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Abstract

In high-energy particle physics the energy evolution of various
quantities can be calculated from the Balitsky-Kovchegov (BK)
equation. Depending on the frame that is used to describe the
process, the BK equation can be seen to describe either the
energy evolution of the virtual photon wave function or the gluon
distribution function of a hadron.

In this work the BK equation is derived at leading logarithm
accuracy from QCD and solved analytically in some special cases.
In order to derive it the quantum field theory on the light cone
is introduced. Part of the higher order corrections to the BK
equation, namely the running strong coupling constant and the
kinematical constraint effects, are studied numerically.

As a result it is shown that the running coupling slows down
the evolution significantly compared with the evolution obtained
with a fixed coupling constant. The different running coupling
prescriptions used in the literature also cause significantly different
evolution speeds. In addition the running coupling changes the
asymptotical shape of the solution. On the other hand the kine-
matical constraint effects are shown to affect mainly the evolution
speed while leaving the shape of the solution intact.

The numerical codes developed in this work can be used when
studying the phenomenology of high-energy QCD.



Tiivistelma

Hiukkasfysiikassa monien suureiden energiariippuvuus suurienergisissé proses-
seissa voidaan laskea Balitsky—Kovchegov (BK) -yhtélosté. Sirontaprosessin
kuvaamiseen kéytetystd koordinaatistosta riippuen BK-yhtélén voidaan tulki-
ta kuvaavan joko virtuaalisen fotonin aaltofunktion tai hadronin gluonijakau-
mafunktion energiariippuvutta.

Téssa tyossd BK-yhtdlo johdetaan johtavaan kertalukuun QCD:sta ja
ratkaistaan analyyttisesti muutamassa erikoistapauksessa. BK-yhtélon johta-
miseksi esitelladn kvanttikenttateoria valokartiokoordinaatistossa. Korkeam-
man kertaluvun korjauksia BK-yhtéaloon tutkitaan ratkaisemalla BK-yht&lo
numeerisesti kayttiden juoksevaa vahvan vuorovaikutuksen kytkinvakiota ja
kinemaattista rajoitetta.

Tutkimuksen tuloksena havaitaan, ettd juokseva kytkinvakio hidastaa
energiaevoluutiota selvésti verrattuna tapaukseen, jossa vahvan vuorovaiku-
tuksen kytkinvakio ei riipu skaalasta. Lisdksi huomataan, etté kirjallisuudessa
esiintyvat toisistaan eroavat tavat lisdté juokseva kytkinvakio BK-yhtéaloon
johtavat selvisti toisistaan eroaviin evoluutionopeuksiin. Juokseva kytkinva-
kio myo6s muuttaa ratkaisun asymptoottista muotoa verrattuna tapaukseen,
jossa kytkinvakio ei riipu skaalasta. Toisaalta kinemaattinen ehto vaikuttaa
pédasiassa vain evoluutionopeuteen, mutta jattda ratkaisun muodon samaksi.

Téssé tyosséa kehitettyjd numeerisia ohjelmia voidaan kayttda jatkossa
tutkittaessa QCD-prosesseja suurella energialla.
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Chapter 1

Introduction

In particle physics the elementary matter particles and their interactions,
excluding gravity, are described by the Standard Model. It describes three
kinds of interactions: electromagnetic, weak and strong. Moreover, electro-
magnetic and weak interactions are described as two aspects of the same
force, namely the electroweak interaction. All matter particles interact via the
electroweak interaction. The third interaction in the Standard Model is the
strong interaction described by quantum chromodynamics (QCD). Quarks
and gluons, the particles that e.g. a proton consists of, also interact via the
strong interaction.

The Standard Model is known to be an accurate description of all mea-
sured collider physics phenomena, but there are still a few open questions.
In the electroweak sector the existence of the Higgs boson, predicted by
the Standard Model, is under intensive experimental research. In addition,
measured neutrino oscillations suggest that neutrinos have nonzero mass,
in contradiction to the Standard Model. In quantum chromodynamics the
properties of the quark-gluon plasma (QGP), the state of matter that can be
produced in ultrarelativistic heavy ion collisions, are not known in detail.

Experimental results show that the gluon density inside the proton (and
similarly inside the nucleus) grows rapidly when the fraction of proton mo-
mentum carried by the gluon, the Bjorken x, decreases. This is equivalent to
probing the hadron at high energy, and allows us to consider a proton or a nu-
cleus as a medium of dense gluon matter known as the Color Glass Condensate
(CGC). For a review of the CGC framework, see for example Refs. [, 2]. The
energy dependence of observables in this regime can be calculated through
evolution equations which are derived from QCD in the high energy limit.
One of these evolution equations is known as the Balitsky-Kovchegov (BK)
equation, which is the topic of this Thesis.

The Color Glass Condensate can also be used to describe the QCD dynam-
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ics of the earliest stages of the ultrarelativistic heavy ion collisions studied
experimentally at RHIC and LHC. Theoretically the spacetime evolution of
the QGP produced in these collisions is well understood in terms of relativistic
hydrodynamics which requires information about the initial condition. It
should be possible to calculate the initial condition from the CGC framework,
as both of the colliding nuclei can be described as a dense gluon matter, see
for example Ref. [3] and references therein.

This work is structured as follows. In Chapter [2] we discuss QCD at high
energy in general. In Chapter 3| we introduce light cone quantum field theory,
which we use to derive the Balitsky-Kovchegov equation in Chapter [d After
studying its properties analytically and discussing the higher order corrections,
we study it numerically in Chapter [3]

Notation

Vectors are written as a plain letters without any vector sign, e.g. p for the
4-momentum. Whenever it is clear in the context, we denote the length of
the two-dimensional transverse vectors as r = |7|. The system of units known
as the natural units, in which A = ¢ = kg = 1, is used. In this case the fine
structure constant is ey, = €2/(4m) ~ 1377, and

[mass] = [energy] = [time] ' = [length] ' = GeV. (1.1)
The relation between gigaelectronvolts (GeV) and femtometers is

1 GeV = 5.0677 fm ™. (1.2)



Chapter 2

High energy scattering in QCD

2.1 Deep inelastic scattering

Deep inelastic scattering (DIS) is a powerful way to measure the internal
structure of hadrons and to test perturbative QCD. For example, one can
extract the parton distribution functions from the measured total lepton-
hadron cross section. In DIS a lepton scatters off a hadron which then breaks
up into other particles making the process inelastic. Let us consider deep
inelastic scattering of the lepton [ off the nucleus N. In this case we can write

the process as
I(0)+ N(P) —I'({) + X (Px), (2.1)

where P is the momentum of the incoming nucleus and ¢ and ¢ are the
momenta of the incoming and outgoing lepton, respectively. In this process
the nucleus breaks up and forms many different particles, which are denoted
by X, with momentum Pyx. The situation is shown schematically in Fig. [2.1]

As leptons are simple, pointlike particles, photon emission from a lepton is
well understood in terms of quantum electrodynamics. On the other hand the
photon-proton (or photon-nucleus) scattering is more difficult to formulate,
as the proton is not a simple object but contains valence quarks, sea quarks

Figure 2.1. Deep inealstic scattering.
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formed by the quark-antiquark fluctuations, and gluons. The role of the
lepton in these experiments is to act as a source of virtual photons, and the
interesting physics is encoded in the virtual photon-hadron scattering. Notice
that when we discuss the parton constituents of the hadron, we are working
in the infinite momentum frame where the hadron has a large momentum.
This parton picture is not valid in the frame where the proton momentum is
small, as we will discuss in Sec. 2.3

To describe the kinematics of nuclear deep inelastic scattering we define
the following Lorentz invariant variables:

s = (P +q)* (2.2)
F=-Q*=U—-1)? (2.3)
y= Da _WEH QR —my (2.4)
ma ZmA
2 2 2
p= A AQT AQ (2.5)

2P-q  2mav Q24+ W2-—m%’

If the target hadron is a proton, we set the mass number of the nucleus,
A, to one. Here s is the Mandelstam variable describing the total energy
in the center of mass (CMS) frame, W? = (P + ¢)? is the CMS energy for
the photon-nucleus scattering, m 4 is the mass of the nucleus and Q? is the
virtuality of the photon. The interpretation of v is that it gives the total
energy transferred in the process in the target rest frame: v = E; — E] where
E; and E] are the lepton energies at the beginning and at the end of the
process in the proton rest frame, respectively.

