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Abstract

Understanding the structure of scientific knowledge is to large de-
gree based on understanding what the key concepts are and how and
why these concepts are connected. Recent cognitively oriented re-
search on learning has suggested that procedures of knowledge con-
struction and processing which generate the complex knowledge struc-
tures may be simple ones, reducible to simple basic patterns. In this
study we concentrate on modeling concept maps that are produced by
physics students. We study seven different models to describe physics
students knowledge structure utilizing the basic patterns as modeling
parameters. The models ranged from straightforward calculation of tri-
angles and edges to more complex models that take in account the
transitivity as well as cycles and triangles. According to the research
documented in this paper it seems possible that at least highly hierar-
chical information in learner's mind can be modeled by triangles and
other simple patterns formed by the key concepts and meaningful links
between them.
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1 Introduction

The knowledge in physics has been shown to be highly structural by na-
ture [1]. This means that new concepts - whether they describe a physical
phenomena, more general principle or a physical law are connected to pre-
viously defined concepts. These connections are not loosely or arbitrarily
defined. Two concepts can be seen connected if there exists either a di-
rect theoretical or an empirical connection between the new concept and
the body of knowledge already defined. Physical phenomena can thus be
described by concepts and relations connecting them [2]. Also, knowledge
processing and acquisition has recently been described in the framework of
network theory, and such an approach seems to be well adapted for de-
scription of relational aspects of conceptual knowledge and aspects related
to retrieval of knowledge [3, 4] These are the main reasons why there has
been interest in developing learning and teaching theories that capitalize on
concept maps [5]

Understanding the structure of scientific knowledge is to large degree
based on understanding what the key concepts are and how and why these
concepts are connected. The structural relations between the concepts play
also an essential role in establishing the meaning of concepts [6, 7]. Structure
also affects how concepts are introduced in teaching scientific knowledge,
how concepts are acquired through teaching, and how the conceptual knowl-
edge can be represented and transferred forward [8, 9, 10]. Furthermore,
recent cognitively oriented research on learning has suggested that proce-
dures of knowledge construction and processing which generate the complex
knowledge structures may be simple ones, reducible to simple basic patterns.
Of particular importance seems to be different types of hierarchies, cliques,
transitive patterns and cycles [11, 12] These notions have encouraged the
idea that such patterns may help in understanding the cognitive processes
behind knowledge construction and may lead also to the development of
computational models for cognitive processes [11, 12, 13].

Whenever a new concept is introduced to the body of knowledge in
physics it links to already existing concepts. These connections are needed
to justify the introduction of the new concept. An arbitrary (and legitimate)
link between two concepts has it's justification through a theoretical model
or an experiment. In both cases there are distinct sets of concepts of the
established body of knowledge that are connected to the newly introduced
concept.



It is the hierarchical nature of knowledge in physics that makes the use
of concept maps such a useful tool [14]. In this study we follow Novak's defi-
nition for a concept map [8]. Concept maps consists of a set of concepts (also
called nodes in graph theoretical applications) and links (or edges) connect-
ing them. Each link has a label describing the meaning of the conncetion.
This definition leads us to note that concept maps are graphs with added
labels. Graphs are commonly definited as combination of a set of nodes and
a set of edges. In the most common case, we can write G = (V/, E), where G
is the set of graphs, V' is the set of nodes and E is the set of edges.

We see that concept maps are a justified approach to model knowledge
in physics. There is also another useful feature of using concept maps as
the tool to model knowledge. In physics there are often many different paths
to introduce a new concept. In planning of teaching the order of concepts
can vary and different strategies can still be equally effective. That can be
illustrated easily by concept maps as there are usually many paths linking
node A to node B in a well-connected map. Concept maps can serve teachers
in building their own understanding of the structure of the knowledge (of a
topic of interest) as well as help them plan teaching in a way that introduces
knowledge in a coherent way.

As concept maps are essentially graphs the study of them can leverage
of the recent graph theoretical advancements. The interest in the networks
and their properties has surged over the past two decades. A lot of effort has
gone into studies of real-world graphs such as various kinds of social net-
works, the Internet and world wide web as well as into creation of analysis
algorithms and models to predict and explain the behavior of the real world
system [15] There is a sophisticated mathematical system that provides pow-
erful tools to analyze complex networks. This system is called exponential
random graphs (ERG). The foundations of the theory were laid over thirty
years ago by Holland and Leinhardt [16] although it took some time before
the scientific community at large understood the power of ERGs. They were
developed after it became widely accepted fact that mere random graphs
were not good models for real-world networks. After their introduction the
exponential random graphs turned out to be highly effective in handling of
complex networks. Exponential random graphs have a solid mathematical
foundation, and equally importantly, they can also be derived from equilib-
rium statistical mechanics [17]. This aspect is illustrated in an article by
Park and Newman as in it they arrive at analytical solution for the 2-star
model by utilizing statistical mechanics theory [18]. The 2-star model is the
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most simple, yet not trivial exponential random graph model. They derive
the model from maximum entropy assumptions. This result shows how solid
is the mathematical foundation under the ERGMs.

The rise of computing power enabled researchers to calculate more robust
vartables and run more sophisticated algorithms on larger (and usually more
realistic) networks. In recent years the wide spread use of computers across
the fields of research has lead to automation of data collection. This has
enabled scientists to work on large and diverse real world networks.

