
223
J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

High-Dimensional Big Data  
Processing with Dictionary  

Learning and Diffusion Maps

Aviv Rotbart



JYVÄSKYLÄ STUDIES IN COMPUTING 223

Aviv Rotbart

High-Dimensional Big Data  
Processing with Dictionary  

Learning and Diffusion Maps

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Lea Pulkkisen salissa

joulukuun 4. päivänä 2015 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, Lea Pulkkinen hall, on December 4, 2015 at 12 o’clock noon.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2015



High-Dimensional Big Data  
Processing with Dictionary  

Learning and Diffusion Maps



JYVÄSKYLÄ STUDIES IN COMPUTING 223

Aviv Rotbart

High-Dimensional Big Data  
Processing with Dictionary  

Learning and Diffusion Maps

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2015



Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

URN:ISBN:978-951-39-6402-3
ISBN 978-951-39-6402-3 (PDF)

ISBN 978-951-39-6401-6 (nid.)
ISSN 1456-5390

Copyright © 2015, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2015



ABSTRACT

Rotbart, Aviv
High-Dimensional Big Data Processing with Dictionary Learning and Diffusion
Maps
Jyväskylä: University of Jyväskylä, 2015, 22 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 223)
ISBN 978-951-39-6401-6 (nid.)
ISBN 978-951-39-6402-3 (PDF)
Finnish summary
Diss.

Algorithms for modern Big Data analysis deal with both massive amount of sam-
ples and a large number of features (high-dimension). One way to cope with
these challenges is to assume and discover the existence of localization in the
data by uncovering its intrinsic geometry. This approach suggests that different
data segments can be analyzed separately and then unified in order to gain an
understanding of the whole phenomenon. Methods that utilize efficiently local-
ized data are attractive for high-dimensional big data analysis, because they can
be parallelized, and thus the computational resources, which are needed for their
utilization, are realistic and affordable. These methods can explore local proper-
ties such as intrinsic dimension that vary among different pieces of data.

This thesis presents two different methods to locally analyze large datasets
for classification, clustering and anomaly detection. The first method localizes
dictionary learning based on matrix factorization techniques. We utilize random-
ized LU decomposition and QR-decomposition algorithms to build dictionaries
that describe different types of data. Then, these dictionaries are used to assign
new samples to their respective class. One application in cyber security deals
with learning of computer files and detecting executable code hidden in PDF
files. In a different application, a dictionary learned from a normally behaving
computer network data is used to detect anomalies in test data which may imply
a cyber threat.

The second method is localized diffusion process (LDP), which constitutes a
coarse-graining of the classic Diffusion Maps algorithm. In LDP, a Markov walk
is calculated on small data point clouds instead of the original data points. This
work establishes a theoretical foundation for the Localized Diffusion Folders for
hierarchical data analysis.

Keywords: Localized Diffusion; Dictionary Learning; Randomized LU; QR Fac-
torization



Author Aviv Rotbart
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisors Professor Amir Averbuch
School of Computer Science
Tel Aviv University
Israel

Professor Pekka Neittaanmäki
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Reviewers Dr. Dan Kushnir
Bell Labs
Murray Hill, NJ, USA

Dr. Neta Rabin
Afeka Tel Aviv Academic College
College of Engineering
Tel Aviv, Israel

Opponent Prof. Keijo Ruotsalainen
Faculty of Information and Electrical Engineering
Mathematics Division
University of Oulu



ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my thesis ad-
visers, Prof. Amir Averbuch and Prof. Pekka Neittaanmäki. I wish to thank Amir
and Pekka for their invaluable advice, guidance, support and help throughout
my journey of PhD studies. I thank Amir and Pekka for introducing me to new
and fascinating scientific domains, for fruitful collaborations and for doing ev-
erything possible to make my studies succeed. This thesis has been completed in
the PHD program of the IT faculty, University of Jyväskylä. I thank the IT faculty
for financial support of this work. Finally, I thank my beloved wife Na’ama for
her support, encouragement and endless love. Thank you for walking this path
with me. I thank my son Roee who was born during the work of this thesis. I
thank my parents Ahuva and Shlomo and my brothers Amit and Lior for their
inspiration and dedicated love for many years, and for providing the foundation
for this work.



LIST OF FIGURES

FIGURE 1 (a) A 3D Swiss roll comprised of 3,000 points. (b)-(d): the
two most significant coordinates of the ICPQR embedding of
the Swiss roll with (b) μ = 0.1, s = 1, 246, (c) μ = 1, s = 752,
and (d) μ = 5, s = 382, where s denotes the dictionary size.
Data coloring is consistent with Figure. 1(a)............................. 15

FIGURE 2 Construction of the pruned-kernel K̂ij between the clusters Ci
and Cj .................................................................................. 17

FIGURE 3 Illustration of the difference between localized and non-localized
paths ................................................................................... 17

FIGURE 4 Illustration of non-trivial localized paths ................................. 18

LIST OF TABLES

TABLE 1 Confusion matrix for file type detection using Markov-Walk-
based features. 100 files of each type were examined. ............... 14

TABLE 2 Confusion matrix for malicious PDF detection experiment. 100
clean PDF files and 10 malicious PDF files were examined. ....... 14



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES AND TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION ............................................................................ 9

2 CONTRIBUTION OF THE THESIS .................................................... 12

YHTEENVETO (FINNISH SUMMARY) ..................................................... 19

REFERENCES.......................................................................................... 20

INCLUDED ARTICLES



LIST OF INCLUDED ARTICLES

PI Guy Wolf, Aviv Rotbart, Gil David, Amir Averbuch. Coarse-grained lo-
calized diffusion. Applied and Computational Harmonic Analysis(3):388-400,
2012.

PII Guy Wolf, Aviv Rotbart, Gil David, Amir Averbuch. Hierarchical data or-
ganization, clustering and denoising via Coarse-grained localized diffu-
sion. CJR conference, Yale, 2012.

PIII Aviv Rotbart, Gil Shabat, Yaniv Shmueli, Amir Averbuch. Randomized LU
decomposition: An algorithm for dictionaries construction. Submitted to
IEEE transaction on Information Forensics and Security, 2014.

PIV Amit Bermanis, Aviv Rotbart, Moshe Salhov, Amir Averbuch. Incomplete
Pivoted QR-based Dimensionality Reduction. Submitted, 2015.

In [PI], the author’s contributed in the development the algorithm, the theory
and writing of the paper. The author presented the main results and applications
of this paper in a poster presentation in [PII]. The author developed the theory,
the algorithms and the experiments in [PIII]. The author also analyzed the results
and wrote the paper. In [PIV], the author developed all the experimental part and
was an integral part in the development of the algorithms. The author also wrote
that paper.



1 INTRODUCTION

Big Data has given rise to industrial revolution in machine learning. New tech-
nologies change the way we handle data the same way heavy machinery and
factories changed the way manufacturing is done. The amount of data captured
these days is exploding, and grows rapidly each year [14, 8]. Cloud services for
storage and computing are replacing PC’s and servers which can not handle these
tasks for big datasets. New methods for information retrieval and data analy-
sis are being developed with emphasis on big, dynamic, and high-dimensional
datasets.

Two trends can be identified in the Big Data domain. The first trend re-
lates to the generation, collection and digital storage of data, while the second
deals with turning it into useful knowledge. The two are intertwined, each being
meaningless without the other. While the tools for collection and storage of data
are becoming increasingly simpler and cheaper, the methods for analyzing it are
not as scalable or do not automatically fit new sizes and types of data. Therefore,
much effort in both industry and academy is put into developing algorithms that
deal with modern demands of data analysis. Such algorithms aim to find mean-
ing in oceans of bits representing numbers, text, images, entities and relations be-
tween them, computer code, and many other data structures. The insights from
data analysis algorithms are used to find clusters in the data, to classify observa-
tions to their cluster, or detect suspicious activity or anomalous data points. They
can be used to identify trends and provide alerts when appropriate triggers are
defined.

Mathematical and statistical tools underlie many data analysis algorithms.
Methods such as subsampling, spectral and kernel analysis, manifold learning,
dictionary learning, dimensionality reduction, sparsification, random processing,
to name some, are common. In this thesis, the concept of localization is used to
develop machine learning algorithms that separately analyze different pieces of
data and then gain insights and draw conclusions about the entire dataset. Gen-
erally speaking, localization can be done in the observations domain by subsam-
pling data points, in the features domain by analyzing subsets of the data vari-
ables (features) and in combination of the two. In supervised or semi-supervised



10

data analysis scenarios, localization can also be done in the labeling domain
where each cluster of the training data is treated locally to train a classifier. We
use a data localization framework in order to provide additional tools for well-
known problems in analyzing high-dimensional big data.

Dictionary construction:: Dictionaries are small and compact structures used to
describe large and complex datasets. They can be comprised of a subset of
the original data or constitute the result of an algorithm that manipulates
the data. Dictionaries can be used as a dimensionality reduction tool where
each data point is approximated by a linear combination of the dictionary
elements. When the dictionary size is smaller than the original data dimen-
sion, a low dimensional representation of the data is achieved. Dictionary
base dimension reduction faithfully represents the original dataset by pre-
serving important properties such as pairwise distances. Dictionaries are
used extensively in anomaly detection, clustering and classification, noise
reduction and signal reconstruction as described in [PIV] and [PIII].

Pruning and inter-cluster similarity analysis:: Many data analysis algorithms use
pairwise distances between data points to perform machine learning tasks.
For very large datasets, the tasks of distance matrix construction and stor-
age have become increasingly difficult. Moreover, manipulations of these
matrices, such as SVD, are computationally expensive. A possible remedy
for this problem is achieved by pruning the original data into clusters prior
to the application of computationally expensive algorithms. This approach
is described in [PI].

Related Work

Localized data analysis algorithms are used to solve various types of machine
learning problems. Dictionary-based classification models, for example, have
recently led to results in face recognition [26, 23, 24, 25, 15, 10], digit recogni-
tion [25], and object categorization [15, 10]. In these problems, local dictionary is
learned separately for each class of the data or, alternatively, one large dictionary
is constructed for all the classes. In the latter case, localization is achieved in-
side the dictionary, where each element is labeled as belonging to one data class.
Dictionaries can be constructed by utilizing matrix factorization methods such
as SVD, LU or QR. The output of each method constitutes a dictionary-matrix
and a representation-matrix. The dictionary serves as a spanning set of the orig-
inal data, and the representation contains the exact coefficients that generate the
original data by linear combinations of the dictionary elements. Dictionaries can
also be used for dimensionality reduction. Johnson-Lindenstrauss Lemma [11]
constitutes a basis for many random projection based dimensionality reduction
methods [13, 9, 17, 1, 3, 6, 4, 21]. When the number of dictionary elements is
smaller than the original dimension of the data, the matrix factorization provides
a low-dimensional representation of the data.



11

Different approaches for Big Data analysis seek localization by analyzing
small data patches and then combining the results into a unified view of the en-
tire dataset. Such approaches include coarse-grained Diffusion Maps (DM) [12],
where DM is applied to pruned clusters of data points. In a different set of works,
patches of the underlying manifold of the dataset are considered [16, 22, 19, 20].
This approach defines non-scalar affinities between patches and uses them to em-
bed the data into a low-dimensional space.

These methods and their related applications show the usefulness of local
substructures analysis for machine learning problems. In this thesis, we expand
these ideas to new theoretical and experimental domains and show that deep
insights in Big Data can be learned by separately analyzing small pieces of it.



2 CONTRIBUTION OF THE THESIS

The thesis explores several mathematical frameworks for local pattern analysis
and their application to machine learning tasks such as anomaly detection, clas-
sification and noise reduction. The first part describes a localized compact rep-
resentation of data by two dictionary learning algorithms which are applied to
several classification and anomaly detection tasks. In the second part, the prob-
lems of massive and high-dimensional data are simultaneously treated by coarse-
graining of the Diffusion Maps framework to local clusters of the data. The rest
of this section presents a brief overview of each part.

Localized Dictionaries

High-dimensional data appears in many research and application fields. Often,
the exploration of such data by classical algorithms encounters difficulties due
to the “curse of dimensionality" [5] phenomenon. Therefore, dimensionality re-
duction methods are applied to data prior to its analysis. Many of these methods
are based on principal components analysis (PCA), which is statistically driven:
namely, the data is mapped into a low-dimension subspace that preserves sig-
nificant statistical properties of the high-dimensional data. As a consequence,
these methods do not directly identify the geometry of the data reflected by mu-
tual distances between data points. Thus, classification, anomaly detection or
other machine learning tasks are affected. The work in [PIII] and [PIV] provides
a dictionary-based framework for data analysis algorithms. It is demonstrated in
applications such as dimensionality reduction, out-of-sample extension, classifi-
cation and anomaly detection.

The work in [PIII] deals with a distinctive dictionary construction. This
method is needed in data sampling. Usually, one or more dictionaries are con-
structed from a training data. Then they are used to classify signals that did not
participate in the training process. A new dictionary construction algorithm is
introduced. It is based on a low-rank matrix factorization achieved by the appli-
cation of the randomized LU decomposition [18] to a training data. This method
is fast, scalable, parallelizable, consumes low memory, outperforms SVD in these



13

categories and works well on large matrices. Given an input matrix A, the ran-
domized LU decomposition technique provides a factorization

PAQ ≈ LU

of A, such that L and U are the lower and upper triangular matrices, respectively,
and P and Q are orthogonal permutation matrices. In this construction, D =
PT L is the dictionary and UQT is the coefficient matrix representing A by the
dictionary D.

In contrast to existing methods [2], the randomized LU decomposition con-
structs an under-complete dictionary, which simplifies both the construction and
the classification processes of newly arrived signals. An overview of Randomized
LU-based dictionaries training is described in Algorithm 2.0.1. For each class of
the training data, a distinct dictionary is constructed. Members of a specific class
are spanned more accurately by the dictionary of their class than by other dictio-
naries. Formally, we define a distance function between a signal and a dictionary
in the following way:

Definition 2.0.1 Let x be a signal and D be a dictionary. The distance between x and
the dictionary D is defined by

dist(x, D) � ||DD†x − x||,
where D† is the pseudo-inverse of the matrix D.

Algorithm 2.0.1: Dictionaries Training using Randomized LU
Input: X = {X1, X2, . . . , Xr} training datasets for r sets;
K = {k1, k2, . . . , kr} dictionary size of each set.
Output: D = {D1, D2, . . . , Dr} set of dictionaries.

1: for t ∈ {1, 2, . . . , r} do

Pt, Qt, Lt, Ut ← Randomized LU Decomposition(Xt), Dt ← PT
t Lt

2: D ← {D1, D2, . . . , Dr}

The distance function from Definition 2.0.1 is used for classification by assign-
ing an unknown signal x to the class Di that minimizes dist(x, Dj), j = 1, . . . , r.
The dictionary construction is generic and fits into different applications. We
demonstrate the capabilities of this algorithm for file type identification, which
is a fundamental task in digital security, performed nowadays for example by a
sandboxing mechanism, deep packet inspection, firewalls and anti-virus systems.
We propose a content-based method for file type detection that neither depends
on file extension nor on metadata. Such approach is harder to deceive. In addi-
tion, we show that only a few file fragments from the whole file are needed for
a successful classification. The method was tested on 6 popular file types and
showed success in identifying the correct type of each file by examining only 10
randomly selected 2 KB fragments from each file. Table 1 presents the results



14

of the method for one of the feature sets described in [PIII]. Based on the con-
structed dictionaries, we demonstrate that the proposed method can effectively
identify execution code fragments in PDF files, as described in Table 2.

TABLE 1 Confusion matrix for file type detection using Markov-Walk-based features.
100 files of each type were examined.

Correct File Type

PDF DOC EXE GIF JPG HTM

Classified

File Type

PDF 93 1 0 0 9 0
DOC 0 98 0 0 0 0
EXE 2 0 98 1 0 0
GIF 3 1 1 99 0 0
JPG 1 0 0 0 91 0
HTM 1 0 1 0 0 100

TABLE 2 Confusion matrix for malicious PDF detection experiment. 100 clean PDF files
and 10 malicious PDF files were examined.

Correct File Type

PDF Malicious PDF
Classified

File Type

Safe PDF 92 0
Malicious PDF 8 10

The work in [PIV] presents a framework for geometrically-driven data anal-
ysis that includes dimensionality reduction, out-of-sample extension and anomaly
detection. The method is designated to preserve a high-dimensional Euclidean
geometry of parametric data, up to a user-specified distortion rate, according to
the following definition:

Definition 2.0.2 (μ-distortion) Let (H, mH) and (L, mL) be metric spaces, let A ⊂
H and let μ ≥ 0. A map F : A → L is called a μ-distortion of A if
supx,y∈A |mH(x, y)− mL(F(x), F(y))| ≤ μ. The space L is referred to as a μ-embedding
space of A.

The proposed method is dictionary-based, where the dictionary is chosen from
the analyzed dataset A. The method identifies a Euclidean embedding space,
spanned by the dictionary elements, on which the orthogonal projection of the
data provides a user-defined distortion of the original high-dimensional dataset.
In that sense, our method is geometrically-driven, as opposed to PCA and ran-
domized LU decomposition [18]. Our framework preserves global patterns of
the data and trades local geometry for low-dimensional representation, as dense
regions in the original data (such as clusters) are more sensitive to distortions
than sparse regions, such as gaps between clusters. The dictionary of the pro-
posed method is obtained by applying a customized QR factorization algorithm,
called ICPQR (InComplete Pivoted QR) on the input matrix. This algorithm it-
eratively selects rows (corresponding to high-dimensional data points) from the



15

input matrix and adds them to the dictionary. The process is finished when all
the original data points lose no more than μ of their energy when projected into
the space spanned by the dictionary. The result of ICPQR is demonstrated in
Figure 1, where the three-dimensional Swiss roll (Figure 1(a)) is analyzed. Fig-
ures 1(b) – 1(d) present three DM dimensionality reduction versions of the Swiss
roll, with different distortion levels. The larger μ is, the more distorted the two-
dimensional approximation and the smaller the resulting dictionary. Figure 1(b)
presents an embedding of a very low distortion, while Figures 1(c) and 1(d) show
larger distortions of the embedded space.

−10 −5 0 5 10 15
−20

0
20

40
−15

−10

−5

0

5

10

15

(a) Swiss roll
−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) ICPQR-DM, μ = 0.1

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) ICPQR-DM, μ = 1
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

3

4

(d) ICPQR-DM, μ = 5

FIGURE 1 (a) A 3D Swiss roll comprised of 3,000 points. (b)-(d): the two most signifi-
cant coordinates of the ICPQR embedding of the Swiss roll with (b) μ = 0.1,
s = 1, 246, (c) μ = 1, s = 752, and (d) μ = 5, s = 382, where s denotes the
dictionary size. Data coloring is consistent with Figure. 1(a).

Additionally to dimensionality reduction, we present two strongly related
schemes for out-of-sample extension and anomaly detection. The schemes natu-
rally stem from the proposed method for dimensionality reduction. Thus, the di-
mensionality reduction phase, followed by out-of-sample extension and anomaly
detection, constitutes a complete framework for semi-supervised learning, where
the original (in-sample) dataset A functions as a training set. In this context, the
learning phase is reflected in the extraction of a μ-embedding subspace of A, as
defined in Definition 2.0.2. Out-of-sample data points, whose projection on the
representative subspace is of low distortion are classified as normal, while the



16

rest are classified as abnormal. Therefore, the original dataset A is considered as
normal by definition.

To conclude, the contribution of this work is threefold. First, the suggested
method identifies landmark data points (dictionary) that represent the data, as
opposed to PCA that lacks this feature, and therefore in some sense is less in-
formative. Second, the presented method requires very low storage compared
to PCA. Additionally, in the worst case, its computational complexity is identi-
cal to that of PCA computation. Lastly, the proposed out-of-sample extension
and anomaly detection constitute natural consequences from the dimensionality
reduction phase. The suggested method is demonstrated on synthetic and real-
world datasets and achieves good results in a benchmark classification task.

Localized Diffusion Process

The work in [PI] proposes to efficiently analyze local neighborhoods from a big
data. The localization is done by deriving clusters from the data and then ap-
plying a coarse-grained version of the DM dimensionality reduction framework
on clusters instead of data points. This way, the size of the analyzed dataset is
decreased by only referring to clusters instead of individual data points. Fig-
ure 2 presents the pruning process which takes place after the clustering of the
data and before applying the DM spectral decomposition on the clusters affin-
ity matrix. The affinity between two clusters Ci, Cj is calculated based only on
the transition probabilities between points in these clusters, while ignoring diffu-
sion paths that traverse through other clusters. We denote these direct paths as
“localized diffusion paths”, formally defined as

Definition 2.0.3 (localized �-path) A localized �-path in a diffusion process P is the
path P ∈ P � of length � that traverses solely through data points in its source and
destination clusters, i.e., P0, P1, . . . , P� ∈ C(P0)∪C(P�), where C(Pi) denotes the cluster
to which the point Pi in the path belongs.

The presented coarse-graining process in this chapter copes with the rapid con-
vergence toward a stationary distribution by only preserving localized paths be-
tween clusters while ignoring paths that are “global” from a cluster point-of-view.
The difference between local and global diffusion paths is illustrated in Figures 3
and 4. While it is desirable that the clusters be sufficiently coherent to become a
continuous partitioning of the dataset and its underlying manifold, the properties
of the presented coarse-graining process neither depend on such assumptions nor
on the exact clustering method used. We show that the essential properties, such
as ergodicity, of the underlying DM-based diffusion process are preserved by the
coarse-graining. The affinity, which is generated by the coarse-grained process,
is called Localized Diffusion Process (LDP) and defined as

Definition 2.0.4 (�-path localized diffusion process) Let P be a diffusion (random
walk) process defined on the data points of the dataset X. An �-path localized diffusion
process P̂ is a random walk on the clusters C1, C2, . . . , Cn̂ where a transition from Ci to



17

Cj, i, j = 1, . . . , n̂, represents all the localized �-paths in the diffusion process P from data
points in Ci to data points in Cj. The probability of such a transition, according to P , is
the probability to reach the destination cluster Cj when starting at the source cluster Ci
and traveling solely via localized �-paths.

This process is related to the hierarchical clustering algorithm Localized Diffusion
Folders (LDF) in [7]. The theoretical work presented in this chapter proves that
the LDP coarse-graining in [7] is in fact equivalent to the affinity-pruning that is
achieved at each folder-level in the LDF hierarchy.

P

��� ���
���

���

���

�
�

�

Ci

Cj

�
�
�
�

�
�

	
	
�
�





�
�

Ci Cj

P Ci︷︸︸︷ Cj︷ ︸︸ ︷}
Ci}
Cj

�

(a) Construction of the submatrix P from the matrix P

P
⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠
�

P� Cj︷ ︸︸ ︷}
Ci

� ∑� K̂ij

(b) Computation of K̂ij as a weighted sum of cells in P�

FIGURE 2 Construction of the pruned-kernel K̂ij between the clusters Ci and Cj

(a) A localized path. (b) A non-localized path

FIGURE 3 Illustration of the difference between localized and non-localized paths



18

(a) Localized path with iden-
tical source and destination
clusters

(b) Localized path with multiple transitions between the
source and destination clusters

FIGURE 4 Illustration of non-trivial localized paths

Applications

The methods developed in this work have practical applications in real-world
machine learning problems. The dictionary construction algorithm presented
in [PIV] can be used for semi-supervised multi-class classification of high-dimensional
data, and for anomaly detection. The classification is demonstrated on the ISO-
LET dataset which contains records of English letter pronunciation. The goal was
to assign an unknown sample to one of 26 classes. For this task we constructed
26 dictionaries that model each of the letters, and can predict with good accu-
racy the class of a new letter. The anomaly detection is demonstrated on the
DARPA dataset, which contains network traffic samples. Each sample can be ei-
ther normal or abnormal, the latter kind pertaining to an attack and intrusion to
the network. In this case only one dictionary is needed to decide whether the new
sample is normal or abnormal. This dictionary is learned from the normal net-
work traffic samples. The work presented in [PIII] has applications in computer
security. This work proposes algorithms for construction of dictionaries that de-
scribe different types of computer files. By using the constructed dictionaries,
the algorithm classifies the content of a file and can deduct its type by examining
a few file fragments. The algorithm can also detect anomalies in PDF files (or
any other rich content formats) which can be malicious. This approach can be
applied to detect suspicious files that can potentially contain malicious payload.
Anti-virus systems and firewalls can therefore analyze and classify PDF files by
using the described method and block suspicious files.



YHTEENVETO (FINNISH SUMMARY)

Suuria datajoukkoja (Big data) analysoivat algoritmit joutuvat käsittelemään ny-
kyisin valtavia määriä datapisteitä, jotka sijaitsevat korkeaulotteisissa piirreava-
ruuksissa. Tämän kaltaisten datajoukkojen käsittelyä voi helpottaa olettamalla ja
paljastamalla datan luontaisesta geometriasta lokaaleja rakenteita. Datan erilli-
set lokaalit rakenteet voidaan nyt analysoida erillään ja lopulta yhdistää tulok-
sia varten, jotta datan esittämä ilmiö voidaan ymmärtää. Käytännön Big data so-
vellukset edellyttävät nopeaa ja kustannustehokasta analysointia. Lokalisaatiota
hyödyntävät menetelmät ovat laskennallisesti rinnakkaistettavissa ja ovat täten
mielenkiintoisia Big datan käsittelyssä. Nämä menetelmät voivat tutkia datan lo-
kaaleja ominaisuuksia, jotka vaihtelevat datan eri osissa.

Tämä väitöskirjatutkimus koostuu kahdesta eri menetelmästä, joiden avul-
la voidaan luokitella, klusteroida tai havaita anomalioita lokaalisti suurista data-
joukkoista. Ensimmäinen menetelmä lokalisoi kirjastopohjaisen oppimisen mat-
riisien osittamismenetelmillä. Tässä hyödynnetään satunnaistettuja LU- ja QR-
hajotelma algoritmeja dataa kuvaavien kirjastojen rakentamiseen. Kirjastoja käy-
tetään uusien datapisteiden kiinnittämiseen oikeisiin luokkiin. Yhtenä kybertur-
vallisuussovelluksena esitetään tietokoneen tiedostoihin pohjautuva kirjasto, jo-
ka pystyy havaitsemaan PDF-tiedostoihin piilotetut ohjelmakoodit. Toisessa so-
velluksessa kirjasto on opetettu tietokoneen verkkoliikenteen normaalilla käyt-
töllä ja sitten testattu havaitsemaan anomaloita, jotka voivat viitata kyberuhkaan.

Toinen väitöskirjassa esitettävä menetelmä on lokalisoitu diffuusioprosessi
(LDP), joka perustuu karkeasti klassiseen diffuusiokuvausalgoritmiin. Diffuusio-
kuvauksessa siirtymätodennäköisyysmatriisi on laskettu koko datajoukolle, kun
taas LPD:ssä se on laskettu lokaaleissa pienissä datapisteiden pilvissä. Tässä työs-
sä esitetään lokalisoidun diffuusioprosessin teoria hierarkkiselle data-analyysille.



REFERENCES

[1] D. Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. Journal of Computer and System Sciences,
66(4):671–687, 2003.

[2] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Trans. on Signal
Processing, 54(11):4311–4322, 2006.

[3] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast
johnson-lindenstrauss transform. In Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 557–563. ACM, 2006.

[4] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the
restricted isometry property for random matrices. Constructive Approxima-
tion, 28(3):253–263, 2008.

[5] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University
Press, 1961.

[6] K. L. Clarkson. Tighter bounds for random projections of manifolds. In
Proceedings of the twenty-fourth annual symposium on Computational geometry,
pages 39–48. ACM, 2008.

[7] G. David and A. Averbuch. Hierarchical data organization, clustering and
denoising via localized diffusion folders. Applied and Computational Harmonic
Analysis, 33(1):1–23, 2012.

[8] J. Gantz and D. Reinsel. The digital universe decade-are you ready. IDC
White Paper, 2010.

[9] P. Indyk and R. Motwani. Approximate nearest neighbors: towards remov-
ing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613. ACM, 1998.

[10] Z. Jiang, Z. Lin, and L.S. Davis. Learning a discriminative dictionary for
sparse coding via label consistent k-svd. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 1697–1704. IEEE, 2011.

[11] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[12] S. Lafon and A.B. Lee. Diffusion maps and coarse-graining: A unified frame-
work for dimensionality reduction, graph partitioning, and data set param-
eterization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 1393–1403, 2006.



21

[13] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some
of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

[14] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, Angela H.
Byers, and McKinsey Global Institute. Big data: The next frontier for inno-
vation, competition, and productivity. 2011.

[15] D.S. Pham and S. Venkatesh. Joint learning and dictionary construction for
pattern recognition. In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[16] M. Salhov, G. Wolf, and A. Averbuch. Patch-to-tensor embedding. Applied
and Computational Harmonic Analysis, 33(2):182–203, 2012.

