiamen University is gratefully acknowledged. We also thank Prof. H. Zhang for helpful discussions. The work in University of Jyväskylä was supported by the Academy of Finland (projects 266492, 294217 and 31821420102001, 21131005, 21390390, 21227001, 21333008) for financial support. The financial support (to BKT) from iChEM, Xiamen University is gratefully acknowledged.

REFERENCES

(8) Hare, P. E.; Gil-Av, E. Science 1979, 204, 1226.
TOC