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AbstractUnderstanding the structure of scientific knowledge is to large de-gree based on understanding what the key concepts are and how andwhy these concepts are connected. Recent cognitively oriented re-search on learning has suggested that procedures of knowledge con-struction and processing which generate the complex knowledge struc-tures may be simple ones, reducible to simple basic patterns. In thisstudy we concentrate on modeling concept maps that are produced byphysics students. We study seven different models to describe physicsstudents knowledge structure utilizing the basic patterns as modelingparameters. The models ranged from straightforward calculation of tri-angles and edges to more complex models that take in account thetransitivity as well as cycles and triangles. According to the researchdocumented in this paper it seems possible that at least highly hierar-chical information in learner’s mind can be modeled by triangles andother simple patterns formed by the key concepts and meaningful linksbetween them.
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1 Introduction
The knowledge in physics has been shown to be highly structural by na-ture [1]. This means that new concepts - whether they describe a physicalphenomena, more general principle or a physical law are connected to pre-viously defined concepts. These connections are not loosely or arbitrarilydefined. Two concepts can be seen connected if there exists either a di-rect theoretical or an empirical connection between the new concept andthe body of knowledge already defined. Physical phenomena can thus bedescribed by concepts and relations connecting them [2]. Also, knowledgeprocessing and acquisition has recently been described in the framework ofnetwork theory, and such an approach seems to be well adapted for de-scription of relational aspects of conceptual knowledge and aspects relatedto retrieval of knowledge [3, 4]. These are the main reasons why there hasbeen interest in developing learning and teaching theories that capitalize onconcept maps [5].Understanding the structure of scientific knowledge is to large degreebased on understanding what the key concepts are and how and why theseconcepts are connected. The structural relations between the concepts playalso an essential role in establishing the meaning of concepts [6, 7]. Structurealso affects how concepts are introduced in teaching scientific knowledge,how concepts are acquired through teaching, and how the conceptual knowl-edge can be represented and transferred forward [8, 9, 10]. Furthermore,recent cognitively oriented research on learning has suggested that proce-dures of knowledge construction and processing which generate the complexknowledge structures may be simple ones, reducible to simple basic patterns.Of particular importance seems to be different types of hierarchies, cliques,transitive patterns and cycles [11, 12]. These notions have encouraged theidea that such patterns may help in understanding the cognitive processesbehind knowledge construction and may lead also to the development ofcomputational models for cognitive processes [11, 12, 13].Whenever a new concept is introduced to the body of knowledge inphysics it links to already existing concepts. These connections are neededto justify the introduction of the new concept. An arbitrary (and legitimate)link between two concepts has it’s justification through a theoretical modelor an experiment. In both cases there are distinct sets of concepts of theestablished body of knowledge that are connected to the newly introducedconcept.
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It is the hierarchical nature of knowledge in physics that makes the useof concept maps such a useful tool [14]. In this study we follow Novak’s defi-nition for a concept map [8]. Concept maps consists of a set of concepts (alsocalled nodes in graph theoretical applications) and links (or edges) connect-ing them. Each link has a label describing the meaning of the conncetion.This definition leads us to note that concept maps are graphs with addedlabels. Graphs are commonly definited as combination of a set of nodes anda set of edges. In the most common case, we can write G = (V , E ), where Gis the set of graphs, V is the set of nodes and E is the set of edges.We see that concept maps are a justified approach to model knowledgein physics. There is also another useful feature of using concept maps asthe tool to model knowledge. In physics there are often many different pathsto introduce a new concept. In planning of teaching the order of conceptscan vary and different strategies can still be equally effective. That can beillustrated easily by concept maps as there are usually many paths linkingnode A to node B in a well-connected map. Concept maps can serve teachersin building their own understanding of the structure of the knowledge (of atopic of interest) as well as help them plan teaching in a way that introducesknowledge in a coherent way.As concept maps are essentially graphs the study of them can leverageof the recent graph theoretical advancements. The interest in the networksand their properties has surged over the past two decades. A lot of effort hasgone into studies of real-world graphs such as various kinds of social net-works, the Internet and world wide web as well as into creation of analysisalgorithms and models to predict and explain the behavior of the real worldsystem [15]. There is a sophisticated mathematical system that provides pow-erful tools to analyze complex networks. This system is called exponential
random graphs (ERG). The foundations of the theory were laid over thirtyyears ago by Holland and Leinhardt [16] although it took some time beforethe scientific community at large understood the power of ERGs. They weredeveloped after it became widely accepted fact that mere random graphswere not good models for real-world networks. After their introduction theexponential random graphs turned out to be highly effective in handling ofcomplex networks. Exponential random graphs have a solid mathematicalfoundation, and equally importantly, they can also be derived from equilib-rium statistical mechanics [17]. This aspect is illustrated in an article byPark and Newman as in it they arrive at analytical solution for the 2-starmodel by utilizing statistical mechanics theory [18]. The 2-star model is the
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most simple, yet not trivial exponential random graph model. They derivethe model from maximum entropy assumptions. This result shows how solidis the mathematical foundation under the ERGMs.The rise of computing power enabled researchers to calculate more robustvariables and run more sophisticated algorithms on larger (and usually morerealistic) networks. In recent years the wide spread use of computers acrossthe fields of research has lead to automation of data collection. This hasenabled scientists to work on large and diverse real world networks.
1.1 Modeling parametersIn this study we concentrate on modeling concept maps that are producedby physics students. Our aim is to calculate certain characteristic values ofthe concept maps and use these as modeling parameters, or in some casesboundary conditions. We hypothesize that by carefully choosing the param-eters can yield better models that describe the physical substance betterthan random graphs. Modeling is carried out using the Statnet package ofR [19]. It provides a well-established framework for modeling concept maps.Statnet and it’s features will be discussed in greater detail in chapter 4.It is obvious that some simple modeling parameters like the number ofedges in the graph are insufficient alone. The problem is that they don’tcapture the hierarchical structure of physical knowledge [20]. There aremore advanced modeling parameters available, such as clustering or k-starsthat capture the topology of the graphs better. In the context of this study wehave a constant number of nodes since the concepts used by physics studentsto construct their concept maps were predetermined. It is reasonable to limitthe modeling process to networks with (the same) constant number of nodes.There are also other similar boundary conditions that can be applied intomodeling such as forcing at least one edge for all nodes or disallowing self-connections.All the models will be simulated in order to get insight whether theyproduce networks that can be interpreted as realistic concept maps that aredistinguishable from random graphs or not. We consider a graph realisticwhen the calculated values of the statistical variables are close to the valuescalculated of human-made graphs. As statistical variables to be measuredwe chose the number of edges, triangles, k-stars, n-cycles and transitivity. Inorder for a simulated network to be realistic it should imitate the real-worldnetworks. It is a well known fact that mere random graphs don’t have realistic
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link distributions as their link grades follow Poisson rather than power-law distribution [21]. It became clear that many times poor models yield tonetworks with unrealistic number of links for a node. We consider simulatednetworks that facilitate nodes with zero links unrealistic as there are noisolate concepts in a developed physics theory such as electromagnetism(which is the theme of the concept maps in this study).
1.2 Research questionsIt has been shown that the knowledge processing and acquisition happensthrough set a basic motifs (or patterns) [2]. The goal of this study is totake a concentrated look at these motifs and use them then as buildingblocks to create models. These models are then tested by simulating them.Similar measurements to original, real world concept maps are then doneto these simulated networks to see how much, if any of the hierarchical andtopological features are sustained. This goal can be compressed into tworesearch questions:1. Can the maps made by the physics students1 be modeled using thebasic patterns so that the simulated graphs preserve some of the topo-logical information found in the original concept maps?2. What is the set of basic patterns that, when used as modeling param-eters, yield to most accurate model?The ideas discussed in this paper can be applied into a variety of areasof interest. One of the most promising is to use the methods introduced hereto help teachers plan their teaching. By automating parts of the analysisdone here a (web-based) software could be developed to quickly give ateacher a good general view of the level of understanding of the students,especially related to their ability to understand relatedness of key conceptsin the subject matter. In science, that kind of information about the topologyof the knowledge structure could play an important role in addition to theinformation gain from regular exams.