[17] L. J. Schulman. Clustering for edge-cost minimization. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 547–555.
ACM, 2000.

[18] G. Shabat, Y. Shmueli, and A. Averbuch. Randomized LU decomposition.
arXiv preprint arXiv:1310.7202, 2015.

[19] A. Singer and H-T. Wu. Orientability and diffusion maps. Applied and com-
putational harmonic analysis, 31(1):44–58, 2011.

[20] A. Singer and H-T. Wu. Vector diffusion maps and the connection laplacian.
Communications on pure and applied mathematics, 65(8):1067–1144, 2012.

[21] S. Vempala. The random projection method, volume 65. American Mathemati-
cal Soc., 2005.

[22] G. Wolf and A. Averbuch. Linear-projection diffusion on smooth euclidean
submanifolds. Applied and Computational Harmonic Analysis, 34(1):1–14, 2013.

[23] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma. Robust face recogni-
tion via sparse representation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 31(2):210–227, 2009.

[24] A.Y. Yang, J. Wright, Y. Ma, and S.S. Sastry. Feature selection in face recog-
nition: A sparse representation perspective. submitted to IEEE Transactions
Pattern Analysis and Machine Intelligence, 2007.

[25] M. Yang, D. Zhang, and X. Feng. Fisher discrimination dictionary learning
for sparse representation. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 543–550. IEEE, 2011.

[26] Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face
recognition. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 2691–2698. IEEE, 2010.



ORIGINAL PAPERS

PI

COARSE-GRAINED LOCALIZED DIFFUSION

by

Guy Wolf, Aviv Rotbart, Gil David, Amir Averbuch 2012

Applied and Computational Harmonic Analysis(3):388-400



Coarse-Grained Localized Diffusion

Guy Wolf, Aviv Rotbart, Gil David, Amir Averbuch∗

Abstract

Data-analysis methods nowadays are expected to deal with increasingly large
amounts of data. Such massive datasets often contain many redundancies. One
effect from these redundancies is the high-dimensionality of datasets, which is
handled by dimensionality reduction techniques. Another effect is the duplic-
ity of very similar observations (or data-points) that can be analyzed together
as a cluster. We propose an approach for dealing with both effects by coarse-
graining the popular Diffusion Maps (DM) dimensionality reduction framework
from the data-point level to the cluster level. This way, the size of the an-
alyzed dataset is decreased by only referring to clusters instead of individual
data-points. Then, the dimensionality of the dataset can be decreased by the
DM embedding. We show that the essential properties (e.g., ergodicity) of the
underlying diffusion process of DM are preserved by the coarse-graining. The
affinity that is generated by the coarse-grained process, which we call Localized
Diffusion Process (LDP), is strongly related to the recently introduced Localized
Diffusion Folders (LDF)[1] hierarchical clustering algorithm. We show that the
LDP coarse-graining is in fact equivalent to the affinity-pruning that is achieved
at each folder-level in the LDF hierarchy.

Keywords: Diffusion Maps, Localized Diffusion Folders, coarse-graining,
dimensionality reduction

1. Introduction

Massive high-dimensional datasets have become an increasingly common in-
put for data-analysis tasks. When dealing with such datasets, one requires a
method that reduces the complexity of the data while preserving the essential
information for the analysis. One approach for obtaining this goal is to an-
alyze sets of closely-related data-points, instead of directly analyzing the raw
data-points. A recent approach for obtaining such an analysis is the Localized

∗Amir Averbuch, Tel: +972-54-5694455, Fax: +972-3-6422020
Email address: amir@math.tau.ac.il (Amir Averbuch)

[1] G. David, A. Averbuch, Hierarchical data organization, clustering and denoising via
localized diffusion folders, Applied and Computational Harmonic Analysis. In press, to
appear.

Preprint submitted to Applied and Computational Harmonic Analysis July 5, 2015



Diffusion Folders (LDF) method [1]. This method recursively prunes closely-
related clusters, while preserving the information about local relations between
the pruned clusters.

The Diffusion Maps (DM) framework [2, 3] provides an essential foundation
for LDF to succeed. This framework is based on defining similarities between
data-points by using an ergodic Markovian diffusion process on the dataset.
The ergodicity of this process ensures it has a stationary distribution and
numerically-stable spectral properties. The transition probability matrix of this
process can be used to define diffusion affinities between data-points. The first
few eigenvectors of this diffusion affinity kernel represent the long-term behavior
of the process and they can be used to obtain a low dimensional representation of
the dataset, in which the Euclidean distances between data-points correspond to
diffusion distances between their original (high-dimensional) counterparts. We
present a coarse-graining of this diffusion process, while preserving its essential
properties (e.g., ergodicity). We show that this coarse-graining is equivalent to
the pruning method that appeared in the LDF.

The LDF method performs an iterative process that obtains a folder hier-
archy that represents the points in the dataset. Each level in the hierarchy is
constructed by pruning clusters of folders (or data-points) from the previous
level. The iterative process has two main phases in each iteration:

1. Clustering phase: the “shake & bake” method is used to cluster the
folders (or data-points) of the current level in the hierarchy by using a
diffusion affinity matrix.

2. Pruning phase: the clusters of the current level are pruned and given
as folders of the next level in the hierarchy. The diffusion affinity is also
pruned to represent affinities between pruned clusters (i.e., folders of the
next level in the hierarchy) instead of folders in the current hierarchial
level.

In this paper, we focus on exploring the pruning that is performed in the second
phase of this process, while considering the clustering of the data, which may
be performed by “shake & bake” process [1] or by another clustering algorithm,
as prior knowledge.

Essentially, LDF provides an hierarchical data clustering with additional
affinity information for each level in the hierarchy. Other examples of hierar-
chical clustering methods can be found in [4, 5]. However, these methods are
not related to DM and to its underlying diffusion process. Since we are mainly
concerned with the pruning phase of the algorithm, the clustering aspect of
LDF and its relation with these methods is beyond the scope of this paper. A
detailed survey of clustering algorithms and their relation to LDF is provided
in [1, Section 2].

While there are many empirical justifications for the merits of LDF and its
utilization in various fields (e.g., unsupervised learning and image processing),
it lacked theoretical justifications. In this paper, we introduce a coarse-graining
of the underlying diffusion process of DM. The resulting coarse-grained process,
which we call Localized Diffusion Process (LDP), preserves essential properties

2



of the original process, which enable its utilization for dimensionality reduction
tasks. We relate this process, or rather the diffusion affinity generated by it,
to the one achieved by the LDF pruning phase. This relation adds the needed
complimentary foundations for the LDF framework by providing theoretical
justifications for its already-obtained empirical support. Additionally, the pre-
sented relation shows that the applications presented in [1] in fact demonstrate
the utilization of the LDP for data-analysis tasks and the results presented there
provide empirical support of its benefits.

A similar coarse-graining approach was presented in [6]. The approach there
is based on a graph representation of the diffusion random-walk process. The
clustering of data-points was performed by graph partitioning. Then, transition
probabilities between partitions were achieved by averaging transition probabil-
ities between their vertices. The resulting random-walk process maintains most
of the spectral properties of the original diffusion process and its eigendecom-
position can be approximated by the original spectral decomposition. However,
the approximation error strongly depends on the exact partitioning used. In ad-
dition, since all the random-walk paths are considered in the averaging process,
there is a limited number of viable time-scales (in the diffusion process) that can
be used by this process before it converges to the averaging of the stationary
distribution.

The presented coarse-graining process in this paper copes with the rapid con-
vergence toward the stationary distribution by only preserving localized paths
between clusters while ignoring paths that are “global” from the cluster point-
of-view. While it is desirable that the clusters will be sufficiently coherent to
consist of a continuous partitioning of the dataset and its underlying manifold,
the properties of the presented coarse-graining process are neither depend on
such assumptions nor on the exact clustering method used.

An alternative approach for local sets considerations of data-points is to an-
alyze them as patches on the underlying manifold of the dataset [7, 8, 9, 10].
The relations between patches are represented by non-scalar affinities that com-
bine the information about both geodesic proximity of the patches and the
alignment of their tangent spaces. This approach was used in [9] to modify
DM to preserve the orientation of the manifold through the embedding pro-
cess. A more comprehensive utilization of this approach was presented in [7]
and [10], where affinities between patches were defined as matrices that trans-
form vectors between tangent spaces. Parallel transport operators were used
in [10], with the resulting affinity block matrix being related to the connection-
Laplacian. Linear-projections were used in [7] and further explored in [8], where
the resulting diffusion process was shown to propagate tangent vectors on the
manifold.

Both discussed methods in [7, 10] lead to an embedded tensor space instead
of a vector space. Also, the resulting diffusion process is not necessarily ergodic
and may not have a stationary distribution. Therefore, they do not preserve one
of the crucial properties of the diffusion process used in DM. The approach used
in this paper produces a scalar-affinity matrix between closely-related clusters of
data-points. It neither depends explicitly on the existence nor on the knowledge

3



of the (usually unknown) underlying manifold of the dataset. The resulting
diffusion process is similar to the one used in DM (for data-points), and it
preserves the essential properties of that diffusion process. Finally, the same
spectral analysis, which is performed in DM, can be used to obtain an embedding
that is based on the coarse-grained process presented here, which results with
an embedding of clusters to vectors (and not tensors).

The paper has the following structure. The problem setup is described in
Section 2. Specifically, the DM method is discussed in Section 2.1 and the LDF
method is discussed in Section 2.2. Section 3 introduces the localized diffusion
process (LDP), which is the main construction in this paper. The pruning
algorithm for constructing the LDP is presented in Section 3.1. Finally, the
strong relation between LDF and LDP is presented in Section 3.2.

2. Problem Setup

Let X ⊂ �
d be a dataset of n data-points that are sampled from a low

dimensional manifold that lies in a high dimensional Euclidean ambient space.
Assume the data consists of n̂ coherent disjoint clusters, which correspond to
dense local neighborhoods that were generated by an affinity kernel. Assume
that C1, C2, . . . , Cn̂ are these clusters in the underlying manifold, where X =
∪n̂
i=1Ci and Ci ∩ Cj = ∅ for i �= j ∈ {1, 2, . . . , n̂}. Assume that

C : X → {C1, C2, . . . , Cn̂} (2.1)

maps each data-point x ∈ X to its cluster C(x).

Remark about matrix notation:. In this paper, we will deal with several matrices
that represent relations between data-points or clusters of data-points. Let M
be such a matrix where every row and column of M corresponds to a data-point
in the dataset X or a subset of this dataset. It is convenient in this case to
use the lowercase notation m(x, y) to denote the cell in the x’s row and the y’s
column in M . For t ∈ �, the notation mt(x, y) denotes cells in M t, which is the
t-th power of M . Similar notation will also be used for matrices with rows and
columns that correspond to clusters of data-points.

2.1. Diffusion maps

The diffusion maps (DM)[2] methodology is based on constructing a Marko-
vian diffusion process P over a dataset. This process essentially defines ran-
dom walks over data-points in the dataset. It consists of paths between these
data-points, where each path P ∈ P is a series of transitions (steps on the data-
points), denoted by P0 → P1 → . . . → P�, where P0, P1, . . . , P� ∈ X, � ≥ 1. Each
path has a probability, which is defined by the probabilities of its transitions
and will be discussed later. The length of the path P , denoted by len(P ) = �, is
its number of transitions. The source (i.e., the starting data-point) of the path
is denoted by s(P ) = P0 and its destination is denoted by t(P ) = Plen(P) = P�.
When only paths of specific length � = 1, 2, . . ., are considered, the notation

4



P ∈ P� will be used to denote that P ∈ P and len(P ) = �. For example, a single
transition in P is a path of unit length P ∈ P1.

In order to assign transition probabilities between data-points, an n × n
affinity kernel K is defined on the dataset. Each cell k(x, y), x, y ∈ X, in this
kernel represents similarity, or proximity, between data-points. The kernel K
is interpreted as both an affinity measure between data-points and a weighted
adjacency matrix of a graph whose vertices are the data-points. It is assumed
to satisfy the following properties:

• Each data-point has positive self-affinity: k(x, x) > 0, x ∈ X;

• Affinities are non-negative: k(x, y) ≥ 0, x, y ∈ X;

• Affinities are symmetric: k(x, y) = k(y, x), x, y ∈ X;

• The graph defined by the weighted adjacencies K is connected.

A popular affinity kernel is the isotropic Gaussian diffusion kernel k(x, y) =
exp(−‖x− y‖ /ε) with a suitable ε > 0. An alternative kernel, which is based
on clustering patterns in the dataset, is the “shake-and-bake” kernel [1] that
will be discussed in more details in Section 2.2.

Each data-point x ∈ X corresponds to a vertex in the graph that is defined
by K. The degree of a vertex in this graph is q(x) �

∑
y∈X k(x, y), x ∈ X. The

degree matrix Q is a diagonal matrix whose main diagonal holds these degrees
(i.e., q(x, x) = q(x) and q(x, y) = 0 for x �= y ∈ X). Normalization by these
degrees yields a row-stochastic matrix P � Q−1K that defines the transition
probabilities

p(x, y) =
k(x, y)

q(x)
x, y ∈ X,

between data-points. These transition probabilities define the Markovian diffu-
sion process P over the dataset.

The diffusion process P specifies the probability of “moving” from one data-
point to another via paths of any given integer length � ≥ 1. We denote this
probability by

Pr[x
P�

−−→ y] � Pr[t(P ) = y| s(P ) = x ∧ P ∈ P�] x, y ∈ X. (2.2)

Since the diffusion process is a Markovian process with single-transition proba-
bilities defined by P , Eq. (2.2) becomes

Pr[x
P�

−−→ y] = p�(x, y) x, y ∈ X, � = 1, 2, . . . ,

where in particular Pr[x
P1

−−→ y] = p(x, y).
The diffusion process P is an ergodic Markov process. This means that P

has a stationary distribution in the limit � → ∞ of the path lengths. Spectral
analysis of this kernel yields a decaying spectrum 1 = λ0 ≥ |λ1| ≥ |λ2| ≥
. . . ≥ 0, where λi, i = 0, 1, 2, . . . , are the eigenvalues of P . When an isotropic

5



Gaussian kernel is used, the decay of the spectrum can be used to approximate
the intrinsic dimension of the dataset’s underlying manifold [2]. Dimensionality
reduction can be achieved by spectral analysis of P [11] or, more conveniently,
its symmetric conjugate A = Q1/2PQ−1/2 that is referred to as the diffusion-
affinity matrix. Let φ0, φ1, φ2, . . . be the eigenvectors of A that correspond to
the eigenvalues λ0, λ1, λ2, . . . (conjugation maintains the same eigenvalues of A),
then DM is defined by the embedding

x �→ Φ(x) � (|λ0|φ0(x), |λ1|φ1(x), |λ2|φ2(x), . . .)
T x ∈ X.

A subset of these coordinates can be used by ignoring the eigenvectors with
sufficiently small eigenvalues, which will anyway result with approximately-zero
embedded coordinates.

A simple coarse-graining of the original diffusion process can be done by
cluster pruning while defining transition probability between two clusters by
considering all the paths between them. However, due to the decay of the
diffusion kernel’s spectrum, this method will converge fast (especially when
applied several times) to the stationary distribution of the diffusion process. An
alternative coarse graining method, which excludes paths that are considered
“global” from clusters point-of-view, will be presented in Section 3.

One aspect of any diffusion process coarse-graining is to translate a data-
point terminology to a cluster terminology. This aspect must be addressed
regardless of the paths that are considered when computing the transitional
probabilities between clusters, since any path in the diffusion process is defined
in terms of data-points. The probability of reaching every data-point on a path
is determined by its starting data-point and by suitable powers of P . Since
the clusters are disjoint, these probabilities can be easily interpreted as the
probability of reaching a destination cluster. Specifically, it can be done by
using the function C (Eq. (2.1)) and by summing the appropriate probabilities.
Paths that start in a source cluster, denoted by s(P ) ∈ Ci, P ∈ P, i = 1, . . . , n̂,
require a nontrivial interpretation in terms of a source data-point s(P ) = x ∈ Ci.
This interpretation should be defined by probability terms.

We will use the same intuition that was used to construct the transitional
probability matrix P in order to define the probability Pr[s(P ) = x ∈ Ci| s(P ) ∈
Ci], i = 1, . . . , n̂, P ∈ P. The kernel K was interpreted as weighted adjacencies
of a graph whose vertices are the data-points in X. According to this inter-
pretation, the degree of each data-point x ∈ X is a sum of the edges weights
k(x, y), y ∈ X that begin at x. To measure the occurrence probability of the
transition x → y when starting at x, the weight of the edge (x, y) is divided by
the total weight of the edges starting at x, which gives the probability measure
p(x, y) = k(x, y)/q(x). Assume the volume of the cluster Ci, i = 1, . . . , n̂, is
defined as vol(Ci) �

∑
x∈Ci

q(x). Therefore, the volume of a cluster is the total
sum of the degrees of the data-points in this cluster, which is the sum of the
weights of all the edges that start in Ci. According to the same reasoning as
before, the occurrence probability of the transition x → y, x ∈ Ci, y ∈ X, which

started at the cluster Ci, is
k(x,y)
vol(Ci)

. Therefore, the transition probability, which

6



starts at Ci to actually starts at a specific data-point x ∈ Ci, is

Pr[s(P ) = x ∈ Ci| s(P ) ∈ Ci] =
∑
y∈X

k(x, y)

vol(Ci)
=

q(x)

vol(Ci)
, (2.3)

because the transitions to different designated data-points are independent events.
Notice that the choice of the first transition in a path is independent of its length.
Thus, the presented probability is independent of the length of the path P and
the assumption that P ∈ P� for some � ≥ 1 does not affect it.

2.2. Localized diffusion folders (LDF)

As described in the DM brief overview in Section 2.1, P is the affinity matrix
of the dataset and it is used to find the diffusion distances between data-points.
This distance metric can be used to cluster data-points according to the dif-
fusion distances propagation that is controlled by the time parameter t. In
addition, it can be used to construct a bottom-up hierarchical data clustering.
For t = 1, the affinity matrix reflects direct connections between data-points.
These connections can be interpreted as local adjacencies between data-points.
The resulting clusters preserve the local neighborhood of each data-point. These
clusters are the bottom level in the hierarchy. By raising t, which means time
advancement, the affinity matrix is changed accordingly and it reflects indi-
rect rare connections between data-points in the graph. The diffusion distance
between data-points in the graph accounts for all possible paths of length t be-
tween these data-points at a given time step. The more we advance in time
the more we increase indirect and global connections. Therefore, by raising
t we can construct the upper levels of the clustering hierarchy. In each time
step, it is possible to merge more and more low-level clusters since there are
more and more new paths between them. The resulting clusters reflect global
neighborhood of each data-point that is highly affected by the advances of the
parameter t.

The major risk in this global approach is that increasing t will also increase
noise, which is classified as connections between data-points that are not closely
related in the affinity matrix. Moreover, clustering errors in the lower levels
of the hierarchy will diffuse to the upper levels of the hierarchy and hence will
significantly affect the correctness of the upper levels clustering. As a result,
some areas in the graph, which are assumed to be separated, will be connected
by the new noise-result and error-result paths. Thus, erroneous clusters will
be generated (a detailed description of this situation is given in [1]). This type
of noise significantly affects the diffusion process and eventually the resulting
clusters will not reflect the correct relations among the data-points. Although
these clusters consist of data-points that are adjacent according to their diffu-
sion distances, the connections among these data-points in each cluster can be
classified as too global and too loose that generate inaccurate clusters.

A hierarchical clustering method of high-dimensional data via the localized
diffusion folders (LDF) methodology is introduced in [1]. This methodology
overcomes the problems that were described above. It is based on the key

7



idea that clustering of data-points should be achieved by utilizing the local
geometry of the data and the by local neighborhood of each data-point and by
constructing a new local geometry every advance in time. The new geometry is
constructed according to local connections and according to diffusion distances
in previous time steps. This way, as we advance in time, the geometry from
the induced affinity reflects better the data locality while the “affinity noise” in
the new localized matrix decreases and the accuracy of the resulting clusters is
improved.

LDF is introduced to achieve the described local geometry and to preserve it
along the hierarchical construction. The LDF framework provides a multi-level
partitioning (similar to Voronoi diagrams in diffusion metric) of the data into
local neighborhoods that are initiated by several random selections of data-
points or folders of data-points in the diffusion graph and by defining local
diffusion distances between them. Since every different selection of initial data-
points yields a different set of diffusion folders (DF), it is crucial to repeat this
selection process several times. The multiple system of folders, which we get at
the end of this random selection process, defines a new affinity and this reveals a
new geometry in the graph. This localized affinity is a result of what is called the
“shake & bake” process in [1]. First, we “shake” the multiple Voronoi diagrams
together in order to get rid of the noise in the original affinity. Then, we “bake”
a new cleaner affinity that is based on the actual geometry of the data while
eliminating rare connections between data-points. This affinity is more accurate
than the original affinity since instead of defining a general affinity on the graph,
we let the data define its localized affinity on the graph.

In every time step, this multi-level partitioning defines a new localized ge-
ometry of the data and a new localized affinity matrix that is used in the next
time step. In every time step, we use the localized geometry and the LDF that
were generated in the previous time step to define the localized affinity between
DF. The affinity between two DF is defined by the localized diffusion distance
metric between data-points in the two DF. In order to define this distance be-
tween these DF, we construct a local sub-matrix that contains only the affinities
between data-points (or between DF) of the two DF. This sub-matrix is raised
to the power of the current time step (according to the current level in the hi-
erarchy) and then it is used to find the localized diffusion distance between the
two DF.

The result of this clustering method is a bottom-up hierarchical data clus-
tering where each level in the hierarchy contains DF of DF from lower levels.
Each level in the hierarchy defines a new localized affinity (geometry) that is
dynamically constructed and it is used by the upper level. This methodology
preserves the local neighborhood of each data-point while eliminating the noisy
connections between distinct points and areas in the graph.

In summary, [1] deals with new methodologies to denoise empirical graphs.
Usually, in applications data is connected through spurious connections. One of
the goals of [1] is to introduce a notion of consistency of connections in order to
repair a noisy network. This consistency is achieved through the construction of
a forest of partition trees, which redefine the connectivity in the network. This

8



opens the door to robust processing of data clouds in which group consistency
is exploited.

3. Localized Diffusion Process

In this section, we present a coarse-graining diffusion process between clus-
ters in a dataset. The transitions between clusters, which are considered as
vertices in this process, will be defined by certain paths in the original diffusion
process. Definition 3.1 introduces the notion of a localized path, which will be
used to define these transitions. Then, in Definition 3.3, these localized paths
will be used to define the localized diffusion process between clusters.

Definition 3.1 (localized �-path). A localized �-path in a diffusion process P
is the path P ∈ P� of length � that traverses solely through data-points in its
source and destination clusters, i.e., P0, P1, . . . , P� ∈ C(s(P )) ∪ C(t(P )).

The difference between localized and non-localized paths is demonstrated in
Fig. 3.1. The path in Fig. 3.1(a) traverses through data-points in its source
cluster, then passes via a single transition to its destination cluster and then
traverses in it to its destination data-point. Therefore, it does not pass through
any cluster other than its source and destination clusters and thus it is localized.
On the other hand, the non-localized path in Fig 3.1(b), traverses through a
third intermediary cluster, thus it is not localized.

Notice that a localized path does not necessarily contain a single transition
between its source and destination clusters. Figure 3.2 illustrates two such non-
trivial paths. A path that traverses solely in a single cluster (see Fig. 3.2(a))
is in fact a localized path from the cluster to itself. A localized path can also
alternate between its source and destination clusters a few times before reaching
its final destination, as shown in Fig. 3.2(b). As long as the cluster involves only
its source and destination cluster/s (whether they are identical or not) without
passing through any intermediary cluster, then it is considered to be localized.

(a) A localized path. (b) A non-localized path

Figure 3.1: Illustration of the difference between localized and non-localized paths

9



(a) Localized path with iden-
tical source and destination
clusters

(b) Localized path with multiple transitions between the
source and destination clusters

Figure 3.2: Illustration of non-trivial localized paths

We denote the set of all localized �-paths in the diffusion process P by
L(P�) ⊆ P�. The usual diffusion transition probabilities between data-points
in a dataset via paths of a given length � ≥ 1 were described in Section 2.1.
These probabilities consider all the paths of length � between two data-points.
The construction presented in this paper only considers localized paths and
ignores other paths, which are considered “global” from a cluster point-of-view.
Therefore, we define the localized transition probabilities, which describe the
probabilities of a transition from x ∈ Ci to y ∈ Cj , i, j = 1, . . . , n̂, via localized
�-paths, as

Pr[x
L(P�)−−−−→ y] � Pr[t(P ) = y ∧ P ∈ L(P�)| s(P ) = x ∧ P ∈ P�]. (3.1)

Similarly, the localized transition probability from x ∈ Ci to the cluster Cj is
defined as

Pr[x
L(P�)−−−−→ Cj ] � Pr[t(P ) ∈ Cj ∧ P ∈ L(P�)| s(P ) = x ∧ P ∈ P�]. (3.2)

Finally, the localized transition probability from the cluster Ci to the cluster Cj

is defined as

Pr[Ci
L(P�)−−−−→ Cj ] � Pr[t(P ) ∈ Cj ∧ P ∈ L(P�)| s(P ) ∈ Ci ∧ P ∈ P�]. (3.3)

The original transition probabilities are clearly related to the diffusion oper-
ator P via Eq. (2.2). The defined localized transition probabilities do not have
such a direct relation with the diffusion operator. They will be further explored
in Section 3.1.

The localized transition probabilities in Eq. (3.3) consider localized paths
from a source cluster to a destination cluster. Not all the paths from the source
cluster are localized. Therefore, only a portion of the paths from a given cluster
(to any other cluster) are actually viable for consideration with these probabili-
ties. Definition 3.2 provides a measure for the portion of viable paths going out
from a cluster from all the paths starting in it.

10



Definition 3.2 (�-path localization probability). The �-path localization prob-
ability (lpr) of a cluster Ci, i = 1, . . . , n̂, is

lpr�(Ci)
Δ
= Pr[p ∈ L(P�)| s(P ) ∈ Ci ∧ P ∈ P�].

It is the probability that a path of length �, which starts at this cluster, is a
localized path.

Definition 3.3 uses the defined localized paths in the original diffusion process
to define a localized diffusion process between clusters.

Definition 3.3 (�-path localized diffusion process). Let P be a diffusion (ran-
dom walk) process defined on the data-points of the dataset X. An �-path local-

ized diffusion process P̂ is a random walk on the clusters C1, C2, . . . , Cn̂ where
a transition from Ci to Cj, i, j = 1, . . . , n̂, represents all the localized �-paths
in the diffusion process P from data-points in Ci to data-points in Cj. The
probability of such a transition, according to P, is the probability to reach the
destination cluster Cj when starting at the source cluster Ci and traveling solely
via localized �-paths.

The �-path localized diffusion process is a Markovian random-walk process.
Thus, its transition probabilities are completely governed by its single-step tran-
sition probabilities. These probabilities can be computed, by definition, accord-
ing to the transition probabilities of the original diffusion process. Using no-
tations similar to the ones used for the original diffusion process, we get the
single-step transition probabilities

Pr[Ci

̂P1

−−→ Cj ] � Pr[t(P ) ∈ Cj | s(P ) ∈ Ci ∧ P ∈ L(P�)], i, j = 1, . . . , n̂, (3.4)

for the �-path localized diffusion process P̂. Notice that these differ from the
probabilities in Eq. (3.3). The former considers the term P ∈ L(P�) in the hy-
pothesis part, since it considers only the localized paths of the original diffusion
process. The latter considers this term in the condition part, since it computes
the probability over all the paths in the original diffusion.

Ergodicity is one of the main properties in the diffusion process that is used
by DM [2]. Ergodicity means that the eigenvalues of P have a magnitude of
at most one, and therefore its spectrum decays with time as a function of the
numerical rank of the transitional kernel. As we advance the diffusion process in
time, it converges to a stationary distribution and therefore its long term state
can be represented by a low-dimensional space. Proposition 3.1 shows that the
coarse graining suggested here preserves this property, i.e., the �-path localized
diffusion process is ergodic and its transition matrix has a decaying spectrum.

Proposition 3.1. The localized diffusion process P̂, which is defined by Defi-
nition 3.3, is an ergodic Markov process.

Proof. According to [2], the original diffusion process P is aperiodic and irre-

ducible. We will show that P̂ is also aperiodic and irreducible process. The
Ergodicity follows from these properties.

11



From the aperiodicity of P we have p(x, x) > 0 for every x ∈ X. Let P ∈ P�

be a path with Pi = x, i = 0, . . . , �. Obviously, this path is a localized �-path
from C(x) to itself. The probability of this path is (p(x, x))� > 0. Therefore,

the transition probability Pr[C(x)
̂P�

−−→ C(x)], which sums the probabilities of all
the localized �-paths from C(x) to itself, must be nonzero. This argument holds
for every x ∈ Ci ⊆ X, i = 1, . . . , n̂, and thus holds for every cluster Ci = C(x).