1.1 Modeling parameters

In this study we concentrate on modeling concept maps that are produced
by physics students. Our aim is to calculate certain characteristic values of
the concept maps and use these as modeling parameters, or in some cases
boundary conditions. We hypothesize that by carefully choosing the param-
eters can yield better models that describe the physical substance better
than random graphs. Modeling is carried out using the Statnet package of
R [19]. It provides a well-established framework for modeling concept maps.
Statnet and it's features will be discussed in greater detail in chapter 4.

It is obvious that some simple modeling parameters like the number of
edges in the graph are insufficient alone. The problem is that they don't
capture the hierarchical structure of physical knowledge [20]. There are
more advanced modeling parameters available, such as clustering or k-stars
that capture the topology of the graphs better. In the context of this study we
have a constant number of nodes since the concepts used by physics students
to construct their concept maps were predetermined. It is reasonable to limit
the modeling process to networks with (the same) constant number of nodes.
There are also other similar boundary conditions that can be applied into
modeling such as forcing at least one edge for all nodes or disallowing self-
connecttons.

All the models will be simulated in order to get insight whether they
produce networks that can be interpreted as realistic concept maps that are
distinguishable from random graphs or not. We consider a graph realistic
when the calculated values of the statistical variables are close to the values
calculated of human-made graphs. As statistical variables to be measured
we chose the number of edges, triangles, k-stars, n-cycles and transitivity. In
order for a simulated network to be realistic it should imitate the real-world
networks. It is a well known fact that mere random graphs don't have realistic
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link distributions as their link grades follow Poisson rather than power-
law distribution [21]. It became clear that many times poor models yield to
networks with unrealistic number of links for a node. We consider simulated
networks that facilitate nodes with zero links unrealistic as there are no
isolate concepts in a developed physics theory such as electromagnetism
(which is the theme of the concept maps in this study).

1.2 Research questions

It has been shown that the knowledge processing and acquisition happens
through set a basic motifs (or patterns) [2]. The goal of this study is to
take a concentrated look at these motifs and use them then as building
blocks to create models. These models are then tested by simulating them.
Similar measurements to original, real world concept maps are then done
to these simulated networks to see how much, if any of the hierarchical and
topological features are sustained. This goal can be compressed into two
research questions:

1. Can the maps made by the physics students' be modeled using the
basic patterns so that the simulated graphs preserve some of the topo-
logical information found in the original concept maps?

2. What is the set of basic patterns that, when used as modeling param-
eters, yleld to most accurate model?

The ideas discussed in this paper can be applied into a variety of areas
of interest. One of the most promising is to use the methods introduced here
to help teachers plan their teaching. By automating parts of the analysis
done here a (web-based) software could be developed to quickly give a
teacher a good general view of the level of understanding of the students,
especially related to their ability to understand relatedness of key concepts
in the subject matter. In science, that kind of information about the topology
of the knowledge structure could play an important role in addition to the
information gain from regular exams.

A computer-drawn reconstructions of two original concept maps can be seen in figures
3 and 4.



2 Modeling and simulation of concept maps

In the heart of modeling concept maps are the topological features. We will
begin by looking at the basic motifs based on the recent advancements in
cognitive sciences [22]. We will continue on to discuss the development of
exponential random graphs and the Markov chain Monte Carlo method.

2.1  Structure and basic motifs

New concepts connect to the established body of knowledge in the context
of experiments and theoretical models. Experiments and models therefore
produce the basic structural patterns found in complex networks of structured
scientific knowledge [23, 2]. In (laboratory) experiments the concepts are
connected through designing the experiment and through interpretation of
the experimental data. In quantitative experiments (usually a small) number
of concepts are used to make a concept measurable. In the simplest case this
leads to triangular pattern. Triangle is formed when connected concepts A
and B are used to make concept C measurable. This forms connections A —
Cand B — C closing the triangle (since there already exits a connection A —
B). This is illustrated in the figure 1. As an example we can take a look at a
well known experiments on photoelectric effect. One of the key conclusions
of the experiments was that above the threshold frequency, the maximum
kinetic energy of the emitted photoelectron depends on the frequency (but
not on the intensity) of the incident light [24]. Intensity and frequency are
connected in the theory of light. This experiment connects intensity and
(threshold) frequency to the energy of the emitted photons.

There are cases where three or more concepts are explicitly needed to
make another concept measurable. The graph theoretical patterns that are
then formed are called k-stars, where k is the number of concepts that are
connected to the concept that is wanted to make measurable. In figure 1
(b) there is a 3-star motif which is a result of three nodes all linked to a
fourth node. Important patterns that arise from similar arguments are small
cycles. As an example an (undirected) 4-cycle can be a result of the following
procedure. A concept A can be used in defining two other concepts B and
C. These concepts are then used to define another concept D. As a result we
have a small cycle with four concepts. The definition of D requires explicitly
concepts B and C and implicitly concept A. A twopath connects concepts A
and C via concept B. This is illustrated in the figure 2. Transitivity is a motif
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Figure 1: (a) A triangle, the basic motif of interest (b) A 3-star, an example
of the k-star class of network motifs.
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Figure 2: (a) A 4-cycle, an example of the cycle class of network motifs (b) A
transitivity motif. We consider a pattern to be a transitivity motif when there
is a connection from node A to node C via a third node B.

where nodes A and C are linked via a third node B. An example of this can
be seen in figure 2.