The variable x is called Bjorken x and its interpretation in the infinite
momentum frame is that it gives the fraction of the hadron momentum carried
by the quark or the gluon taking part in the scattering process. Notice that
in order to get a small z the momentum of the proton or the photon must be
large.

2.2 Energy evolution and saturation scale

Let us first consider a DIS of a lepton off the proton in the infinite momentum
frame. Due to the uncertainty relation the virtuality of the photon, Q?, sets
the scale r of the objects that the photon can see: r ~ 1/Q. That is, the
apparent size of the partons seen by the photon is 1/Q?. If Q? is large enough,
the target appears to be a dilute system of quarks and gluons.

The parton distribution function, denoted by f;(z, @?), has, in the lowest
order, an interpretation as a probability to find a parton i (quark, antiquark or
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gluon) with momentum fraction x by using a probing photon whose virtuality
is Q%. We are here interested in the high energy limit, which corresponds to
small z, as s ~ Q*/x. In this region the proton constituents are mainly gluons,
hence from now on we neglect all quarks. In terms of parton distribution
functions, f,(z,Q?) grows rapidly as = decreases, and the quark distributions
can be neglected. Notice that when energy increases and Q? is kept fixed,
smaller and smaller values of z are probed, and thus we can talk about energy
evolution.

The physical interpretation of this evolution is that at small x (when we
can neglect everything but gluons) we see more and more soft gluons, emitted
by harder gluons. By soft gluons we mean gluons which carry a small fraction
x of the proton momentum, x < 1. The apparent size of the gluon is ~ 1/Q?
as, according to the uncetainty principle, the characteristic length scale is
~ 1/Q. Thus, if Q? is large enough, there is a lot of phase space available for
new soft gluons and we can expect that the number of gluons increases with
decreasing x. The situation is shown schematically in Fig.

Now if we keep Q? fixed and move to smaller values of z, or alternatively
keep x fixed (and small) and decrease %, we see that at some point gluons
start to overlap and, due to the self-coupling of gluons in QCD, we have
to take into account gluon recombination processes. The larger the size of
the gluons, the earlier they fill the available area and start to recombine.
When this state is reached, decreasing x further will not increase the gluon
density significantly. At fixed = we can define the saturation scale ()5 as the
momentum scale at which the nonlinear effects (gluon recombination) become
important. The characteristic length scale is then ~ 1/Q,. We shall give
more exact definition for @ in our framework later in Sec. [5.2]

The energy (or scale) evolution of these parton distribution functions can
be considered at different limits of QCD. At sufficiently large scale Q% > AéCD,
the Q% evolutions can be derived from the perturbative QCD. The result is
known as the DGLAP (Dokshitzer—Gribov-Lipatov—Altarelli-Parisi) equation
which was first derived in Refs. [4-6]. On the other hand at small = (high
energy) limit the evolution in z is described by an another evolution equation
known as the Balitsky—Kovchegov (BK) equation. In this work we study the
BK equation in detail.

2.3 Dipole picture

In the previous sections we worked in the infinite momentum frame where
a virtual photon scattered off the proton which is described as a system of
quarks and gluons. All the QCD evolution took place inside the proton, and
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Figure 2.2. Gluons in y, Q2 plane. As rapidity y increases, the number of gluons
with apparent size 1/ QQ? increases.

the parton distributions of the proton evolve as a function of virtuality ()2
and Bjorken z.

On the other hand we can view the same virtual photon-proton scattering
in a frame in which the proton momentum is small. In this frame the
deep inelastic electron-proton scattering is described as follows: first an
incoming electron emits a virtual photon v*, which then fluctuates into a
quark-antiquark (gq) color dipole. This dipole then scatters elastically off the
proton and recombines to form the final state particles, e.g. a photon v or a
meson V. This process is shown schematically in Fig. 2.3, where we denote
by z the fraction of virtual photon momentum carried by the quark.

This picture, known as the dipole model, is valid at small z, where one
can show that the lifetime of such a quantum fluctuation which produces the
qq pair is much larger than the typical timescale of the interaction [7]. In this
section we discuss the total v*p cross section and how to calculate it in the
dipole model. A more complete discussion can be found from Ref. [8] where
the dipole model is used to describe the HERA DIS data.

Let us study virtual photon-proton scattering. Following Ref. [§] the total
~v*p cross section can be written as

1
ot = Z / d%ry /0 dz[\p*\y]g‘u(z,Q?)aqq(a:,m), (2.6)
f

where T" and L refer to transverse and longitudinal polarization states of the
virtual photon and f is the flavor of the quark. The virtual photon wave
function squared, U*W, will be derived later in Sec. [3.2] and its interpretation
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Figure 2.3. Dipole-proton scattering.

is that W gives the probability amplitude for v* to fluctuate into the gq dipole,
and U* is the probability amplitude for ¢g to form a virtual photon.

The dipole-proton cross section og4(x, r7) can be obtained from the elastic
dipole-proton scattering amplitude A(z, rr, A) using the optical theorem [7,
9):

04 =2ImA(x,rp, A =0) = 2/d2bTN(x,rT, br) = ooN(z,rr). (2.7)

Here N(z,r7,br) is the imaginary part of the forward elastic dipole-proton
scattering amplitude. To get the last equality we neglected the impact
parameter dependence and assumed that the by integral gives only a constant
factor o¢/2 which we treat as a fit parameter. We will get the scattering
amplitude N (x,rr) later in Chapter 4| by solving the Balitsky-Kovchegov
(BK) equation.

The assumption that the impact parameter can be neglected corresponds
to the scattering off an infinitely large uniform nucleus. This approximation
is justified as one can obtain a good description of the current HERA data
with this approximation as we will discuss in Sec. and we shall neglect the
impact parameter dependence throughout this work. We will discuss shortly
the impact parameter dependent BK equation in Sec. 4.7}

Notice that in this formalism the flux factor is included in the definition of
the scattering amplitude, and N is a dimensionless quantity. Its interpretation
is nothing but the probability for the ¢qg dipole to scatter off the proton. In
this context the unitarity limit N < 1 following from the requirement that
the S matrix is unitary is easy to understand. We expect that N — 1 at
small z, which can be interpreted as a limit when the gluon density in the
target is large, see discussion in the previous section. In addition the limit
N — 1 when rp is large is expected. On the other hand N should go to zero
in the limit r — 0, as in that limit the dipole would appear as color neutral.

Once the v*p cross section, Eq. , is known, we can directly calculate
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the proton structure function Fy [7]:

Q2

P (037 +0) "), (2.8)

F2<£7Q2) =

Similarly the longitudinal structure function Fj, reads

2
Fi(z,Q%) = ¢ o]’?. (2.9)

47200y,

The structure functions are physical observables which are measured exper-
imentally in deep inelastic electron-proton scattering and without (referring
to the dipole model) [10]. We will compute F; later in Sec. and compare
it with the experimental data in order to test the validity of our results.