Therefore, the process P̂ is aperiodic.
Due to the irreducibility of the original diffusion process P, there exists a

path P ∈ P with nonzero probability between every pair of data-points x �=
y ∈ X. For each transition Pi → Pi+1, i = 0, . . . , len(P ) − 1 in this path, the
following localized �-path

P ′ = Pi → Pi → . . . → Pi︸ ︷︷ ︸
�−1 transitions

→ Pi+1

between C(Pi) and C(Pi+1) is constructed. Due to the aperiodicity of P, the
first � − 1 transitions have nonzero probability. The last transition of P ′ is
the same transition Pi → Pi+1 from P , which also has nonzero probability.
Therefore, the path P ′ is a localized �-path between C(Pi) and C(Pi+1) with
nonzero probability. This holds for every transition in P and thus the transition
probability from C(Pi) to C(Pi+1) via the localized �-paths is nonzero for each
i = 0, . . . , len(P )− 1. Thus, the path

C(x) = C(P0) → C(P1) → . . . → C(Plen(P)) = C(y)

has nonzero probability in P̂. Since x, y were chosen arbitrarily, this holds for
every pair of clusters and thus P̂ is irreducible. Together with the aperiodicity
that was shown above, P̂ is ergodic.

In this section, we introduced a coarse-grained diffusion process (i.e., the
�-path localized diffusion process) that preserves the crucial properties of the
DM. A coarse-graining algorithm, which constructs this process, is presented in
Section 3.1. In Section 3.2, we will show that this process is directly related to
the construction presented in [1]. Specifically, the presented coarse graining is
related to the pruning done at the transition between levels in the LDF hierarchy.

3.1. Pruning algorithm

The �-path localized diffusion process described in Section 3 is a coarse-
grained version of the original diffusion process. As a Markovian process, it
defines a transition probability matrix between clusters. Algorithm 3.1 shows
how to construct this transition probability matrix, denoted by P̂ , based on
the transition probability matrix of the original diffusion process. In addition
to P̂ , the algorithm outputs the degree matrix Q̂ that holds the degrees of the
clusters on its diagonal. Theorem 3.2 shows that the resulting matrix P̂ defines
a localized diffusion process.

12



Algorithm 3.1 performs a coarse-graining of the original diffusion process by
pruning the clusters into vertices of a Markovian random-walk process. The
transition probabilities of this process are determined by the row-stochastic
transition matrix P̂ . For each pair of clusters, Ci and Cj , the algorithm considers
the sub-matrix P of P , which contains only rows and columns of data-points
in Ci ∪Cj (see Fig. 3.3(a)). The algorithm then calculates the affinity, denoted
by Kij , between the clusters Ci and Cj . First, It raises the sub-matrix P to
the �-th power in order to generate the �-path localized transition probabilities
between points in Ci and Cj . Then, the affinity between these clusters is a
weighted sum of the elements in P�, where the weight of the element p�(x, y)
is q(x) (see Fig. 3.3(b)). Finally, the degree of each cluster is calculated by

summing its affinities Q̂ii =
∑n̂

j=1 K̂ij with all the clusters.
Notice that Algorithm 3.1 is similar to the pruning algorithm described in [1,

Section 3.3]. Both algorithms get an input matrix of relations between data-
points and a clustering function that assigns each point to its cluster. Then, for
each pair of clusters, these algorithms consider a sub-matrix that contains the
relations between the data-points in the two considered clusters. In order to
achieve a scalar representation of the relation between the considered clusters,

Algorithm 3.1: transition matrix pruning

Input: Dataset X of n data-points;
Clustering function C : X → {C1, C2, . . . , Cn̂} of the data into n̂ clusters;
Transition probability matrix P between data-points in X;
Parameter � of the path length.
Output: A row-stochastic n̂× n̂ matrix P̂ that represents transitions

between clusters;

A diagonal matrix Q̂ that contains the degrees of the clusters on its
diagonal.
foreach i, j = 1, . . . , n̂ do

P ←− |Ci ∪ Cj | × |Ci ∪ Cj | square matrix ;
// Denote by p(x, y) the cell of P in the row of x
// and the column of y (x, y ∈ Ci ∪ Cj).

// Denote by p�(x, y) the same cell in P�.

foreach x, y ∈ Ci ∪ Cj do
p(x, y) ←− p(x, y) ;

end

K̂ij ←− ∑
x∈Ci,y∈Cj

q(x)p�(x, y) ;

end
foreach i = 1, . . . , n̂ do

Q̂ii ←− ∑n̂
j=1 K̂ij ;

end

P̂ ←− Q̂−1K̂ ;

13



P

��� ���
���

���

���

�
�

�

Ci

Cj

�
�
�
�

�
�

	
	
�
�





�
�

Ci Cj

P Ci︷︸︸︷ Cj︷ ︸︸ ︷ }
Ci}
Cj

�

(a) Construction of the submatrix P from the matrix P

P
⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠
� P� Cj︷ ︸︸ ︷ }

Ci
� ∑� K̂ij

(b) Computation of ̂Kij as a weighted sum of cells in P�

Figure 3.3: Construction of the pruned-kernel ̂Kij between the clusters Ci and Cj

both algorithms aggregate the elements of a suitable power of the considered
sub-matrix.

However, these algorithms differ in the input matrix itself and in the aggre-
gation function that is being used. Algorithm 3.1 gets a transition probability
matrix as an input and uses a weighted sum for the aggregation, while the algo-
rithm in [1, Section 3.3] gets an affinity matrix as an input and suggests three
different aggregations of the sub-matrix elements.

Theorem 3.2 shows that the resulting Markov process in Algorithm 3.1 is
in fact a transition probability matrix of the �-path localized diffusion process
that was defined in Definition 3.3.

Theorem 3.2. The output matrix P̂ from Algorithm 3.1 is a transition proba-
bility matrix of an �-path localized diffusion process.

In order to prove Theorem 3.2, we need Lemmas 3.3 and 3.4 that relate the
matrices used in Algorithm 3.1 to the original diffusion process.

Lemma 3.3. Let P be the sub-matrix of P defined in a single iteration of
Algorithm 3.1 for specific i, j = 1, . . . , n̂. P is related to the localized transition
probabilities of P in the following ways:

14



1. p�(x, y) = Pr[x
L(P�)−−−−→ y];

2.
∑

y∈Cj
p�(x, y) = Pr[x

L(P�)−−−−→ Cj ];

3.
∑

x∈Ci

∑
y∈Cj

q(x)
vol(Ci)

p�(x, y) = Pr[Ci
L(P�)−−−−→ Cj ].

The proof of Lemma 3.3 is given in Appendix A.

Lemma 3.4. Let q̂(Ci) � Q̂ii �
∑n̂

j=1 K̂ij , i = 1, . . . , n̂, be the degree (i.e., row

sum) defined in Algorithm 3.1. Then, q̂(Ci) = vol(Ci) · lpr�(Ci).

Proof. According to Definition 3.2

lpr�(Ci) = Pr[p ∈ L(P�)| s(P ) ∈ Ci ∧ P ∈ P�]

=

n̂∑
j=1

Pr[Ci
L(P�)−−−−→ Cj ], i = 1, . . . , n̂.

Combining with property (3) of Lemma 3.3 yields

lpr�(Ci) =

n̂∑
j=1

∑
x∈Ci

∑
y∈Cj

q(x)

vol(Ci)
p�(x, y) i = 1, . . . , n̂,

where P depends on the choice of i and j. By using the matrix K̂ from Algo-
rithm 3.1 we get

lpr�(Ci) =
n̂∑

j=1

Kij

vol(Ci)
=

q̂(Ci)

vol(Ci)
i = 1, . . . , n̂,

and multiplying by vol(Ci) yields the desired result.

Lemmas 3.3 and 3.4 relate the localized transition probabilities from the
diffusion process to the original diffusion transition probabilities via the matri-
ces constructed in Algorithm 3.1. These relations can now be used to prove
Theorem 3.2.

Proof of Theorem 3.2. Consider two clusters Ci and Cj , i, j = 1, . . . , n̂. Ac-

cording to Algorithm 3.1, P̂ij �
̂Kij

̂Qii
and K̂ij �

∑
x∈Ci,y∈Cj

q(x)p�(x, y). Using

Lemmas 3.3 and 3.4 we obtain

P̂ij =
vol(Ci) · Pr[Ci

L(P�)−−−−→ Cj ]

vol(Ci) · lpr�(Ci)
=

Pr[Ci
L(P�)−−−−→ Cj ]

lpr�(Ci)
.

By Definition 3.2 and Eq. (3.3),

P̂ij =
Pr[t(P ) ∈ Cj ∧ P ∈ L(P�)| s(P ) ∈ Ci ∧ P ∈ P�]

Pr[p ∈ L(P�)| s(P ) ∈ Ci ∧ P ∈ P�]
,

15



and by conditional probability considerations we get

P̂ij = Pr[t(P ) ∈ Cj |p ∈ L(P�) ∧ s(P ) ∈ Ci ∧ P ∈ P�]. (3.5)

The term P ∈ P� in the hypothesis of Eq. (3.5) is redundant by the localized

�-path. Thus, by combining with Eq. (3.4) we get P̂ij = Pr[Ci

̂P1

−−→ Cj ] and the
theorem is proved.

3.2. Relation to LDF

In the original diffusion, it is assured that the magnitude of the eigenvalues
of P is between zero and one. Another important property of P is the existence
of a symmetric conjugate A. Being a symmetric matrix, the eigenvalues of A
are all real and its left and right eigenvectors are identical. The matrix A has
the same eigenvalues as P and its eigenvectors are related to those of P by the
same conjugation that relates A to P . The additional information provided by
the symmetric conjugate A allows for a simple spectral analysis to be used to
achieve dimensionality reduction as described in [2]. Theorem 3.5 shows that

these properties also apply to the ergodic �-path localized diffusion process P̂.

Theorem 3.5. Let P̂ be the transition probability matrix of a localized �-path
diffusion process, which resulted from Algorithm 3.1. Let Q̂ be the correspond-
ing degree matrix. Then the conjugate matrix Â = Q̂1/2P̂ Q̂−1/2 is symmetric.
Furthermore, Â is equivalent to the result from the weighted-sum LDF runner
in [1, Section 3.3].

Proof. Consider two clusters Ci and Cj , i, j = 1, . . . , n̂. Let P be the matrix
defined for them in the corresponding iteration of Algorithm 3.1. Let Q be a
diagonal |Ci∪Cj |× |Ci∪Cj | matrix where each cell on its diagonal corresponds
to a data-point x ∈ Ci ∪ Cj and holds its degree q(x) = q(x). As discussed
in Section 2.1, the diffusion affinity matrix A = Q1/2PQ−1/2 is a symmetric
conjugate of the diffusion operator P . Its cells are

a(x, y) =

√
q(x)

q(y)
· p(x, y) x, y ∈ X.

Let A = Q1/2PQ−1/2 be a |Ci ∪ Cj | × |Ci ∪ Cj | conjugate of P, then its cells
are

a(x, y) =

√
q(x)

q(y)
· p(x, y) =

√
q(x)

q(y)
· p(x, y) = a(x, y) x, y ∈ Ci ∪ Cj . (3.6)

From the symmetry of A, we get a(x, y) = a(y, x), x, y ∈ Ci ∪ Cj and A is
symmetric. The powers of a symmetric matrix are also symmetric, thus A�,
� ≥ 1, which was given as a parameter to Algorithm 3.1, is also symmetric and
since the terms Q−1/2Q1/2 = I are canceled, then

A� = Q1/2PQ−1/2 ·Q1/2PQ−1/2 · · ·Q1/2PQ−1/2︸ ︷︷ ︸
� times

= Q1/2P�Q−1/2. (3.7)

16



The symmetry is maintained by multiplying the symmetric matrix A� from left
and right by the diagonal matrix Q1/2. Thus the resulting matrix is

Q1/2A�Q1/2 = Q1/2Q1/2P�Q−1/2Q1/2 = QP�.

According to Algorithm 3.1 and since q(x) = q(x) for x ∈ Ci ∪ Cj , then

K̂ij =
∑

x∈Ci,y∈Cj

q(x)p�(x, y).

According to the symmetry of QP�, we obtain

K̂ij =
∑
x∈Ci

∑
y∈Cj

q(y)p�(y, x).

The same matrices P and Q are also used in the iteration that computes K̂ji

in Algorithm 3.1, thus

K̂ji =
∑
y∈Cj

∑
x∈Ci

q(y)p�(y, x) = K̂ij

holds and K̂ is symmetric. Since P̂ � Q̂−1K̂ by Algorithm 3.1, then

Â = Q̂1/2P̂ Q̂−1/2 = Q̂−1/2K̂Q̂−1/2. (3.8)

Multiplication by the diagonal matrix Q̂−1/2 from both sides maintains the
symmetry of K̂, thus Â is also symmetric.

Combining Eq. (3.8) and the definition of K̂ in Algorithm 3.1, yields

Âij =
K̂ij√

Q̂ii

√
Q̂ii

=
∑
x∈Ci

∑
y∈Cj

q(x)p�(x, y)√
q̂(C(x))q̂(C(y))

,

Together with Eq. (3.7), we receive

Âij =
∑
x∈Ci

∑
y∈Cj

√
q(x)

√
q(y)a�(x, y)√

q̂(C(x))q̂(C(y))
.

Let

wxy �
√

q(x)q(y)

q̂(C(x))q̂(C(y))
x, y ∈ X,

then the following weighted sum is obtained:

Âij =
∑
x∈Ci

∑
y∈Cj

wxya
�(x, y).

Finally, according to Eq. (3.6), the matrix A is a sub-matrix of A, which contains
cells in rows and columns that correspond to data-points in Ci ∪ Cj . This is

17



exactly the sub-matrix used in the corresponding iteration (for Ci and Cj) in

the LDF algorithm [1, Section 3.3], and thus Âij contains a weighted sum of
the cells that are combined by the LDF runners [1, Section 3.3]. Therefore, the

matrix Â, which is a symmetric conjugate of P̂ , can be directly obtained by a
weighted-sum LDF runner with the defined weights wxy, x, y ∈ X.

From Theorem 3.5, the symmetric matrix Â can be used for spectral analysis
of the localized diffusion since it has the same spectrum as P̂ and its eigenvectors
are related to the eigenvectors of P̂ by the same conjugation that relates Â to
P̂ . In fact, Â is a result of the LDF runner, which is used to prune a level in
the LDF hierarchy to the next (higher) level, and thus, it can be constructed

directly from A without using P , P̂ and the conjugations (see Fig. 3.4).

P A
Conjugation

P̂ ÂConjugation



Alg. 3.1



LDF

Figure 3.4: The relation between Algorithm 3.1 and the LDF pruning algorithm

If we denote the eigenvalues of Â by 1 = λ̂0 ≥ |λ̂1| ≥ |λ̂2| ≥ . . . and the

corresponding eigenvectors by φ̂0, φ̂1, φ̂2, . . ., we can define a coarse-grained DM,
which we call the �-path localized diffusion map (LDM). This map embeds each
cluster Ci, i = 1, . . . , n̂, to a point

Φ̂(Ci) = (|λ̂0|φ̂0(Ci), |λ̂1|φ̂1(Ci), |λ̂2|φ̂2(Ci), . . .)
T .

According to the above discussion, this embedding has the same properties as
the DM embedding, which was presented in [2].

By combining the original DM, which embeds data-points, and the presented
LDM, which embeds clusters, we obtain a two-level embedding (i.e., a data-point
level and a cluster level). Moreover, the LDM is defined by spectral analysis of
the affinity constructed by LDF. Therefore, it can be defined for each level of the
LDF hierarchy. Thus, we get a multilevel embedding of the data where, in each
level, the corresponding DF are embedded. Furthermore, each coarse-graining
iteration (between LDF levels) prunes longer paths to single transitions, and
thus, a wider time scale of the diffusion is considered. Therefore, the multilevel
embedding, which results from the LDM and from the LDF hierarchy, provides
a multiscale coarse-grained DM.

4. Conclusion

The presented �-path localized diffusion process introduces a coarse-grained
version of the diffusion process that is used in DM for high-dimensional data

18



analysis and dimensionality reduction. This coarse-grained process preserves the
locality of the data by pruning previously detected clusters while considering
only localized paths between them. A simple pruning algorithm can be used to
perform the described coarse-graining while maintaining the essential algebraic
and spectral properties of the DM process as was introduced in [2]. Furthermore,
this pruning is equivalent (via conjugation) to the one performed by the LDF
algorithm when it computes the LDF hierarchy. By combining the results of
this paper with the ones in [1], the LDF hierarchy is shown to provide the
foundations for a multi-scale coarse-grained DM-based embedding of data-points
and clusters/folders to a low-dimensional space.

Appendix A. Proof of Lemma 3.3

Proof. Since P is a Markovian random walk process with a transition probability
matrix P , then the probability of a path P ∈ P� is

∏�
ξ=1 p(Pξ−1, Pξ). The

probability Pr[x
L(P�)−−−−→ y], which is defined in Eq. (3.1), considers only paths

with P0 = s(P ) = x, P� = t(P ) = y and Pξ ∈ Ci ∪ Cj , ξ = 1, . . . , �− 1, thus

Pr[x
L(P�)−−−−→ y] =∑

P1,...,P�−1∈Ci∪Cj

[p(x, P1) ·
�−1∏
ξ=2

p(Pξ−1, Pξ) · p(P�−1, y)] x ∈ Ci, y ∈ Cj .

By Algorithm 3.1, p(Pξ−1, Pξ) = p(Pξ−1, Pξ), ξ = 1, . . . , � when P1, . . . , P�−1 ∈
Ci ∪ Cj , P0 = x ∈ Ci and P� = y ∈ Cj . Therefore,

Pr[x
L(P�)−−−−→ y] =

∑
P1,...,P�−1∈Ci∪Cj

[p(x, P1) ·
�−1∏
ξ=2

p(Pξ−1, Pξ) · p(P�−1, y)]

= p�(x, y) x ∈ Ci, y ∈ Cj ,

and the first part of the lemma is proved.

The probability Pr[x
L(P�)−−−−→ Cj ], which was defined in Eq. (3.2), combines

all the probabilities in Eq. (3.1) with y ∈ Cj . Different paths are considered
independent events, thus

Pr[x
L(P�)−−−−→ Cj ] =

∑
y∈Cj

Pr[x
L(P�)−−−−→ y] =

∑
y∈Cj

p�(x, y) x ∈ Ci,

and the second part of the lemma is proved. The probability Pr[Ci
L(P�)−−−−→ Cj ],

which was defined in Eq. (3.3), combines all the probabilities in Eq. (3.2) with
x ∈ Ci. Since x is part of the condition in these probabilities, we get

Pr[Ci
L(P�)−−−−→ Cj ] =

∑
x∈Ci

Pr[s(P ) = x| s(P ) ∈ Ci] · Pr[x L(P�)−−−−→ Cj ]

=
∑
x∈Ci

∑
y∈Cj

Pr[s(P ) = x| s(P ) ∈ Ci] · p�(x, y).

19



Using Eq. (2.3) we get

Pr[Ci
L(P�)−−−−→ Cj ] =

∑
x∈Ci

∑
y∈Cj

q(x)

vol(Ci)
p�(x, y),

and the final part of the lemma is proved.

Acknowledgments

This research was partially supported by the Israel Science Foundation (Grant
No. 1041/10). The first author was also supported by the Eshkol Fellowship
from the Israeli Ministry of Science & Technology.

References

[1] G. David, A. Averbuch, Hierarchical data organization, clustering and de-
noising via localized diffusion folders, Applied and Computational Har-
monic Analysis. In press, to appear.

[2] R. Coifman, S. Lafon, Diffusion maps, Applied and Computational Har-
monic Analysis 21 (1) (2006) 5–30.

[3] R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner,
S. Zucker, Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps, Proceedings of the National Academy
of Sciences of the United States of America 102 (21) (2005) 7426–7431.

[4] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering
method for very large databases, in: SIGMOD ’96: Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, ACM,
New York, NY, USA, 1996, pp. 103–114.

[5] L. Kaufman, P. Rousseeuw, Finding groups in Data - An introduction to
Cluster Analysis, Wiley. New York: John Wiely & Sons, Inc., 1990.

[6] S. Lafon, A. Lee, Diffusion maps and coarse-graining: A unified framework
for dimensionality reduction, graph partitioning, and data set parameter-
ization, IEEE Transactions on Pattern Analysis and Machine Intelligence
(2006) 1393–1403.

[7] G. Wolf, M. Salhov, A. Averbuch, Patch-to-tensor embedding, Applied and
Computational Harmonic Analysis. In press, to appear.

[8] G. Wolf, A. Averbuch, Linear-projection diffusion on smooth Euclidean
submanifolds, Applied and Computational Harmonic Analysis.

[9] A. Singer, H. Wu, Orientability and diffusion maps, Applied and Compu-
tational Harmonic Analysis. In press, to appear.

20



[10] A. Singer, H. Wu, Vector diffusion maps and the connection Laplacian,
Arxiv preprint arXiv:1102.0075.

[11] F. Chung, Spectral Graph Theory, Vol. 92, CBMS-AMS, 1997.

21



PII

HIERARCHICAL DATA ORGANIZATION, CLUSTERING AND
DENOISING VIA COARSE-GRAINED LOCALIZED DIFFUSION

by

Guy Wolf, Aviv Rotbart, Gil David, Amir Averbuch 2012

CJR conference, Yale



H
ie

ra
rc

h
ic

a
l
D

a
ta

O
rg

a
n

iz
a
ti

o
n

,
C

lu
s
te

ri
n

g
a
n

d
D

e
n

o
is

in
g

v
ia

C
o

a
rs

e
-G

ra
in

e
d

L
o

c
a
li
z
e
d

D
if

fu
s
io

n
G

u
y

W
o

lf
A

v
iv

R
o

tb
a

rt
G

il
D

a
v
id

A
m

ir
A

ve
rb

u
c
h

C
o

m
p

u
te

r
S

c
ie

n
c
e

S
c
h

o
o

l,
T
e

l
A

v
iv

U
n

iv
e

rs
it
y

In
tr

o
d

u
c
ti

o
n

◮
M

a
s
s
iv

e
h
ig

h
-d

im
e
n
s
io

n
a
l
d
a
ta

s
e
ts

a
re

ve
ry

p
o
p
u
la

r
n
o
w

a
d
a
y
s
,
b
u
t
th

e
y

p
o
s
e

tw
o

m
a
in

c
h
a
lle

n
g
e
s

fo
r

d
a
ta

-a
n
a
ly

s
is

m
e
th

o
d
s
:

1
.

T
h
e

“c
u
rs

e
o
f
d
im

e
n
s
io

n
a
lit

y
”

d
u
e

to
th

e
re

d
u
n
d
a
n
c
y

o
f
m

e
a
s
u
re

d
p
a
ra

m
e
te

rs
.

2
.

M
o
s
t
d
a
ta

-p
o
in

ts
a
re

re
d
u
n
d
a
n
t
d
u
e

to
c
lo

s
e

re
la

ti
o
n
s

(o
r

e
ve

n
d
u
p
lic

it
ie

s
)

b
e
tw

e
e
n

th
e
m

.

◮
W

e
p
ro

p
o
s
e

a
n

a
p
p
ro

a
c
h

fo
r

d
e
a
lin

g
w

it
h

b
o
th

e
ff
e
c
ts

b
y

c
o
a
rs

e
-g

ra
in

in
g

th
e

p
o
p
u
la

r
D

if
fu

s
io

n
M

a
p
s

(D
M

)
fr

a
m

e
w

o
rk

fr
o
m

th
e

d
a
ta

-p
o
in

t
le

ve
l
to

th
e

c
lu

s
te

r
le

ve
l.

◮
T

h
e

a
n
a
ly

z
e
d

d
a
ta

s
e
t
b
e
c
o
m

e
s

s
m

a
lle

r
b
y

c
o
n
s
id

e
ri

n
g

c
o
a
rs

e
-g

ra
in

e
d

c
lu

s
te

rs
in

s
te

a
d

o
f

in
d
iv

id
u
a
l
d
a
ta

-p
o
in

ts
.

◮
E

s
s
e
n
ti
a
l
p
ro

p
e
rt

ie
s

o
f
th

e
d
if
fu

s
io

n
p
ro

c
e
s
s

in
D

M
a
re

p
re

s
e
rv

e
d

b
y

c
o
a
rs

e
-g

ra
in

in
g

lo
c
a
liz

e
d

p
a
th

s
b
e
tw

e
e
n

c
lu

s
te

rs
.

A
s

a
re

s
u
lt
,
th

e
d
im

e
n
s
io

n
a
lit

y
-r

e
d
u
c
ti
o
n

p
ro

p
e
rt

ie
s

o
f
D

M
c
a
n

b
e

u
s
e
d

to
s
o
lv

e
th

e
“c

u
rs

e
o
f
d
im

e
n
s
io

n
a
lit

y
”

w
it
h

th
is

L
o
c
a
liz

e
d
-D

if
fu

s
io

n
c
o
n
s
tr

u
c
ti
o
n
.

◮
H

ie
ra

rc
h
ic

a
l
c
lu

s
te

ri
n
g

is
a
c
h
ie

ve
d

b
y

it
e
ra

ti
n
g

th
e

c
o
a
rs

e
-g

ra
in

in
g

s
e
ve

ra
l
ti
m

e
,
th

u
s

g
e
tt
in

g
a

L
o
c
a
liz

e
d

D
if
fu

s
io

n
F

o
ld

e
r

(L
D

F
)

h
ie

ra
rc

h
y

o
ve

r
th

e
d
a
ta

s
e
t.

L
o

c
a
li
z
e
d

v
s
.

N
o

n
-l

o
c
a
li
z
e
d

P
a
th

s

D
e
fi

n
it

io
n

(l
o

c
a
li
z
e
d
ℓ-

p
a
th

)

A
lo

c
a
liz

e
d
ℓ-

p
a
th

in
a

d
if
fu

s
io

n
p
ro

c
e
s
s
P

is
th

e
p
a
th

P
=

P
0
→

P
1
→

..
.
→

P
ℓ

o
f

le
n
g
th

ℓ
th

a
t
tr

a
ve

rs
e
s

s
o
le

ly
th

ro
u
g
h

d
a
ta

-p
o
in

ts
in

it
s

s
o
u
rc

e
a
n
d

d
e
s
ti
n
a
ti
o
n

c
lu

s
te

rs
,
i.
e
.,

P
0
,P

1
,.
..
,P

ℓ
∈

C
(s
(P

))
∪

C
(t
(P

))
.

L
o

c
a
li
z
e
d

P
a
th

s

T
ra

n
s
it

io
n

P
ro

b
a
b

il
it

ie
s

T
h
e

tr
a
n
s
it
io

n
p
ro

b
a
b
ili

ty
in

ℓ
ti
m

e
s
te

p
s

b
e
tw

e
e
n

th
e

p
o
in

ts
x
,y

in
th

e
o
ri

g
in

a
l
d
if
fu

s
io

n
p
ro

c
e
s
s

c
a
n

b
e

d
e
s
c
ri

b
e
d

a
s

P
r[

x
P

ℓ

−→
y
]
�

P
r[

t(
P
)
=

y
|s
(P

)
=

x
∧

P
∈
P

ℓ ]
x
,y

∈
X
.

T
h
e

lo
c
a
liz

e
d

tr
a
n
s
it
io

n
p
ro

b
a
b
ili

ty
b
e
tw

e
e
n

th
e
s
e

tw
o

p
o
in

ts
is

P
r[

x
L
(P

ℓ )
−−
−→

y
]
�

P
r[

t(
P
)
=

y
∧

P
∈
L
(P

ℓ )
|s
(P

)
=

x
∧

P
∈
P

ℓ ]
.

S
im

ila
rl

y,
th

e
lo

c
a
liz

e
d

tr
a
n
s
it
io

n
p
ro

b
a
b
ili

ty
fr

o
m

x
∈

C
i
to

th
e

c
lu

s
te

r
C

j

a
n
d

fr
o
m

th
e

c
lu

s
te

r
C

i
to

C
j
a
re

d
e
fi
n
e
d

a
s

P
r[

x
L
(P

ℓ )
−−
−→

C
j]
�

P
r[

t(
P
)
∈

C
j
∧

P
∈
L
(P

ℓ )
|s
(P

)
=

x
∧

P
∈
P

ℓ ]
,

a
n
d

P
r[

C
i

L
(P

ℓ )
−−
−→

C
j]
�

P
r[

t(
P
)
∈

C
j
∧

P
∈
L
(P

ℓ )
|s
(P

)
∈

C
i
∧

P
∈
P

ℓ ]
.