1A computer-drawn reconstructions of two original concept maps can be seen in figures3 and 4.
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2 Modeling and simulation of concept maps
In the heart of modeling concept maps are the topological features. We willbegin by looking at the basic motifs based on the recent advancements incognitive sciences [22]. We will continue on to discuss the development of
exponential random graphs and the Markov chain Monte Carlo method.
2.1 Structure and basic motifsNew concepts connect to the established body of knowledge in the contextof experiments and theoretical models. Experiments and models thereforeproduce the basic structural patterns found in complex networks of structuredscientific knowledge [23, 2]. In (laboratory) experiments the concepts areconnected through designing the experiment and through interpretation ofthe experimental data. In quantitative experiments (usually a small) numberof concepts are used to make a concept measurable. In the simplest case thisleads to triangular pattern. Triangle is formed when connected concepts Aand B are used to make concept C measurable. This forms connections A →C and B→ C closing the triangle (since there already exits a connection A→B). This is illustrated in the figure 1. As an example we can take a look at awell known experiments on photoelectric effect. One of the key conclusionsof the experiments was that above the threshold frequency, the maximumkinetic energy of the emitted photoelectron depends on the frequency (butnot on the intensity) of the incident light [24]. Intensity and frequency areconnected in the theory of light. This experiment connects intensity and(threshold) frequency to the energy of the emitted photons.There are cases where three or more concepts are explicitly needed tomake another concept measurable. The graph theoretical patterns that arethen formed are called k-stars, where k is the number of concepts that areconnected to the concept that is wanted to make measurable. In figure 1(b) there is a 3-star motif which is a result of three nodes all linked to afourth node. Important patterns that arise from similar arguments are small
cycles. As an example an (undirected) 4-cycle can be a result of the followingprocedure. A concept A can be used in defining two other concepts B andC. These concepts are then used to define another concept D. As a result wehave a small cycle with four concepts. The definition of D requires explicitlyconcepts B and C and implicitly concept A. A twopath connects concepts Aand C via concept B. This is illustrated in the figure 2. Transitivity is a motif
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(b)Figure 2: (a) A 4-cycle, an example of the cycle class of network motifs (b) Atransitivity motif. We consider a pattern to be a transitivity motif when thereis a connection from node A to node C via a third node B.
where nodes A and C are linked via a third node B. An example of this canbe seen in figure 2.The same basic patterns or motifs are also found in the context of theo-retical models. This is due to the requirement of the conceptual coherenceof a theoretical model. A Conceptually coherent model integrates variousconcepts into a solid system that describes real phenomena. This leadsto the basic knowledge-ordering patterns of mutual dependencies betweenconcepts [23]. The same basic patterns discussed above are then expectedto be found in conceptual systems that describe well the physical knowl-edge, regardless of the context where the connections between concepts areformed.
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2.2 From random graphs to ERGMsRandom graphs are products of some random procedure. In the most straight-forward case consider a set of nodes n that forms edges with the probability
p. The resulting graph is a random graph with fixed number of nodes. This isthe Erdös-Rényi (ER) random graph model2 [26]. The probability distribution
pk of this kind of random graph model is given by [27]