Chapter 3

Quantum field theory on the
light cone

3.1 Introduction

The laws of physics should not depend on the parametrization of the spacetime:
one can calculate the Lorentz invariant observables in any frame of reference
and obtain the same results. A familiar way to parametrize the spacetime and
develop the quantum field theory (QFT) is sometimes called instant form,
where we know the system at initial time everywhere on the hypersurface
t =0 (or t = —o0). When the initial state is known, the system can (in
principle) be propagated to a later time ¢ using the equations of motion.

A straightforward way to move between the parametrizations is to apply
Lorentz transformations. The special theory of relativity then assures that the
laws of physics, and Lorentz-invariant quantities such as the cross sections, do
not change. However, not all the parametrizations are reachable by means of
Lorentz transformations, because we cannot boost to a frame moving at exactly
velocity v = 1. The quantum field theory in this frame of reference is known
as the light-cone quantum field theory (LCQFT). It has a few advantages
compared with the traditional QFT in the instant form: interacting theory
and free theory vacuums are the same and the hadronic wave functions can
be computed as an expansion of Fock states [11].

A complete discussion of the LCQFT goes beyond the scope of this work.
In this Chapter we shall only quote the most important results which are
needed in order to derive the Balitsky-Kovchegov equation. A more detailed
review can be found e.g. from Ref. [I1], which we follow closely in the following
discussion.

0

Let us denote a normal (instant form) 4-vector by = = (z°, 2!, 2% 23),

9
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where z° is the time component and z? (i > 1) are the spatial components.
The metric tensor is the familiar one

1 0 0 0
0 -1 0 0

9w =10 0 =1 0 (3.1)
00 0 -1

The light-cone coordinates are defined as x* = \%(mo +23) and 7 =

75(@° — 2%), and a 4-vector reads x = (z*, vy, 27), where vy = (¢!, 2%). The
transverse components of the vector are the same in both coordinate systems,
and the 2™ component is called light-cone time. Now the spatial 3-vector is
Z = (27, zr). The metric tensor in tihs basis reads

00 0 1
0 -1 0 0

Iw =10 0 -1 0]" (3.2)
1 0 0 0

and the inner products become z-y = xty~ + 27 y* — xp-ypr. For a 4-
momentum vector p = (p*, pr, p~), where now p~ represents the light-cone
energy (as it conjugates with the light-cone time z), the on-shell condition
reads S
2 2 - _pbrTm

This relation is simpler than the corresponding condition in the instant form
coordinates, £ = /p? + m?, as Eq. does not have the square root but
it is linear in p% and m?.

A scalar field theory can be now quantized on the light cone by writing
the field ¢(x) in terms of creation and annihilation operators a' and a as

_ dp
) VemdvepT

The vector p is the spatial part of the light-cone momentum, p = (p*, pr).
Here we have included a factor (2p)~'/2 in the integration measure following
the convention used e.g. in Ref. [I1]. The operators a' and @ are assumed to
obey a commutation relation

[a(p),a'(q)] = 6*(p — q). (3.5)

Similarly for a fermion field ¢ we write

(r) = Z/ iy ™" “bs(p)us(p) + €™ “dL(P)vs(p)] - (3.6)

() [ *a" (p) + e “a(p)]. (3.4)

N
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Here b,(p) destroys a fermion and df(p) creates an antifermion with spin s
and momentum p, and u and v are the spinors for a spin-1/2 fermion and
an antifermion, respectively. Fermionic operators are assumed to satisfy an
anticommutation relation

{bs<p)7 bi’(@)} = 55(15 - Cj)(sss’a (37)

and similarly for d. Finally, the gauge field A can be written as

d®p . .
Ayu(z) = ZA:/\/(Q—TP\/QIF [e7 a(p)ey(p) + € *a (e (p)] . (3.8)

where A is the polarization of the field and ¢ is the polarization vector. The
operators a*' and o satisfy the same commutation relation as the scalar
field operators &' and @, Eq. , with an additional factor dyy.

We will also need the interaction part of the light-cone QED Hamiltonian,
which reads (recall that P~ is the light-cone energy) [11]

Py = €/d3ﬁz_}A¢
1 (3.9)

2 3= | At 7ot Rl
v [0 [ivrugirte+ pAZ M.

Here we use the notation A = A,v*. The last two terms describe interactions
like ffff and yyff (where f stands for a fermion and f for an antifermion,
and v is a photon) which are not present in the instant form QED. In this
work we do not have to deal with these complicated interactions, because
when we calculate the v* — ¢g (virtual photon to quark-antiquark pair)
splitting in the next section, we only need the first term which is similar as
in the instant form.

3.2 Virtual photon wave function

In Sec. we noticed that in the dipole picture deep inelastic scattering can
be factorized into several steps. First an incoming virtual photon fluctuates
into the quark-antiquark dipole. This dipole then scatters off the target and
finally forms some final state particles.

The probability for a virtual photon to fluctuate into the quark-antiquark
(qq) dipole can be calculated in terms of light cone perturbation theory.
We could use directly the Feynman rules of the LCQFT to write down the
amplitude for the v* — ¢q splitting, but in this section we shall compute it
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K s
q/\/\/\/\/\/\/\C‘:
k s
Figure 3.1. Virtual photon fluctuates to the quark-antiquark dipole. The mo-
mentum and the spin of the quark (antiquark) are k (k") and s (s'), respectively.

/

in a more transparent way. We quote the Feynman rules of the light-cone
perturbation theory and use them to calculate the amplitude for the gluon
emission process (¢ — ¢g) in Sec. [3.3]

First we define a virtual photon state with momentum ¢ and polarization
A in the free (non-interacting) theory to be

7" (@))o = a*(@)]0). (3.10)
If we denote the Hamiltonian of the free theory by F; , we have
Pylve=a"17")o- (3.11)
Similarly we can write the qg dipole state in this theory as
a5 (k) (K)o = bL(K)dL (K)[0) (3.12)
from which it follows that
Py lqs(k)gs (K)o = (k™ + k7)lgs (k)gs (K))o. (3.13)

Here k, k/, s and s’ are the momenta and the spin of the quark and the
antiquark, respectively. The situation is shown schematically in Fig. |3.1}

We shall then use perturbation theory similarly as in quantum mechanics.
We assume that the virtual photon state in the interacting theory, |y*), can
be written as the free theory state |y*)o plus a small perturbation

) =1 e+ / FIAT8(G 1= U)ss (Dgs (s (I)o + O(e?) (3.14)

where the yet unknown function 1, is called the virtual photon wave function.
As the splitting v* — ¢q includes one coupling between a fermion line and a
gauge field, we expect that 1,y ~ e, and thus we can neglect terms which
are higher order in electromagnetic coupling a.,, or equivalently, elementary
charge e (recall that ae, = €?/(47)).