The same basic patterns or motifs are also found in the context of theo-
retical models. This is due to the requirement of the conceptual coherence
of a theoretical model. A Conceptually coherent model integrates various
concepts into a solid system that describes real phenomena. This leads
to the basic knowledge-ordering patterns of mutual dependencies between
concepts [23] The same basic patterns discussed above are then expected
to be found in conceptual systems that describe well the physical knowl-
edge, regardless of the context where the connections between concepts are
formed.



2.2 From random graphs to ERGMs

Random graphs are products of some random procedure. In the most straight-
forward case consider a set of nodes n that forms edges with the probability
p. The resulting graph is a random graph with fixed number of nodes. This is
the Erdés-Rényi (ER) random graph model? [26]. The probability distribution
px of this kind of random graph model is given by [27]

p= - )

where N is the number of vertices in the graph and k is the degree of the
vertex. The degree of the vertex means the number of connections it has to
other vertices.

Random graphs have been deployed in many areas of interest. In ad-
dition to their obvious use in mathematics and computer science they have
also been used in sociology and epidemiology [28] among other. Because
of the discrete nature of the network and mutually independent probabil-
ity to form edges between any nodes the grade distribution of the random
graph is a Poisson distribution [21]. It was soon discovered however that the
random graphs did not accurately predict or explain the behavior of neural
networks, networks of friendships, the internet or other real-world phenom-
ena. These real-world networks very commonly have heavy tails in their
grade distribution. Heavy tails indicate nodes with remarkably high grades.
These nodes are commonly called hubs and they are found throughout the
real-world networks. Heavy tails do not fit into the Poisson distribution but
are rather an indication of the power law distribution. It is common that in
many networks the grades of hubs are several orders of magnitude higher
than average grade of the network. The other major downfall of the ER model
(as defined originally) is that the random graphs are undirected. This means
that information between two nodes that are connected can travel in both
directions. This is again not true for many practical situations or applica-
tions. Consider for example a network where nodes are web sites and links
are hyperlinks in the web sites. These links are clearly directed. For these
reasons it imperative for researchers to move beyond the ER random graphs.
[27]

Network theory has seen development into multiple directions after the
introduction of ER models. Many new models have been proposed such as

2An equivalent model was developed independently at the same time by Gilbert [25]
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the small-world model [29]. The name of the model comes from the famous
proposition that any two people are connected through no more than six
other people. The idea behind the small-world model is to consider the
nodes forming a one-dimensional lattice with N nodes. We then allow the
links to be formed between nodes that are not more than k nodes apart.
The constant kK < N is a threshold. In the next phase some long distance
links are formed. This completes the small-world model. This model has the
advantage of high transitivity over the original ER models. The small-world
model is an example of many other models studied, such as configuration
models. [30]

Another important new model was the scale-free model by Barabdsi and
Albert [31]. They propose in their paper that the many complex networks
such as the world wide web follow the scale-free power-law as the link
grade distribution. The power-law for probability P(k) can written for a
large k as

P(k) ~ k™ 2)

The model is based on two observations of the real world networks that are
absent in the ER model. Those are growth and preferential attachment. The
growth means that real-world networks rarely stay stationary with respect
to their nodes. Many complex networks are open so that new nodes are
introduced to the network all the time. The preferential attachment comes
from the notion that there are hubs in most of the real-world networks. In
the world wide web this means that an arbitrary web page is more likely to
have links to popular web sites than non-popular. These two features lead
to the scale-free power-law model.

It became clear that these models that are analytically solvable all fall
short in one way or the other. Researchers then turned their attention to a
different approach. In particular the transitivity can only be included in very
few solvable models. The exponential random graph model was developed
using the analogy of the Boltzmann ensemble. To define exponential random
graphs we follow the presentation of Strauss [32, 30 We begin by consider-
ing the measurable properties of the graph {€;}. These include in our study
such variables as number of edges, clustering coefficient, communicability
betweenness centrality and transitivity. These variables are discussed in
more detail in chapter 2.4. As these properties are related to the connec-
tions between the nodes we can use the analogy of the energy function in
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statistical mechanics. Let the set {B;} be the field parameters. Exponen-
tial random graph model is the set of all possible graphs G. The probability
distribution for these graphs will be

PIG) = Sexp | B 3

where Z is the partition function given by

7 = Z exp | — Z Bi€; (4)
G i

Furthermore, the average of a graph observable ¢; is obtained through the
use of free energy f. Thus,

af
< € >= a_ﬁ (5)

This setup allows us to perform calculations on the models. However,
there are currently no general analytical solutions for ERGMs, so we have
to rely on Monte Carlo simulations.

2.3 Markov Chain Monte Carlo

The foundation and beginning of the Markov Chain Monte Carlo (MCMC)
method were laid by Metropolis et al. [33] and an important generalizations
were made by Hastings [34] The method has it's roots in statistical physics,
but it took nearly 40 years for them to become part of the mainstream in
statistics. It has become an essential tool in many areas of application,
including especially multi-dimensional numerical integration. One of it's
advantages is it's versatility. The same method (and thus the same software)
can be applied to variety of problems [35].