L
o

c
a
li
z
e
d

D
if

fu
s
io

n
P

ro
c
e
s
s

T
h
e

d
if
fu

s
io

n
p
ro

c
e
s
s

d
e
s
c
ri

b
e
d

in
D

M
c
o
n
s
id

e
rs

tr
a
n
s
it
io

n
p
ro

b
a
b
ili

ti
e
s

a
t
d
if
fe

re
n
t
s
c
a
le

s
,
b
e
tw

e
e
n

d
a
ta

p
o
in

ts
in

a
g
iv

e
n

d
a
ta

s
e
t.

A
t
s
c
a
le

ℓ
>

0
,
a
ll

p
a
th

s
o
f
le

n
g
th

ℓ
a
re

u
s
e
d

to
c
a
lc

u
la

te
th

e
tr

a
n
s
it
io

n
p
ro

b
a
b
ili

ti
e
s
.

W
e

s
u
g
g
e
s
t
to

g
e
n
e
ra

liz
e

th
is

a
p
p
ro

a
c
h

in
to

tr
a
n
s
it
io

n
p
ro

b
a
b
ili

ti
e
s

b
e
tw

e
e
n

c
lu

s
te

rs
o
n

th
e

d
a
ta

.
In

o
rd

e
r

to
re

d
u
c
e

n
o
is

y
c
o
n
n
e
c
ti
o
n
s

b
e
tw

e
e
n

c
lu

s
te

rs
,
w

e
o
n
ly

c
o
n
s
id

e
r

lo
c
a
liz

e
d

p
a
th

s
,

n
a
m

e
ly

p
a
th

s
th

a
t
tr

a
ve

rs
e

th
ro

u
g
h

th
e
ir

s
o
u
rc

e
a
n
d

ta
rg

e
t
c
lu

s
te

r
s
o
le

ly
.

P
ru

n
in

g
A

lg
o

ri
th

m

P
ru

n
in

g
A

lg
o

ri
th

m
:

F
ro

m
th

e
o

ri
g

in
a
l
d

if
fu

s
io

n
to

th
e

lo
c
a
li
z
e
d

o
n

e

◮
T

h
e

ill
u
s
tr

a
ti
o
n

d
e
s
c
ri

b
e
s

a
c
o
a
rs

e
-g

ra
in

in
g

o
f
th

e
o
ri

g
in

a
l
d
if
fu

s
io

n
p
ro

c
e
s
s
.

◮
C

a
lc

u
la

ti
n
g

c
lu

s
te

r
a
ffi

n
it
ie

s
fr

o
m

d
a
ta

-p
o
in

t
a
ffi

n
it
ie

s
:

1
.

A
ffi

n
it
y

b
e
tw

e
e
n

th
e

c
lu

s
te

rs
C

i
a
n
d

C
j
is

b
a
s
e
d

o
n

th
e

s
u
b
-m

a
tr

ix
c
o
n
ta

in
in

g
p
o
in

ts
fr

o
m

b
o
th

c
lu

s
te

rs
.

2
.

L
o
c
a
liz

e
d

D
if
fu

s
io

n
P

ro
c
e
s
s

is
ru

n
fo

rw
a
rd

o
n

th
is

m
a
tr

ix
(i
.e

.,
th

e
m

a
tr

ix
is

ra
is

e
d

to
s
o
m

e
p
o
w

e
r)

.

3
.

A
g
g
re

g
a
ti
o
n

m
e
th

o
d

is
a
p
p
lie

d
o
n

th
e

m
a
tr

ix
,
g
e
n
e
ra

ti
n
g

a
s
in

g
le

n
u
m

b
e
r

-
th

e
a
ffi

n
it
y

b
e
tw

e
e
n

th
e

c
lu

s
te

rs
C

i
a
n
d

C
j.

◮
T

h
e

re
s
u
lt

o
f
th

e
a
lg

o
ri

th
m

is
a

lo
c
a
liz

e
d

d
if
fu

s
io

n
p
ro

c
e
s
s
.

◮
T

h
is

is
a

M
a
rk

o
v
ia

n
p
ro

c
e
s
s

th
a
t
d
e
fi
n
e
s

a
tr

a
n
s
it
io

n
p
ro

b
a
b
ili

ty
m

a
tr

ix
b
e
tw

e
e
n

c
lu

s
te

rs
.

◮
A

p
p
ly

in
g

L
o
c
a
liz

e
d

D
if
fu

s
io

n
P

ro
c
e
s
s

to
th

e
d
a
ta

y
ie

ld
s

b
o
th

d
e
n
o
is

in
g

e
ff
e
c
t
(b

y
re

m
o
v
in

g
n
o
is

y
a
n
d

in
d
ir
e
c
t
c
o
n
n
e
c
ti
o
n
s

b
e
tw

e
e
n

c
lu

s
te

rs
)

a
n
d

H
ie

ra
rc

h
ic

a
l
v
ie

w
o
f
th

e
d
a
ta

(b
y

c
lu

s
te

ri
n
g

e
a
c
h

le
ve

l
o
f
th

e
k
e
rn

e
l
p
ru

n
in

g
p
ro

c
e
s
s
).

D
e
fi

n
it

io
n

(ℓ
-p

a
th

lo
c
a
li
z
e
d

d
if

fu
s
io

n
p

ro
c
e
s
s
)

L
e
t
P

b
e

a
d
if
fu

s
io

n
(r

a
n
d
o
m

w
a
lk

)
p
ro

c
e
s
s

d
e
fi
n
e
d

o
n

th
e

d
a
ta

-p
o
in

ts
o
f
th

e
d
a
ta

s
e
t

X
.

A
n
ℓ-

p
a
th

lo
c
a
liz

e
d

d
if
fu

s
io

n
p
ro

c
e
s
s
P̂

is
a

ra
n
d
o
m

w
a
lk

o
n

th
e

c
lu

s
te

rs
C

1
,C

2
,.
..
,C

n̂
w

h
e
re

a
tr

a
n
s
it
io

n
fr

o
m

C
i
to

C
j,

i,
j
=

1
,.
..
,n̂

,

re
p
re

s
e
n
ts

a
ll

th
e

lo
c
a
liz

e
d
ℓ-

p
a
th

s
in

th
e

d
if
fu

s
io

n
p
ro

c
e
s
s
P

fr
o
m

d
a
ta

-p
o
in

ts
in

C
i
to

d
a
ta

-p
o
in

ts
in

C
j.

T
h
e

p
ro

b
a
b
ili

ty
o
f
s
u
c
h

a
tr

a
n
s
it
io

n
,
a
c
c
o
rd

in
g

to
P

,
is

th
e

p
ro

b
a
b
ili

ty
to

re
a
c
h

th
e

d
e
s
ti
n
a
ti
o
n

c
lu

s
te

r
C

j
w

h
e
n

s
ta

rt
in

g
a
t

th
e

s
o
u
rc

e
c
lu

s
te

r
C

i
a
n
d

tr
a
ve

lin
g

s
o
le

ly
v
ia

lo
c
a
liz

e
d
ℓ-

p
a
th

s
.

P
ro

p
o

s
it

io
n

T
h
e

lo
c
a
liz

e
d

d
if
fu

s
io

n
p
ro

c
e
s
s
P̂

is
a
n

e
rg

o
d
ic

M
a
rk

o
v

p
ro

c
e
s
s

(i
.e

.,
th

e
ra

n
d
o
m

w
a
lk

it
d
e
fi
n
e
s

is
ir
re

d
u
c
ib

le
a
n
d

a
p
e
ri

o
d
ic

).

E
x
p

e
ri

m
e
n

ta
l
R

e
s
u

lt
s
:

H
ie

ra
rc

h
ic

a
l
c
lu

s
te

ri
n

g
o

f
c
o

m
m

u
n

ic
a
ti

o
n

-o
ri

e
n

te
d

a
p

p
li
c
a
ti

o
n

s

H
ie

ra
rc

h
ic

a
l
c
lu

s
te

ri
n

g
e
x
p

la
in

e
d

◮
Il
lu

s
tr

a
ti
o
n

o
f
h
ie

ra
rc

h
ic

a
l
c
lu

s
te

ri
n
g

o
f
a
p
p
lic

a
ti
o
n
s

◮
T

h
e

c
lu

s
te

ri
n
g

o
f
s
o
ft
w

a
re

a
p
p
lic

a
ti
o
n
s

is
b
a
s
e
d

o
n

th
e
ir

c
o
m

m
u
n
ic

a
ti
o
n

p
ro

p
e
rt

ie
s
.

◮
B

o
tt
o
m

le
ve

l
o
f
th

e
tr

e
e

s
h
o
w

s
a

fi
n
e
-g

ra
in

in
g

o
f
th

e
d
a
ta

,
a
n
d

d
is

ti
n
g
u
is

h
e
s

b
e
tw

e
e
n

s
im

ila
r

a
p
p
lic

a
ti
o
n
s

(e
.g

.,
IC

Q
a
n
d

M
e
s
s
e
n
g
e
r)

◮
H

ig
h
e
r

le
ve

ls
o
f
th

e
tr

e
e

s
h
o
w

fu
rt

h
e
r

c
o
a
rs

e
g
ra

in
in

g
o
f
th

e
d
a
ta

a
n
d

g
ro

u
p

s
im

ila
r

a
p
p
lic

a
ti
o
n
s
,

a
p
p
lic

a
ti
o
n
s

ty
p
e
s
,
c
o
m

m
u
n
ic

a
ti
o
n

m
e
th

o
d
s

a
n
d

c
o
m

m
u
n
ic

a
ti
o
n

b
e
h
a
v
io

rs
in

to
o
n
e

c
lu

s
te

r.

◮
L
o
c
a
liz

e
d

D
if
fu

s
io

n
F

o
ld

e
rs

(L
D

F
)

A
lg

o
ri

th
m

◮
P

e
rf

o
rm

s
c
lu

s
te

ri
n
g

o
f
th

e
d
a
ta

b
y

s
e
le

c
ti
n
g

th
e

c
e
n
te

rs
o
f
th

e
c
lu

s
te

rs
a
t
ra

n
d
o
m

(s
h
a
k
e

&

b
a
k
e
).

◮
C

o
n
s
tr

u
c
t
a

lo
c
a
liz

e
d

a
ffi

n
it
y,

w
h
ic

h
d
e
fi
n
e
s

a
“p

u
ri

fi
e
d

g
e
o
m

e
tr

y
”

o
f
th

e
d
a
ta

b
y

“s
h
a
k
in

g
”

m
u
lt
ip

le
D

if
fu

s
io

n
F

o
ld

e
rs

to
g
e
t
ri

d
o
f
th

e
n
o
is

e
a
n
d

“b
a
k
in

g
”

a
c
le

a
n
e
r

a
ffi

n
it
y

th
a
t
e
lim

in
a
te

s

ra
re

c
o
n
n
e
c
ti
o
n
s
.

E
x
p

e
ri

m
e
n

ta
l
R

e
s
u

lt
s
:

D
e
n

o
is

in
g

im
a
g

e
s

u
s
in

g
L

o
c
a
li
z
e
d

D
if

fu
s
io

n
F

o
ld

e
rs

D
e
n

o
is

in
g

im
a
g

e
s

e
x
p

la
in

e
d

◮
Im

a
g
e

w
a
s

d
is

to
rt

e
d

w
it
h

3
0
%

s
a
lt

&
p
e
p
p
e
r

n
o
is

e
.

◮
U

s
in

g
L
D

F
to

re
s
to

re
th

e
im

a
g
e

1
.

E
a
c
h

p
ix

e
l
in

th
e

im
a
g
e

is
re

p
re

s
e
n
te

d
b
y

a
w

in
d
o
w

o
f
5
×

5
n
e
ig

h
b
o
rs

a
ro

u
n
d

it
,
c
re

a
ti
n
g

a

2
5
-d

im
e
n
s
io

n
a
l
ve

c
to

r
(m

e
g
a
-p

ix
e
l)
.

2
.

A
s
lid

in
g

w
in

d
o
w

o
f
s
iz

e
9
×

9
m

e
g
a
-p

ix
e
ls

is
c
o
n
s
id

e
re

d
.

3
.

F
o
r

e
a
c
h

w
in

d
o
w

,
th

e
L
D

F
a
lg

o
ri

th
m

w
a
s

a
p
p
lie

d
a
n
d

th
e

va
lu

e
o
f
th

e
c
e
n
te

r
p
ix

e
l
in

th
e

w
in

d
o
w

w
a
s

s
e
t
to

th
e

a
ve

ra
g
e

va
lu

e
o
f
th

e
p
ix

e
ls

o
f
th

e
la

rg
e
s
t
fo

ld
e
r

(c
lu

s
te

r)
in

th
e

p
ro

c
e
s
s
.

◮
T

h
e

re
s
u
lt
:

d
e
n
o
is

e
d

im
a
g
e
,
L
D

F
s
h
o
w

s
b
e
tt
e
r

re
s
u
lt
s

th
a
n

th
e

d
if
fu

s
io

n
re

g
u
la

ri
z
a
ti
o
n

m
e
th

o
d
.

R
e
fe

re
n

c
e
s

◮
G

u
y

W
o
lf,

A
v
iv

R
o
tb

a
rt

,
G

il
D

a
v
id

,
A

m
ir

A
ve

rb
u
c
h
,
C

o
a
rs

e
-g

ra
in

e
d

lo
c
a
liz

e
d

d
if
fu

s
io

n
,
A

p
p
lie

d
a
n
d

C
o
m

p
u
ta

ti
o
n
a
l
H

a
rm

o
n
ic

A
n
a
ly

s
is

,
A

va
ila

b
le

o
n
lin

e
1

M
a
rc

h
2
0
1
2
,
IS

S
N

1
0
6
3
-5

2
0
3
,

1
0
.1

0
1
6
/j
.a

c
h
a
.2

0
1
2
.0

2
.0

0
4
.

◮
G

il
D

a
v
id

,
A

m
ir

A
ve

rb
u
c
h
,
H

ie
ra

rc
h
ic

a
l
d
a
ta

o
rg

a
n
iz

a
ti
o
n
,
c
lu

s
te

ri
n
g

a
n
d

d
e
n
o
is

in
g

v
ia

lo
c
a
liz

e
d

d
if
fu

s
io

n
fo

ld
e
rs

,
A

p
p
lie

d
a
n
d

C
o
m

p
u
ta

ti
o
n
a
l

H
a
rm

o
n
ic

A
n
a
ly

s
is

,
V

o
lu

m
e

3
3
,
Is

s
u
e

1
,
J
u
ly

2
0
1
2
,
P

a
g
e
s

1
-2

3
.



PIII

RANDOMIZED LU DECOMPOSITION: AN ALGORITHM FOR
DICTIONARIES CONSTRUCTION

by

Aviv Rotbart, Gil Shabat, Yaniv Shmueli, Amir Averbuch 2014

Submitted to IEEE transaction on Information Forensics and Security



1

Randomized LU decomposition: An Algorithm for
Dictionaries Construction

Aviv Rotbart1,2 Gil Shabat3 Yaniv Shmueli1 Amir Averbuch1

1School of Computer Science, Tel Aviv University, Israel
2Department of Mathematical Information Technology, University of Jyväskylä, Finland

3School of Electrical Engineering, Tel Aviv University, Israel

Abstract

In recent years, distinctive-dictionary construction has gained importance due to his usefulness in data process-

ing. Usually, one or more dictionaries are constructed from a training data and then they are used to classify signals

that did not participate in the training process. A new dictionary construction algorithm is introduced. It is based on

a low-rank matrix factorization being achieved by the application of the randomized LU decomposition to a training

data. This method is fast, scalable, parallelizable, consumes low memory, outperforms SVD in these categories

and works also extremely well on large sparse matrices. In contrast to existing methods, the randomized LU

decomposition constructs an under-complete dictionary, which simplifies both the construction and the classification

processes of newly arrived signals. The dictionary construction is generic and general that fits different applications.

We demonstrate the capabilities of this algorithm for file type identification, which is a fundamental task in digital

security arena, performed nowadays for example by sandboxing mechanism, deep packet inspection, firewalls and

anti-virus systems. We propose a content-based method that detects file types that neither depend on file extension

nor on metadata. Such approach is harder to deceive and we show that only a few file fragments from a whole

file are needed for a successful classification. Based on the constructed dictionaries, we show that the proposed

method can effectively identify execution code fragments in PDF files.

Keywords. Dictionary construction, classification, LU decomposition, randomized LU decomposition, content-based

file detection, computer security.

I. INTRODUCTION

Recent years have shown a growing interest in dictionary learning. Dictionaries were found to be
useful for applications such as signal reconstruction, denoising, image impainting, compression, sparse
representation, classification and more. Given a data matrix A, a dictionary learning algorithm produces two
matrices D and X such that ||A−DX|| is small where D is called dictionary and X is a coefficients matrix
also called representation matrix. Sparsity of X , means that each signal from A is described with only a few
signals (also called atoms) from the dictionary D. It is a major property being pursued by many dictionary
learning algorithms. The algorithms, which learn dictionaries for sparse representations, optimize a goal
function minD,X ||A−DX||+λ||X||0, which considers both the accuracy and the sparsity of the solution, by
optimizing alternately these two properties (λ is a regularization term). This construction is computationally
expensive and does not scale well to big data. It becomes even worse when dictionary learning is used for
classification since another distinctive term in addition to the two aforementioned is being introduced in
the objective function. This term provides the learned dictionary a discriminative ability. This can be seen
for example in the optimization problem minD,X,W ||A−DX||+ λ||X||0 + ξ||H −WX|| where W is a
classifier and H is a vector of labels. ||H−WX|| is the penalty term for achieving a wrong classification.
In order to achieve the described properties, dictionaries are usually over-complete, namely, they contain
more atoms than the signal dimension. As a consequence, dictionaries are redundant such that there are
linear dependencies between atoms. Therefore, a given signal can be represented in more than one way

Corresponding author: aviv.rotbart@cs.tau.ac.il



2

using dictionary atoms. This enables us on one hand to get sparse representations, but on the other hand
it complicates the representation process because it is NP-hard to find the sparsest representation for a
signal by an over-complete dictionary [13].

In this work, we provide a generic way to construct an under-complete dictionary. Its capabilities will
be demonstrated for signal classification task. Since we do not look for sparse signal representation,
we remove the alternating optimization process from the construction of over-complete dictionaries. Our
dictionary construction is based on matrix factorization. We use the randomized LU matrix factorization
algorithm [16] for a dictionary construction. This algorithm, which is applied to a given data matrix
A ∈ R

m×n of m features and n data-points, decomposes A into two matrices L and U , where L is the
dictionary and U is the coefficient matrix. The size of L is determined by the decaying spectrum of the
singular values of the matrix A, and bounded by min{n,m}. Both L and U are linearly independent. The
proposed dictionary construction has couple of advantages: it is fast, scalable, parallelizable and thus can
run on GPU and multicore-based systems, consumes low memory, outperforms SVD in these categories
and works extremely well on large sparse matrices. Under this construction, the classification of a newly
arrived signal is done by a fast projection method that represents this signal by the columns of the matrix
L. The computational cost of this method is linear in the input size, while in the under-complete case
finding the optimal solution is NP-hard [13]. Approximation algorithms for sparse signal reconstruction,
like Orthogonal Matching Pursuit [17] or Basis Pursuit [6], have no guarantees for general dictionaries.

In order to evaluate the performance of the dictionaries, which are constructed by the application of
the randomized LU algorithm to a training set, we use them to classify file types. The experiments were
conducted on a dataset that contains files of various types. The goal is to classify each file or portion of a
file to the class describing its type. To the best of our knowledge, this work is the first to use dictionary
learning method for file type classification. This work considers three different scenarios that represent real
security tasks: examining the full content of the tested files, classifying a file type using a small number
of fragments from the file and detecting malicious code hidden inside innocent looking files. While the
first two scenarios were examined by other works, none of the papers described in this work dealt with
the latter scenario. It is difficult to compare our results to other algorithms since the used datasets are not
publicly available. For similar testing conditions, we improve the state-of-the-art results. The datasets we
used will be made publicly available.

The paper has the following structure: Section II reviews related work on dictionary construction and on
file content recognition algorithms. Section III presents the dictionary construction algorithm. Section IV
shows how to utilize it to develop our classification algorithms for file content detection. Section V
addresses the problem of computing the correct dictionaries sizes needed by the classifiers. Experimental
results are presented in Section VI and compared with other content classification methods.

II. RELATED WORK

Dictionary-based classification models have been the focus of much recent research leading to results
in face recognition [9], [15], [19]–[22], digit recognition [21], object categorization [9], [15] and more.
Many of these works [9], [15], [22] utilize the K-SVD [1] for their training, or in other words, for their
dictionary learning step. Others define different objective functions such as the Fisher Discriminative
Dictionary Learning [21]. Majority of these methods use an alternating optimization process in order
to construct their dictionary. This optimization procedure seeks a dictionary which is re-constructive,
enables sparse representation and sometimes also has a discriminative property. In some works (see for
example [9], [22]) the dictionary learning algorithm requires meta parameters to regulate these properties
of the learned dictionary. Finding the optimal values for these parameters is a challenging task that adds
complexity to the proposed solutions. A dictionary construction, which uses a multivariate optimization
process, is computationally expensive task (as described in [15], for example). The proposed approach
in this paper suggests to avoid these complexities by using the randomized LU Algorithm [16]. The
dictionary it creates is under-complete where the number of atoms is smaller than the signal dimension.



3

The outcome is that the dictionary construction is fast that does not compromise its abilities to achieve
high classification accuracy. We improve upon the state-of-the-art results in file type classification [4] as
demonstrated by the experimental results.

The testing phase in many dictionary learning schemes is simple. Usually, linear classifier is used to
assign test signals to one of the learned classes [9], [22]. However, classifier learning combined with
dictionary learning adds additional overhead to the process [9], [22]. The proposed method in this paper
does not require to allocate special attention to a classifier learning. We utilize the output from the
randomized LU algorithm to create a projection matrix. This matrix is used to measure the distance
between a test signal and the dictionary. The signal is then classified as belonging to the class that
approximates it best. The classification process is fast and simple. The results described in Section VI
show high accuracy in the content-based file type classification task.

We used this classification task to test the randomized LU dictionary construction and to measure its
discriminative power. This task is useful in computer security applications like anti-virus systems and
firewalls that need to detect files transmitted through network and response quickly to threats. Previous
works in this field use mainly deep packet inspection (DPI) and byte distribution frequency features (1-
gram statistics) in order to analyze a file [2]–[5], [7], [10]–[12], [18]. In some works, other features were
tested like consecutive byte differences [4], [5] and statistical properties of the content [5]. The randomized
LU decomposition [16] construction is capable of dealing with a large number of features. This enables
us to test our method on high dimensional feature sets like double-byte frequency distributions (2-grams
statistics) where each measurement has 65536 Markov-walk based features. We refer the reader to [4]
and references within for an exhaustive comparison of the existing methods for content-based file type
classification.

Throughout this work, when A is a matrix, the norm ‖A‖ indicates the spectral norm (the largest
singular value of A) and when A is a vector it indicates the standard l2 norm (Euclidean norm).

III. RANDOMIZED LU

In this section, we present the randomized LU decomposition algorithm for computing the rank k LU
approximation of a full matrix (Algorithm III.1). The main building blocks of the algorithm are random
projections and Rank Revealing LU (RRLU) [14] to obtain a stable low-rank approximation for an input
matrix A.

The RRLU algorithm, used in the randomized LU algorithm, reveals the connection between LU
decomposition of a matrix and its singular values. This property is very important since it connects
between the size of the decomposition to the actual numerical rank of the data. Similar algorithms exist
for rank revealing QR decompositions (see, for example [8]).

Theorem III.1 ( [14]). Let A be an m × n matrix (m ≥ n). Given an integer 1 ≤ k < n, then the
following factorization

PAQ =

(
L11 0
L21 In−k

)(
U11 U12

0 U22

)
, (III.1)

holds where L11 is a lower triangular with ones on the diagonal, U11 is an upper triangular, P and Q
are orthogonal permutation matrices. Let σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0 be the singular values of A, then:

σk ≥ σmin(L11U11) ≥ σk

k(n− k) + 1
,

and
σk+1 ≤ ‖U22‖ ≤ (k(n− k) + 1)σk+1.

Based on Theorem III.1, we have the following definition:



4

Definition III.1 (RRLU Rank k Approximation denoted RRLUk). Given a RRLU decomposition (Theorem
III.1) of a matrix A with an integer k (as in Eq. III.1) such that PAQ = LU , then the RRLU rank k
approximation is defined by taking k columns from L and k rows from U such that

RRLUk(PAQ) =

(
L11

L21

)(
U11U12

)
,

where L11, L21, U11, U12, P and Q are defined in Theorem III.1.

Lemma III.2 ( [16] RRLU Approximation Error). The error of the RRLUk approximation of A is

‖PAQ− RRLUk(PAQ)‖ ≤ (k(n− k) + 1)σk+1.

Algorithm III.1 describes the flow of the RLU decomposition algorithm.

Algorithm III.1: Randomized LU Decomposition

Input: A matrix of size m× n to decompose; k rank of A; l number of columns to use (for
example, l = k + 5).
Output: Matrices P,Q, L, U such that ‖PAQ− LU‖ ≤ O(σk+1(A)) where P and Q are orthogonal
permutation matrices, L and U are the lower and upper triangular matrices, respectively, and
σk+1(A) is the (k + 1)th singular value of A.

1: Create a matrix G of size n× l whose entries are
i.i.d. Gaussian random variables with zero mean
and unit standard deviation.

2: Y ← AG.
3: Apply RRLU decomposition (See [14]) to Y

such that PY Qy = LyUy.
4: Truncate Ly and Uy by choosing the first k columns

and k rows, respectively: Ly ← Ly(:, 1 : k) and Uy ← Uy(1 : k, :).
5: B ← L†

yPA. (L†
y is the pseudo inverse of Ly).

6: Apply LU decomposition to B with column pivoting BQ = LbUb.
7: L ← LyLb.
8: U ← Ub.

Remark III.3. In most cases, it is sufficient to compute the regular LU decomposition in Step 3 instead
of computing the RRLU decomposition.

The running time complexity of Algorithm III.1 is O(mn(l + k) + l2m + k3 + k2n) (see Section 4.1
and [16] for a detailed analysis). It is shown in Section 4.2 in [16] that the error bound of Algorithm III.1
is given by the following theorem:

Theorem III.4 ( [16]). Given a matrix A of size m×n. Then, its randomized LU decomposition produced
by Algorithm III.1 with integers k and l (l ≥ k) satisfies

‖LU − PAQ‖ ≤(
2
√

2nlβ2γ2 + 1 + 2
√
2nlβγ (k(n− k) + 1)

)
σk+1(A),

with probability not less than

1− 1√
2π(l − k + 1)

(
e

(l − k + 1)β

)l−k+1

− 1

4(γ2 − 1)
√
πnγ2

(
2γ2

eγ2−1

)n

,



5

for all β > 0 and γ > 1.

IV. RANDOMIZED LU BASED CLASSIFICATION ALGORITHM

This section describes the application of the randomized LU Algorithm III.1 to a classification task.
The training phase includes dictionary construction for each learned class from a given dataset. The
classification phase assigns a newly arrived signal to one of the classes based on its similarity to the
learned dictionaries. Let X ∈ R

m×n be the matrix whose n columns are the training signals (samples).
Each column is defined by m features. Based on Section III, we apply the randomized LU decomposition
(Algorithm III.1) to X , yielding PXQ ≈ LU . The outputs P and Q are orthogonal permutation matrices.
Theorem IV.1 shows that P TL forms (up to a certain accuracy) a basis to A. This is the key property of
the classification algorithm.

Theorem IV.1. Given a matrix A. Its randomized LU decomposition is PAQ ≈ LU . Then, the error of
representing A by P TL satisfies:

‖(P TL)(P TL)†A− A‖ ≤(
2
√

2nlβ2γ2 + 1 + 2
√
2nlβγ (k(n− k) + 1)

)
σk+1(A)

with the same probability as in Theorem III.4.

Proof. By combining Theorem III.4 with the fact that BQ = LbUb = L†
yPAQ we get

‖LU − PAQ‖ = ‖LyLbUb − PAQ‖ = ‖LyL
†
yPAQ− PAQ‖.

Then, by using the fact that Lb is square and invertible we get

‖LyL
†
yPAQ− PAQ‖ = ‖LyLbL

−1
b L†

yPAQ− PAQ‖
= ‖LL†PAQ− PAQ‖.

By using the fact that the spectral norm is invariant to orthogonal projections, we get

‖LL†PAQ− PAQ‖ = ‖LL†PA− PA‖
= ‖P TLL†PA− A‖ = ‖(P TL)(P TL)†A− A‖
≤

(
2
√

2nlβ2γ2 + 1 + 2
√
2nlβγ (k(n− k) + 1)

)
σk+1(A),

with the same probability as in Theorm III.4.