We can then close Eq. by o(qs(k)ge (K')| and use the orthogonality
of the non-interacting states,

0(gs(F) s (K)lgs (D (I')o = 0% (k = D)O* (K = I)d,50s5 (3.15)
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to get
0(gs(k)qsr ()| )o = 0+ 6°(q — k — K )hswr (k). (3.16)

On the other hand we can close Eq. (3.14) by o(qs(k)qs (K')|(Py + Py,
where P~ = B, + P, is the total Hamiltonian of the interacting theory, and
Py is given in Eq. . This gives

¢ 0(as (k)T (K)|y") = 4~ - 0+ o{as (k)@ (k)| P [y o

— /— 3/ = 7 7/ 7 2 (317)
+ (k™ +£7)0°(q — k = K)sg (k) + O(e7),
where the term containing 1,y (qq| P |qq) is included in O(e?) as 1,y ~ €
and P_

int ™

Substltutlng Eq. (3.16) into (3.17)) and relabeling 3, 8" — s,s" we find

e 0{as(B)Gs (K[ Prgly)
5(q = k= K)o (k) = O,

(3.18)

The inner product in Eq. (3.18) can be computed by substituting the
Hamiltonian from Eq. (3.9):

o (B Paly)y = ese 3 [ o dpdy ETO0b(E)d ()

x [bl(p)as(p)e™  + d; (‘)17( ple” P ’”]
x X Dey e + TN (e ]

X by (9 )us ()™ + dl (5o (0) e *1a* ()]0).
(3.19)

Here the factor (2m)~3/2(2p*)~1/2 is included in the integration measure d*p
and ey is the charge of the quark in terms of the elementary charge (1/3 for d
and 2/3 for u quark).

We can then proceed by (anti-)commuting creation and annihilation
operators in a term by term basis in such a way that an annihilation operator
is moved to the rightmost position or an creation operator is moved to the
leftmost position. We use the fact that the annihilation operator destroys the
vacuum, and thus b,|0) = 0, and (0[b) = 0. As a result the only surviving

term from Eq. (3.19) is

ere d*z d*pd®p a1 (0]b K)bs(p) e (Dd(p') e (g)1
o3 [ Cadpa Lo b D@

X ﬂg(p)éfx (Dve ()PP D6, .5020500).
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We continue by using again the (anti-)commutation relations and moving
annihilation operators to the rightmost positions. The d®z integral at 2™ = 0
results a factor (27)36%(p + p' — q). Performing then the momentum integrals

and comparing with Eq. (3.18)) one gets

us (k) #*(a) vy (k') (2m)*

Yar(h) = ey V(@m)32kT \/(2m)P2qT \/(2m)P2kT am — kT = kT

(3.21)

Let us then calculate the required terms. Denoting Q? = —¢®> = —2¢* ¢~
(as gr = 0) and m? = k? = 22Tk~ — k2, where m is the quark mass and z is
the fraction of light cone momentum carried by the quark (k™ = z¢™), we get

—Q* mP+k: m+ kA

20t 2zt 2(1—2)gt

Q*2(1 —2) +m?* + kF
2qt2(1 — 2) '

¢ -k -k =

(3.22)

The second term we need to calculate is @ (k)¢ (q)vy (k). In order to do so
we need to specify the polarization vector €. Considering first a longitudinally
polarized virtual photon we can write [10]

er(q) = (%,0, Q%) (3.23)

in the covariant gauge. Notice that the transverse components are zero. We
can then perform a gauge transformation into the light-cone gauge, in which
et =0:

q" Q q‘) < Q)
€ — € ——=(0,0,——-—1]=10,0,— ). 3.24
) = enle) - 5 = (0,055 - © N (3.21)
Now ¢ = y_e~ = v*e~, where the last equality can be seen from g, see

Eq. (3.2)). Thus

a (R @a) = S0,k o (h). (3.25)

Let us then calculate us(k)yTvy (k). We use the explicit forms for the
gamma matrices and Dirac spinors in the chiral basis given in Ref. [I2] known
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as the Kogut-Soper (KS) convention [I1I[} The spinors are

V2Kt 0

B 1 kg + ik, B 1 m
u(k, +1) = 91/4\ /]t m o ulk,—1) = 21/4/k+ | =k +iky |’
0 V2k*
0 V2k*
B 1 -m B 1 kg + ik,
v(k, +1) = 21/ay/k+ | —ke +iky |7 v(k, 1) = 21/4\/J+ —m

2kt 0
(3.26)

The definitions for the gamma matrices read, in the block diagonal form,

01 ; 0 —o
0 __ i __

where o, i = 1,2, 3, are the Pauli spin matrices. Now 7'yt = /2 diag(1, 0,0, 1),
and clearly

ul (K)7°y T vg (k) = V2kT2k'+ 0, . (3.28)
Substituting everything back to Eq. (3.21]) we get

gtz(1—-2)Q 1
e+k2  qt2mym

where € = Q*2(1 — z) + m} and f is the quark flavor. We then define a new
function ¥%,(z, kr) which is required to satisfy a normalization condition

/ Ak L, ()2 = / Azl (2. k) . (3.30)

L (k) = —eye

ss’

Oss', (3.29)

This requirement is natural as |1)|? has an interpretation as a probability of
the process v* — qq. As k™ = zq™, we see that (2, kr) = Vgt (k).

Finally the result can be Fourier transformed into the transverse coordinate
space to get

—eye Pkr 4. 1
1—2)0s_g | =TT —x
271'\/7_1'@2( 2)0s, / or €2 + k2

. —efe _ /
_QW\/%QZO 2)Ko(erp)ds,—g.

Notice that the expressions for the gamma matrices given in Ref. [I1] cannot be used
with the KS spinors also quoted in [I1], as the sign of 4% (i > 1) is different in Refs. [12]
and [I1].

wi/<z> TT) =
(3.31)
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The final result for the longitudinally polarized virtual photon wave
function summed over spins and quark colors is

Z |1/}L(Z»7"T)|2:€f Q72

3,8’ color

(1 —2)*K3(err), (3.32)

where aey, = €%/(47), and N, is the number of colors. The function K is the
modified Bessel function of the second kind which satisfies Ko(z) ~ e * at
large x, which means that large dipoles are exponentially suppressed. Thus
the function Q*KZ(er) ~ Q*KZ(Qr) suppresses the processes not satisfying
the uncertainty relation @) ~ 1/r.

The wave function for a transversely polarized virtual photon can be
calculated in a similar manner. The only difference is the polarization vector,
which reads, in the light-cone gauge,

Aoy = (0,23 drocT 3.33
€T<Q)_ 75T7 q+ ) ( )

where e are transverse polarization vectors and A = +1. The explicit
expressions are et = (1,4)/v/2 and e;! = (1, —i)/v/2 [13]. Notice that in our
case the virtual photon has no transverse momentum, and thus gr = 0 and
kr = —k/.

To compute the wave function we need to calculate the matrix element
5(k)e* - yrvg (k'). This can be done by using the explicit expressions for the
spinors and the gamma matrices, Eqgs. (3.26]) and (3.27). If s = &', one gets

oK) (q) - yrvg (K) = _A\/g i \/%538,. (3.34)

Notice that now the matrix element has a dependence on the quark mass my
which was absent in the longitudinal wave function.
Similarly if s = —s’ and A = +1 one gets
2

ﬂ(l{?)é‘%(q)’}/TUs/(k/) = ——<2537_153171 — (]. — 2)53’15817_1> 81 . k‘T.
z2(1—2)
(3.35)
The matrix element with polarization A = —1 can be obtained in a similar

manner, and it turns out that the only difference is that one interchanges
s < §. Substituting these matrix elements to Eq. we obtain the
momentum space wave function

ese 1

/\?il k) —
wss ( T) \/W\/Q_JFEQ_’_k%
X V22052105 41 — (1 = 2)0s 2105 21) €51 - kp + M0 4104 11
(3.36)
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b, &, s p_k,ﬁ,S/

%k‘c/\

Y Y

Figure 3.2. Quark with momentum p, spin s and color « emits a gluon with
momentum k, color ¢ and polarization A. The color and spin of the quark after
the emission are § and s’, respectively.