pk = (Nk
)
pk (1− p)N−k (1)

where N is the number of vertices in the graph and k is the degree of thevertex. The degree of the vertex means the number of connections it has toother vertices.Random graphs have been deployed in many areas of interest. In ad-dition to their obvious use in mathematics and computer science they havealso been used in sociology and epidemiology [28] among other. Becauseof the discrete nature of the network and mutually independent probabil-ity to form edges between any nodes the grade distribution of the randomgraph is a Poisson distribution [21]. It was soon discovered however that therandom graphs did not accurately predict or explain the behavior of neuralnetworks, networks of friendships, the internet or other real-world phenom-ena. These real-world networks very commonly have heavy tails in theirgrade distribution. Heavy tails indicate nodes with remarkably high grades.These nodes are commonly called hubs and they are found throughout thereal-world networks. Heavy tails do not fit into the Poisson distribution butare rather an indication of the power law distribution. It is common that inmany networks the grades of hubs are several orders of magnitude higherthan average grade of the network. The other major downfall of the ER model(as defined originally) is that the random graphs are undirected. This meansthat information between two nodes that are connected can travel in bothdirections. This is again not true for many practical situations or applica-tions. Consider for example a network where nodes are web sites and linksare hyperlinks in the web sites. These links are clearly directed. For thesereasons it imperative for researchers to move beyond the ER random graphs.[27]Network theory has seen development into multiple directions after theintroduction of ER models. Many new models have been proposed such as
2An equivalent model was developed independently at the same time by Gilbert [25]
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the small-world model [29]. The name of the model comes from the famousproposition that any two people are connected through no more than sixother people. The idea behind the small-world model is to consider thenodes forming a one-dimensional lattice with N nodes. We then allow thelinks to be formed between nodes that are not more than k nodes apart.The constant k < N is a threshold. In the next phase some long distancelinks are formed. This completes the small-world model. This model has theadvantage of high transitivity over the original ER models. The small-worldmodel is an example of many other models studied, such as configurationmodels. [30]Another important new model was the scale-free model by Barabási andAlbert [31]. They propose in their paper that the many complex networkssuch as the world wide web follow the scale-free power-law as the linkgrade distribution. The power-law for probability P(k ) can written for alarge k as
P(k ) ∼ k−γ (2)The model is based on two observations of the real world networks that areabsent in the ER model. Those are growth and preferential attachment. Thegrowth means that real-world networks rarely stay stationary with respectto their nodes. Many complex networks are open so that new nodes areintroduced to the network all the time. The preferential attachment comesfrom the notion that there are hubs in most of the real-world networks. Inthe world wide web this means that an arbitrary web page is more likely tohave links to popular web sites than non-popular. These two features leadto the scale-free power-law model.It became clear that these models that are analytically solvable all fallshort in one way or the other. Researchers then turned their attention to adifferent approach. In particular the transitivity can only be included in veryfew solvable models. The exponential random graph model was developedusing the analogy of the Boltzmann ensemble. To define exponential randomgraphs we follow the presentation of Strauss [32, 30]. We begin by consider-ing the measurable properties of the graph {εi}. These include in our studysuch variables as number of edges, clustering coefficient, communicabilitybetweenness centrality and transitivity. These variables are discussed inmore detail in chapter 2.4. As these properties are related to the connec-tions between the nodes we can use the analogy of the energy function in
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statistical mechanics. Let the set {βi} be the field parameters. Exponen-tial random graph model is the set of all possible graphs G. The probabilitydistribution for these graphs will be
P(G) = 1

Z exp(−∑
i
βiεi

) (3)
where Z is the partition function given by

Z =∑
G

exp(−∑
i

βiεi

) (4)
Furthermore, the average of a graph observable εi is obtained through theuse of free energy f . Thus,

< εi >= ∂f
∂βi

(5)
This setup allows us to perform calculations on the models. However,there are currently no general analytical solutions for ERGMs, so we haveto rely on Monte Carlo simulations.

2.3 Markov Chain Monte CarloThe foundation and beginning of the Markov Chain Monte Carlo (MCMC)method were laid by Metropolis et al. [33] and an important generalizationswere made by Hastings [34]. The method has it’s roots in statistical physics,but it took nearly 40 years for them to become part of the mainstream instatistics. It has become an essential tool in many areas of application,including especially multi-dimensional numerical integration. One of it’sadvantages is it’s versatility. The same method (and thus the same software)can be applied to variety of problems [35].The MCMC is essentially a Monte Carlo method using Markov chains.The MCMC algorithms sample from probability distributions by means ofsimulation. It has the desired distribution as it’s equilibrium distribution.A Markov chain is a sequence of random variables where the distributionof each random variable depends only on the value of the previous randomvariable. This leads to a system, where configuration kn+1 is created fromprevious configuration kn stochastically [36]. The information about the pre-vious configuration is not needed. The Markov process operates by a (often a
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very large) transition matrix W that contains the transition probabilities. Inthe Metropolis-Hastings algorithm, the process begins from an initial statewith an evaluation of the desired distribution at this state. A proposal isgenerated, evaluated and then either accepted or rejected. Good proposalsare accepted with higher probability than proposals that lead away from theequilibrium distribution. When a proposed state is rejected then the resultingstate kn+1 = kn. The sampled distributions tend to equilibrium over a largenumber of steps. There are also other methods, such as Gibbs sampling andslice sampling but they are not used in this study. Increasing the number ofsteps usually increases the accuracy of the simulation process, but there arealways some residuals from the initial state. This is also a major differencebetween the MCMC and the standard Monte Carlo algorithms, where eachstep is statistically independent of the other steps.
2.4 Mathematical definition of the observabelsThere are essentially two different clustering coefficients Ck that are fre-quently used [37]. We here use the following definition