Assume that our dataset is composed of the sets X1, X2, . . . , Xl. We denote by Di = P T
i Li the dictionary

learned from the set Xi by Algorithm III.1. UiQ
T
i is the corresponding coefficient matrix. It is used to

reconstruct signals from Xi as a linear combination of atoms from Di. The training phase of the algorithm
is done by the application of Algorithm III.1 to different training datasets that correspond to different
classes. For each class, a different dictionary is learned. The size of Di, namely its number of atoms, is
determined by the parameter ki that is related to the decaying spectrum of the matrix Xi. The dictionaries
do not have to be of equal sizes. A discussion about the dictionary sizes appears later in this section and
in Section V. The third parameter, which Algorithm III.1 needs, is the number of projections l on the
random matrix columns. l is related to the error bound in Theorem III.4 and it is used to ensure high
success probability for Algorithm III.1. Taking l to be a little bigger than k is sufficient. The training
process of our algorithm is described in Algorithm IV.1.

For the test phase of the algorithm, we need a similarity measure that provides a distance between a
given test signal and a dictionary.

Definition IV.1. Let x be a signal and D be a dictionary. The distance between x and the dictionary D
is defined by



6

Algorithm IV.1: Dictionaries Training using Randomized LU

Input: X = {X1, X2, . . . , Xr} training datasets for r sets; K = {k1, k2, . . . , kr} dictionary size of
each set.
Output: D = {D1, D2, . . . , Dr} set of dictionaries.

1: for t ∈ {1, 2, . . . , r} do
Pt, Qt, Lt, Ut ← Randomized LU Decomposition(Xt, kt, l), (l

Δ
= kt + 5); (Algorithm III.1)

Dt ← P T
t Lt

2: D ← {D1, D2, . . . , Dr}

dist(x,D) � ||DD†x− x||,
where D† is the pseudo-inverse of the matrix D.

The geometric meaning of dist(x,Di) is related to the projection of x onto the column space of Di,
where Di is the dictionary learned for class i of the problem. dist(x,Di) denotes the distance between x
and DiD

†
ix which is the vector x built with the dictionary Di. If x ∈ column-span{Di} then Theorem IV.1

guarantees that dist(x,Di) < ε. For x /∈ column-span{Di}, dist(x,Di) is large. Thus, dist is used for
classification as described in Algorithm IV.2.

Algorithm IV.2: Dictionary based Classification

Input: x input test signal; D = {D1, D2, . . . , Dr} set of dictionaries.
Output: tX the classified class label for x.

1: for t ∈ {1, 2, . . . , r} do
ERRt ← dist(x,Dt)

2: tX ← argmint {ERRt}

The core of Algorithm IV.2 is the dist function from Definition IV.1. This is done by examining
portion of the signal that is spanned by the dictionary atoms. If the signal can be expressed with high
accuracy as a linear combination of the dictionary atoms then their dist will be small. The best accuracy
is achieved when the examined signal belongs to the span of Di. In this case, dist is small and bounded
by Theorem III.4. On the other hand, if the dictionary atoms cannot express well a signal then their dist
will be large. The largest distance is achieved when a signal is orthogonal to the dictionary atoms. In
this case, dist will be equal to the norm of the signal. Signal classification is accomplished by finding a
dictionary with a minimal distance to it. This is where the dictionary size comes into play. The more atoms
a dictionary has, the larger is the space of signals that have low dist to it and vice versa. By adding or
removing atoms from a dictionary, the distances between this dictionary and the test signals are changed.
This affects the classification results of Algorithm IV.2. The practical meaning of this observation is that
dictionary sizes need to be chosen carefully. Ideally, we wish that each dictionary will be of dist zero to
test signals of its type, and of large dist values for signals of other types. However, in reality, some test
signals are represented more accurately by a dictionary of the wrong type than by a dictionary of their
class type. For example, we encountered several cases where GIF files were represented more accurately
by a PDF dictionary than by a GIF dictionary. An incorrect selection of the dictionary size, k, will result
in either a dictionary that cannot represent well signals of its own class (causes misdetections), or in a
dictionary that represents too accurately signals from other classes (causes false alarms). The first problem
occurs when the dictionary is too small whereas the second occurs when the dictionary is too large. In
Section V, we discuss the problem of finding the optimal dictionaries sizes and how they relate it to the
spectrum of the training data matrices.



7

V. DETERMINING THE DICTIONARIES SIZES

One possible way to find the dictionaries sizes is to observe the spectrum decay of the training data
matrix. In this approach, the number of atoms in each dictionary is selected as the number of singular
values that capture most of the energy of the training matrix. This method is based on estimating the
numerical rank of the matrix, namely on the dimension of its column space. Such a dictionary approximates
well the column space of the data and represents accurately signals of its own class. Nevertheless, it is
possible in this construction that dictionary of a certain class will have high rate of false alarms. In other
words, this dictionary might approximate signals from other classes with a low error rate.

Two different actions can be taken to prevent this situation. The first option is to reduce the size
of this dictionary so that it approximates mainly signals of its class and not from other classes. This
should be done carefully so that this dictionary still identifies well signals of its class better than other
dictionaries. The second option is to increase the sizes of other dictionaries in order to overcome their
misdetections. This should also be done with caution since we might represent well signals from other
classes using these enlarged dictionaries. Therefore, relying only on the spectrum analysis of the training
data is insufficient, because this method finds the size of each dictionary independently from the other
dictionaries. It ignores the interrelations between dictionaries, while the classification algorithm is based
on those relations. Finding the optimal k values can be described by the following optimization problem:

arg min
k1,k2,...,kr

∑
1≤i≤r
1≤j≤r
i �=j

Ci,j,X(ki, kj), (V.1)

where Ci,j,X(ki, kj) is the number of signals from class i in the dataset X classified as belonging to
class j for the respective dictionary sizes ki and kj . The term, which we wish to minimize in Eq. V.1,
is therefore the total number of wrong classifications in our dataset X when using a set of dictionaries
D1, D2, . . . , Dr with sizes k1, k2, . . . , kr, respectively.

We propose an algorithm for finding the dictionary sizes by examining each specific pair of dictionaries
separately, and thus identifying the optimized dictionary sizes for this pair. Then, the global k values for
all dictionaries will be determined by finding an agreement between all the local results. This process is
described in Algorithm V.1.

Algorithm V.1: Dictionary Sizes Detection

Input: X = {X1, X2, . . . , Xr} training datasets for the r classes; Krange set of possible values of k
to search in.
Output: K = {k1, k2, . . . , kr} dictionaries sizes.

1: for i, j ∈ {1, 2, . . . , r}, i < j do
for ki, kj ∈ Krange do

ERRORi,j(ki, kj) ← Ci,j,X(ki, kj) + Cj,i,X(kj, ki)

2: K ← find optimal agreement({ERRORi,j}1≤i<j≤r)

Algorithm V.1 examines each pair of classes i and j for different k values and produces the matrix
ERRORi,j , such that the element ERRORi,j(s, t) is the number of classification errors for those two
classes, when the dictionary size of class i is s and the dictionary size of class j is t. This number is the
sum of signals from each class that were classified as belonging to the other class. The matrix ERRORi,j

reveals the ranges of k values for which the number of classification errors is minimal. These are the
ranges that fit when dealing with a problem that contains only two classes of signals. However, many
classification problems need to deal with a large number of classes. For this case, we create the ERROR
matrix for all possible pairs, find the k ranges for each pair and then find the optimal agreement between
all pairs. The step find optimal agreement describes this idea in Algorithm V.1. Finding this agreement



8

can be done by making a list of constraints for each pair and then finding k values that satisfy all the
constraint and bring the minimal solution to the problem described in Eq. V.1. The constraints can bound
from below or above the size of a specific dictionary, or the relation between sizes of two dictionaries (for
example, the dictionary of the first class should have 10 more elements than the dictionary of the second
class). The step find optimal agreement is not described here formally but demonstrated in details as
part of Algorithm V.1 in Section VI-B.

VI. EXPERIMENTAL RESULTS

In order to evaluate the performance of the dictionary construction and classification algorithms in
Section IV, Algorithm IV.2 was applied to a dataset that contains six different file types. The goal is to
classify each file or portion of a file to the class that describes its type. This dataset consists of 1200 files
that were collected in the wild using automated Web crawlers. The files were equally divided into six types:
PDF, EXE, JPG, GIF, HTM and DOC. 100 files of each type were chosen randomly as training datasets
and the other 100 files served for algorithms testing. In order to get results that reflect the true nature of
the problem, no restrictions were imposed on the file collection process. Thus, some files contain only a
few kilobytes while others are of several megabytes in size. In addition, some of the PDF files contain
pictures, which make it hard for a content-based algorithm to classify the correct file type. Similarly, DOC
files may contain pictures and the executables may contain text and pictures. Clearly, these phenomena
have negative effect on the accuracy of the results in this section. However, we chose to leave the dataset
in its original form.

Throughout this work, we came across several similar works [2]–[5], [7], [10]–[12], [18] that classify
unknown files to their type based on their content. None of these works made their datasets publicly
available for analysis and comparison with other methods. We decided to publicize the dataset of files
that we collected to enable future comparisons. The details about downloading and using the dataset can
be obtained by contacting one of the authors.

Three different scenarios were tested with the common goal of classifying files or portions of files to
their class type, namely, assigning them to one of the six file types described above. In each scenario,
six dictionaries were learned that correspond to the six file types. Then, the classification algorithm
(Algorithm IV.1) was applied to classify the type of a test fragment or a file. The learning phase,
which is common to all scenarios, was done by applying Algorithm V.1 to find the dictionary sizes
and Algorithm IV.1 to construct the dictionaries. The testing phase varies according to the specific goal
of each scenario. Sections VI-A, VI-B and VI-C provide a detailed description for each scenario and its
classification results.

A. Scenario A: Entire File is Analyzed
In this scenario, we process a whole file and the extracted features are taken from its entire content.

The features are byte frequency distribution (BFD) that contains 256 features followed by consecutive
differences distribution (CDD) that adds another 256 features. Total of 512 features are measured for
each training and testing files. CDD is used in addition to BFD because the latter fails to capture any
information about bytes ordering in the file. CDD turned out to be very discriminative and improved the
classification results. The features extracted from each file were normalized by its size since there are
files of various sizes in the dataset. Example for BFD construction is described in Fig. VI.1 and example
for CDD construction is given in Fig. VI.2.

This scenario can be useful when the entire tested file is available for inspection. The training was done
by the application of Algorithms V.1 and IV.1 to the training data. The Krange parameter to Algorithm V.1
was determined by the numerical rank of the training matrix. The possible dictionary sizes need to be close
to this rank in order to represent well their datasets. The dictionary sizes were 60 atoms per dictionary.
The set of dictionaries D = {DPDF , DDOC , DEXE, DGIF , DJPG, DHTM} is the output of Algorithm IV.1,
which is later used for classification of test files. Each test file was analyzed using Algorithm VI.1 and



9

AABCCCDR =⇒

Byte Probability (BFD)
A 0.25
B 0.125
C 0.375
D 0.125
R 0.125

.

.

. 0

Fig. VI.1. Byte Frequency Distribution (BFD) features extracted from the file fragment “AABCCCDR”.

AABCCCDFG =⇒
Difference Probability (CDD)

0 0.375
1 0.5
2 0.125

.

.

. 0

Fig. VI.2. Consecutive Differences Distribution (CDD) features extracted from the file fragment “AABCCCDFG”. There are three consecutive-
pairs of bytes with difference 0, four with difference 1 and one with difference 2. These distributions are normalized to produce the shown
probabilities. The normalization factor is the length of the string minus one (8 in this example).

classified to one of the six classes. The classification results are presented as a confusion matrix in
Table VI.1. Each column corresponds to an actual file type and the rows correspond to the classified file
type by Algorithm VI.1. A perfect classification produces a table with score 100 on the diagonal and zero
elsewhere. Our results are similar to those achieved in [4] (Table II) that use different methods. However,
we did not have the dataset that [4] used and there is no way to perform a fair comparison.

TABLE VI.1
CONFUSION MATRIX FOR SCENARIO A. 100 FILES OF EACH TYPE WERE CLASSIFIED BY ALGORITHM VI.1.

Correct File Type
PDF DOC EXE GIF JPG HTM

Classified
File

Type

PDF 98 0 1 1 0 0
DOC 0 97 1 0 0 0
EXE 0 3 98 2 1 0
GIF 0 0 0 97 1 0
JPG 2 0 0 0 98 0
HTM 0 0 0 0 0 100

B. Scenario B: Fragments of a File
In this scenario we describe a situation in which the entire file is unavailable for the analysis but

only some fragments that were taken from random locations are available. The goal is to classify
the file type based on this partial information. This serves a real application such as a firewall that
examines packets transmitted through a network or a file being downloaded from a network server.
This scenario contains three experiments where different features were used in each. The training phase,
which is common to all three experiments, includes extracted features from a 10 kilobytes fragments
that belong to the training data. These features serve as an input to Algorithm IV.1, which produces the
dictionaries for the classification phase. The second parameter in Algorithm IV.1 is a set of dictionary
sizes, which were determined by Algorithm V.1. We use the first set of features in this scenario (described
hereafter) to demonstrate more deeply how Algorithm V.1 works. The sizes of six dictionaries need to
be determined based on the agreement between the pairwise error matrices. Fig. VI.3 shows the matrices
ERRORPDF -JPG and ERRORPDF -EXE .

Fig. VI.3(a) describes the number of classification-errors for the PDF and JPG types, as a function of
the respective dictionary sizes. It can be observed that there is a large number of errors for many size
pairs, suggesting that the PDF and JPG dictionaries exhibit a high measure of similarity. This property
makes the distinction between these two types a hard task. A closer look on Fig. VI.3(a) enables us to
find the optimal sizes for those dictionaries, by making the following observations. Only a few values in



10

Algorithm VI.1: File Content Dictionary Classification

Input: x input file; D = {DPDF , DDOC , DEXE, DGIF , DJPG, DHTM} set of dictionaries.
Output: tx file type predicted for x.

1: for t ∈ {PDF,DOC,EXE,GIF, JPG,HTM} do
ERRt ← dist(x,Dt)

2: tx ← argmint {ERRt}

the cells above the main diagonal provide good results for this pair. Additionally, JPG dictionary should
have 10 atoms more than the PDF dictionary. It cab be also learned that both dictionaries sizes should be
greater than 50 atoms.

The PDF and EXE error values in Fig. VI.3(b) indicate that these dictionaries are well separated. There
is a large set of dictionary sizes near the diagonal for which the classification error is low. The following
intuition helps to understand why a large range of low errors will achieve better classification results.
The error matrices are built based on training data X and represent the classification error CPDF,JPG,X +
CJPG,PDF,X of the algorithm when it applies to this data (See Eq. V.1 when using 2 sets). The best k
values from the ERROR matrix fit the training data, in the sense that a PDF training signal will be
represented more accurately by a PDF dictionary of size kpdf than by a JPG dictionary of size kjpg.
However, this is not necessarily the case for a PDF test signal, which may need a larger PDF dictionary
or smaller JPG dictionary in order to be classified correctly. This might happen because many PDF-
dictionary atoms are irrelevant for reconstructing this signal while too many JPG-dictionary atoms are
relevant for it. This means that from this signal’s perspective, the PDF dictionary size is smaller than kpdf
and the JPG dictionary is larger than kjpg. In terms of Fig. VI.3, which shows the classification errors
for the two discussed pairs, this means moving away from the diagonal (which has the best dictionary
sizes for the training set). In the JPG-PDF case, this shift will increase the classification error because
all the off-diagonal entries in Fig. VI.3(a) have higher errors numbers. On the other hand, there is a low
probability to get a classification error in Fig. VI.3(b), because there are many off-diagonal options for
dictionary sizes that will generate a low error. The pair JPG-PDF is more sensitive to noise than the pair
EXE-PDF. This observation is supported by the confusion matrix of the first experiment, as shown in
Table VI.2.

In the first experiment, the dictionary sizes, which were determined by Algorithm V.1, are 150 atoms
per PDF, DOC, EXE, GIF, and HTM dictionaries and 160 atoms per JPG dictionary. 10 fragments of
1500 bytes each were sampled randomly from each examined file. BFD and CDD based features were
extracted from each fragment and then normalized by the fragment size (similarly to the normalization by
file size conducted in Scenario A in Section VI-A). Then, the distance between each fragment and each
of the six dictionaries was calculated. The mean value of the distances was computed for each dictionary.
Eventually, the examined file was classified to the class that has the minimal mean value. This procedure
is described in Algorithm VI.2. The classification results are presented in Table VI.2.

TABLE VI.2
CONFUSION MATRIX FOR SCENARIO B WHERE BFD+CDD BASED FEATURES WERE CHOSEN. 100 FILES OF EACH TYPE WERE

CLASSIFIED BY ALGORITHM VI.2.

Correct File Type
PDF DOC EXE GIF JPG HTM

Classified
File

Type

PDF 93 0 2 0 14 0
DOC 0 96 2 0 0 0
EXE 0 4 95 0 0 0
GIF 0 0 0 100 2 0
JPG 6 0 0 0 82 0
HTM 1 0 1 0 2 100



11

kjpg

k pd
f

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

1

2

3

4

5

6

7

8

9

10

(a) Error matrix for the pair PDF-JPG

kexe

k pd
f

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0

1

2

3

4

5

6

7

8

9

10

(b) Error matrix for the pair PDF-EXE

Fig. VI.3. Error matrices produced by Algorithm V.1. The matrix is presented in cold to hot colormap to show ranges of low (blue) and
high (red) errors.

The second experiment used a double-byte frequency distribution (DBFD), which contains 65536
features. Figure VI.4 demonstrates the DBFD feature extraction from a small file fragment.

AABCCC =⇒

Double-Byte Probability (DBFD)
AA 0.2
AB 0.2
BC 0.2
CC 0.4

.

.

. 0

Fig. VI.4. Features extracted from the file fragment “AABCCC” using Double Byte Frequency Distribution (DBFD). The normalization
factor is the length of the string minus one.

Similarly to the first experiment, 10 fragments were sampled from random locations at each examined
file. However, this time we used 2000 bytes per fragment since smaller fragment sizes do not capture suf-



12

Algorithm VI.2: File fragment classification using dictionary learning

Input: X = {x1, x2, · · · , xr} input fragments; D = {DPDF , DDOC , DEXE, DGIF , DJPG, DHTM} set
of dictionaries.
Output: tX file type predicted to X .

1: for i ← 1, . . . , r do
for t ∈ {PDF,DOC,EXE,GIF, JPG,HTM} do

ERRi,t ← dist(xi, Dt)

2: for t ∈ {PDF,DOC,EXE,GIF, JPG,HTM} do
MEANt ← mean{ERRi,t}ri=1

3: tX ← argmint {MEANt}

ficient information when DBFD features are used. The feature vectors were normalized by the fragment’s
size as before. Algorithm VI.2 was applied to classify the type of each examined file. The dictionaries
sizes in this experiment are 80 atoms per PDF, DOC and JPG and 60 atoms per EXE, GIF and HTM. The
classification results of this experiment are presented in Table VI.3. We see that DBFD based features
reveal patterns in the data that were not revealed by using BFD and CDD based features. In particular, it
captures very well GIF files that BFD and CDD based features fail to capture.

TABLE VI.3
CONFUSION MATRIX FOR SCENARIO B THAT IS BASED ON DBFD BASED FEATURES. 100 FILES OF EACH TYPE WERE CLASSIFIED BY

ALGORITHM VI.2.

Correct File Type
PDF DOC EXE GIF JPG HTM

Classified
File

Type

PDF 92 0 2 0 5 1
DOC 2 97 2 0 5 0
EXE 3 1 88 2 0 0
GIF 1 1 5 98 0 0
JPG 1 1 2 0 90 0
HTM 1 0 1 0 0 99

The third experiment defines a Markov-walk (MW) like set of 65536 features extracted from the
dataset for each signal. The transition probability between each pair of bytes is calculated. Figure VI.5
demonstrates how to extract MW type features from a file fragment.

AABCCCF =⇒

Transition Probability (MW)
A → A 0.5
A → B 0.5
B → C 1
C → C 0.66
C → F 0.33

.

.

. 0

Fig. VI.5. Markov Walk (MW) based features extracted from the file fragment “AABCCCF”.

Both MW based features and DBFD based features are calculated using the double byte frequencies,
but they capture different information from the data. DBFD based features are focused on finding pairs of
bytes that are most prevalent and those who have low chances of appearing in a file. On the other hand,
MW based features represent the probability that a specific byte will appear in the file given the appearance
of a previous byte. This is well suited to file types such as EXE where similar addresses and opcodes are
used repeatedly. Each memory address or opcode is comprised of two or more bytes, therefore, it can be
described by the transition probability between these bytes. Text files also constitute a good example for
the applicability of MW based features because it is well known that natural language can be described



13

by patterns of transition probabilities between words or letters. Our study shows that MW based features
capture also the structure of media files like GIF and HTM files. The relatively unsatisfactory performance
on JPG files is because our PDF dictionary was trained on PDF files that contain pictures. Therefore, it
detected some of the JPG files. The prediction accuracy is described in Table VI.4. Those results (97%
avg. accuracy) outperform the results obtained by the BFD+CDD and DBFD features. It also improve
over all the surveyed methods in [4] (Table VI), including the algorithm proposed in [4], that has 85.5%
average accuracy. However, it should be noted that we used 10 fragments for the classification of each
file whereas in [4] a single fragment is used. In Scenario B, the dictionary sizes are 500 atoms per PDF,
DOC and EXE files, 600 per GIF files, 800 per JPG files and 220 per HTM files. The HTM dictionary is
smaller than the other dictionaries due to the fact that the HTM training set contains only 230 samples,
and the LU dictionary size is bounded by the dimensions of the training matrix (see Algorithm III.1).

TABLE VI.4
CONFUSION MATRIX FOR SCENARIO B USING MW BASED FEATURES. 100 FILES OF EACH TYPE WERE CLASSIFIED BY

ALGORITHM VI.2.

Correct File Type
PDF DOC EXE GIF JPG HTM

Classified
File

Type

PDF 93 1 0 0 9 0
DOC 0 98 0 0 0 0
EXE 2 0 98 1 0 0
GIF 3 1 1 99 0 0
JPG 1 0 0 0 91 0
HTM 1 0 1 0 0 100

C. Scenario C: Detecting Execution Code in PDF Files

PDF is a common file format that can contain different media elements such as text, fonts, images,
vector graphics and more. This format is widely used in the Web due to the fact that it is self contained
and platform independent. While PDF format is considered to be safe, it can contain any file format
including executables such as EXE files and various script files. Detecting malicious PDF files can be
challenging as it requires a deep inspection into every file fragment that can potentially hide executable
code segments. The embedded code is not automatically executed when the PDF is being viewed using a
PDF reader since it first requires to exploit a vulnerability in the viewer code or in the PDF format. Still,
detecting such a potential threat can lead to a preventive action by the inspecting system.

To evaluate how effective our method can be in detecting executable code embedded in PDF files, we
generated several PDF files which contain text, images and executable code. We used four datasets of
PDF files as our training data:

XPDF : 100 PDF files containing mostly text.
XGIFinPDF : 100 PDF files containing GIF images.
XJPGinPDF :100 PDF files containing JPG images.
XEXEinPDF :100 PDF files containing EXE files.

All the GIF, JPG and EXE files were taken from previous experiments and were embedded into the
PDF files. We generated 4 dictionaries for each dataset using Algorithm IV.1. The input for the algorithm
was

X = {XPDF , XGIFinPDF , XJPGinPDF , XEXEinPDF}.
We then created a test dataset which consisted of: 100 regular PDF files and 10 PDF files that contain
executable code. Algorithm VI.2 classified the 110 files. The input fragments X were the PDF file
fragments. The input set of dictionaries

D = {DPDF , DGIFinPDF , DJPGinPDF , DEXEinPDF}



14

were the output from Algorithm IV.1. A file is classified as malicious (contains an executable code) if we
find more than TEXE fragments of type EXE inside, otherwise it is classified as a safe PDF file. We used
TEXE = 10 as our threshold since it minimized the total number of miss-classifications. The training step
was applied to 10 kilobytes fragments and the classification step was applied to five kilobytes fragments.
We used the MW based features (65,536 extracted features). By using Algorithm VI.2, we managed to
detect all the 10 malicious PDF files with 8% of false alarm rate (8 PDF files that were classified as
malicious PDF files). The results are summarized in Table VI.5.

TABLE VI.5
CONFUSION MATRIX FOR MALICIOUS PDF DETECTION EXPERIMENT. 110 FILES WERE CLASSIFIED BY ALGORITHM VI.2.

Correct File Type
PDF Malicious PDF

Classified
File

Type

Safe PDF 92 0
Malicious PDF 8 10

Other file formats, which contain embedded data (DOC files for example), can be classified in the same
way.

D. Time Measurements

Computer security software face frequent situations that were described in sections VI-A–VI-C. There-
fore, any solution to a file type classification must provide a quick response to queries. We measured
the time required for both the training phase and the classification phase of our method that classifies
a file or a fragment of a file. Since the training phase operates offline it does not need to be fast.
On the other hand, classification query should be fast for real-time considerations and for high-volume
applications. Tables VI.6 and VI.7 describe the execution time in Scenarios A (Section VI-A) and B
(Section VI-B), respectively. The times are divided into a preprocessing step and into the actual analysis
step. The preprocessing includes feature extraction from files (data preparation) and loading this data into
Matlab. The feature extraction was done in Python and the output files were loaded to Matlab. Obviously,
this is not an optimal configuration as it involves intensive slow disk I/O. We did not optimize these steps.
We note that the computation time of the dictionary size is not included in the table, because this is a
meta-parameter to Algorithm IV.1 which can be computed in different ways, based on the application. The
analysis time refers to the time needed by Algorithm IV.1 to build six dictionaries (left column in each
table) and to classify a single file to one of the six classes (right column). The classification was performed
by Algorithm VI.1 in Scenario A (Table VI.6), and by Algorithm VI.2 in Scenario B (Table VI.7). All
training and classification times are normalized by the data size, which allows evaluation of the algorithm
performance regardless of actual file sizes (which vary largely). Classification time of Scenario B is not
normalized because Algorithm VI.2 is not dependent on the input file size (it samples the same amount
of data from each file, ignoring its size). Our classification process is fast. The preprocessing step can
be further optimized for real-time applications. All the experiments were conducted on Windows 64-bit,
Intel i7, 2.93 GHz CPU machine with 8 GB of RAM.

TABLE VI.6
RUNNING TIMES FOR SCENARIO A.

Features Training time (sec) Classification time (sec)
per 1 MB of data per 1 MB of data

BFD+CDD Preprocessing 1.8 1.88
Analysis 0.004 0.0005
Total 1.804 1.8805



15

TABLE VI.7
RUNNING TIMES FOR SCENARIO B.

Features Training time (sec) Classification time
per 1 MB of data (sec)

BFD+CDD Preprocessing 1.93 0.1 (per 1 MB)
Analysis 0.008 0.01 (per file)
Total 1.938

DBFD Preprocessing 13.78 1.6 (per 1 MB)
Analysis 0.54 0.26 (per file)
Total 14.32

MW Preprocessing 18.42 2.41 (per 1 MB)
Analysis 0.65 0.27 (per file)
Total 19.07

VII. CONCLUSION

In this work, we presented a novel algorithm for dictionary construction, which is based on a randomized
LU decomposition. By using the constructed dictionary, the algorithm classifies the content of a file and can
deduct its type by examining a few file fragments. The algorithm can also detect anomalies in PDF files (or
any other rich content formats) which can be malicious. This approach can be applied to detect suspicious
files that can potentially contain malicious payload. Anti-virus systems and firewalls can therefore analyze
and classify PDF files using the described method and block suspicious files. The usage of dictionary
construction and classification in our algorithm is different from other classical methods for file content
detection, which use statistical methods and pattern matching in the file header for classification via deep
packet inspection. The fast dictionary construction allows to rebuild the dictionary from scratch when it is
out-of-date which is important when building evolving systems that classify continuously changing data.

ACKNOWLEDGMENT

This research was partially supported by the Israel Science Foundation (Grant No. 1041/10), by the Israeli
Ministry of Science & Technology (Grants No. 3-9096, 3-10898), by US - Israel Binational Science
Foundation (BSF 2012282) and by a Fellowship from Jyväskylä University.

REFERENCES

[1] M. AHARON, M. ELAD, AND A. BRUCKSTEIN, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,
IEEE Trans. on Signal Processing, 54 (2006), pp. 4311–4322.

[2] I. AHMED, K.-S. LHEE, H. SHIN, AND M. HONG, On improving the accuracy and performance of content-based file type identification,
in Information Security and Privacy, Springer, 2009, pp. 44–59.