The MCMC is essentially a Monte Carlo method using Markov chains.
The MCMC algorithms sample from probability distributions by means of
simulation. It has the desired distribution as it's equilibrium distribution.
A Markov chain is a sequence of random variables where the distribution
of each random variable depends only on the value of the previous random
variable. This leads to a system, where configuration k. is created from
previous configuration k,, stochastically [36]. The information about the pre-
vious configuration is not needed. The Markov process operates by a (often a
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very large) transition matrix W that contains the transition probabilities. In
the Metropolis-Hastings algorithm, the process begins from an initial state
with an evaluation of the desired distribution at this state. A proposal is
generated, evaluated and then either accepted or rejected. Good proposals
are accepted with higher probability than proposals that lead away from the
equilibrium distribution. When a proposed state is rejected then the resulting
state k,.1 = k,. The sampled distributions tend to equilibrium over a large
number of steps. There are also other methods, such as Gibbs sampling and
slice sampling but they are not used in this study. Increasing the number of
steps usually increases the accuracy of the simulation process, but there are
always some residuals from the initial state. This is also a major difference
between the MCMC and the standard Monte Carlo algorithms, where each
step is statistically independent of the other steps.

2.4 Mathematical definition of the observabels

There are essentially two different clustering coefficients C, that are fre-
quently used [37]. We here use the following definition

3N,
Ck = — =3 Z CI[jCI[kCIjk/ Z (Cll’jCllk + Clﬂ'CIjk + CI/<[CI/</') (6)

N
3 k>j>i k>j>i

The term N, takes into account the number of triangles found in a network.
Note that the product a;;aaj = 1 if and only if there exists all three links
between the three nodes i, j and k. Otherwise the product equals zero. This
comes from the fact that we are not dealing with weighted networks. In
another words, terms a,, can only have value 1 if there exists a link and 0
if there does not exist a link between two given nodes.

The communicability betweenness centrality (CBC) for a network is de-
fined as an average of communicability between any two nodes in the net-
work. Communicability between two nodes Gup is commonly defined as the
ability of an arbitrary piece of information to travel from node A to node B.
We use the form proposed by Estrada [38]

(] Ak
G =y ) 7
k=0 '

where A be the adjacency matrix. In adjancecy matrix you have nodes
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represented as rows and columns. The element a;; = 1 if there is an edge
from node i to j. Otherwise a;; = 0.

This definition of communicability considers not only the shortest path
from node A to node B, but extends it's reach to other non-shortest paths. As
in real world arbitrary particles of information are more likely to use shorter
than longer paths to get from a node to another, the relevance of longer
walks is scaled down by the term (k!)~!, variable k being the length of the
path in consideration. It has been shown [39] that the element (Ak)AB gives
the number of walks from node A to node B that have the length of k.

A link grade distribution shows how many links there are connecting each
node to other nodes. It helps a researcher to determine the if the model is
degenerate or not. In this study we plot the traces of different variables as
they undergo MCMC simulation processes. A trace shows the evolution of
the value of the variable during the simulation.
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3 The empirical data

The concept maps considered in this work were done by the physics teacher
students in their third or fourth year. The subject of the concept maps was
electromagnetism. By this time the students should have developed a fair
understanding of the subject. They had also received teaching on how to
develop a concept map. A total of 46 concept maps were analyzed in this
research. There were 20 teacher students making concept maps from 2008
to 2010. Each student created two concept maps. Some authors created
maps both in 2009 and 2010. (Which explains how 20 students created 46
maps.) A list of concepts to be used in the maps they were to produce were
given to them. This means that the number of concepts will be constant
which is something that is important to keep in mind while modeling these
networks. Students were required to justify the links made between any
two nodes. They were to choose the direction of the connection as well as
declare whether the connection is due an experimental procedure or theo-
retical relation between the two concepts. For a concept map to be included
in this research the justifications and directions of the links needed to be
logical for the majority of the links.

The data from the concept maps made by the teacher students can now
be included in an adjacency matrix. An element a;; of the adjacency matrix
A has the binary value of 1 if there is a link going from node (or concept) i to
node j. The value 0 means there is no connection in that direction. For an
undirected network we have a symmetrical matrix with elementsa;; = a; for
all i # j. Loops a;; are not allowed as they are not relevant in physics. The
adjacency matrix is then converted to a network object by Statnet’s build-in
macros.The network object is mathematically a graph. Networks can then be
modeled by giving the algorithm the desired modeling parameters [40]. The
methods of the analysis is discussed in more detail in chapter 4.

Figure 3 shows an example of a concept map done by a physics student.
The map has been chosen to be displayed here because it is a typical ex-
ample of the maps researched in this study. Some of it's features are visible
even without any analysis. There are some triangles in the graph, but also 4
concepts with only one link connecting them to other concepts. Many of the
concepts are connected to others with very few links. This leads to chain-
like formations. One of these chains can be observed going counterclockwise
from below to right-hand side of the graph. These notions indicate that the
topological features of the map are not optimal. The exact analysis of the
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Figure 3: A reconstruction of a decent concept map done by a physics stu-
dent. The data of the links from the original maps were included in an
adjacency matrix. That data was then used to reconstruct this map.

map is done in chapter 5.