This can be Fourier transformed into the transverse coordinate space similarly
as we did with the longitudinal polarization:

2
B (2, rr) = / RT ity vy k)

2
€re . 5i1'TT
~ ey VI ) (2 — (1= 2350

+ me0<€rT)5s,:|:155’,:|:1i| .
(3.37)

Here we used the result ¢ (¢", kr) = v/g™¢ (2, kr) to change a variable to
zZ.

The wave function squared for transversely polarized virtual photons is
obtained as an average of the squared wave functions for photons with A = 1
and A\ = —1. The result reads

NC&em
272

Z Yo (z,70)|* = 6?0

s,s’ ,color

(22 + (1 — 2)Ye K (err) + mchg(erT)} :

(3.38)
These functions can be found in the literature, see e.g. Ref. [14]. We also
notice that the wave function for longitudinally polarized photon goes to zero
in the limit Q? — 0 whereas the corresponding function for transversally
polarized photon does not, which is expected as the real photon can only
have a transverse polarization.

3.3 Gluon emission

Let us then study gluon emission from a quark. Our goal is to calculate
the amplitude for the process shown in Fig.|3.2] where a quark, with initial
momentum p, spin s and color «, emits a gluon with momentum £, color ¢
and helicity A\. The momentum, spin and color of the quark after the emission
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are p — k, f and &', respectively. We work in the high energy limit, in which
pT is large and the emitted gluon is soft.

This vertex ¢ — gg can be calculated in a similar manner as the v* — qq
amplitude in Sec. . The result analogous to can also be written
directly using the Feynman rules of the light-cone QCD perturbation theory
which can be found e.g. in Ref. [I1]. In our case the relevant rules are

1. For an incoming fermion with momentum p, color o and spin s, add a

factor us(p)/+/(2m)32p*.

2. For an outgoing fermion with momentum p — &, color  and spin s,
add a factor iy (p — k)//(2m)32(p — k).

3. To convert incoming lines into outgoing lines, or vice versa, replace
u <> v, U<+ —0vand € <> ",

4. For a quark-gluon vertex with quark momentum k, color ¢ and polariza-
tion A, add a factor g.tgz7* ey (k)/+/(2m)32k+, where ¢ is the generator
of the fundamental representation of SU(3).

5. Multiply the whole expression by a light-cone energy denominator
(27)° (Praiial — Pnat) "+ = 27)° (0™ =k~ = (p—k)7)7".

According to these rules the amplitude for the gluon emission reads

ulp—k)  toggth(k) v us(p)
\/((227T))j2(p — RtV @R @Rt g )
pm =k —(p—k)

Here the prefactor v/pT is added as we have changed the variable to z, the
fraction of the quark longitudinal momentum carried by the gluon: k™ = zp™.
In the energy denominator the notation (p — k)~ corresponds to the minus
component of the momentum of an on-shell particle having 3-momentum
(p — k). In the high-energy limit, where the emitted gluon is soft, we have
z < 1.

We require that the produced gluon is physical (on the mass shell) and
thus it can only have transverse polarization. The polarization vector is the
same for the gluon as it was for the photon in the previous section, and in
T = 0 gauge it reads

\Ilq—wzg(kT? Z) =p*

X

kp - e}
MNk) = (0,5%, %) : (3.40)
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As kT is small, e~ dominates and we can approximate 7,e" ~ yTe™.
The matrix element u,(p — k)yTuy(p) can be calculated using the explicit

spinors and gamma matrices from Eqs. (3.26) and (3.27)), and the result is

is(p — k) ug (p) = V20 2(pt — k¥)d0. (3.41)
Moreover we can calculate the energy denominator to be

_ kK p—kF -k

Tk —(p—k) =p — — ~ 3.42
as k1 is small. Substituting these results back to Eq. (3.39)) we get
\/59 1 kr-er
VU, ooz, kr) = ——=1t ;———0, . 3.43
q qg(Z T) \/W aﬁ\/} k’% , ( )
In the transverse coordinate space this reads
d?k .
Uygq(z,77) = ——Lethr "Wygg(kr, 2)
Vv (2m)?
(3.44)

_ V2g s L rp-er

—5 s

Z\/W VE g

To get the last equality we used the result for the Fourier transform of a dot
product derived in Appendix
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Chapter 4

Balitsky—Kovchegov equation

4.1 Energy dependence of the scattering am-
plitude

In Sec. we calculated the lowest order amplitude for the v* — g splitting.
If the dipole is boosted to higher rapidity (it is given more energy), there
is more phase space available and the quark or the antiquark can emit a
gluon as calculated in Sec. [3.3] Gluon emission is a higher order correction
(~ sQem) to the virtual photon wave function, and we expect to get some
insight of the energy dependence of the scattering amplitude by calculating
the amplitude for the process v* — ¢gg. Recall that we want to describe
the energy dependence of the scattering process by calculating the energy
evolution in the virtual photon wave function. The following discussion follows
Ref. [15].

The graphs contributing to the process v* — ¢gg are shown in Fig. [4.1]
Using the previously derived result for the virtual photon wave function,
Egs. (3.32) and (3.38), and the gluon emission amplitude, Eq. (3.44), we can
write the virtual photon wave function now in the leading order in both cupy,
and ag:

1) = 100+ [ s s (e 0 an @) )
1

(4.1)
\/ﬁ/dZdQTTdZ/dZTéFlDV*qug(Ta TlaZ>Z7/)‘Qa(x)Q&(y>gc(z)>0-

_|_

Here we added the factors Ne /2 in order to keep (v*|v*) normalized (the
inner product contains a sum over all quark colors 7, j and gluon color c¢).
Also, we had to add a yet unknown term C(r7) to the first term in order to

21
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k, k,
~ a a
k. oc, A
o ! K. e\
/= 7 /=
P—k—-Fk, & P—-k—Fk, &

Figure 4.1. Graphs contributing to the process v* — qgg

not alter the normalization of the wave function. We have dropped the spin
indices as only one combination of spins survive after the spin summation.

Let us then find the function W,«_ 4. It is straightforward, as we have
already calculated the probability amplitude for a quark to emit a gluon, its
momentum space expression is given in Eq. . This allows us to directly
write

lI]W*Hqtig(kTa k’T, Z, z’) = wv*aqfi(kT + lea Z)\Pqﬂqg(k/T? 2/)
- @Zjv*ﬂqQ(kTaz)qjqﬁqg( {1“72,)'

The relative minus sign follows from the Feynman rules of the light cone
perturbation theory, as in the latter case the gluon is emitted from an antiquark
and not from a quark, see rule |3| cited on page This can be understood
in terms of the color neutrality: at small momentum £’ the dipole size is
much smaller than ~ 1/k/. and thus it appears as color neutral and cannot
emit a gluon. Only at large enough £/ the gluon can see a localized color
charge (quark or antiquark). In order to obtain this property the relative sign
between the graphs must be minus.

Using the explicit form of the function ¥,_,,, Eq. , we can calculate
the Fourier transform of W.«_, .4, into transverse coordinate space:

21/ 2 /
L A S TP VAR o i

- V(2m)? \/(2m)? ‘ Varsz k7

X [t@awm (k+ K, z)—t (k2]

Y*—qq Y*—q9

(4.2)

Vo gag (P, 10, 2, 2") =

(4.3)

Here the superscript ya in the function 1«_,,, means that we produce a quark
with color a and antiquark with color 4. Summation over repeated color
indices is understood, and due to the conservation of color charge ¢*? ~ %7,
and thus #5197 ~ t,. Making a change of variables k — k — k' in the first
term and integrating over k; one gets

gstga ad
tryr 7l ?)