[3] , Fast file-type identification, in Proceedings of the 2010 ACM Symposium on Applied Computing, ACM, 2010, pp. 1601–1602.
[4] M. C. AMIRANI, M. TOORANI, AND S. MIHANDOOST, Feature-based type identification of file fragments, Security and Communication

Networks, 6 (2013), pp. 115–128.
[5] W. C. CALHOUN AND D. COLES, Predicting the types of file fragments, Digital Investigation, 5 (2008), pp. S14–S20.
[6] S. S. CHEN, D. L. DONOHO, AND M. A. SAUNDERS, Atomic decomposition by basis pursuit, SIAM journal on scientific computing,

20 (1998), pp. 33–61.
[7] R. F. ERBACHER AND J. MULHOLLAND, Identification and localization of data types within large-scale file systems, in Systematic

Approaches to Digital Forensic Engineering, 2007. SADFE 2007. Second International Workshop on, IEEE, 2007, pp. 55–70.
[8] M. GU AND S. C. EISENSTAT, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM Journal on Scientific

Computing, 17 (1996), pp. 848–869.
[9] Z. JIANG, Z. LIN, AND L. S. DAVIS, Learning a discriminative dictionary for sparse coding via label consistent k-svd, in Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE, 2011, pp. 1697–1704.
[10] M. KARRESAND AND N. SHAHMEHRI, File type identification of data fragments by their binary structure, in Information Assurance

Workshop, 2006 IEEE, IEEE, 2006, pp. 140–147.
[11] W.-J. LI, K. WANG, S. J. STOLFO, AND B. HERZOG, Fileprints: Identifying file types by n-gram analysis, in Information Assurance

Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC, IEEE, 2005, pp. 64–71.



16

[12] M. MCDANIEL AND M. H. HEYDARI, Content based file type detection algorithms, in System Sciences, 2003. Proceedings of the 36th
Annual Hawaii International Conference on, IEEE, 2003, pp. 10–pp.

[13] B. K. NATARAJAN, Sparse approximate solutions to linear systems, SIAM journal on computing, 24 (1995), pp. 227–234.
[14] C.-T. PAN, On the existence and computation of rank-revealing LU factorizations, Linear Algebra and its Applications, 316 (2000),

pp. 199–222.
[15] D.-S. PHAM AND S. VENKATESH, Joint learning and dictionary construction for pattern recognition, in Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, 2008, pp. 1–8.
[16] G. SHABAT, Y. SHMUELI, AND A. AVERBUCH, Randomized LU decomposition, arXiv preprint arXiv:1310.7202, (2013).
[17] J. TROPP, Greed is good: algorithmic results for sparse approximation, Information Theory, IEEE Transactions on, 50 (2004), pp. 2231–

2242.
[18] C. J. VEENMAN, Statistical disk cluster classification for file carving, in Information Assurance and Security, 2007. IAS 2007. Third

International Symposium on, IEEE, 2007, pp. 393–398.
[19] J. WRIGHT, A. Y. YANG, A. GANESH, S. S. SASTRY, AND Y. MA, Robust face recognition via sparse representation, Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 31 (2009), pp. 210–227.
[20] A. Y. YANG, J. WRIGHT, Y. MA, AND S. S. SASTRY, Feature selection in face recognition: A sparse representation perspective,

submitted to IEEE Transactions Pattern Analysis and Machine Intelligence, (2007).
[21] M. YANG, D. ZHANG, AND X. FENG, Fisher discrimination dictionary learning for sparse representation, in Computer Vision (ICCV),

2011 IEEE International Conference on, IEEE, 2011, pp. 543–550.
[22] Q. ZHANG AND B. LI, Discriminative k-svd for dictionary learning in face recognition, in Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, IEEE, 2010, pp. 2691–2698.



PIV

INCOMPLETE PIVOTED QR-BASED DIMENSIONALITY
REDUCTION

by

Amit Bermanis, Aviv Rotbart, Moshe Salhov, Amir Averbuch 2015

Submitted



Deterministic Controllable-Distortion Dictionary-Based
Dimensionality Reduction

Aviv Rotbart1,2, Amit Bermanis1, Moshe Salhov1 and Amir Averbuch1

1School of Computer Science, Tel Aviv University, Israel
2Department of Mathematical Information Technology,

University of Jyväskylä, Finland

September 27, 2015

Abstract

High-dimensional data appears in many research fields, such as image recognition,
biology and collaborative filtering. Often, the exploration of such data by classic algo-
rithms is encountered with difficulties due to the ’curse of dimensionality’ phenomenon.
Therefore, dimensionality reduction methods are applied to the data prior to its analysis.
Many of those methods are based on principal components analysis, which is statistically
driven, namely they map the data into a low-dimension subspace that preserves signifi-
cant statistical properties of the high-dimensional data. As a consequence, such methods
do not directly address the geometry of the data, reflected by mutual distances between
data point. Thus, classification, anomaly detection or other machine learning tasks may
be affected.

This work provides a dictionary-based framework for geometrically driven data analysis
that includes dimensionality reduction, out-of-sample extension and anomaly detection. It
embeds high-dimensional data in a low-dimensional subspace. This embedding preserves
the original high-dimensional geometry of the data, up to a user-defined distortion rate.
In addition, it identifies a subset of landmark data points that constitute a dictionary for
the analyzed dataset. The dictionary enables a natural extension of the low-dimensional
embedding to out-of-sample points, which gives rise to a distortion-based criterion for
anomaly detection. The suggested method is demonstrated on synthetic and real-world
datasets and achieves good results in a benchmark classification task.

1 Introduction

Data collection and storage processes have been changed significantly throughout the history
of statistics and data analysis. In the past, those tasks were manually accomplished, which
restricted the size of datasets to several hundreds. Technological progress has removed the
barriers from the storage of massive data collections (Big Data), and nowadays automated
sensor systems continuously sample real-world processes and generate ever-growing datasets
with millions of new samples per day. Analysis of data collections is a fundamental task in
many scientific and industrial fields, whose goal is inference of significant information out of
a collection of observations, which may illuminate the underlying phenomenon that generates
the observed data, and assist in tasks such as efficient storage (compressing), classification,
clustering, forecasting and anomaly detection.

1



High-dimensional data analysis is of special interest, as in high dimensions data points oc-
cupy a very small fraction of the entire space, compared to the same amount of data in lower
dimensional space. Therefore, the number of points required to represent a certain phenomenon
in the data is becoming larger. This phenomenon is referred to as the ’curse of dimensional-
ity’ [7]. For example, data clustering requires regions of high density, which constitute clusters.
In high dimensions, a huge amount of data is required to create high density regions, and this
amount grows exponentially with dimension. High-dimensional data appear in two main forms:
parametric and non parametric. In the former case, every observed data point consists of many
parameters, each one corresponds to a single dimension. Typically, parametric data analysis
concerns the geometry of such data. Non parametric data is typically originated in artificial
geometry ascription to the analyzed data, usually encapsulated in a kernel matrix. Analysis
of this geometry, through analysis of the associated kernel, might uncover latent features of
the data, alas such geometries may be high-dimensional. Either way, for efficient analysis of
high-dimensional data, a dimensionality reduction that preserves the original high-dimensional
geometry is needed.

Principal Component Analysis (PCA) [30] is a statistically driven linear dimensionality
reduction method, originally designates for the analysis of parametric data. It acts on the
Gram matrix of the data, and embeds the data in a low-dimensional space, whose coordinates
are directions of high variances of the data, also known as principal components. PCA can
be implemented by application of singular value decomposition (SVD) [27] to the data matrix.
However, this implementation is computationally expensive. Section 1.4 details the essentials
of SVD.

Induced by PCA for linear analysis of parametric data, the kernel PCA approach for non
linear analysis of non parametric data was introduces in [43]. Essentially, if the kernel matrix
is semi-positive definite, then it can be treated as a Gram matrix of the data in the high-
dimensional space (which is referred to as feature space.) Then, PCA is applied to the kernel
matrix, in order to embed the data in a low-dimensional space. Some examples for kernel
methods, among many others, are local linear embedding (LLE) [41], Isomap [45] and Diffusion
Maps (DM) [20]. LLE embeds the data in a low-dimensional space whose geometry represents
local linear geometries of the high-dimensional data. The low-dimensional geometry produced
by Isomap preserves geodesic distances in the original data. DM provides a low-dimensional
representation of the diffusion geometry of the data, as defined in [15, 20].

In this work an incomplete pivoted QR-based deterministic method for dimensionality re-
duction is presented. The method is designated to preserve a high-dimensional Euclidean
geometry of parametric data, up to a user-specified distortion rate, according to the following
definition:

Definition 1.1 (μ-distortion). Let (H,mH) and (L,mL) be metric spaces, let A ⊂ H and let
μ ≥ 0. A map F : A → L is called a μ-distortion of A if supx,y∈A |mH(x, y)−mL(F(x),F(y))| ≤
μ. The space L is referred to as a μ-embedding space of A.

The proposed method is dictionary-based, where the dictionary is chosen from the analyzed
dataset A. The method identifies a Euclidean embedding space, spanned by the dictionary
elements, on which the orthogonal projection of the data provides a user-defined distortion of
the original high-dimensional dataset. In that sense, our method is geometrically driven, as
opposed to PCA. Clearly, there is an interplay between the distortion rate and the dimension
of the resulted embedding subspace: the smaller μ, the higher the embedding’s dimensional,
and vice-versa. Our methods preserves global patterns of the data and trades local geometry
for low-dimensional representation, as dense regions in the original data (such as clusters) are
more sensitive to distortions than sparse regions, such as gaps between clusters.

Additionally to dimensionality reduction, we present two strongly related schemes for out-of-
sample extension and anomaly detection, which are naturally stem from the proposed method

2



for dimensionality reduction. Thus, the dimensionality reduction phase, followed by out-of-
sample extension and anomaly detection, constitutes a complete framework for semi-supervised
learning, where the original (in-sample) dataset A functions as a training set. In this context,
the learning phase is reflected in the extraction of a μ-embedding subspace of A, as defined in
Definition 1.1. Out-of-sample data points, whose projection on the representative subspace is
of low distortion are classified as normal, while the rest are classified as abnormal. Therefore,
the original dataset A is considered as normal by definition.

To conclude, the contribution of this work is threefold: first, the suggested method identifies
landmark data points (dictionary) that represent the data, as opposed to PCA that lacks this
feature, and therefore in some sense is less informative. In matrix decomposition terminology,
this is known as the Columns Subset Selection (CSS) problem. Secondly, the presented method
requires very low storage budget, relatively to PCA. In addition, in the worst case, its computa-
tional complexity is identical to that of PCA computation. Lastly, the proposed out-of-sample
extension and anomaly detection constitute natural consequences from the dimensionality re-
duction phase.

The rest of this paper is organized as follows: in the rest of this section we review related
works (Section 1.1), describe the used notation and our general approach (Sections 1.2 and 1.3),
and discuss the essentials of PCA-based dimensionality reduction (Section 1.4). Section 2 es-
tablishes the theory and the technical tools on which our method is based. It presents the
robustness of our method to noise and its relation to matrix approximation, as well. Although
the proposed method is designated for parametric data analysis, section 3 describes its uti-
lization for the Diffusion Maps (DM), which is a non-parametric analysis method. Section 4
presents experimental results. Finally, Section 5 concludes the paper and discusses future works.

1.1 Related works

Johnson-Lindenstrauss Lemma [34] constitutes a basis for many random projection based di-
mensionality reduction methods [35, 32, 44, 1, 2, 19, 6] and [46] to name some. In contrast to
the absolute bound from Definition 1.1, the lemma guarantees a relative distortion bound of
the form (1− ε) ·m2

H(x, y) ≤ m2
L(F(x),F(y)) ≤ (1 + ε) ·m2

H(x, y) with high probability. From
data analysis perspective, the absolute bound may be more useful when the data is comprised
of dense clusters separated by sparse regions. In such scenario, the absolute bound guaran-
tees embedding such that intra-cluster distances may be distorted but inter-cluster distances
are preserved, so that the global high-dimensional geometry is preserved in the μ-embedding
space. The relative bound, on the other hand, may produce a low-dimensional space in which
clusters are becoming too close to each other.

Another significant branch of dimensionality reduction methods that is strongly related
to the presented work deals with the CSS problem [25, 23, 12, 11, 10, 36] to name a few.
Interpolative decomposition (ID) of a matrix was first introduces for operator compression [18].
It is designated to spectrally approximate linear integral operators. Randomized version of ID
is presented in [38]. The class of randomized matrix decomposition algorithms is out of the
scope of this paper. CUR decomposition [13, 37] of a given matrix A generalizes ID in the sense
that both subsets of columns and rows of the original matrix are selected to form the matrices
C, R respectively such that A ≈ CUR for a low rank matrix U . In data analysis terms, this
interprets to both data points and features sampling and allows different perspective on the
data. Similar to ID and unlike this work, CUR decompositions are designated to spectrally
approximate the original matrix A. Randomized versions of CUR also exist, see [48, 24] and
references therein.

3



1.2 Notation

In the rest of the paper the following notations are used: for k ∈ �, [k] = {1, . . . , k}. In
is the n × n unit matrix. The i-th coordinate of a vector v ∈ �n is denoted by v(i). The
(i, j)-th entry of a matrix A is A(i,j) and its i-th row and j-th column are A(i,:) and A(:,j),
respectively. If A is of size m × n and I = {i1, . . . , ik} ⊂ [m] and J = {j1, . . . , j�} ⊂ [n]
are two ordered sets, then A(I,:) is the k × n matrix B, for which B(r,:) = A(ir,:), r ∈ [k],
A(:,J ) is the m × 
 matrix C, for which C(:,r) = A(:,jr), r ∈ [
] and A(I,J ) is the k × 
 matrix
D, whose (p, q)-th entry is D(p,q) = A(ip,jq), p ∈ [k], q ∈ [
]. The transposed matrix of A
is denoted by A∗ and A† is the Moore-Penrose pseudo-inverse of A . π : [n] → [n] denotes
permutation, and Π is the associated n × n permutation matrix, i.e. Π(i,j) = 1 if π(j) = i,
otherwise Π(i,j) = 0. For a subspace S ⊂ �m, S⊥ is the complementary perpendicular subspace
of S in �m, and WS ,W⊥

S : �m → �
m are the corresponding orthogonal projections on

these subspaces, respectively. Finally, ‖v‖ is the standard Euclidean norm of v, and where
‖v‖1 =

∑n
i=1 |v(i)| is its 
1 norm.

The explored dataset is A = {a(1), . . . , a(n)} ⊂ �m and the associated data matrix is the
m× n matrix A, whose j-th column is A(:,j) = a(j), j ∈ [n].

1.3 General approach

Our approach for a low-rate distortion embedding consists of two main steps:

1. Given a nonnegative distortion parameter μ, an s-dimensional 2μ-embedding subspace
S ⊂ �

m is identified, for which the orthogonal projection of any a ∈ A results in an
energy loss of mostly μ, i.e. ∥∥W⊥

S (a
(i))

∥∥ ≤ μ, i ∈ [n]. (1.1)

Here, the nonnegative distortion parameter is a user defined input. Clearly, s is a non-
increasing function of μ.

2. The subspace S is orthogonally aligned with�s to achieve an s-dimensional representation
of A, i.e. OS : �m → �

s is an orthogonal transformation that satisfies

‖OSv‖ = ‖v‖, v ∈ S. (1.2)

Obviously, such an alignment (which is not unique) does not affect the geometry of the
projected set A on S.

Application of the above two-stage scheme to A results in a 2μ-distortion, as Lemma 1.1 shows.

Lemma 1.1. Let S ⊂ �m be an s-dimensional subspace of �m that satisfies condition 1.1 and
let OS : �m → �

s be an orthogonal transformation that satisfies condition. 1.2. Then, the
s-dimensional map Fs : �

m → �
s,

Fs � OS ◦WS (1.3)

is a 2μ-distortion of A.

Proof. First, due to Eqs. 1.2 and 1.3, we get ‖Fs(v)‖ = ‖OS ◦WS(v)‖ = ‖WS(v)‖ note that
since WS is orthogonal projection, ‖WS(v)‖ ≤ ‖v‖. Thus, 0 ≤ ‖v‖ − ‖Fs(v)‖ = ‖v‖ −
‖WS(v)‖ ≤ ‖v −WS(v)‖ = ‖W⊥

S (v)‖, v ∈ �m. Substituting v = a(i) − a(j), i, j ∈ [n] yields
0 ≤ ‖a(i) − a(j)‖ − ‖Fs(a

(i)) − Fs(a
(j))‖ ≤ ‖a(i) − a(j) − Fs(a

(i)) + Fs(a
(j))‖ ≤ ‖W⊥

S (a
(i))‖ +

‖W⊥
S (a

(j))‖ ≤ 2μ. The last inequality is due to Eq. 1.1.

We stress the fact that our aim is to approximate the geometry of the dataset A rather than
its elements, therefore we use Fs rather than WS .

4



1.4 PCA-based dimensionality reduction

A common practice for dimensionality reduction is based on PCA [30] of the (centered) m× n
data matrix A. This method uses a singular value decomposition (SVD) [27] of the data matrix,
to detect a set of maximum variance orthogonal directions (singular vectors) in �m. Projection
of the data onto the ρ most significant directions yields the best ρ-dimensional embedding of
the data in the sense of mean square error. The computational and storage complexities of
SVD are O(min{m,n} ·mn) and O(min{m,n}2), respectively.

Numerical methods for SVD approximation attract a growing interest. Out of many meth-
ods, we mention here some central ones. In the recent years randomized algorithms for SVD
approximation of large matrices became popular. We refer the reader to [29] and references
therein for a review of such methods. An efficient incremental algorithms for computing a thin
SVD that considers ρ components has been suggested in [14]. The computational complexity
of this method is O(ρnm) for ρ ≤ min{m,n}. The incremental nature of the algorithm makes
it suitable for analysis of dynamic data, where rows/columns are dynamically added and sub-
tracted from the data matrix. Another interesting approach to reduce the SVD computational
cost is matrix sparsification by zeroing out small values in the data matrix. This widely used
approach utilizes a sparse eigensolver such as Lanczos to compute the relevant ρ eigen compo-
nents [21]. If ρ is small in comparison to the matrix size, then the computational complexity of
Lanczos is O (max{m,n}2 · ρ) [27]. The storage requirements for Lanczos is O(m). Addition-
ally, Lanczos method can be modified to terminate when the smallest estimated eigenvalue is
well approximated and its value is lower than a given threshold. More sparsification approaches
are given in [47]. Finally, the Nyström extension method [5] provides an additional technique
to reduce the SVD computation cost, using a low rank sketch of the data matrix.

Mathematically, suppose that the rank of A is ρ, and let A = USV ∗ be the (thin) SVD of
A, where U and V are m× ρ and n× ρ matrices, respectively, whose columns are orthonormal,
and S is a diagonal ρ× ρ matrix, whose diagonal elements are ordered decreasingly s1 ≥ . . . ≥
sρ ≥ 0. The columns of U and V are referred to as the left and right singular vectors of A
respectively, and the diagonal elements of S as its singular values. Then, for any k ∈ [ρ] we
have ‖A− Ak‖ ≤ ‖A− B‖ for any orthogonally invariant matrix norm and any m× n matrix
B of rank k or less, where Ak is the k-SVD of A, i.e. Ak = U(:,[k])S([k],[k])(V(:,[k]))

∗. Let U be
the subspace spanned by U(:,[k])’s columns, then the k-dimensional embedding Fk : �m → �

k,

defined by Fk(v) � (U(:,[k]))
∗v, is a decomposition of the orthogonal map OS : �m → �

m,

OS(v) � (U(:,[k]))
∗v and the orthogonal projection WU . The following lemma quantifies the

distortion rate of Fk, applied to A, with respect to the spectrum of A, which is encapsulated
in S.

Lemma 1.2. The k-dimensional embedding Fk is a 2sk+1-distortion of A.

Proof. From the triangular inequality we have ‖A(:,i)−A(:,j)‖ ≤ ‖W⊥
U (A(:,i))‖+‖W⊥

U (A(:,j))‖+
‖WU(A(:,i))−WU(A(:,j))‖. Since W⊥

U = I −WU , and due to A’s SVD, we have ‖WU(A(:,i))‖,
‖WU(A(:,j))‖ < sk+1. Moreover, since Fk is an orthogonal map, we have ‖Fk(A(:,i) −A(:,j))‖ ≤
‖A(:,i) − A(:,j)‖. Thus, |‖A(:,i) − A(:,j)‖ − ‖Fk(A(:,i) − A(:,j))‖| ≤ 2sk+1

Notice that a particular case of Lemma 1.2 is when k = ρ. Then, Fk embeds A accu-
rately in �ρ. The computational and storage complexities of the thin SVD are O(ρmn) and
O(max{m,n}2), respectively. In addition, the principal subspace U , on which the data is pro-
jected, is a mixture of the entire columns set of A which, in terms of data analysis, may be less
informative than a dictionary-based subspace.

5



2 Incomplete Pivoted QR-based Data Analysis

In this section, a QR-based data sampling and dimensionality reduction method is suggested, as
well as consequent out-of-sample and anomaly detection schemes. The method is geometrically
driven, in the sense that the low-dimensional approximation is constructed to constitute a user-
defined distortion of the high-dimensional dataset A. This is done using an incomplete pivoted
QR decomposition of the data matrix A, described in section 2.3.

The suggested method incrementally and simultaneously constructs a low-dimensional sub-
space and projects the data on it. The basis elements of the constructed subspace are chosen
from A. Thus, this method also identifies a subset of representative landmark data points,
according to the user-defined distortion parameter. The landmarks subset D ⊂ A is referred
to as dictionary. The dictionary enables both an efficient out-of-sample extension and anomaly
detection for any data point x ∈ �m\A. In this context A would be referred to as a training
set, and each of its elements is considered as normal. The out-of-sample extension is based only
on the geometrical relations between x and the dictionary members, as described in Section 2.5.

Both the computational and the storage costs of the proposed method depend on the di-
mension of the embedding space. In the worst case, where the dictionary consists of the whole
data, these complexities are identical to the corresponding complexities of the thin SVD of the
associated data matrix A. Moreover, since the proposed algorithm does not use the powers
of AA∗ (nor A∗A), as opposed to classical algorithms for SVD computations [27], there is no
necessity to store A in RAM.

There are several methods for practical computation of the QR decomposition. House-
holder [31], Givenes rotations [26] and Gram-Schmidt or modified Gram-Schmidt [40]. In [33] an
incomplete Gram-Schmidt and incomplete Givens transform are utilized to find an incomplete
QR decomposition. Another relevant approach is the Rank Revealing QR (RRQR) method [16].
The RRQR can be used for matrix approximation by proper manipulation of the QR output [17].
The proposed pivoted incomplete QR algorithm is one of many methods to compute a partial
orthogonal decomposition [4, 39]. Yet, the theoretical basis for our method is valid for any
other version of pivoted incomplete QR algorithm.

Robustness of the proposed method to noise is presented in Section 2.2.1 and the resulted
matrix approximation is proved in Section 2.2.2.

2.1 Mathematical preliminaries

A QR factorization with columns pivoting [27] of an m× n matrix A of rank ρ is

AΠ = QR, (2.1)

where Π is an n × n permutation matrix, Q is an m × ρ matrix whose columns constitute an
orthonormal basis for the columns space of A, and R is a ρ × n upper diagonal matrix. This
decomposition represents the Gram-Schmidt process, applied to A’s columns one-by-one, due
the order determined by Π. Therefore, for any k ∈ [ρ] we have

Aπ([k]) = Q[k], (2.2)

and
Q(:,k) = W⊥

π([k−1])(A(:,π(k)))/
∥∥W⊥

π([k−1])(A(:,π(k)))
∥∥ , (2.3)

where AI and QI are the subspace spanned by the columns of A(:,I) and Q(:,I), respectively,
and Wπ([k]) : �

m → Aπ([k]) is the orthogonal projection on Aπ([k]). Equation 2.2 suggests that
for any k ∈ [ρ]

Wπ([k])(v) = Q(:,[k])(Q(:,[k]))
∗v, W⊥

π([k])(v) = v −Wπ([k])(v), v ∈ �m. (2.4)

6



The presented dimensionality reduction method is based on incomplete pivoted QR decom-
position of the data matrix A. The criteria for pivoting and incompleteness are based on the
following lemma:

Lemma 2.1. Consider Eq. 2.1. Then, for any k ∈ [ρ],

R(k,k) =
∥∥W⊥

π([k−1])(A(:,π(k)))
∥∥ . (2.5)

Proof. SinceW⊥
π([k−1]) is orthogonal projection, then (W⊥

π([k−1]))
∗W⊥

π([k−1]) = W⊥
π([k−1]). There-

fore, ∥∥W⊥
π([k−1])(A(:,π(k)))

∥∥2
= (W⊥

π([k−1])(A(:,π(k))))
∗W⊥

π([k−1])(A(:,π(k)))

= (A(:,π(k))))
∗W⊥

π([k−1])(A(:,π(k)))

=
∥∥W⊥

π([k−1])(A(:,π(k)))
∥∥ (A(:,π(k))))

∗Q(:,[k])

=
∥∥W⊥

π([k−1])(A(:,π(k)))
∥∥R(k,k).

Lemma 2.2 stresses the recursive relations between Q’s columns. This relation will be used
in Section 2.5.

Lemma 2.2. For any k ∈ [ρ], Q(:,k) = (A(:,π(k)) −
∑k−1

i=1 R(i,k)Q(:,i))/R(k,k).

Proof. According to Eqs. 2.3 and 2.4, and since R(i,j) = (Q(:,i))
∗A(:,π(j)) for any i ∈ [ρ], j ∈ [n],

we have Wπ([k−1])(A(:,π(k))) =
∑k−1

i=1 R(i,k)Q(:,i). Therefore, due to Eq. 2.5, the lemma is proved.

2.2 Incomplete pivoted QR-based dimensionality reduction -
theoretical background

The geometry of A’s (permuted) columns is isomorphic to the geometry of R’s columns, i.e.
for any i, j ∈ [n], (A(:,π(i)))

∗A(:,π(j)) = (R(:,i))
∗R(:,j). Thus, the upper triangularity of R suggests

to embed the dataset A by an incomplete (truncated) version of R’s rows. Mathematically,
following Eq. 1.3, if we set S = Aπ([s]) and the orthogonal map OS : �m → �

s,

OS(v) � (Q(:,[s]))
∗v, (2.6)

then, due to the orthogonality of Q’s columns and Eqs. 2.1, 2.2 and 2.4, the s-dimensional
embedding from Eq. 1.3 becomes

Fs(v) = (Q(:,[s]))
∗v (2.7)

and specifically,
Fs(A(:,π(i))) = R([s],i), i ∈ [n]. (2.8)

Notice that Eq. 1.2 is satisfied by OS from Eq. 2.6. Although this specific choice for OS yields
OS = Fs, this is not always the case since, as aforementioned, OS is not unique. For example,
in Section 2.3 a different choice of OS is presented. The incompleteness of the discussed QR
decomposition is reflected in Eq. 2.8, where the s-dimensional embedding is defined via only a
partial set of R’s rows. According to the triangularity of R, the geometry of such an embedding
is exact on the basis elements of S,

D � {A(:,π(1)), . . . , A(:,π(s))}. (2.9)

7



This set is referred to as the dictionary of A, and its elements are referred to as pivots. As
Lemma 1.1 suggests, a careful choice of Π might result in a low-dimensional distortion Fs of
A. An algorithm for such a choice is presented in Section 2.3.

We conclude this section with an example that demonstrates the permutation’s significance.
Let A be the following matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then, in order to achieve a 3-distortion for Π = I7, we must have s = ρ = 7. On the other
hand, one can verify that for any permutation that satisfies π([3]) = {1, 4, 7} ‖W⊥

π([3])(A(:,i))‖ <

1.5, i ∈ [7], which according to Lemma 1.1 is a sufficient condition for a 3-dimensional embed-
ding ofA, with distortion rate bounded by 3. Consequently, Fs is an s-dimensional 2μ-distortion
of A, with s = 3 and μ = 1.5.

Proposition 2.3, which is a rephrased version of Lemma 1.1 in terms of pivoted incomplete
QR, concludes the above discussion:

Proposition 2.3. Let μ > 0. If there exist a permutation π and s ∈ [ρ] for which ‖W⊥
π([s])(A(:,i))‖ <

μ for any i ∈ [n], then Fs from Eq. 2.7 is an s-dimensional 2μ-distortion of A.

2.2.1 Stability to noise

In real-life data may be noisy, and instead of analyzing clean data, stored in A, an noisy version
Ã = A+N is analyzed. Here, the matrix N represents an additive noise. Proposition 2.4 shows
that a distortion of the noisy data is also a distortion of the original clean data, where the error
originated by noise is additive.