Some of the concept maps studied in this research turned out to be rela-
tively poorly constructed. An example of those graphs can be seen in figure
4. The difference the between earlier example and this one is remarkable
even to the naked eye. The concept map is lacking much from the hier-
archical point of view. First of all, there are very few triangles, 4-cycles
and other basic motifs. The map is not well-connected as 50 % of concepts
have one or two links connecting them to other concepts. This leads to a
shallow and chain-like hierarchical structure. There are number of reasons
that could have led to this kind of a map. One of the probable reasons arise
from the fact that the students were required to justify each link they made
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Figure 4. An example of a poorly constructed concept map.

between two concepts. If a student doesn’t have a strong understanding of
the definition and application of a concept in physics, it is hard to justify
it's connections to other concepts. To justify a link by experiment requires
specific understanding of the experimental procedure and of the conditions
and boundary rules involved.
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4 Method of analysis

The original data was first processed so that the analysis software can make
a use of it. Data was first taken in as an adjacency matrix. The concept
maps were directional so adjacency matrices were not symmetrical. Some of
the analysis steps require the symmetry of the adjacency matrix. Therefore
corresponding symmetrical matrices were obtained using a simple (pseudo)

algorithm:
ifaj=1seta;=1Yije{1,2 ..., 34} (8)

Note that element a;; = 1 means there is link going from vertex i to vertex
J. Indexes get integer values from 1 to 34 as there were 34 (given) concepts
in maps. Matrices were then converted into Statnet's network objects. This
concludes the data preparation phase.

41 Models

Initially both directed and undirected networks were considered. Eventually
only models 6 and 7 make use of the directness of the graphs. Note that
the number of nodes was kept constant all the time since the real world
concept maps had specific set of concepts. This information together with
the fact that the networks are non-dynamic helps the modeling procedure
to yileld more accurate results. There are even more boundary conditions
that were applied into the models. Model 7 is the most constrained model in
this study and as such it stands out as an important experiment. The model
specifications are listed in table 3. Each model is discussed in brief in the
following text.

We begin by some of the most basic modeling ideas. We first turn atten-
tion to counting edges and triangles. The original network has 4 triangles
and 55 edges. If the model isn't degenerate, these parameter values should
vary only to some extend while going through the MCMC steps. Triangles
have shown to be important motifs to describe the information processing
of a hierarchical knowledge. Counting triangles is important in modeling
also because it provides information about the topology of the network. By
counting the number of edges the simulated networks will have realistic
number of connections between nodes. Both 3-stars and triangles are used
widely in the theory of knowledge production, acquisition and processing.
That is why model 2 has some potential in describing the the hierarchical
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Table 1: Model specifications

Model Parameters

Model 1 triangles + edges

Model 2 triangles + 3-stars

Model 3 twopaths + 4-cycles + edges

Model 4 3-stars + 4-cycles + edges

Model 5 triangles + 3-stars + edges

Model 6 transitivity 4+ 4-cycles + triangles + edges

Model 7 transitivity + 4-cycles + triangles + edges + constrains

properties of the students concept maps. As it turns out simulated graphs
produced by model 2 do share some topological properties with the real
world graphs. But this comes with the cost of an increasing number of edges
in the simulated graphs.

In model 3 a parameter linked to transitivity and small cycles were taken
in consideration. A knowledge structure in physics features triangles and k-
stars rather than cycles. So this model is not expected to produce accurate
and realistic results, but stands as an important reference. Model 4 combines
ideas from models 2 and 3. It can be considered (more so than others)
experimental, the reason being that there is no clear physical justification of
the model besides the fact that it combines parameters of the earlier models.
Adding counting of edges to model 2 gives us model 5. The purpose of this
is to guide the simulation process to more realistic edge numbers.

The motivation for the next model came from building on the ideas of
model 3. By intuition transitivity seems to be a very important factor in
forming of the knowledge structure. Multitude of different models including
transitivity were examined here. Besides the actual model 6 the most promis-
ing were models: transitivity + edges and transitivity + triangles. Still both
of them failed to produce much of value and are thus neglected here. The
final definition of model 6 pulls together many relevant motif counting vari-
ables. One more model was defined. Here a parameter was added to model
0 to force at least one edge to all nodes as there are no isolate concepts
in electromagnetism. Constraining the modeling procedure can have fatal
effects when ran through the MCMC steps. This nevertheless might guide
the process to more realistic outcome as measured by how they relate to
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the original data.

4.2 Simulation process

The values for statistical network variables such as density of edges and
number of triangles were measured from the original empirical data. For
example the density of edges of given network 'net" can be calculated (among
other information) using Statnet's command summary(net). The most useful
Statnet and R commands in this research are listed in the table 2. These
commands are listed here so that an interested reader can quickly try out
modeling and simulation. A lot more commands were actually needed to
run the complete modeling and simulation of this research including many
custom developed R functions that are listed in the appendix. For a much
more complete selection of commands and their specifications interested
readers are advised to consult Morris et al. [41].

Table 2: A small summary of the most vital Statnet commands

Command Use

matrix() Scans raw link data into an adjacency matrix
net() Creates a Statnet network object of a matrix
ergm) Creates a Statnet model based on the given

specifications and a Statnet network object
simulate() Simulates a model until a given limit of simu-
lations is reached

A graph with typical statistical and topological properties was chosen to
be modeled. A single graph is needed because of the way Statnet handles
and creates models. The values of the observables were then used as mod-
eling parameters for Statnet algorithms. The number of vertices was taken
in as a boundary rule for the modeling. Different sets of modeling variables
were chosen to construct different kinds of models as was discussed in chap-
ter 4.1. The obtained models were then simulated using Statnet’s simulation
capabilities. Besides the simple edge, triangle and small circle counting we
looked at two important variables. The clustering coefficient measures the
tendency to form closed triangles. It can be calculated with relative ease [30]
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A custom R algorithm was developed to calculate this. Another important
parameter to look at is communicability betweenness centrality. Communi-
cability between nodes p and g in the network represents the probability
that an arbitrary particle of piece of information of some kind travels from
node p to node g. Communicability betweenness centrality (CBC) for a node
r is defined as the weighted sum over walks involving node r [38]. Custom
algorithms were developed to calculate these values. Exact mathematical
definitions can be found in chapter 2.4.