/

[ eng ot o) K
22

kT

\I]'y*ﬂng(TT, 701./‘7 2 ZI) = =
(4.4)
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Now it is instructive to notice the geometrical interpretation of 77.. In the
first case, when the gluon is emitted from the quark, the transverse momentum
of the gluon, k7., is the canonical conjugate of 17, — ry. This suggests that
ri — rr is the transverse separation of the quark and the gluon. Similarly
when the gluon is emitted from the antiquark, 7/, conjugates with k. and
thus 7. is a vector between the positions of the gluon and the antiquark. In
both cases rr is the distance between the quark and the antiquark.

The remaining Fourier transform can be calculated by using the result for
the Fourier transform of the dot product, Eq. , derived in Appendix
The result is

195t ep -1} er - (rhh —ry)
\I’v*ﬁq@(rﬂréﬁ z,7) = - wv quOQT’ ?) ( 2 L - - 2 :

o/ ry (rr —rr)
(4.5)

Let us then return back to Eq. and require that the wave function
is still normalized properly. To lowest order, without the gluon radiation
term, the inner product is (summation over the quark color indices o and &
is understood)

(rh) =1 5 [ as ol P = 1+ [ ool aglrn, 2

(4.6)

On the other hand, when the gluon production term is taken into account,
the inner product reads

(b =14 5 [ de@ralCln P e )P

2 2

-+ /dZ dZTT dZ/dzT/le,y*quO“T, Z)Fﬁtg&tga

Y TT+(TT—T%)2
T\ (rp—rh)?

(4.7)

Here we used the fact that the matrices ¢ are hermitian: (t5,)* = 5,
Summation is taken over the transverse polarization states A = 1,2 of the
produced gluon and the quark and the gluon color indices o, & and ¢. We
can then use the property

Zsj-ms)\-x’:x-x’. (4.8)

A=1,2

This can be seen from the explicit expressions of the polarization vector
quoted in Sec. [3.2] In addition we notice that t2,t¢; = (N2 — 1)/2. These

ao”’ax
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results allow us to write Eq. (4.7)) as

() =14 5 f g

d 2 N2_1 2
> [|C(TT)|2NC+/d2T%i g c T

2 Amd 2 rB(rp —rh)?

(4.9)

The integral over 77, is divergent in the limits /. — 0 and . — rp, and we
keep the required regulators implicit. We shall see later that these divergences
cancel in the BK equation.

Comparing equations and we see that we must take

as N, r2
ClonP =1~ [ @yt (4.10)

rr —Tr

where we used the large-N, approximation (N2 — 1)/N, ~ N, and the fact
that the rapidity difference is y = In(1/2’). We also denoted a, = g*/(4m).

Let us then use this result to derive an equation for the energy dependence
of the forward elastic dipole-target scattering amplitude N, introduced in
Eq. , by boosting the dipole from rapidity y to rapidity y + Ay. This
boost opens a phase space region where a gluon can be emitted, and the
probability for the dipole to emit a gluon is

as N, r2,

—d2 Ay, (4.11)

1
Na § W isgag (17, 7, 2, 2)) Pd2 drly =
N, 4=aq9 4o T T on2 v 2(rp — 1l

c
color

as the expression for | W,z ,5|* can be read from Eq. (4.9). The contribution
from the ¢gg channel to the forward elastic scattering amplitude is

2
asN, , TT

R
T T

where Nyz, is the forward elastic amplitude for the ¢gg system to scatter
off the hadron, and we again wrote y = In(1/2’). On the other hand the
probability to have a qg state is reduced by a factor 1 — |C'(r)|*.

We can now write a renormalization group equation for Nz, the elastic
forward amplitude for the dipole to scatter off the target. The emitted gluon
can be seen as a part of the virtual photon wave function, in which case our
scattering amplitude is

a, N, r2
N,; = [ dyd*r——L—— [N, ') — N .
gq(y,T7) + o2 / ydry 2(rr — )2 [Nagg(y, 7, 77) (Y, 77)]

B (4.13)
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70 (y) — virt.)

Figure 4.2. The emitted gluon can be seen as a part of the hadron wave func-
tion (lower dashed line) or as a part of the dipole wave function (upper dashed
line).

This corresponds to the lower dashed line in Fig. the dipole-gluon system
scatters off the hadron.

On the other hand if the gluon is taken to be a part of the hadron wave
function, we have a dipole at rapidity y + Ay which scatters off the hadron.
This corresponds to the upper dashed line in Fig. [4.2] Physical observables
cannot depend on this choice, and we require that the scattering amplitudes
obtained in both cases are the same. This gives us a renormalization group
equation

as N, r7
N,o(y 4+ Ay, r7) = Na(y, rr) + —=A /er’—T
0y Y,77) RED) on2 =Y Triﬁ(rT—rif)Q (4.14)
) = Nog(y, rr)] -

The real contribution contained in term N4, follows from the new process
where one gluon is emitted, and the virtual correction —Ny; is a result of the
wave function normalization requirement. Notice that this terminology is a
bit different than what is usually used in perturbative QCD calculations: by
real contribution we mean a term which is a result of having a new particle in
the final state, whereas a virtual contribution follows from the normalization
requirement and is proportional to the original amplitude. We have assumed
that the rapidity difference Ay is small which allowed us to replace the y
integral by a prefactor Ay.

What is still left is to understand the scattering amplitude N4, for a
dipole-gluon system to scatter off the hadron. This can be obtained by
considering the process in the large-N,. limit. The color structure of the
emitted gluon is a color-anticolor state, and number of these states is N2 — 1
(as the color singlet state is not allowed). At large N, we have N? — 1 ~ N2
and the gluon can be replaced by two quarks, as the number of different color
states for a quark is V.. Thus we assume that the emitted gluon is a new

X [Nygg(y, 77, T
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quark-antiquark pair [16].

Notice that /. and r7 — 7/, are distances between the quark/antiquark and
the gluon, and now we have effectively two new color dipoles with transverse
sizes /. and rp — r7.. The probability for this system to not scatter off the
hadron is

Saag(r,7'7) = Saq(rp) Sea(rr — 17), (4.15)

and keeping in mind that S =1 — N we get

th?g(TT7 T,T) = NQQ(T,T) + thi(rT - T/T) - NQQ(TIT)Nqé(TT - T,T)a (4.16)

where the y dependence is kept implicit. Substituting this result back to
Eq. (4.14), dividing by Ay and taking the small-Ay limit we get the Balitsky-
Kovchegov (BK) equation

_ 2
Qg 2 p
OyN (rp) = %/d T,Tm (4.17)

X [N(rp) + N(re —rp) = N(re) = N(rp)N(re — )],

where a; = a;N./m, and we dropped the subscript ¢g. Notice that the
divergences that appeared in Eq. cancel when 77, — 0 and when r/, — rr,
as N(rf) — 0, when r/. — 0. This equation was first derived by Balitsky in
Ref. [I7] and by Kovchegov in Ref. [18].

Equation (4.17)) is an integro-differential equation and it gives the scatter-
ing amplitude N (ry) at all rapidities y > 0 if the initial condition N(y = 0, r7)
is known. We will discuss the initial conditions later in Sec. A few words
about the interpretation of Eq. are, however, in order. The energy
evolution follows from the gluon emission which becomes possible when the
dipole is boosted to higher rapidity. Integration over the rapidity interval
corresponds to multiple gluon emissions and thus we have large number of
dipoles in the virtual photon wave function.

The BK equation was derived in the large-N. limit. If this assumption is
not made, one can derive a more general evolution equation known as the
JIMWLK (Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner)
equation. The JIMWLK equation is theoretically and numerically more
difficult to study, as it consist of an infinite hierarchy of coupled evolution
equations. We do not consider the JIMWLK equation in this work, for a
derivation and more detailed analysis see Ref. [I] and references therein.