Proposition 2.4. Let A be an m×n data matrix and let Ã = A+N , where N is a noise matrix
of the same size of A. Assume that ‖N‖ ≤ η for some η ≥ 0, and let F̃s be a 2μ-distortion of
Ã’s columns, as defined in Eq. 2.8. Then, F̃s is a 2(μ+ η)-distortion of A’s columns.

Proof. Let F̃s be the map defined in Eq. 1.3, with the corresponding elements S̃, OS̃ and WS̃ .
Then we have∣∣∣∥∥A(:,i) − A(:,j)

∥∥−
∥∥∥F̃s(Ã(:,i))− F̃s(Ã(:,j))

∥∥∥∣∣∣ =
∣∣∣∥∥A(:,i) − A(:,j)

∥∥−
∥∥∥WS̃(Ã(:,i))−WS̃(Ã(:,j))

∥∥∥∣∣∣
≤

∥∥∥A(:,i) − A(:,j) −WS̃(Ã(:,i)) +WS̃(Ã(:,j))
∥∥∥

≤
∥∥∥A(:,i) −WS̃(Ã(:,i))

∥∥∥+
∥∥∥A(:,j) −WS̃(Ã(:,j))

∥∥∥
≤

∥∥∥A(:,i) − Ã(:,i)

∥∥∥+
∥∥∥Ã(:,i) −WS̃(Ã(:,i))

∥∥∥
+

∥∥∥A(:,j) − Ã(:,j)

∥∥∥+
∥∥∥Ã(:,j) −WS̃(Ã(:,j))

∥∥∥
=

∥∥N(:,i)

∥∥+
∥∥∥Ã(:,i) −WS̃(Ã(:,i))

∥∥∥
+

∥∥N(:,j)

∥∥+
∥∥∥Ã(:,j) −WS̃(Ã(:,j))

∥∥∥
≤ 2(μ+ η).

8



The first equality is due to Eqs. 1.2 and 1.3, and the last inequality is due to the fact that
‖N(:,i)‖ ≤ ‖N‖, the proposition’s assumption and Eq. 1.1.

2.2.2 Matrix approximation error

The notions of low-rank matrix approximation and geometry-preserving dimensionality reduc-
tion are different, yet related. While the s-SVD of a data matrix enables an s-dimensional
embedding of the associated data (as established in Lemma 1.2), it can be shown that the
incomplete QR factorization Q(:,[s])R([s],:) of the pivoted version of A (see Eq. 2.1) can be used
to form a low-rank approximation of A. The operator norm of an arbitrary matrix M , denoted
by ‖M‖2, is equal to its maximal singular value. Thus, as was explained in Section 1.4, it
measures the maximal linear trend of the data stored in its columns (or rows). Therefore, the
operator norm of the difference of two matrices measures the strength of the maximal linear
trend of the associated error. Proposition 2.5 provides a bound for the approximation error
of AΠ by its incomplete QR factorization. Its proof uses the Frobenius norm of a matrix

‖M‖F �
√∑

i,j M
2
(i,j) and the norms inequality ‖M‖2 ≤ ‖M‖F for any matrix M .

Proposition 2.5. Let μ, π, s and A satisfy the condition of Proposition 2.3, then ‖AΠ −
Q(:,[s])R([s],:)‖η ≤ μ

√
ρ− s for η ∈ {2, F}.

Proof. Following Eqs. 2.1 and 2.4, and according to the orthonormality of Q’s columns, we have
Wπ([s])(A(:,i)) = Q(:,[s])R([s],i) for any i ∈ [n]. On the other hand, due to the triangularity of R,
A(:,π([s])) = Q(:,[s])R([s],[s]). Thus, at least s columns of A − Q(:,[s])R(:,[s]) are vanishing, and the
norms of the rest (mostly) ρ− s are bounded by μ, according to the proposition’s assumption.
This leads to

∥∥A−Q(:,[s])R(:,[s])

∥∥
2
≤ ∥∥A−Q(:,[s])R(:,[s])

∥∥
F
≤ μ

√
ρ− s.

2.3 Incomplete pivoted QR-based dimensionality reduction -
implementation

Algorithm 1 iteratively constructs an incomplete pivoted QR version of the data matrix A, to
obtain a 2μ-distortion of A. In its j-th iteration, the algorithm selects a pivot A(:,π(j)), and
projects the dataset A on Aπ([j]). Based on condition 1 from Section 1.3, the j-th pivot A(:,π(j))

is chosen to be the element in A, whose approximation by its orthogonal projection on Aπ([j−1])

is the worst. Thus, the permutation π : [n] → [n] is determined due to the following condition:

π(j) = arg max
i∈[n]\π([j−1])

∥∥W⊥
π([j−1])(A(:,i))

∥∥ . (2.10)

Then, the corresponding new column Q(:,j) and row R(j,:) are computed, according to Eqs. 2.1,
2.3 and 2.4. Since the columns permutation is updated in every iteration j, the columns of
R(:,[j−1]) have to be permuted correspondingly. The algorithm terminates when the quantity
in Eq. 2.10 is less than μ. Thus s, which is the number of iterations required to provide a
2μ-distortion, is a non-increasing function of μ, bounded from above by ρ, and not known
a-priori. When the algorithm ends, the correspondence rule, defined by Eq. 2.8, provides an
s-dimensional 2μ-distortion of A, according to Proposition 2.3. Notice that for μ = 0 the
application of Algorithm 1 to A results in a complete pivoted QR factorization.

Let us make a couple of technical remarks concerning Algorithm 1: first, in case of limited
computational or storage budgets, Algorithm 1 can be easily modified to make a limited number
of iterations d or, equivalently, to provide a d-dimensional embedding. In this case the distortion
parameter μ is a non-increasing function of d. Secondly, the dictionary D is chosen regardless to
the data indexing order. This property ensures a relatively sparse dictionary, as demonstrated

9



Algorithm 1: Incomplete pivoted QR decomposition (ICPQR)

Input : An m× n data matrix A and a nonnegative distortion parameter μ.
Output: An m× s matrix Q whose columns are orthonormal, an s× n upper

diagonal matrix R and a permutation π, such that the correspondence rule
defined by Eq. 2.8 is a 2μ-distortion of A’s columns.

1 Initialization: set π = identity, Π = In, δ > μ, and j = 0
2 while δ > μ do
3 set j = j + 1
4 set ij = argmaxi∈[n]\π([j−1]) ‖W⊥

π([j−1])(A(:,i))‖ (see Eq. 2.4)

//consider π([0]) = ∅
5 set Δ = W⊥

π([j−1])(A(:,ij)) and δ = ‖Δ‖
6 set Q(:,j) = Δ/δ
7 switch π(j) ↔ π(ij), set Π = ΠΠj↔ij

//Πj↔ij is In with columns j, ij swapped

8 set R = RΠj↔ij

9 set R(j,:) = (Q(:,j))
∗AΠ

10 end
11 set s = j

in Section 4.1.4. Lastly, in order to achieve an optimal1 coordinates system for the geometry
represented by R, an SVD can be utilized. Mathematically, let R = USV ∗ be the SVD
decomposition of R, where U and S are s × s orthogonal and diagonal matrices, respectively,
and V is an n× s matrix, whose columns are orthonormal. Then, the map ÔS : �m → �

s,

ÔS(v) � (QU)∗v, v ∈ �m (2.11)

is still isometric on S, as condition 1.2 in Section 1.3 requires. Thus, following Eqs. 2.1, 2.8
and 2.11, the map F̂s : �

m → �
k

F̂s(v) � ÔS ◦Wπ([s])(v), v ∈ �m

is still an s-dimensional 2μ distortion of A. Moreover, F̂s is optimal in the sense that the axes
are aligned correspondingly to the variances directions. The computational and storage costs
of such an alignment are O(ns2) and O(ns), respectively. Therefore, the total complexity of
Algorithm 1 is not affected by this optional step (see Table 2.4.)

2.4 Reduced cost ICPQR

Equation 2.8 suggests that Q is not needed for the low rank embedding of A by Fs. In this
section we present a more efficient version of Algorithm 1, by which the results in Section 4
were obtained. The algorithm produces no Q and applies no physical permutations.

Consider Eq. 2.1 with π defined by Eq. 2.10, then

A = QR̄, R̄ � RΠ∗, (2.12)

where R̄ is no longer triangular. Algorithm 2 is a translated version of Algorithm 1 to this case,
where the permutation Π is absorbed in R̄. The low-dimensional embedding from Eq. 2.8 then
becomes

Fs(A(:,i)) = R̄([s],i), i ∈ [n]. (2.13)

1A coordinates system that is determined by principal components.

10



For the establishment of Algorithm 2, steps 4 and 9 of Algorithm 1, which are dependent
on Q, have to be modified: according to Eq. 2.12 (A(:,π(i)))

∗A(:,π(j)) = (R̄(:,π(i)))
∗R̄(:,π(j)) =∑min{i,j}

�=1 R̄(�,π(i))R̄(�,π(j)), for any i, j ∈ [n] . The upper limit in the sum is due to the upper
triangularity of R. Thus, the following recursive relations between the entries of R̄ hold:

R̄(i,π(j)) =

⎧⎪⎪⎨⎪⎪⎩
R̄−1

(i,π(i))

(
uij −

∑i−1
�=1 R̄(�,π(i))R̄(�,π(j))

)
if i < j(

uij −
∑i−1

�=1(R̄(�,π(i)))
2
)1/2

if i = j

0 if i > j

, (2.14)

where uij � (A(:,π(i)))
∗A(:,π(j)). Moreover, comparing Eq. 2.5 with Eq. 2.14 yields

∥∥W⊥
π([i−1])(A(:,π(i)))

∥∥ =

(
uii −

i−1∑
�=1

(R̄(�,π(i)))
2

)1/2

.

Thus, the pivoting criterion from Eq. 2.10 becomes

π(j) = arg max
i∈[n]\[j−1]

(
uii −

i−1∑
�=1

(R̄(�,π(i)))
2

)1/2

.

Algorithm 2: Incomplete pivoted Q-less QR decomposition

Input : An m× n matrix A and a nonnegative distortion parameter μ.
Output: An s× n matrix R̄ and a permutation π, for which the embedding defined

by Eq. 2.13 is a 2μ-distortion of A’s columns.

1 Initialization: set π = identity, j = 0, δ > μ2, y = 0n the n-long all zeros vector, and
z ∈ �n, for which z(i) = ‖A(:,i)‖2, i ∈ [n]

2 while δ ≥ μ2 do
3 set j = j + 1
4 set ij = argmaxi∈[n]\[j−1](z(π(i)) − y(π(i)))
5 switch π(j) ↔ π(ij)
6 set δ = z(π(j)) − y(π(j))

7 for every i ∈ [j − 1] set R̄(j,π(i)) = 0

8 set R̄(j,π(j)) = δ1/2

9 for i ∈ [n]\[j] do
10 set uji = (A(:,π(j)))

∗A(:,(π(i)))

11 R̄(j,π(i)) = (uji −
∑j−1

�=1 R̄(�,π(j))R̄(�,π(i)))/R̄(j,π(j))

12 set y(π(i)) = y(π(i)) + R̄(j,π(i))

13 end

14 end
15 set s = j

The resulted dictionary is the set D, as defined in Eq. 2.9.
Table 2.4 presents the computational and storage complexities of Algorithm 2. The storage

of the input matrix A has not been taken into account, since due to the nature of Algorithm 2,
there is no necessity of its complete storage. For example, the relevant rows and columns of
A can be individually computed in each iteration. Therefore, the total storage complexity
is smaller than the required storage complexity of the SVD, which is O(max{m,n}2). The
computational complexity of Algorithm 2 is dependent on μ. In the worst case, when μ = 0
and s = ρ, the complexity of Algorithm 2 equals to the complexity of the thin rank-ρ SVD.
Otherwise, Algorithm 2 is more efficient than SVD.

11



Step Operations Storage (not including storage of A)
1 O(mn) O(n)
4 O(ns− s2) O(1)
7 O(s2) O(s2)
10 O(m(ns− s2)) O(m)
11 O(s(ns− s2)) O(ns− s2)
12 O(ns− s2) O(1)
Total: O(mns) O(ns)

Table 2.1: Computational and storage complexities of Algorithm 2.

2.5 Out-of-sample extension and anomaly detection

Two fundamental questions may be naturally raised for an out-of-sample data point x ∈ �m\A:
first, is it normal, related to the training dataset A? and secondly, if it is, then how can the
produced low rank embedding be extended to this point? This section addresses these two
questions. Since Fs (Eq. 2.7) is defined for the entire space of �m, it is used to define an
out-of-sample extension of the embedding from Eq. 2.13, for any x ∈ �m and, based on this,
to detect anomalies.

2.5.1 Out-of-sample extension

As mentioned above, the out-of-sample extension of the embedding form Eq. 2.13 is simply
defined to entire �m by Eq. 2.7. As discussed in Section 2.4, since Algorithm 2 produces no
Q, Fs cannot be directly applied to an out-of-sample point x ∈ �m. Therefore, a Q-less tool
for calculating the out-of-sample extension, as defined in Eq. 2.7, is provided in Algorithm 3,
based on the following proposition:

Proposition 2.6. Let R̄ be the s×n matrix produced by Algorithm 2, x ∈ �m, and f = Fs(x) ∈
�

s, as defined in Eq. 2.7. Then, the following recursive relation holds for the coordinates of f :

f(j) = (R̄(j,π(j)))
−1(A(:,π(j)))

∗x−
j−1∑
i=1

R̄(i,π(j))f(i), j ∈ [s].

Proof. According to Eq. 2.7, f(j) = (Q(:,j))
∗x. Thus, due to the recursive relations of Q’s

columns, as presented in Lemma 2.2, we have

f(j) = (R(j,j))
−1((A(:,π(j)))

∗x−
j−1∑
i=1

R(i,j)(Q(:,i))
∗x)

= (R(j,j))
−1((A(:,π(j)))

∗x−
j−1∑
i=1

R(i,j)f(i))

= (R̄(j,π(j)))
−1((A(:,π(j)))

∗x−
j−1∑
i=1

R̄(i,π(j))f(i)),

where the last equality is due to Eq. 2.12.

Since the out-of-sample extension of a data point x ∈ �m is its orthogonal projection on the
s-dimensional dictionary subspace S, the only required information are the geometric relations
between x and the elements of the dictionary D (Eq. 2.9), as Proposition 2.6 shows. Algorithm 3
summarized the above.

12



Algorithm 3: Out-of-sample extension for incomplete pivoted Q-less QR decomposi-
tion

Input : Dictionary D = {b(1), . . . ,b(s)} (see Eq. 2.9) and s× n matrix R̄, which are
the outputs of Algorithm 2, and vector v ∈ �m.

Output: Fs(v), as defined by Eq. 2.7.

1 Initialization: set f ∈ �s to be vector of all-zeros, except of the first coordinate,

f(1) = (R̄(1,π(1)))
−1(b(1))∗ · v.

2 for j = 2 : s do

3 set the j-th coordinate of f , f(j) = (R̄(j,π(j)))
−1(b(j))∗ · v −∑j−1

i=1 R̄(i,π(j))f(i)
4 end
5 set Fs(v) = f

2.5.2 Anomaly detection

The 2μ-embedding subspace S ⊂ �m satisfies μ(a) ≤ μ for any a ∈ A, where the distortion
rate function μ : �m → �, is defined to be μ(x) �

∥∥W⊥
S (x)

∥∥ (see discussion in Section 1.3.)
Once the out-of-sample extension of Fs(x) was computed by Algorithm 3, the distortion rate
of x ∈ �m can be easily calculated: μ2(x) = ‖x‖2 − ‖WS(x)‖2 = ‖x‖2 − ‖OSWS(x)‖2 =
‖x‖2 − ‖Fs(x)‖2. The first equality is due to the fact that WS is orthogonal projection. The
second is due to condition 1.2 that suggests that ‖OS ◦WS(x)‖ = ‖WS(x)‖ for any x ∈ �m

and the last equality is due to Eq. 2.7. Consequently, we rephrase the distortion rate function

μ(x) � (‖x‖2 − ‖Fs(x)‖2)1/2. (2.15)

The following general definition for normality of data points will serve us in two main forms
in the rest of the paper.

Definition 2.1 (κ-normality). Let Fs : A → �
m be an s-dimensional embedding of A ⊂

�
m, computed by Algorithm 2, and let Fs(x) ∈ �s be its extension to x ∈ �m, produced by

Algorithm 3. Then, x is considered as a κ-normal point relatively to A if μ(x) ≤ κ. Otherwise,
it is considered κ-abnormal.

Notice that due to Definition 2.1, all the data points in A are μ-normal. Nevertheless, μ is
not necessarily the minimal κ for which A is considered as κ-normal, as the most strict κ for
which A is still κ-normal, is κ = μstrict, where

μstrict � sup
a∈A

μ(a).

We conclude this section with a definition of two variants of κ-normality, as defined in
Definition 2.1.

Definition 2.2 (normality and strict normality). Let Fs : A → �
m be an s-dimensional

embedding of A ⊂ �m, computed by Algorithm 2, with distortion parameter μ, and let Fs(x) ∈
�

s be its extension to x ∈ �m, produced by Algorithm 3. Then, x is considered as a normal
point relatively to A if μ(x) ≤ μ, and as a strictly normal point if μ(x) ≤ μstrict. Otherwise, it
is considered as a (strictly) abnormal.

Obviously, all the data points in A are strictly-normal and any strictly normal point is also
a normal point.

13



3 QR-based Diffusion Maps

Although the QR-based dimensionality reduction method that was presented in Section 2 is
designated for parametric data analysis, this section presents a utilization of our method for
the Diffusion Maps (DM) [20], which is a graph Laplacian based method for analysis of non-
parametric data, via exploration of a Markov chain defined on the data. It is mainly utilized for
clustering and manifold learning. Typically, application of DM involves a kernel PCA, which
is computationally prohibitive to large amount of data.

3.1 DM framework - overview

3.1.1 Diffusion geometry

Let X = {x1, . . . , xn} be a dataset and let k : X × X → � be a symmetric point-wise positive
kernel that defines a connected undirected weighted graph over X . Then, a Markov process
over X can be defined, using the n× n row-stochastic transition probabilities matrix

P = D−1K, (3.1)

where K(i,j) = k(xi, xj), i, j ∈ [n] and D is a diagonal matrix with diagonal D(i,i) = d(i), where

d(i) �
n∑

j=1

K(i,j), i ∈ [n].

The vector d ∈ �n is referred to as the degrees function or degrees vector of the graph. The
associated time-homogeneous Markov chain is defined as follows: for any two time points
t, t0 ∈ �, �(x(t + t0) = xj|x(t0) = xi) = (P t)(i,j). Assuming that the defined Markov chain is
aperiodic (for example, if there is x ∈ X , for which k(x, x) > 0), then it has a unique stationary
distribution d̂ ∈ �

n which is the steady state of the process, i.e. d̂(j) = limt→∞ (P t)(i,j),
regardless to the initial point xi. This steady state is the probability distribution resulted from

1 normalization of the degrees function d, i.e.,

d̂ = d/‖d‖1. (3.2)

The diffusion distance in time t ∈ � is defined by the metric D(t) : X × X → �

D(t)(xi, xj) �
∥∥∥(P t)(i,:) − (P t)(j,:)

∥∥∥
�2(d̂−1)

, i, j ∈ [n]. (3.3)

By definition, (P t)(i,:) is the probability distribution over X after t time steps, where the initial
state is xi. Therefore, the diffusion distance from Eq. 3.3 measures the difference between two
propagations along t time steps, one originated in xi and the other in xj. Weighing the metric
by the inverse of the steady state results in ascribing high weight for similar probabilities on
rare states and vice versa.

Due to the above interpretation, the diffusion distances are naturally utilized for multiscale
clustering, as they uncover the connectivity properties of the graph across time. In [15, 20]
it was proved that under some conditions, if X is sampled from a low intrinsic dimensional
manifold then, as n tends to infinity, the Markov chain converges to a diffusion process over
that manifold.

14



3.1.2 Diffusion maps - low rank representation of the diffusion geometry

Diffusion maps [20] are family of Euclidean representations of the diffusion geometry of X in
different time steps, where the Euclidean distances approximate the diffusion distances from
Eq. 3.3. Let G(t) be the n× n matrix, defined by

G(t) � ‖d‖1/21 D−1/2(P ∗)t, t ∈ N. (3.4)

Then, due to Eqs. 3.1-3.3, the Euclidean n-dimensional geometry of G(t)’s column is isomorphic
to the diffusion geometry of the associated data points i.e.,

D(t)(xi, xj) =
∥∥G(t)

(:,i) −G(t)
(:,j)

∥∥ , i, j ∈ [n]. (3.5)

Although embedding of the dataset X in �n by the columns of G(t) preserves the diffusion
geometry, it may be ineffective for large n due to the ’curse of dimensionality’, as was explained
in Section 1. Therefore, a dimensionality reduction is required.

Since the transition probabilities matrix P (Eq. 3.1) is conjugated to the symmetric matrix

M � D−1/2KD−1/2

via the relation P = D−1/2MD1/2, P has a complete real eigen-system. Moreover, due to
Gershgorin’s circle theorem [27] and the fact that P is stochastic, all its eigenvalues are lying in
the interval (−1, 1] (the exclusion of −1 is due to the assumption that the chain is aperiodic.)
Let

M = USU∗ (3.6)

be the eigen-decomposition of M , where U is an orthogonal n× n matrix and S is a diagonal
n × n matrix, whose diagonal elements si are ordered decreasingly, due to their modulus 1 =
s1 > |s2| ≥ . . . ≥ |sn| ≥ 0. The first inequality is due to the assumption that the graph is
connected. Thus, following Eq. 3.4

G(t) = (M∗)tD−1/2 = UStU∗D−1/2. (3.7)

Therefore, due to the orthogonality of U and according to Eq. 3.5

D(t)(xi, xj) = ‖d‖1/21

∥∥StU∗D−1/2(e(i) − e(j))
∥∥ , i, j,∈ [n],

where e(i) denotes the i-th standard unit vector in �n. As a consequence, the diffusion maps
Ψ(t) : X → �

n, are defined as follows:

Ψ(t)(xi) � ‖d‖1/21 U∗G(t)e(i) (3.8)

= ‖d‖1/21 StU∗D−1/2e(i)

= ‖d‖1/21 d
−1/2
(i) St(U(i,:))

∗

= d̂
−1/2
(i) [st1U(i,1), . . . , s

t
nU(i,n)]

∗,

Of course, the diffusion maps provide the required embedding of X in �n, since their Euclidean
geometry in �n is identical to the diffusion geometry of the dataset X , i.e. D(t)(xi, xj) =∥∥Ψ(t)(xi)−Ψ(t)(xj)

∥∥ , i, j ∈ [n]. In order to achieve a low-dimensional embedding, the diffu-
sion map from Eq. 3.8 is projected onto its significant principal components, according to the
decay rate of the spectrum of M t. Specifically, for sufficiently small |sk+1|t, the k-dimensional
embedding is Tk ◦ Ψt, where Tk : �n → �

k is the projection on the first k coordinates.
Lemma 3.1 quantifies the distortion resulted by such a projection.

15



Lemma 3.1. Let c = maxi∈[n] d̂
−1/2
(i) (see Eq. 3.2). Then the k-dimensional embedding Tk ◦Ψ(t)

is a
√
2c |sk+1|t-distortion of the n-dimensional diffusion map Ψ(t) from Eq. 3.8.

Proof. Following Eq. 3.8 we get2∣∣∥∥Ψ(t)(xi)−Ψ(t)(xj)
∥∥− ∥∥Tk ◦Ψ(t)(xi)−Tk ◦Ψ(t)(xj)

∥∥∣∣ ≤ ∥∥Ψ(t)(xi)−Tk ◦Ψ(t)(xi)
∥∥

+
∥∥Ψ(t)(xj)−Tk ◦Ψ(t)(xj)

∥∥
≤ ∣∣s(k+1)

∣∣t (d̂−1
(i) + d̂−1

(j))
1/2

≤
√
2c

∣∣s(k+1)

∣∣t .
The distortion bound from Lemma 3.1 is referred to as analytic bound. In many cases,

spectral properties of the utilized kernel are known a-priori, with no need of its explicit com-
putation. The Gaussian kernel it just one example (see [8, 9]), but not the only. In such cases,
only a partial SVD can be calculated, to produce the relevant principal components, according
to the required distortion.

3.2 Efficient ICPQR-based DM framework for data analysis

In this section we provide a QR-based framework for low-dimensional representation of the DM
for a training set X , its out-of-sample extension, and anomaly detection. For this purpose, X is
assumed to be a subset of X̄ , on which a symmetric point-wise positive kernel k : X̄ × X̄ → �

is defined.

3.2.1 QR-based low-dimensional embedding

Equation 3.5 suggests that the diffusion geometry is already embodied in the Euclidean geom-
etry of G(t)’s columns G(t) � {(G(t))(:,1), . . . , (G

(t))(:,n)} (see Eq. 3.4.) According to Proposi-

tion 2.3 and Eq. 3.5, application of Algorithm 2 to G(t) with distortion rate μ > 0 produces an
s-dimensional 2μ-distortion Fs : G(t) → �

s, for which

max
i,j∈[n]

∣∣D(t)(xi, xj)−
∥∥h(t)

s (xi)− h(t)
s (xj)

∥∥∣∣ ≤ 2μ,

where h
(t)
s : X → �

s is defined by

h(t)
s (xi) � Fs((G

(t))(:,i)), i ∈ [n]. (3.9)

As was discussed in Section 2.3, the embedding dimension s is not known a-priori, and is a
non-increasing function of μ. Algorithm 4 summarizes the above.

The output parameters R̄ and d of Algorithm 4 are needed for the out-of-sample phase,
described in Section 3.2.2. In addition, for anomaly detection due to Definition 2.2, in the DM
context μstrict take the form

μ
(t)
strict = sup

i∈[n]

∥∥∥(G(t))(:,i) − h(t)
s (xi)

∥∥∥ . (3.10)

2Here, for comparison purposes, we use the convention that Tk : �n → �
n, is the operator that zeros out

the last n− k coordinates.

16



Algorithm 4: ICPQR-based DM

Input : An n× n kernel matrix K, time step t ∈ �, and a nonnegative distortion
parameter μ.

Output: An s-dimensional 2μ-distortion h
(t)
s : X → �

s of Ψ(t), a dictionary of s
elements D ⊂ G(t), an s× n matrix R̄ and a degrees vector d ∈ �n.

1 set d ∈ �n, d(i) =
∑n

j=1 K(i,j)

2 set the n× n diagonal matrix D, whose i-th diagonal element is d(i)

3 set the n× n row stochastic transition probabilities matrix in time t, P t = (D−1K)t

4 set G(t) = ‖d‖1/21 D−1/2(P t)∗ (see Eq. 3.4)

5 apply Algorithm 2 to G(t) and μ, to get a permutation π : [n] → [n] and an s× n
matrix R̄

6 define D = {(G(t))(:,π(1)), . . . , (G
(t))(:,π(s))} and h

(t)
s (xi) = R̄(:,i), i ∈ [n].

3.2.2 Out-of-sample extension and anomaly detection

Given an out-of-sample data point x ∈ X̄\X , the goal of the present section is to provide an

extension of h
(t)
s from Eq. 3.9 to x.

For this purpose, a user-defined probabilities vector p(t)(x) ∈ �n has to be defined. The
i-th entry of p(t)(x) defines the transition probabilities from x to xi ∈ X in t time steps, i.e.
p(t)(x)i = �(x(t) = xi|x(0) = x), i ∈ [n]. Consequently, consistently with Eq. 3.4, the n

dimensional extension of G(t) to x is defined by g(t)(x) � ‖d‖1/21 D−1/2p(t)(x) ∈ �n. Then,

Algorithm 3 is applied to g(t)(x), to produce an s-dimensional embedding h
(t)
s (x) = Fs(g

(t)(x)).
This scheme is consistent with the low-dimensional embedding scheme, described in Sec-

tion 3.2.1, in the sense that if the probabilities vector p(t)(x) equals to an in-sample probabilities

vector (P ∗)(:,i) for a certain i ∈ [n], then h
(t)
s (x) = h

(t)
s (xi). Algorithm 5 summarizes the above.

Algorithm 5: Out-of-sample extension for ICPQR-based DM

Input : A dictionary D, an s× n matrix R̄ and a degrees vector d ∈ �n, which are
the outputs of Algorithm 4, and a transition probabilities vector
p(t)(x) ∈ �n.

Output: The extension of h
(t)
s to x, h

(t)
s (x) and the associated distortion rate μ(x).