4.3 Software environment

R is an open source programming language and software environment for
statistical computing. It provides tools for statistical analysis, including mod-
eling, classification and simulation. R is highly extensible through the use
of user-submitted packages [42]. Statnet package of R is one these exten-
sions. It is being developed by many contributors from several universities
[43] Statnet was used in this study solely in modeling and simulation of
graphs. Statnet was chosen as a software environment because of it's ex-
tensive library of build-in functions to model graphs. It supports directed as
well as non-directed networks and thus fits for our purposes. Statnet ben-
efits from the recent advancements in statistical analysis, such as random
networks, which are also relevant for our study. It provides wide variety of
tools for model estimation and evaluation. As an important feature it also
provides simulation capabilities. This allows us to simulate the models and
see whether they produce real-world like graphs or not. [19]

The functions (relevant to this study) that have been coded into Statnet
make use of the Markov Chain Monte Carlo (MCMC) algorithm. The MCMC
algorithm is more know from it's use in numerical integration [44]. It samples
from probability distributions based on constructing a Markov chain that
has the desired distribution as its equilibrium distribution. The state of the
chain after a large number of steps is then used as a sample of the desired
distribution. The quality of the sample improves as the number of steps
increases. In our study the number of steps was 5—7-10°. Statnet is modeling
networks based on models called exponential-family random graph models
(ERGMSs) or p-star models. The purpose of it is to help quantify local effects
that shape the global structure of the network [45]. Statnet also provides
tools to evaluate the goodness of a fit through graphical representations. The
MCMC estimation can sometimes lead to undesired results. These include
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irrational topological properties of sample networks and far from average
values for measured attributes. In that case the model is likely to be a
degenerate one. Degenerate models cannot be used to describe any real
world phenomena, but sometimes they can be fixed by adjusting the model
specifications.
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5 Empirical results

1000 networks were produced in simulation of each model. Simulated graphs
were used to determine the values for clustering coefficient and communi-
cability betweenness centrality (CBC). For demonstration one of them was
chosen and plotted for each model (except model 3). The network based on
real world concept map created by a physics student is displayed in figure
5. The communicability distribution of the concept map is plotted in figure
0 to serve as a reference. Three nodes with communicability greater than
0.2 can be observed. These three nodes can thus be considered hubs in the
network. The network is not very dense with respect to links as there are
55 edges and 34 nodes. This usually leads to long walks that involve nodes
with only two or three links. This can be seen in the figure as well. The
clustering coefficient of the network was 0.08 as can be seen in table 3.
This is realistic and expected result as similar values have been observed for
numerous real world networks such as the Internet, power grids or protein
interactions [30]. The same can be said about the average communicability
betweenness centrality over the nodes. < CBC >= 0.010 is realistic for
sparse networks.

As can be seen in the parameters table (table 3) the characteristical
values of model 1 do fall in line with the real world graphs. But mere
averages do not paint the whole picture. Looking at how the links were

Table 3: Characteristical parameters of the models. Cy is the average clus-
tering coefficient and < CBC > the average communicability betweenness.
Their respective stadard deviations are provided as well.

Model G o(G) <CBC> o(<CBC>)
Real World 0.08 - 0.010 -

Model7 007 004 0010 0.005
Model2 004 003  0.091 0.003
Model3 008 004 0103 0.009
Model4 013 003  0.109 0.004
Model 5 009 004 0097 0.003
Model 6 008 004 0098 0.004

Model 7 004 003 0093 0.003
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Figure 5: A reconstruction of real world graph drawn by teacher student.

distributed over the nodes (which is called link grade distribution) you can
find nodes with as many as 9 edges in the simulated graphs. This indicates
that the model seems to capture the generating process poorly. Intuition tells
us that model 2 should describe the hierarchy better than simply calculating
the edges and triangles. The MCMC diagnostics look promising for model 2
as they did for model 1. Densities vary around the observed values. After
simulation triangle count matches observations. The simulated graph seems
well connected and realistic. The average number of links in the graphs
increased by 12,7%. This is not a big surprise as edge count was not a
parameter in this model.

The averages of edge and 4-cycle density distributions of model 3 are not
close to the values of the modeled network. Means are marked as dashed
lines in figure 8. If a model is not degenerate then the densitiy distribu-
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Communicability distribution

Communicability
0.2 0.3
|

0.1

0.0

0 5 10 15 20 25 30 35

Node

Figure 6: The communicability distribution of a concept map of figure 5. The
nodes with higher communicability can be considered more important when
linking concepts. That is to say that a node with higher communicability is
more likely to be involved when a new concept is introduced to the system.

tions drawn in the same figures should be close to symmetrical around the
mean values. This is not the case for model 3 simulations so it indicates
a degenerate model. The density traces didn't converge during simulations.
Interestingly this model seems to produce only very few triangles. Triangles
are vital motifs so this has to be considered a yet another downside of this
model. Simulation did not produce enough acceptable graphs so that the
communicability distribution could be determined. This is further evidence
of model degeneration. The clustering coefficient and average value of com-
municability betweenness centrality is in line with the real world network.
It is normal even for a degenerate model to produce realistic average values.
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Figure 7: (a) A graph generated by simulating model 1 and (b) communi-
cability distribution of the simulation. (c) A graph generated by simulating
model 2 and (d) communicability distribution of the simulation.