Ck = 3N∆
N3 = 3 ∑

k>j>i

aijaikajk /
∑
k>j>i

(
aijaik + ajiajk + akiakj

) (6)
The term N∆ takes into account the number of triangles found in a network.Note that the product aijaikajk = 1 if and only if there exists all three linksbetween the three nodes i, j and k . Otherwise the product equals zero. Thiscomes from the fact that we are not dealing with weighted networks. Inanother words, terms axy can only have value 1 if there exists a link and 0if there does not exist a link between two given nodes.The communicability betweenness centrality (CBC) for a network is de-fined as an average of communicability between any two nodes in the net-work. Communicability between two nodes GAB is commonly defined as theability of an arbitrary piece of information to travel from node A to node B.We use the form proposed by Estrada [38]

GAB = ∞∑
k=0

(
Ak
)
AB

k ! (7)
where A be the adjacency matrix. In adjancecy matrix you have nodes
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represented as rows and columns. The element aij = 1 if there is an edgefrom node i to j . Otherwise aij = 0.This definition of communicability considers not only the shortest pathfrom node A to node B, but extends it’s reach to other non-shortest paths. Asin real world arbitrary particles of information are more likely to use shorterthan longer paths to get from a node to another, the relevance of longerwalks is scaled down by the term (k !)−1, variable k being the length of thepath in consideration. It has been shown [39] that the element (Ak)AB givesthe number of walks from node A to node B that have the length of k .A link grade distribution shows how many links there are connecting eachnode to other nodes. It helps a researcher to determine the if the model isdegenerate or not. In this study we plot the traces of different variables asthey undergo MCMC simulation processes. A trace shows the evolution ofthe value of the variable during the simulation.
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3 The empirical data
The concept maps considered in this work were done by the physics teacherstudents in their third or fourth year. The subject of the concept maps waselectromagnetism. By this time the students should have developed a fairunderstanding of the subject. They had also received teaching on how todevelop a concept map. A total of 46 concept maps were analyzed in thisresearch. There were 20 teacher students making concept maps from 2008to 2010. Each student created two concept maps. Some authors createdmaps both in 2009 and 2010. (Which explains how 20 students created 46maps.) A list of concepts to be used in the maps they were to produce weregiven to them. This means that the number of concepts will be constantwhich is something that is important to keep in mind while modeling thesenetworks. Students were required to justify the links made between anytwo nodes. They were to choose the direction of the connection as well asdeclare whether the connection is due an experimental procedure or theo-retical relation between the two concepts. For a concept map to be includedin this research the justifications and directions of the links needed to belogical for the majority of the links.The data from the concept maps made by the teacher students can nowbe included in an adjacency matrix. An element aij of the adjacency matrix
A has the binary value of 1 if there is a link going from node (or concept) i tonode j . The value 0 means there is no connection in that direction. For anundirected network we have a symmetrical matrix with elementsaij = aji forall i 6= j . Loops aii are not allowed as they are not relevant in physics. Theadjacency matrix is then converted to a network object by Statnet’s build-inmacros.The network object is mathematically a graph. Networks can then bemodeled by giving the algorithm the desired modeling parameters [40]. Themethods of the analysis is discussed in more detail in chapter 4.Figure 3 shows an example of a concept map done by a physics student.The map has been chosen to be displayed here because it is a typical ex-ample of the maps researched in this study. Some of it’s features are visibleeven without any analysis. There are some triangles in the graph, but also 4concepts with only one link connecting them to other concepts. Many of theconcepts are connected to others with very few links. This leads to chain-like formations. One of these chains can be observed going counterclockwisefrom below to right-hand side of the graph. These notions indicate that thetopological features of the map are not optimal. The exact analysis of the
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Figure 3: A reconstruction of a decent concept map done by a physics stu-dent. The data of the links from the original maps were included in anadjacency matrix. That data was then used to reconstruct this map.
map is done in chapter 5.Some of the concept maps studied in this research turned out to be rela-tively poorly constructed. An example of those graphs can be seen in figure4. The difference the between earlier example and this one is remarkableeven to the naked eye. The concept map is lacking much from the hier-archical point of view. First of all, there are very few triangles, 4-cyclesand other basic motifs. The map is not well-connected as 50 % of conceptshave one or two links connecting them to other concepts. This leads to ashallow and chain-like hierarchical structure. There are number of reasonsthat could have led to this kind of a map. One of the probable reasons arisefrom the fact that the students were required to justify each link they made
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Figure 4: An example of a poorly constructed concept map.
between two concepts. If a student doesn’t have a strong understanding ofthe definition and application of a concept in physics, it is hard to justifyit’s connections to other concepts. To justify a link by experiment requiresspecific understanding of the experimental procedure and of the conditionsand boundary rules involved.
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4 Method of analysis
The original data was first processed so that the analysis software can makea use of it. Data was first taken in as an adjacency matrix. The conceptmaps were directional so adjacency matrices were not symmetrical. Some ofthe analysis steps require the symmetry of the adjacency matrix. Thereforecorresponding symmetrical matrices were obtained using a simple (pseudo)algorithm:

if aij = 1 set aji = 1 ∀ i, j ∈ {1, 2, . . . , 34} (8)Note that element aij = 1 means there is link going from vertex i to vertex
j . Indexes get integer values from 1 to 34 as there were 34 (given) conceptsin maps. Matrices were then converted into Statnet’s network objects. Thisconcludes the data preparation phase.
4.1 ModelsInitially both directed and undirected networks were considered. Eventuallyonly models 6 and 7 make use of the directness of the graphs. Note thatthe number of nodes was kept constant all the time since the real worldconcept maps had specific set of concepts. This information together withthe fact that the networks are non-dynamic helps the modeling procedureto yield more accurate results. There are even more boundary conditionsthat were applied into the models. Model 7 is the most constrained model inthis study and as such it stands out as an important experiment. The modelspecifications are listed in table 3. Each model is discussed in brief in thefollowing text.We begin by some of the most basic modeling ideas. We first turn atten-tion to counting edges and triangles. The original network has 4 trianglesand 55 edges. If the model isn’t degenerate, these parameter values shouldvary only to some extend while going through the MCMC steps. Triangleshave shown to be important motifs to describe the information processingof a hierarchical knowledge. Counting triangles is important in modelingalso because it provides information about the topology of the network. Bycounting the number of edges the simulated networks will have realisticnumber of connections between nodes. Both 3-stars and triangles are usedwidely in the theory of knowledge production, acquisition and processing.That is why model 2 has some potential in describing the the hierarchical
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Table 1: Model specifications
Model ParametersModel 1 triangles + edgesModel 2 triangles + 3-starsModel 3 twopaths + 4-cycles + edgesModel 4 3-stars + 4-cycles + edgesModel 5 triangles + 3-stars + edgesModel 6 transitivity + 4-cycles + triangles + edgesModel 7 transitivity + 4-cycles + triangles + edges + constrains

properties of the students concept maps. As it turns out simulated graphsproduced by model 2 do share some topological properties with the realworld graphs. But this comes with the cost of an increasing number of edgesin the simulated graphs.In model 3 a parameter linked to transitivity and small cycles were takenin consideration. A knowledge structure in physics features triangles and k-stars rather than cycles. So this model is not expected to produce accurateand realistic results, but stands as an important reference. Model 4 combinesideas from models 2 and 3. It can be considered (more so than others)experimental, the reason being that there is no clear physical justification ofthe model besides the fact that it combines parameters of the earlier models.Adding counting of edges to model 2 gives us model 5. The purpose of thisis to guide the simulation process to more realistic edge numbers.The motivation for the next model came from building on the ideas ofmodel 3. By intuition transitivity seems to be a very important factor informing of the knowledge structure. Multitude of different models includingtransitivity were examined here. Besides the actual model 6 the most promis-ing were models: transitivity + edges and transitivity + triangles. Still bothof them failed to produce much of value and are thus neglected here. Thefinal definition of model 6 pulls together many relevant motif counting vari-ables. One more model was defined. Here a parameter was added to model6 to force at least one edge to all nodes as there are no isolate conceptsin electromagnetism. Constraining the modeling procedure can have fataleffects when ran through the MCMC steps. This nevertheless might guidethe process to more realistic outcome as measured by how they relate to
19



the original data.
4.2 Simulation processThe values for statistical network variables such as density of edges andnumber of triangles were measured from the original empirical data. Forexample the density of edges of given network "net" can be calculated (amongother information) using Statnet’s command summary(net). The most usefulStatnet and R commands in this research are listed in the table 2. Thesecommands are listed here so that an interested reader can quickly try outmodeling and simulation. A lot more commands were actually needed torun the complete modeling and simulation of this research including manycustom developed R functions that are listed in the appendix. For a muchmore complete selection of commands and their specifications interestedreaders are advised to consult Morris et al. [41].

Table 2: A small summary of the most vital Statnet commands
Command Usematrix() Scans raw link data into an adjacency matrixnet() Creates a Statnet network object of a matrixergm() Creates a Statnet model based on the givenspecifications and a Statnet network objectsimulate() Simulates a model until a given limit of simu-lations is reached

A graph with typical statistical and topological properties was chosen tobe modeled. A single graph is needed because of the way Statnet handlesand creates models. The values of the observables were then used as mod-eling parameters for Statnet algorithms. The number of vertices was takenin as a boundary rule for the modeling. Different sets of modeling variableswere chosen to construct different kinds of models as was discussed in chap-ter 4.1. The obtained models were then simulated using Statnet’s simulationcapabilities. Besides the simple edge, triangle and small circle counting welooked at two important variables. The clustering coefficient measures thetendency to form closed triangles. It can be calculated with relative ease [30].
20