4.2 The BK equation in momentum space

In previous section we derived the BK equation in coordinate space, where
the interpretation is that it gives the energy dependence of the (imaginary
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part of the elastic) gg-hadron scattering amplitude. The interpretation was
that as the energy increases, the color dipole is boosted to higher rapidity
and it can emit a gluon which can be replaced by a new dipole in a large-/N,
limit. In this picture the energy dependence is in the virtual photon wave
function, while the target hadron is at rest and does not evolve.

On the other hand we can also view the process in such a frame that the
hadron has a large momentum. In this frame the evolution takes place inside
the hadron, and the number of small-x gluons in the target hadron increases
as a function of energy as we discussed already in Sec.[2.2] The gluon density
can be described by an unintegrated gluon distribution function, which can

be written as [1]
NC d2T iker
= 47T2as FN(T)G . (418)

p(k)

In order to understand the energy evolution of the unintegrated gluon density
we shall study, following e.g. Ref. [19], the quantity

N(k) = / ﬂeir‘kN(r), (4.19)

2mr?

which is the same as the unintegrated gluon density up to a constant factor.
Following Ref. [19] we identify N (k) as a dipole density in momentum space,
or just momentum space dipole amplitudeﬂ. This transform is called a Fourier
transform in some references in this context, even though there is an extra
factor r—2.

The gluon distribution function xg(z,@*) can then be obtained from
the unintegrated gluon distribution by integrating over the transverse mo-
mentum [I]. Here we denote the transverse vectors rr and kr without the
subscript T" and use this notation throughout the rest of this work whenever

it is clear that we are referring to transverse vectors.

The inverse transform to (4.19) is

2 ko —ir-k
N(r)y=r*[| —e N(k). (4.20)
27
The BK equation, Eq. (4.17)), can now be transformed into momentum
space to obtain the energy dependence of the momentum space dipole ampli-

tude. First we multiply both sides of it by factor

27 (2 — y)? ’

IThere is also an another way to define unintegrated gluon distribution as a Fourier
transform of S(r) = 1 — N(r) (up to a constant) without the extra factor r—2, and it
depends on the process which distribution must be used. See discussion in Ref. [20].
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wherer =2z —y, " =z —zand r —1' = z —y. As a result we get

o a d?zd?(x — )
AN =55 |
X [N(x —2)+ N(z—y) — Nz —y) — N(x — 2)N(z — y)]e* @9,

(4.22)

We can compute the terms on the r.h.s. of Eq. (4.22)) on a term by term
basis by using the result
r &k .k
i—-x= [ —e" " =2 4.23
r? 2 k? (4.23)
for the Fourier transform of the dot product derived in Appendix [A.1]
Let us first calculate the contribution from the linear part of the real term
on the r.h.s of Eq. (4.22). Writing the coordinate space scattering amplitudes

in momentum space using Eq. (4.20) we get

s @ —y) o ek
(27T)2/($—z)2(z_y)2[N( )+ Nz —y)]

a e-iar (v=2)  o-igt(z=y)]
_ G A2z &2z — y) d2g [ + } ezk-(x—y)N(q)
(2m)3 / (z—y)?  (z—2) (4.24)
i -1 o
= —W/dQZdQ(x—y) dqu2ld2l’W6k @Y N(q)

> |:€il . (zfy)eil’ - (2—y) efiq s (z—2) + eil . (zfz)eil’ . (zfz)efiq : (zfy)i| )

To get the last equality we used Eq. (4.23]) to write

O Gl R ) N / qtiazr Ll gt @ gt -e=0 (4 95)

(x—2)2 (r—2)2%(zr—2)? 1212

We then proceed by performing a change of variables © — x + y and
z — z+y to Eq. (4.24)) and integrate over z and z to get

—;‘—S d?qd?1d*l’ ﬂN(q) 6L+ 14+ q)5(k —q) + (=l —1"—q)d(l + 1 + k)]
m

12772
(4.26)
Integration over ¢ and I’ yields
Qs l-(=k—=1) - (k-1
—— [ 3% N(k
o [P(—k e ez YW o)

1 (k+1)
dlmN(k).
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As the scattering amplitude N (k) does not depend on the integration variable
[, we notice that the real term in coordinate space gives virtual contribution
in momentum space.

The contribution from the virtual term in Eq. (4.22)) containing — N (x —y)
can be calculated in a similar manner by noticing that (z — y)* = (z — z +
z—y)P=(@@—224+(z—y)?+2@x—2) (2 —y). We get

_a d*z d*(z — y) v — etk @)
o | oy

as 5 s (=2 +(z—y)’+2@—2)-(2—y) (4.28
d“zd*(x — y)d“q
(2m)3 / (= 2)%(z — y)?

X e*iq'(%y)N(q). ’

Using again the identity (4.23) to Fourier transform the dot products into
momentum space, performing a change of variables x+ — x +vy,2 — 2z +y and
integrating over x and z we get

Qg !

11
S [ @2eakai =N
or | 14 V(@)

X[(U+1)0(k—q)+o(=l=1)0(1+1U—qg+k)+20(=14+1)0(l — q+ k)]
o[ [ %
-5 [

Notice that the virtual term in coordinate space gives both real and virtual
terms in momentum space.

Before calculating the contribution from the nonlinear term let us combine
the contributions obtained from the real and virtual terms, Eqgs. and
(4.29). The sum of these two terms gives us the BFKL equation [21], 22]
which is the same as the BK equation at small densities (small scattering
amplitudes), in momentum space. Changing the integration variable to ¢ in
all integrals this sum reads

2 [t | LEED Nk - SN0+ e

(4.29)

™ @k + q)? q (¢ — k)

% [ |k 1 1 1

A [qQ(k + Q)QN(k) " (k + Q)QN(k) qu(k?) " (q— k‘)zNEQ) )
4.30

The second and the third term cancel each other.
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To proceed we modify the first term in Eq. (4.30)) as follows:
-k (q—k)-k q-k k2
quq— = /dzq— = /d2q { _
/ (g +k)*¢ ¢*(q — k)? (g —k)?*  ¢*(q—Fk)?

_/dzq Ut Mt it LA ]
q*(q — k)? ¢*(q — k)?

(4.31)

Substituting this result back to Eq. (4.30) we get the BFKL equation in

momentum space:

G (oL Nyl K
o) =2 [ 4| NG - gV s

To see that the divergences in Eq. (4.32)) cancel let us perform the angular
integral using an identity

2m
do 2
/ . R (4.33)
o @+ k*—2qkcost |k?— ¢?|
see Appendix . Integrating Eq. (4.32) over the angular variable we get
_ dg® [¢*N(q) — k*N(k) 1 E*N(k)
ON(k)=as | — = ) 4.34
yN ) a/q2{ ol 2R g 3

Finally we use an identity

1 dq? dq?
‘/% :/47 (4.35)
2) @k — ¢ ¢\ Kkt +4q?

derived in Appendix [A2] to get the final form of the BFKL equation in
momentum space:

ayN(k) = / d_q2 [q2N(Q> — kQN(k) kQN(k> (436)

q k% — ¢?| NZvE

This expression is clearly finite when ¢ — k£ and when ¢ — 0.
Let us then calculate the contribution from the nonlinear term ~ N(x —
2)N(z —y). Using again our definition of the Fourier transform, Eq. (4.19),
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N(k) N (k)
kY ‘e
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#8 g Wk ta
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ks Mk
N(q) N(k) N(k)
(a) Real gluon (b) Virtual terms

emission

Figure 4.3. Linear contributions to the evolution of the unintegrated gluon
distribution in momentum space.

we get

o / (dQZdQ({ﬂ—y) N(:E—Z)N(Z—y)elk(x_y)

(27T)2 T — Z)Q(Z _ y)2
_ @) / d2z d2x dzquq/
X (‘%Z_—Z)Ze—iq . ($—z)N(q) (Z ; y)2 e_z‘q/ . (z—y)N(q/)eik - (z—y) (437)
A m
Q

2, 12 12 12 1 iz (g—q) v (k-
(2W>4/dzdxdqdq’e (a=)eie k=D N ()N (¢)

= a,N (k).