26



Summary of MCMC samples
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Figure 8: MCMC diagnostics of the model 3. The dashed lines in the right-
hand side figures are the mean values for the densities. If a model is not
degenerate then the densitiy distributions drawn in the same figures should
be close to symmetrical around the mean values.
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Figure 9: (a) A graph generated by simulating model 4 and (b) communi-
cability distribution of the simulation. (c) A graph generated by simulating
model 5 and (d) communicability distribution of the simulation.
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Looking at the one of the graphs produced in the simulation of the model 4
(in figure 9) we notice alarming topology. The communicability betweenness
centrality distribution has a spike which is consistent with the topology of
the simulated graph. The clustering coefficient is on average notably higher
than the original graph. Looking at the MCMC diagnostics of the simulation
it becomes clear that the model is degenerate. All the means are very much
off the desired, real world network values. This is good news since this model
was not based on any vision on the network structure. The value for the 3-
star count is off by huge margin. This is consistent with observations on the
clustering coefficient. All this is evidence that the model indeed is degenerate
and thus can be considered irrelevant for us. The model diagnostics for model
5 are somewhat surprising. Characteristic parameters look promising as the
means of clustering coefficient and communicability betweenness centrality
are in line with the original real world network. Still all parameter value
distributions signal degeneracy of the model. The simulated graph also
doesn't look satisfactory as there is an isolated node, 4 nodes with only 1
edge and 53% of the nodes having exactly 3 edges.

Model 6 takes transitivity, 4-cycles, triangles and edges in as model
parameters. Note that transitivity is applied for directed network. There
is no clear evidence of degeneracy. Simulation produced graphs that look
satisfactory except for the isolates found in many simulations. The featured
graph in figure 10 has 13 triangles and 71 edges compared to the 4 triangles
and 55 edges of the real world network. The link grade distribution of the
model is realistic on average. As there are no isolate concept definitions
in physics the number of isolates in the models should be limited to 0 by
some boundary rule. That is done in model 7 by setting boundary rules
that force minimum of one edge for each node. It turned out that adding
boundary conditions tends to provoke minor increase in the number of edges
in the modeling. The sample graph generated by the simulation of model
/ has 63 edges and 3 triangles. That is in line with the real world graph.
The communicability betweenness centrality distribution is plotted in figure
10. Distribution (d) is calculated for a simulated network based on the
model 7. It is fairly similar with the real world graph. Both have few nodes
with minimal communicability betweenness centrality. The simulated graph
doesn’t yield to any nodes having CBC over 0.3. On the other hand the
number of nodes with CBC over 0.2 is nearly identical (3 in real world graph
to 4 in simulated). In light of CBC simulating the model 7 produces realistic
networks. The clustering coefficient is below the real world value.
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Figure 10: (a) A graph generated by simulating model 6 and (b) communi-
cability distribution of the simulation. (c) A graph generated by simulating
model 7 and (d) communicability distribution of the simulation.
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6 Discussion and conclusions

We have studied seven different models to describe physics students knowl-
edge structure. The models ranged from straightforward calculation of trian-
gles and edges to more complex models that take in account the transitivity
as well as cycles and triangles. The choice of parameters was based on
studies that have shown humans to process information by similar motifs.

Each model was simulated in order for us to compare the resulting graphs
with concept maps done by physics students. A model that produced realistic
(compared to students’ concept maps) clustering coefficient and communica-
bility betweenness values was considered relevant. During the research it
became obvious that the choice of model parameters had to be done very
carefully. Including a seemingly ineffective parameter could easily degener-
ate the model. Degenerate models fail during the Markov Chain Monte Carlo
steps and thus produce unrealistic and undesired results. Models 3 and 4
are degenerate. Model 6 was the most accurate model by many means. The
clustering and communicability values it produced were very close to those
calculated of the real world graphs. This observation answers to the second
research question. We have found the most accurate model (in the scope of
our research).

According to the research documented in this paper it seems possible
that at least highly hierarchical information can be modeled by triangles
and other simple patterns formed by the key concepts and meaningful links
between them. That answers to the first research question. The simulated
graphs that were produced by models that had basic motifs as their param-
eters do preserve some of the topological and hierarchical information of the
real world concept maps and can thus be considered relevant.

This study has some meaningful implications for teachers as well as text
book authors. In the future, the approach introduced in this paper could be
developed into a tool to help monitor students’ meaningful learning. Students
could make the concept maps using an online tool. The data would then
be processed automatically using powerful computers and results would be
visible to the teacher. The tool could pinpoint areas of the subject matter that
have been generally poorly learned and thus require more attention from the
teacher. The kind of modeling that was done in this article provides insight
for text book authors in arranging content in such manner that it supports
creation of basic cognitive motifs in learners mind. As we have demonstrated
in this study, this kind of practice will lead to formation of larger cognitive
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hierarchies and thus lead to better meaningful understanding of the subject
matter.