A custom R algorithm was developed to calculate this. Another importantparameter to look at is communicability betweenness centrality. Communi-cability between nodes p and q in the network represents the probabilitythat an arbitrary particle of piece of information of some kind travels fromnode p to node q. Communicability betweenness centrality (CBC) for a node
r is defined as the weighted sum over walks involving node r [38]. Customalgorithms were developed to calculate these values. Exact mathematicaldefinitions can be found in chapter 2.4.
4.3 Software environmentR is an open source programming language and software environment forstatistical computing. It provides tools for statistical analysis, including mod-eling, classification and simulation. R is highly extensible through the useof user-submitted packages [42]. Statnet package of R is one these exten-sions. It is being developed by many contributors from several universities[43]. Statnet was used in this study solely in modeling and simulation ofgraphs. Statnet was chosen as a software environment because of it’s ex-tensive library of build-in functions to model graphs. It supports directed aswell as non-directed networks and thus fits for our purposes. Statnet ben-efits from the recent advancements in statistical analysis, such as randomnetworks, which are also relevant for our study. It provides wide variety oftools for model estimation and evaluation. As an important feature it alsoprovides simulation capabilities. This allows us to simulate the models andsee whether they produce real-world like graphs or not. [19]The functions (relevant to this study) that have been coded into Statnetmake use of the Markov Chain Monte Carlo (MCMC) algorithm. The MCMCalgorithm is more know from it’s use in numerical integration [44]. It samplesfrom probability distributions based on constructing a Markov chain thathas the desired distribution as its equilibrium distribution. The state of thechain after a large number of steps is then used as a sample of the desireddistribution. The quality of the sample improves as the number of stepsincreases. In our study the number of steps was 5−7·105. Statnet is modelingnetworks based on models called exponential-family random graph models(ERGMs) or p-star models. The purpose of it is to help quantify local effectsthat shape the global structure of the network [45]. Statnet also providestools to evaluate the goodness of a fit through graphical representations. TheMCMC estimation can sometimes lead to undesired results. These include

21



irrational topological properties of sample networks and far from averagevalues for measured attributes. In that case the model is likely to be adegenerate one. Degenerate models cannot be used to describe any realworld phenomena, but sometimes they can be fixed by adjusting the modelspecifications.
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5 Empirical results
1000 networks were produced in simulation of each model. Simulated graphswere used to determine the values for clustering coefficient and communi-cability betweenness centrality (CBC). For demonstration one of them waschosen and plotted for each model (except model 3). The network based onreal world concept map created by a physics student is displayed in figure5. The communicability distribution of the concept map is plotted in figure6 to serve as a reference. Three nodes with communicability greater than0.2 can be observed. These three nodes can thus be considered hubs in thenetwork. The network is not very dense with respect to links as there are55 edges and 34 nodes. This usually leads to long walks that involve nodeswith only two or three links. This can be seen in the figure as well. Theclustering coefficient of the network was 0.08 as can be seen in table 3.This is realistic and expected result as similar values have been observed fornumerous real world networks such as the Internet, power grids or proteininteractions [30]. The same can be said about the average communicabilitybetweenness centrality over the nodes. < CBC >= 0.010 is realistic forsparse networks.As can be seen in the parameters table (table 3) the characteristicalvalues of model 1 do fall in line with the real world graphs. But mereaverages do not paint the whole picture. Looking at how the links were
Table 3: Characteristical parameters of the models. Ck is the average clus-tering coefficient and < CBC > the average communicability betweenness.Their respective stadard deviations are provided as well.

Model Ck σ (Ck ) < CBC > σ (< CBC >)Real World 0.08 - 0.010 -Model 1 0.07 0.04 0.010 0.005Model 2 0.04 0.03 0.091 0.003Model 3 0.08 0.04 0.103 0.009Model 4 0.13 0.03 0.109 0.004Model 5 0.09 0.04 0.097 0.003Model 6 0.08 0.04 0.098 0.004Model 7 0.04 0.03 0.093 0.003
23