1 set g(t)(x) = ‖d‖1/21 D−1/2p(t)(x), where D is the diagonal n× n matrix diag(d)

2 apply Algorithm 3 to D, R̄ and g(t)(x), to get h
(t)
s (x) ∈ �s

3 define μ(x) = (‖g(t)(x)‖2 − ‖h(t)
s (x)‖2)1/2

One possibility for the definition of p(1)(x), which is the first time step transfer probabilities
from an out-of-sample data point to X , is via the kernel function k by

p(1)(x)(i) � k(x, xi)/
n∑

j=1

k(x, xj), i ∈ [n]. (3.11)

This definition is consistent with Eq. 3.1. Then, the corresponding transition probabilities
vector in time step t can be heuristically defined by p(t) = (P ∗)t−1p(1)(x). This definition
represents a Markovian process for which the new data point x is inaccessible from the dataset
X , and the transition probabilities from x to X in time-step t are determined by the transition
probabilities from x to X in the first time-step, represented by p(1)(x), and the transition
probabilities among the elements of X after t− 1 time-steps, represented by (P ∗)t−1.

17



Finally, the (strict) normality of an out-of-sample data point x is determined due to Defi-
nition 2.2 and Eq. 3.10, using the distortion rate function μ(x) from step 3 of Algorithm 5.

4 Experimental Results

This section demonstrates analyses of three different datasets, both synthetic and real, using
the proposed methodologies from Sections 2 and 3. Section 4.1 exemplifies the basic notions of
geometry preservation, anomaly detection and out-of-sample extension through the application
of the QR-based DM, as described in Section 3, to a synthetic dataset. A comparison with
the method proposed in [42] for diffusion geometry preservation is presented in this section
as well. A QR-based DM analysis of real data is demonstrated in Section 4.2. The analyses
in both of the above examples are based on the corresponding first time step DM. Finally,
Section 4.3 presents a multiclass classification of parametric data, using generalizations of the
out-of-sample extension and anomaly detection methods, presented in Section 2.5.

4.1 QR-based DM analysis - toy example

In this section we present a diffusion-based analysis of a synthetic two dimensional manifold,
immersed in a three dimensional Euclidean space. The analyzed dataset X ⊂ �

3 consists of
n = 3, 000 data points, uniformly sampled from a Swiss roll, shown in Fig. 4.1.

−10 −5 0 5 10 15
−20

0
20

40
−15

−10

−5

0

5

10

15

Figure 4.1: Swiss roll consists of 3, 000 uniformly distributed points. Data points are colored according
to their distance from the origin.

The utilized kernel function is the commonly-used Gaussian kernel kε : X × X → �,

kε(x, y) � e−‖x−y‖2/ε, ε > 0, (4.1)

where the norm appears in the exponent is the standard three dimensional Euclidean norm.
The associated n× n kernel matrix is Kε, whose (i, j)-th entry is

(Kε)(i,j) � kε(xi, xj), i, j ∈ [n].

The corresponding degrees function is dε ∈ �n, whose i-th entry is (dε)(i) �
∑n

j=1 kε(xi, xj), i ∈
[n] and Dε is the n × n diagonal matrix, whose i-th diagonal entry is (dε)(i). Based on these,
according to Eq. 3.1, the n× n transition probabilities matrix is defined to be

Pε � D−1
ε Kε. (4.2)

Thus, transition probabilities between close data points are high, and low for far points.

18



Section 4.1.1 addresses the qualitative dependency between the neighborhood parameter
ε, and the required embedding’s dimensionality. Section 4.1.2 shows a further step of dimen-
sionality reduction, using the optimal coordinates system, as described in Section 2.3. Out-
of-sample extension and anomaly detection, as described in Section 3.2.2, are demonstrated in
Section 4.1.3. Finally, Section 4.1.4 presents a brief description of the μ-IDM method [42] and
performances comparison with our method.

4.1.1 The dependency between ε and the embedding’s dimension s

As was proved in [8] as ε increases, the numerical rank of Pε decreases and vice versa. Math-

ematically, let 1 = s
(ε)
1 ≥ s

(ε)
2 ≥ . . . ≥ s

(ε)
n ≥ 0 be the eigenvalues3 of Pε and define Eε(r) :

[0, 1] → [0, 1], Eε(r) � (
∑t

i=1 (s
(ε)
i )2/

∑n
i=1 (s

(ε)
i )2)1/2 be the energy’s portion of Pε, captured

by the first t eigenvalues of Pε, where r = t/n is the corresponding spectrum ratio. Then, as
ε increases the number of significant eigen-components decreases, as demonstrated in Fig. 4.2.
This fact, combined with Lemma 3.1, suggests that as ε decreases, the number of components
required to achieve a certain distortion increases, as Fig. 4.3 demonstrates.

(a) Spectra of Pε (b) Spectra ratios of Pε (c) Diffusion distances distribu-
tions

Figure 4.2: Spectral and geometrical views of three diffusion geometries, corresponding to the neigh-
borhood parameters ε = 1, 5, and 25. Figure (a) shows that the larger ε, the faster the spectrum
decays. An immediate consequence is shown in Fig. (b) that shows relation between the number of
significant components and ε. Figure (c) shows the probability distribution of the diffusion distances.
It is clear that large ε results in many short diffusion distances and vice-versa.

Figure 4.3 compares between the analytic bound (see Lemma 3.1), the minimal dimension
of DM and the QR-based DM dimension that are required to achieve a certain distortion. It
also demonstrates the above discussed relation between the neighborhood parameter ε and the
dimensionality of the embedding. Thus, the larger ε the the fewer dimensions that are required
to achieve a certain distortion.

3The eigenvalues of Pε are nonnegative, as the Gaussian kernel function kε from Eq. 4.1 is positive definite,
due to Bochner’s theorem [49]. Thus, if the data points in X are all distinct, then kε is strictly positive definite,
and the eigenvalues of Pε are all positive.

19



(a) Small neighborhood, ε = 1 (b) Medium neighborhood, ε = 5 (c) Large neighborhood, ε = 25

Figure 4.3: Number of components (dimensions, y-axis) required to preserve the Swiss roll diffusion
geometry up to a distortion (x-axis) for three different neighborhood sizes. The continuous (green)
graph denotes the analytic bound, provided by Lemma 3.1, the dashed (red) graph is the QR-based DM
dimension, produced by Algorithm 2, and the dash-dotted (blue) graph is the minimal DM dimension,
required to achieve a certain distortion.

4.1.2 Low-dimensional embedding

In this section a comparison of the classic DM and ICPQR-based DM is presented. Figure 4.4
shows the two-dimensional DM embedding of X , and a two-dimensional view of an aligned
versions of ICPQR-based DM, applied to X with three different distortion values.

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) DM

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) ICPQR-DM, μ = 0.1

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) ICPQR-DM, μ = 1

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

3

4

(d) ICPQR-DM, μ = 5

Figure 4.4: Comparison of two-dimensional DM and projected aligned ICPQR-based DM of X , with
ε = 3, for the first diffusion time-step: (a) two most significant DM coordinates of Ψ(1). (b)-(d):

two most significant coordinates of the aligned version of h
(1)
s , with (b) μ = 0.1, s = 1, 246, actual

distortion 0.01, (c) μ = 1, s = 752, actual distortion 0.23, and (d) μ = 5, s = 382, actual distortion
3.91. Data coloring is consistent with Fig. 4.1.

It should be stressed that h
(1)
s , the output of Algorithm 4, is an s-dimensional 2μ-distortion

of the n-dimensional DM Ψ(1), as defined in Definition 1.1. Therefore, it is unlikely that low-
dimensional projections (lower than s) would represent similar geometries. Nevertheless, to
demonstrate the notion of low-rate distortion, Fig. 4.4 shows a two dimensional view of an
aligned version of Ψ(1) with Ψ(1). For that purpose, the DM of X was explicitly computed.
The utilized alignment algorithm is described in Appendix A.

4.1.3 Out of sample extension and anomaly detection

Application of Algorithm 4 to X with Kε, ε = 3, t = 1 and μ = 0.1 was resulted in an s-
dimensional 2μ-distortion of Ψ(1), h

(1)
s : X → �

s with s = 1, 246. An out-of-sample extension
of h

(1)
s to X̄ is demonstrated in this section, as well as anomaly detection, X̄ ⊂ �3 be a random

subset of 10, 000 data points, uniformly sampled from the three dimensional bounding box of
X .

For that purpose, Algorithm 5 was applied to X̄ . Beside its three first inputs, which are
provided as outputs of Algorithm 4, a transition probabilities vector p(1)(x) ∈ �n should be

20



defined for any x ∈ X̄ . In this example p(1)(x) was defined consistently with the kernel Kε,
using Eq. 3.11. This definition coincides with the definition of the transition probabilities
matrix Pε from Eq. 4.2, and results in exact extension on X , i.e. if x = xi for a certain i ∈ [n],

then h
(1)
s (x) = h

(1)
s (xi).

The results are shown in Fig. 4.5. Figure 4.5(a) shows a side view of the dataset X̄ , each
data point x ∈ X̄ is colored proportionally to its out-of-sample extension distortion rate μ(x)
(see step 3 of Algorithm 5.) Classification of X̄ to normal and abnormal classes is shown in
Fig. 4.5(b). The normal class N ⊂ is darkly colored, and abnormal class N̄ is brightly colored.
The classification was done according to Definition 2.2. Thus, x ∈ X̄ is considered normal if
its distortion rate μ(x) ≤ μ. Otherwise, it is considered abnormal. Lastly, a two dimensional

view of the out-of-sample extension of the normal class, namely h
(1)
s (x), x ∈ N , is shown in

Fig. 4.5(c). Each embedded point is colored in the same color of its nearest neighbor from the

embedding of X , h
(1)
s (X ). The shown coordinates-system is consistent with the one presented

in Fig. 4.4.

(a) Distortion rate function
μ : X̄ → .

(b) Classification of X̄ to
normal (μ(x) ≤ 0.1) and
abnormal (otherwise) classes.

(c) Normal points in the em-
bedded space. Points are col-
ored identically to their near-
est neighbor in the original
space (see Figure 4.1) .

Figure 4.5: 10, 000 out-of-sample points randomly selected in the bounding box of the original Swiss
roll. Left and center: two-dimensional side view of the out-of-sample dataset, colored by their distor-
tion rate and classification, respectively. Right: extension of the first two meaningful ICPQR-based
DM embedded space coordinates to the normal out-of-sample points.

4.1.4 Comparison with μIDM

The μIDM algorithm in [42] is a dictionary-based method that provides a low rank 2μ-distortion
for the first transition time step of the DM, Ψ(1). The algorithm incrementally constructs an
approximated map, using a single scan of the data. This algorithm is greedy and sensitive to
the scan order. Typically, the growth rate of the dictionary is very high at the beginning and
decays across time. Moreover, the resulted dictionary and the resulted embedding’s dimension
may be redundant. In each iteration of the μIDM, a newly processed data point is considered
for inclusion in the dictionary that was constructed from previously scanned data points. At the
beginning of every iteration, the dictionary elements are already embedded in a low-dimensional
space (whose dimension equals to the size of the dictionary), where its geometry is identical
to the diffusion geometry of the data, restricted to the dictionary. Then, a Nyström-type
extension [5] is applied to the scanned data points, based on its affinities with the dictionary
elements, in order to approximate the embedding of the newly processed data point. The
exact DM of this data point, together with the dictionary, is then efficiently computed. The
geometries of these two embeddings are identical for the dictionary therefore, at this stage these

21



two geometries are aligned to coincide on the dictionary, and the distance of the extended map
from the exact map of the examined data point is measured. If this distance is larger than μ
then the examined data point is added to the dictionary.

The entire computational complexity of this iterative process is lower than the computa-
tional complexity of DM. The exact number of required operations depends on the required
accuracy and on the dimensionality of the original ambient space.

The presently proposed QR-based DM method considers the entire dataset in each iteration
and is not sensitive to the order of the dataset. Therefore, the resulted dictionary is more sparse,
as demonstrated in Table 4.1 and Fig. 4.6.

μ ICPQR-based DM μIDM [42]
Dictionary size s 1, 246 2, 305

0.1 Execution time (sec.) 43 7 hours
Actual distortion 0.01 0.03
Dictionary size s 752 1, 293

1 Execution time (sec.) 27 71 minutes
Actual distortion 0.23 0.61
Dictionary size s 382 630

5 Execution time (sec.) 17 15 minutes
Actual distortion 3.91 4.46
Dictionary size s 190 284

10 Execution time (sec.) 9 4 minutes
Actual distortion 12.81 13.24

Table 4.1: ICPQR-based DM and μIDM algorithms compared by dictionary size, execution time and
actual distortion4, w.r.t. Ψ(1), for various distortion parameters. Clearly, the actual distortion is
bounded by 2μ. Execution times are averaged over 10 runs of the algorithms.

(a) ICPQR-based DM Dictionary, 382
points

(b) μIDM Dictionary, 630 points

Figure 4.6: Data points admitted to ICPQR-based DM and μIDM dictionaries (dark points), with
distortion parameter μ = 5. The input was given to both algorithms ordered from the inner part of
the Swiss roll, to the outer, larger radius.

4An actual distortion of a function f w.r.t. g is supx,y∈X |‖f(x)− f(y)‖ − ‖g(x)− g(y)‖|.

22



4.2 QR-based DM analysis - real-world data

This section exemplifies a semi-supervised anomaly detection process, applied to a real-world
dataset. The examined dataset X̄ ⊂ �14 is the DARPA dataset [28] consists of n̄ = 12, 617 data
points. Each data point is a vector of 14 features that describes a computer network traffic,
labeled as either normal and legitimate or abnormal that pertains to an attack and intrusion
to the network. The dataset is divided into a training set X ⊂ X̄ which contains n = 6, 195
normally behaving samples and 5 testing datasets {Tmon, . . . , Tfri}, which were collected during
different days of the week, each contains normal and abnormal data points, as described in
Table 4.2.

First, the training dataset was scaled to lay in the 14-dimensional unit box [0, 1]14. Then,
the same scaling was performed to the testing datasets T = Tmon ∪ . . . ∪ Tfri. Application
of Algorithm 4 to the training set X , using the Gaussian kernel from Eq. 4.1 with ε = 0.6,
t = 1 and μ = 10−7, produced an s-dimensional 2μ distortion of the first time step DM Ψ(1) of
X , h

(1)
s : X → �

s with s = 138. The neighborhood size parameter ε was chosen to be twice
the median of all the mutual distances between the data points in �14. Such a selection is a
common heuristic for that parameter determination in the context of DM. This concludes the
training phase.

As a second stage, for each testing point x ∈ T , the probabilities vector p(1)(x) was defined
as the natural extension of the Gaussian kernel from Eq. 4.1, using Eq. 3.11, with ε = 0.6. Any
testing point which is distant (relatively to ε) from the training set X yields kε(x, y) ≈ 0, y ∈ X ,
and was a-priori classified as abnormal. The subset of distant testing points is denoted by F .

Finally, Algorithm 5 was applied to the elements of T \F , using the previously computed

probabilities vectors p(1)(x), x ∈ T , to get an extension of h
(1)
s : T \F → �

s and a distortion
rate μ : T \F → �. Then, strictly abnormal data points were detected, following Definition 2.2
with μstrict from Eq. 3.10.

The anomaly detection results are summarized in Table 4.2, and some of them are demon-
strated in Fig. 4.7. The rates in the accuracy percentage and false alarms columns are related
to the original labeling of X̄ .

Set Size # of anomalies Accuracy [%] False Alarms [%]
Tmon 1, 321 1 100 0.68
Ttue 1, 140 53 100 0.53
Twed 1, 321 16 100 0.08
Tthu 1, 320 24 96 1.74
Tfri 1, 320 18 100 0.15

Table 4.2: Anomaly detection performances.

Figure 4.7 presents three-dimensional views of an aligned version of h
(1)
s of X , as well as its

extension to Tthu\F , with the first three significant coordinates of Ψ(1), the DM of X in the
first time step. As can be seen in the figure, most of the test set located near the training set,
while the abnormal data points are embedded further.

23



−50
0

50−2 −1 0 1 2 3 4 5 6

−1.5

−1

−0.5

0

0.5

1

1.5

2 Training set
Normal predicted test points
Abnormal predicted test points
Labeled Anomalies

(a)

Training set
Normal predicted test points
Abnormal predicted test points
Labeled Anomalies

(b)

Training set
Normal predicted test points
Abnormal predicted test points
Labeled Anomalies

(c)

Figure 4.7: Three different angles and scales of an aligned version of three-dimensional projection of

h
(1)
s , applied to the training set X (blue points), its out-of-sample extension to Tthu\F (strictly-normal

points are green, strictly-abnormal points are red), and labeled anomalies (black circles). (a) general
view. (b) strictly-normal out-of-sample data points are mapped closely to the training set. (c) strictly-
abnormal data points.

As in Section 4.1.2, the alignment was done only for visualization purposes, using the
described algorithm in Appendix A.

4.3 Semi-supervised multi-class classification of high dimensional
data

In this section a multi classification process, based on Algorithms 2 and 3 is presented. The
analyzed data is the parametric m-dimensional ISOLET dataset [3] X̄ ⊂ �

m with m = 617,
consists of 7, 797 data points in [−1, 1]m. Each datum corresponds to a single human pro-
nunciation of ISOlated LETters. The goal is to classify a testing subset T ⊂ X̄ of 1, 559
letter-pronunciation samples spoken by 30 people to 26 classes, based on a training set X ⊂ X̄
of n = 6, 238 samples, already classified to Xζ , ζ ∈ I � {A,B, . . . , Z}, spoken by 120 different
people.

For this purpose Algorithm 2 was applied to each of the training sets Xζ with distortion
parameter μ = 4.7, to produce 26 dictionaries Dζ ⊂ Xζ , ζ ∈ I. Then, for each of these
dictionaries, Algorithm 3 was applied to each element in the testing set x ∈ T , to produce
its distortion rate μζ(x) (see Eq. 2.15.) Finally, each of the testing points was classified to

the class whose dictionary described it the best, i.e. x was classified to class ζ0, where ζ0 �
argminζ∈I μζ(x). We note that the parameter μ was determined by taking part of the train set
to serve as a validation set. Then, several values of μ were applied on the (reduced) training
set, and the validation set was classified based on these values. The chosen μ was the one which
was optimal on the validation set.

The results are shown in Fig. 4.8. Out of 1, 559 test samples, 92% were classified correctly.
The classification of the test data is presented in a confusion matrix in Fig. 4.8. It can be seen
that the majority of test samples of each class were classified correctly, by looking at the shades
of the diagonal. The sets {B,C,D,E,G, P, T, V, Z} and {M,N} are the most difficult letters
to classify, due to high similarity in pronunciation of the letters within each set. The state-of-
the-art classification accuracy of this dataset, 96.73%, was achieved in [22] by using 30-bit error
correcting output codes based on neural networks. This method is far more complex than the
solution proposed in this work.

24



A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z 1

5

10

30

60

Figure 4.8: Classification of the test samples in ISOLET dataset. For each ordered couple (i, j), the
cell at row i and column j is colored according to the number of test samples belonging to class i that
were classified by the algorithm to the class j. The cells on the diagonal denote correct classification.
For each letter a total of 60 test samples are provided (except for ’M’ which is missing one sample due
to recording difficulties).

5 Conclusions and Future Works

This work presents a complete framework for linear dimensionality reduction, out-of-sample
extension and anomaly detection for high-dimensional parametric data, which is based on in-
complete pivoted QR decomposition of the associated data matrix. The presented method
preserves the high-dimensional geometry of the data, up to a user-defined distortion param-
eter. Such a low-dimensional data representation enables further geometrically-based data
analysis which, due to the geometry-preservation, is still valid to the original data. The storage
complexity of the method is extremely low compared to the classical PCA, and in the worst
case its computational complexity is similar to that of the PCA. The method provides a dic-
tionary, which is a subset of landmark data points that forms a basis for the projection of
the entire data to a low dimension. Out-of-sample extension and anomalous point detection
become simple tasks once the dictionary is computed. Although The suggested method is des-
ignated for parametric data analysis, in some cases it can be adapted to non-parametric data
analysis frameworks, as was demonstrated to DM framework. The stability of our method to
perturbations (noise) was proved, and its connection to matrix-approximation was presented.

Experimental results show that our method achieves a lower dimensional embedding than
PCA achieves for a certain distortion. Moreover, analyses of both synthetic and real-world
datasets were demonstrated, and showed good results of dimensionality reduction, out-of-
sample extension, anomaly detection and multi-class classification.

Future works include randomized version of the presented framework, to provide a more
computationally efficient method for a dictionary-based dimensionality reduction. In addition,
a generalization of our method for non-parametric data analysis methods is considered, as well
as a dynamic framework that enables to cope with datasets that vary across time. Finally, a
parallel version of the algorithm, which simultaneously builds dictionaries for subsets of the
data and then unifies them, is considered.

25



Acknowledgment

This research was partially supported by the Israel Science Foundation (Grant No. 1041/10),
by the Israeli Ministry of Science & Technology (Grants No. 3-9096, 3-10898), by US - Israel
Binational Science Foundation (BSF 2012282) and by a Fellowship from Jyväskylä University.

A Appendix: Alignment Algorithm

This section details the alignment algorithm that was utilized in Sections 4.1.2 and 4.2, for
visualization purposes.

Suppose that A and B are two data m× n matrices of n data points in �m. If the sizes of
A and B are different, then the necessary zeros padding can be performed. Clearly, it will not
change the geometry of the columns of these matrices. Let Ā and B̄ be centralized versions of
A and B around the columns means of each one of them. Then, the best orthogonal alignment
of B̄’s columns with Ā’s columns is provided by the orthogonal matrix Q = UAU

∗
B, where UA

and UB are the left singular vectors of A and B, respectively. Then, the aligned centralized
matrix B̃ = Q ∗B is decentralized by A’s columns mean. Obviously, since Q is orthogonal, the
geometry of B̃’s columns is unaffected. Algorithm 6 concludes the above.

Algorithm 6: Alignment Algorithm

Input : Two m× n matrices A and B
Output: An m× n matrix B̃ whose columns geometry is identical to that of B’s

columns, and B̃’s columns are optimally aligned with A’s columns.

1 centralize A: Ā = A− a1∗
n, where a =

∑n
j=1 A(:,j) and 1n ∈ �n is the all-ones vector

2 centralize B: B̄ = B − b1∗
n, where b =

∑n
j=1 B(:,j)

3 compute the left singular vectors of Ā and B̄, UA and UB, respectively

4 define B̃ = UAU
∗
BB̄ + a1∗

n

References

[1] D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66(4):671–687, 2003.

[2] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast johnson-
lindenstrauss transform. In Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 557–563. ACM, 2006.

[3] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[4] Z-Z. Bai, I. S. Duff, and A. J. Wathen. A class of incomplete orthogonal factorization
methods. i: Methods and theories. BIT Numerical Mathematics, 41(1):53–70, 2001.

[5] C. T. H. Baker. The Numerical Treatment of Integral Equations. Oxford: Clarendon Press,
1977.

[6] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted
isometry property for random matrices. Constructive Approximation, 28(3):253–263, 2008.

26



[7] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
1961.

[8] A. Bermanis, A. Averbuch, and R.R. Coifman. Multiscale data sampling and function
extension. Applied and Computational Harmonic Analysis, 34(1):15 – 29, 2013.

[9] A. Bermanis, G. Wolf, and Averbuch. A. Cover-based bounds on the numerical rank of
gaussian kernels. Applied and Computational Harmonic Analysis, 36(2):302 – 315, 2014.

[10] C. Boutsidis, M. W. Mahoney, and P. Drineas. Unsupervised feature selection for principal
components analysis. In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 61–69. ACM, 2008.

[11] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation algorithm for
the column subset selection problem. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’09, pages 968–977, Philadelphia, PA, USA,
2009. Society for Industrial and Applied Mathematics.

[12] C. Boutsidis, J. Sun, and N. Anerousis. Clustered subset selection and its applications
on it service metrics. In Proceedings of the 17th ACM Conference on Information and
Knowledge Management, CIKM ’08, pages 599–608, New York, NY, USA, 2008. ACM.

[13] C. Boutsidis and D. P. Woodruff. Optimal cur matrix decompositions. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, pages 353–362. ACM, 2014.

[14] M. Brand. Fast low-rank modifications of the thin singular value decomposition. Linear
Algebra and its Applications, 415(1):20 – 30, 2006. Special Issue on Large Scale Linear and
Nonlinear Eigenvalue Problems.

[15] P. Brard, G. Besson, and S. Gallot. Embedding riemannian manifolds by their heat kernel.
Geometric and Functional Analysis GAFA, 4(4):373–398, 1994.

[16] T. F. Chan. Rank revealing qr factorizations. Linear Algebra and its Applications, 88–
89(0):67 – 82, 1987.

[17] T. F. Chan and P. Hansen. Some applications of the rank revealing qr factorization. SIAM
Journal on Scientific and Statistical Computing, 13(3):727–741, 1992.

[18] H. Cheng, Z. Gimbutas, P.G. Martinsson, and V. Rokhlin. On the compression of low
rank matrices. SIAM Journal on Scientific Computing, 26(4):1389–1404, 2005.

[19] K. L. Clarkson. Tighter bounds for random projections of manifolds. In Proceedings of the
twenty-fourth annual symposium on Computational geometry, pages 39–48. ACM, 2008.

[20] R.R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Anal-
ysis, 21(1):5–30, 2006.

[21] J.K. Cullum and R.A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue
Computations I: Theory, volume 41 of Classics in Applied Mathematics. SIAM, 2002.

[22] T.G. Dietterich and G. Bakiri. Error-correcting output codes: A general method for
improving multiclass inductive learning programs. In IN PROCEEDINGS OF AAAI-91,
pages 572–577. AAAI Press, 1991.

27



[23] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error
matrix approximation: Column-based methods. In In Proc. of the 10th RANDOM, pages
316–326, 2006.

[24] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error cur matrix decompo-
sitions. SIAM Journal on Matrix Analysis and Applications, 30(2):844–881, 2008.

[25] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding low-rank
approximations. Journal of the ACM (JACM), 51(6):1025–1041, 2004.

[26] W. Givens. Computation of plane unitary rotations transforming a general matrix to
triangular form. Journal of the Society for Industrial and Applied Mathematics, 6(1):pp.
26–50, 1958.

[27] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press,
fourth edition, 2013.

[28] I. Graf, R. Lippmann, R. Cunningham, D. Fried, K. Kendall, S. Webster, and M. Ziss-
man. Results of darpa 1998 offline intrusion detection evaluation. In DARPA PI Meeting,
volume 15, 1998.

[29] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

[30] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 1933.

[31] A. S. Householder. Unitary triangularization of a nonsymmetric matrix. J. ACM, 5(4):339–
342, October 1958.

[32] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 604–613. ACM, 1998.

[33] A. Jennings and M. Ajiz. Incomplete methods for solving atax = b. SIAM Journal on
Scientific and Statistical Computing, 5(4):978–987, 1984.

[34] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

[35] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algo-
rithmic applications. Combinatorica, 15(2):215–245, 1995.

[36] M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends
in Machine Learning, 3(2):123–224, 2011.

[37] M. W. Mahoney and P. Drineas. Cur matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

[38] P.G. Martinsson, V. Rokhlin, and M. Tygert. A randomized algorithm for the decompo-
sition of matrices. Applied and Computational Harmonic Analysis, 30(1):47–68, 2011.

[39] A. T. Papadopoulos, I. S. Duff, and A. J. Wathen. A class of incomplete orthogonal
factorization methods. ii: implementation and results, 2002.

28



[40] J. R. Rice. Experiments on gram-schmidt orthogonalization. Math. Comp., 20:pp. 325–328,
1966.

[41] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290(5500):2323–2326, 2000.

[42] M. Salhov, A. Bermanis, G. Wolf, and A. Averbuch. Approximately-isometric diffusion
maps. Applied and Computational Harmonic Analysis, (0):–, 2014.

[43] B. Schölkopf, A. Smola, E. Smola, and K.R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[44] L. J. Schulman. Clustering for edge-cost minimization. In Proceedings of the thirty-second
annual ACM symposium on Theory of computing, pages 547–555. ACM, 2000.

[45] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science, 290:2319–2323, 2000.

[46] S. Vempala. The random projection method, volume 65. American Mathematical Soc.,
2005.

[47] U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17, 2007.

[48] S. Wang and Z. Zhang. Improving cur matrix decomposition and the nyström approxima-
tion via adaptive sampling. The Journal of Machine Learning Research, 14(1):2729–2769,
2013.

[49] H. Wendland. Scattered data approximation. Cambridge University Press, 2005.

29


	High-Dimensional Big Data Processing with Dictionary Learning and Diffusion Maps
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	2 CONTRIBUTION OF THE THESIS
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	COARSE-GRAINED LOCALIZED DIFFUSION
	HIERARCHICAL DATA ORGANIZATION, CLUSTERING AND DENOISING VIA COARSE-GRAINED LOCALIZED DIFFUSION
	RANDOMIZED LU DECOMPOSITION: AN ALGORITHM FOR DICTIONARIES CONSTRUCTION
	INCOMPLETE PIVOTED QR-BASED DIMENSIONALITY REDUCTION



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