There is much fruitful ground to be covered by the approach introduced
in this article. There are two distinct ways to expand and deepen the study.
First, new models could be created based on the findings in this article.
Alternatively, the models proposed here could be refined even further. Sec-
ondly, there is also a possibility to look into more robust observables such as
statistical attributes of the ensembles. This could be achieved by comparing
statistical observables for real-world ensembles with ensembles created by
simulating a model. These two directions would lead into deeper under-
standing of the link between how humans acquire and process knowledge
and simple patterns found in well-developed concept maps.
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Appendix

A. Statnet and R code listings

Here is listed the core Statnet code listings developed and applied in this
research. Many more functions were developed and used by the author, but
their main function was to automatize simulation and plotting functions. The
core functions such as calculating the important observables are included.
Note that some of the functions require the ‘statnet” and "Matrix" packages.

The first three functions listed here are essential support functions. As
the data itself has directed networks and some of the functions are written
for undirected network we need a way to transform directed networks into
undirected matrices. This is done in the MakeSymmetrical function. The
ReturnAsMatrix function converts Statnet network objects into matrices.
The DeleteLines function is needed to make all elements g, = 0 and
adrr =0 forsome rand k=1, ..., 34.

MakeSymmetrical <— function (net){
m <— as.matrix(net)
for(j in 1:34){
for(k in 1:34){
tf (m[j, k]l==1) m[k,j]<-1
}
}

return (m)

}

ReturnAsMatrix <— function (net){
return (Matrix (symmetrisoi(as. matrix(net))))
}

DeletelLines <— function (A, r){
for(k in 1:34){

Alk, r]=0
Alr, k]=0
}
return (A)
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The CalcCBC function provides the core functionality for calculating the
communicability betweenness for a single node r. The function only applies
to the data of this research as the constant 1057 is a result of calcula-
tion involving the number of nodes. The other two CBC functions utilize
aforementioned function to provide the CBC for a network and a model. The

CBCforModel function
net.

illustrates how simulation commands are used in Stat-

CalcCBC <— function (A, r){

sum = 0
B = DeletelLines (A, r)
aar = Matrix(seq (1, 3472, 1), nc=34)
erk = Matrix(seq (1, 3472, 1), nc=34)
for (p in 1:34){
if(p == r) next;
for (q in 1:34){
if (g ==r) next;
if (p == q) next;
erk = expm(B)
apl = erk[p.q]
aar = expm(A)
ap2 = aar[p,q]
sum <— sum + 1 — apl1/ap’2

}
return (sum/1057)

}

CBCforNetwork <— function (net)
A = ReturnAsMatrix(net

for (r

}

tn

{
)
1:34)]
omega| r]=CalcCBC (A, r)

return (mean(omega))

}

CBCforModel <— function (model,

list <—

limit){

seq (1, limit, 1)
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for (num tn 1:limit){
sim <— simulate (model, burnin = le+5H)
print (num)
list [as.integer (num)] <— CBC(sim)

}

print(lista)
print(mean(lista))
print(sd(lista))

The remaining functions listed below provide for calculation of clustering
coefficients.

Clustering <— function (a){
x=0
y=0
for(j in 1:33){
cc=j+1
for(k in cc:34){
for (i in 1:34){
x=x+a[l,]l*xal[l, k]xalj, k]
y=ytali,jlxall, k]

}
}
return(x/y)

}

ClusteringFromFile <— function (tds){

m <— matrix (scan(file=tds , what=integer (0), sep=","),
ncol=2, byrow=IRUE)
net <— network(m, matrix.type="edgelist’, directed=IRUE)

return (Clustering (MakeSymmetrical (net)))

}

Characterize <— function (model, limit){
list <—seq (1, limit, 1)
for (num itn 1:limit){
sim <— simulate (model, burnin = Te+DbH)
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list[as.integer (num)] =
Clustering (MakeSymmetrical (sim))
}
print(list)
print (mean(list))
print(sd(list))

B. Real-world concept maps

Here we provide an ordered listing of real-world concept maps studied in
this research. Only the concept map used as a base for modeling is omitted.
Figure of that network can be seen in Figure 5. Maps have been ordered
based on their clustering coefficients.
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17 R

(a) 0.043 (b) 0.044 (c) 0.055
(d) 0.069 (e) 0.070 (f) 0.076
(g) 0.079 (h) 0.083 (i) 0.089

Figure 11: Real-world concept maps represented as networks, with their
respective clustering coefficients.
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F o

(a) 0.109 (b) 0.124 (c) 0.132
(d) 0.138 (e) 0.139 (f) 0.139
(g) 0.147 (h) 0.151 (i) 0.152

Figure 12: Real-world concept maps represented as networks, with their
respective clustering coefficients.
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Cad

(a) 0.155 (b) 0158 () 0.158

(d) 0.162 (f) 0.164
(g) 0.172 (h) 0.176 (i) 0.178

Figure 13: Real-world concept maps represented as networks, with their
respective clustering coefficients.
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(a) 0.181 (b) 0181 () 0.188

(d) 0.189 (e) 0.196 (f) 0.200
(g) 0.215 (h) 0.243 (i) 0.258

Figure 14: Real-world concept maps represented as networks, with their
respective clustering coefficients.
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(a) 0.259 (b) 0.265 (c) 0.265

(d) 0.266 (e) 0.277 (f) 0.290

(g) 0.322 (h) 0.346 (i) 0.400

Figure 15: Real-world concept maps represented as networks, with their
respective clustering coefficients.
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