Figure 5: A reconstruction of real world graph drawn by teacher student.
distributed over the nodes (which is called link grade distribution) you canfind nodes with as many as 9 edges in the simulated graphs. This indicatesthat the model seems to capture the generating process poorly. Intuition tellsus that model 2 should describe the hierarchy better than simply calculatingthe edges and triangles. The MCMC diagnostics look promising for model 2as they did for model 1. Densities vary around the observed values. Aftersimulation triangle count matches observations. The simulated graph seemswell connected and realistic. The average number of links in the graphsincreased by 12,7%. This is not a big surprise as edge count was not aparameter in this model.The averages of edge and 4-cycle density distributions of model 3 are notclose to the values of the modeled network. Means are marked as dashedlines in figure 8. If a model is not degenerate then the densitiy distribu-
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Figure 6: The communicability distribution of a concept map of figure 5. Thenodes with higher communicability can be considered more important whenlinking concepts. That is to say that a node with higher communicability ismore likely to be involved when a new concept is introduced to the system.
tions drawn in the same figures should be close to symmetrical around themean values. This is not the case for model 3 simulations so it indicatesa degenerate model. The density traces didn’t converge during simulations.Interestingly this model seems to produce only very few triangles. Trianglesare vital motifs so this has to be considered a yet another downside of thismodel. Simulation did not produce enough acceptable graphs so that thecommunicability distribution could be determined. This is further evidenceof model degeneration. The clustering coefficient and average value of com-municability betweenness centrality is in line with the real world network.It is normal even for a degenerate model to produce realistic average values.
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(d)Figure 7: (a) A graph generated by simulating model 1 and (b) communi-cability distribution of the simulation. (c) A graph generated by simulatingmodel 2 and (d) communicability distribution of the simulation.
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Figure 8: MCMC diagnostics of the model 3. The dashed lines in the right-hand side figures are the mean values for the densities. If a model is notdegenerate then the densitiy distributions drawn in the same figures shouldbe close to symmetrical around the mean values.
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(d)Figure 9: (a) A graph generated by simulating model 4 and (b) communi-cability distribution of the simulation. (c) A graph generated by simulatingmodel 5 and (d) communicability distribution of the simulation.
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Looking at the one of the graphs produced in the simulation of the model 4(in figure 9) we notice alarming topology. The communicability betweennesscentrality distribution has a spike which is consistent with the topology ofthe simulated graph. The clustering coefficient is on average notably higherthan the original graph. Looking at the MCMC diagnostics of the simulationit becomes clear that the model is degenerate. All the means are very muchoff the desired, real world network values. This is good news since this modelwas not based on any vision on the network structure. The value for the 3-star count is off by huge margin. This is consistent with observations on theclustering coefficient. All this is evidence that the model indeed is degenerateand thus can be considered irrelevant for us. The model diagnostics for model5 are somewhat surprising. Characteristic parameters look promising as themeans of clustering coefficient and communicability betweenness centralityare in line with the original real world network. Still all parameter valuedistributions signal degeneracy of the model. The simulated graph alsodoesn’t look satisfactory as there is an isolated node, 4 nodes with only 1edge and 53% of the nodes having exactly 3 edges.Model 6 takes transitivity, 4-cycles, triangles and edges in as modelparameters. Note that transitivity is applied for directed network. Thereis no clear evidence of degeneracy. Simulation produced graphs that looksatisfactory except for the isolates found in many simulations. The featuredgraph in figure 10 has 13 triangles and 71 edges compared to the 4 trianglesand 55 edges of the real world network. The link grade distribution of themodel is realistic on average. As there are no isolate concept definitionsin physics the number of isolates in the models should be limited to 0 bysome boundary rule. That is done in model 7 by setting boundary rulesthat force minimum of one edge for each node. It turned out that addingboundary conditions tends to provoke minor increase in the number of edgesin the modeling. The sample graph generated by the simulation of model7 has 63 edges and 3 triangles. That is in line with the real world graph.The communicability betweenness centrality distribution is plotted in figure10. Distribution (d) is calculated for a simulated network based on themodel 7. It is fairly similar with the real world graph. Both have few nodeswith minimal communicability betweenness centrality. The simulated graphdoesn’t yield to any nodes having CBC over 0.3. On the other hand thenumber of nodes with CBC over 0.2 is nearly identical (3 in real world graphto 4 in simulated). In light of CBC simulating the model 7 produces realisticnetworks. The clustering coefficient is below the real world value.
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(d)Figure 10: (a) A graph generated by simulating model 6 and (b) communi-cability distribution of the simulation. (c) A graph generated by simulatingmodel 7 and (d) communicability distribution of the simulation.
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6 Discussion and conclusions
We have studied seven different models to describe physics students knowl-edge structure. The models ranged from straightforward calculation of trian-gles and edges to more complex models that take in account the transitivityas well as cycles and triangles. The choice of parameters was based onstudies that have shown humans to process information by similar motifs.Each model was simulated in order for us to compare the resulting graphswith concept maps done by physics students. A model that produced realistic(compared to students’ concept maps) clustering coefficient and communica-bility betweenness values was considered relevant. During the research itbecame obvious that the choice of model parameters had to be done verycarefully. Including a seemingly ineffective parameter could easily degener-ate the model. Degenerate models fail during the Markov Chain Monte Carlosteps and thus produce unrealistic and undesired results. Models 3 and 4are degenerate. Model 6 was the most accurate model by many means. Theclustering and communicability values it produced were very close to thosecalculated of the real world graphs. This observation answers to the secondresearch question. We have found the most accurate model (in the scope ofour research).According to the research documented in this paper it seems possiblethat at least highly hierarchical information can be modeled by trianglesand other simple patterns formed by the key concepts and meaningful linksbetween them. That answers to the first research question. The simulatedgraphs that were produced by models that had basic motifs as their param-eters do preserve some of the topological and hierarchical information of thereal world concept maps and can thus be considered relevant.This study has some meaningful implications for teachers as well as textbook authors. In the future, the approach introduced in this paper could bedeveloped into a tool to help monitor students’ meaningful learning. Studentscould make the concept maps using an online tool. The data would thenbe processed automatically using powerful computers and results would bevisible to the teacher. The tool could pinpoint areas of the subject matter thathave been generally poorly learned and thus require more attention from theteacher. The kind of modeling that was done in this article provides insightfor text book authors in arranging content in such manner that it supportscreation of basic cognitive motifs in learners mind. As we have demonstratedin this study, this kind of practice will lead to formation of larger cognitive
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hierarchies and thus lead to better meaningful understanding of the subjectmatter.There is much fruitful ground to be covered by the approach introducedin this article. There are two distinct ways to expand and deepen the study.First, new models could be created based on the findings in this article.Alternatively, the models proposed here could be refined even further. Sec-ondly, there is also a possibility to look into more robust observables such asstatistical attributes of the ensembles. This could be achieved by comparingstatistical observables for real-world ensembles with ensembles created bysimulating a model. These two directions would lead into deeper under-standing of the link between how humans acquire and process knowledgeand simple patterns found in well-developed concept maps.
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Appendix

A. Statnet and R code listingsHere is listed the core Statnet code listings developed and applied in thisresearch. Many more functions were developed and used by the author, buttheir main function was to automatize simulation and plotting functions. Thecore functions such as calculating the important observables are included.Note that some of the functions require the "statnet" and "Matrix" packages.The first three functions listed here are essential support functions. Asthe data itself has directed networks and some of the functions are writtenfor undirected network we need a way to transform directed networks intoundirected matrices. This is done in the MakeSymmetrical function. The
ReturnAsMatrix function converts Statnet network objects into matrices.The DeleteLines function is needed to make all elements ark = 0 and
akr = 0 for some r and k = 1, . . . , 34.
MakeSymmetrical <− f u n c t i o n ( net ) {m <− as . ma t r i x ( net )f o r ( j i n 1 : 3 4 ) {f o r ( k i n 1 : 3 4 ) {i f (m [ j , k ]==1) m [ k , j ]<−1}}r e t u r n (m)}
ReturnAsMatr ix <− f u n c t i o n ( net ) {r e t u r n ( Matr i x ( symmet r i so i ( as . ma t r i x ( net ) ) ) )}
De le teL ines <− f u n c t i o n ( A , r ) {f o r ( k i n 1 : 3 4 ) {A [ k , r ]=0A [ r , k ]=0}r e t u r n ( A )}
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The CalcCBC function provides the core functionality for calculating thecommunicability betweenness for a single node r . The function only appliesto the data of this research as the constant 1057 is a result of calcula-tion involving the number of nodes. The other two CBC functions utilizeaforementioned function to provide the CBC for a network and a model. The
CBCforModel function illustrates how simulation commands are used in Stat-net.CalcCBC <− f u n c t i o n ( A , r ) {sum = 0B = Dele teL ines ( A , r )aar = Matr ix ( seq ( 1 , 34^2 , 1 ) , nc =34)erk = Matr ix ( seq ( 1 , 34^2 , 1 ) , nc =34)f o r ( p in 1 : 3 4 ) {i f ( p == r ) nex t ;f o r ( q in 1 : 3 4 ) {i f ( q == r ) nex t ;i f ( p == q ) nex t ;erk = expm (B)ap1 = erk [ p , q ]aar = expm ( A )ap2 = aar [ p , q ]sum <− sum + 1 − ap1 / ap2}}r e t u r n ( sum / 1 0 5 7 )}
CBCforNetwork <− f u n c t i o n ( net ) {A = ReturnAsMatr ix ( net )f o r ( r i n 1 : 3 4 ) {omega [ r ]=CalcCBC ( A , r )}r e t u r n ( mean ( omega ) )}
CBCforModel <− f u n c t i o n ( model , l i m i t ) {l i s t <− seq ( 1 , l i m i t , 1 )
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f o r ( num in 1 : l i m i t ) {sim <− s imu la te ( model , burn in = 1e+5)p r i n t ( num )l i s t [ as . i n t e g e r ( num ) ] <− CBC( sim )}p r i n t ( l i s t a )p r i n t ( mean ( l i s t a ) )p r i n t ( sd ( l i s t a ) )} The remaining functions listed below provide for calculation of clusteringcoefficients.C l u s t e r i n g <− f u n c t i o n ( a ) {x=0y=0f o r ( j i n 1 : 3 3 ) {cc=j +1f o r ( k i n cc : 3 4 ) {f o r ( i i n 1 : 3 4 ) {x=x+a [ i , j ] ∗ a [ i , k ] ∗ a [ j , k ]y=y+a [ i , j ] ∗ a [ i , k ]}}}r e t u r n ( x / y )}
C lus t e r i ngFromF i l e <− f u n c t i o n ( tds ) {m <− mat r i x ( scan ( f i l e=tds , what=i n t e g e r ( 0 ) , sep = ’ , ’ ) ,n co l =2 , byrow=TRUE)net <− network (m , ma t r i x . type =" e d g e l i s t " , d i r e c t e d=TRUE)r e t u r n ( C l u s t e r i n g ( MakeSymmetrical ( net ) ) )}
Cha ra c t e r i z e <− f u n c t i o n ( model , l i m i t ) {l i s t <−seq ( 1 , l i m i t , 1 )f o r ( num in 1 : l i m i t ) {sim <− s imu la te ( model , burn in = 1e+5)
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l i s t [ as . i n t e g e r ( num ) ] =C l u s t e r i n g ( MakeSymmetrical ( sim ) )}p r i n t ( l i s t )p r i n t ( mean ( l i s t ) )p r i n t ( sd ( l i s t ) )}
B. Real-world concept mapsHere we provide an ordered listing of real-world concept maps studied inthis research. Only the concept map used as a base for modeling is omitted.Figure of that network can be seen in Figure 5. Maps have been orderedbased on their clustering coefficients.
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(a) 0.043 (b) 0.044 (c) 0.055

(d) 0.069 (e) 0.070 (f ) 0.076

(g) 0.079 (h) 0.083 (i) 0.089Figure 11: Real-world concept maps represented as networks, with theirrespective clustering coefficients.
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(a) 0.109 (b) 0.124 (c) 0.132

(d) 0.138 (e) 0.139 (f ) 0.139

(g) 0.147 (h) 0.151 (i) 0.152Figure 12: Real-world concept maps represented as networks, with theirrespective clustering coefficients.
42



(a) 0.155 (b) 0.158 (c) 0.158

(d) 0.162 (e) 0.164 (f ) 0.164

(g) 0.172 (h) 0.176 (i) 0.178Figure 13: Real-world concept maps represented as networks, with theirrespective clustering coefficients.
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(a) 0.181 (b) 0.181 (c) 0.188

(d) 0.189 (e) 0.196 (f ) 0.200

(g) 0.215 (h) 0.243 (i) 0.258Figure 14: Real-world concept maps represented as networks, with theirrespective clustering coefficients.
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(a) 0.259 (b) 0.265 (c) 0.265

(d) 0.266 (e) 0.277 (f ) 0.290

(g) 0.322 (h) 0.346 (i) 0.400Figure 15: Real-world concept maps represented as networks, with theirrespective clustering coefficients.
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