To get the second equality we made a change of variables © — x4y, z — z+y.
Combining this with the momentum space BFKL equation, Eq. (4.36)), we
get the BK equation in momentum space

9,N(k) = a, / do® [qw (@) = NGk | KNG | o e (438)

q? k2 — ¢?| VA + kA

Notice that in Eq. we have only one integration left to do, which makes
the momentum space version of the BK equation easy to study numerically.

Let us try to understand this equation in terms of physical quantities. The
gluon momentum k conjugates with  —y, and is the transverse momentum of
the incoming dipole in coordinate space. On the r.h.s of Eq. the terms
containing N (k) are virtual corrections and the N(g) term is a real gluon

emission. These are shown schematically on Fig. [£.3] see also the discussion
in Ref. [19].
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The saturation scale (), was defined as a scale when nonlinear effects
become important. In coordinate space the nonlinear effect is the multiple
scattering, where both of the produced dipoles scatter off the hadron. In
the hadron side (momentum space) the saturation scale can be seen as a
characteristic momentum scale of the probed gluons.

4.3 Running coupling in the BK equation

In Sec. the strong coupling constant as was assumed to be constant when
the BK equation was derived, which makes the BK equation to be leading
logarithm approximation for summing powers of «, In1/x [23]. However the
running of the strong coupling, which is a next-to-leading order correction, is
known to affect significantly many observables. Thus it is important to study
the BK equation with the running coupling as well.

Heuristically one can add the running coupling to the BK equation by
replacing a; — a,(r?) in coordinate space and a; — a,(k?) in momentum
space. Here r and k are the transverse separation and momentum of the
parent dipole, respectively. We will refer to this running coupling scheme
later in this work as the “parent dipole” prescription and write the kernel in

coordinate space as
parent __ NCaS(T2) ,r_2
K =0 o) (4.39)

where 1 = 1" and r, = r — r/. Notice that if the parent dipole kernel is used,
the results obtained in momentum space transformed to coordinate space are
not anymore the same as the results obtained in coordinate space. This is
clear from the derivation of the momentum space BK equation performed in
Sec. [1.2] as @, was assumed to be r = z — y independent in Eq. (4.22)). We
will return to this difference later in Sec. £.2

The running coupling part of the next-to-leading logarithm (NLL) BK
equation is obtained by calculating the contribution from the quark bubbles in
the gluon lines to all orders. This calculation has been performed by Balitsky
in Ref. [24] and Kovchegov and Weigert in Ref. [25]. We shall not go into the
involved details of these calculations here, and we just quote the results.

The running coupling kernel in the Balitsky prescription reads

oS24 (50 )4 (2

272 2 \ a,(r2)

rirs - or?
The dominant scale can be seen to be the smallest of 2, 7% and 72, and thus
the coupling has the smallest possible value. We then expect to have a smaller
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evolution speed when the Balitsky prescription for the running coupling is
used, compared with the parent dipole kernel. Notice that the limit of small
r (when 7 < rq,7) implies that KBal = jCparent,

On the other hand in the Kovchegov-Weigert prescription the kernel is

i N [ourd) _0u()an(3) rrs | 0u(r) "
272 r2 as(R2)  rir2 rz2 |’ (4.41)
1 s 173 2
where
7‘2+7‘2 7‘27‘2 1
7"2 r%—r% -2 rll' 72'2 r%—r%
R? =17y (E) : (4.42)

The apparent disagreement between the prescriptions and
follows from the fact that there is no unique way to include the running
coupling correction to the kernel of the BK equation. Instead there is also
the so called subtraction term which contains the terms not included in the
running coupling kernel. It has been shown in Ref. [26] that both Balitsky and
KW prescriptions agree when the numerical analysis is performed including
the subtraction terms.

The numerical analysis performed in Ref. [20] shows that the Balitsky
prescription minimizes the contribution from the subtraction term, and that
the subtraction term can be safely neglected at large rapidities. At moderate
rapidities, relevant to current experiments, the subtraction term might be
numerically important. However, as we will discuss later in Sec. [£.5], one can
obtain a good description of the current experimental data even though one
neglects the subtraction term.

The strong coupling constant at the given scale r? is

o (r?) = Lom | (4.43)
(11N, — 2N;) log (L)

p)
T2AQCD

N, is the number of colors (3) and Ny number of active flavors (3). The
dimensionless factor C? can be considered as a fit parameter and reflects
the uncertainty of the Fourier transform from momentum space, where the
running coupling corrections are calculated, to coordinate space [27].
In momentum space we use the expression
a,(k?) = 12m . (4.44)

_ C2k2
(11N, — 2N;) log ( AEm)

In momentum space the non-conventional factor C?, which is different in
coordinate and momentum space, is added. We shall see later in Chapter
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that it is required if we want to get a good description of the experimental
data. We follow Ref. [27] and freeze the coupling in both coordinate and
momentum space to the fixed value a; = 0.7 in the infrared region in order
to avoid divergences.

4.4 Kinematical constraint

In Sec. we discussed the running coupling corrections to the BK equation.
However, not all next-to-leading logarithm (NLL) corrections can be taken
into account by introducing the running coupling. We also noticed that there
is no unique way to include running coupling corrections to the BK equation,
and we will see later in Chapter [5| that these different prescriptions give
significantly different results. Thus it is important to try to understand the
complete NLL BK equation.

A full NLL BK equation has been derived in Ref. [28]. Due to the
complicated form of that equation it has not yet been studied numerically.
Instead, in order to study the importance of the NLL corrections, we consider
here, in addition to the running coupling corrections, the so called kinematical
constraint.

Let us sketch the derivation of the kinematical constraint to the momentum
space BK equation following Refs. [29] and [30]. The interpretation
of the real term in the BK equation is that we have a splitting ¢ — k + &’
inside the hadron, and as a result a gluon ladder is produced. Part of that
ladder is shown in Fig. Now in the high energy limit the virtuality of the
gluon along the chain must be dominated by the transverse components of
the momentum, and the longitudinal momentum factors are strongly ordered:
kT < ¢T and k= > ¢. This implies that z = k" /¢" < 1. In addition all
the transverse momenta are of the same order: |kp| ~ |k}| ~ |gr|. If that
was not the case, there would be a large suppression ~ 1/s in the gluon
propagator [7].

The virtuality of the gluon is

K =2kTk™ — k7, (4.45)
from which we get a requirement
k3 > 2|kTEk™|. (4.46)

On the other hand k= = ¢~ — k'~ ~ —k'~, as the — component of the
momentum increases when we move upwards along the ladder. Using the fact
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qr x/z|

I

Figure 4.4. Part of the gluon ladder produced by the evolution in rapidity. x
and z/z are the longitudinal momentum fractions carried by respective gluons.

that the emitted s channel gluon is on the mass shell we get

/12 /12
kT _ kT

k™ = o = —m. (4.47)
Substituting this to Eq. we obtain
PR LA SR (4.48)
qt —k* 1—2z

This must hold for k%2 ~ k%, which gives just 1 > z, and for k% ~ ¢2, from
which we get the kinematical constraint
2
gr _ 1
ar 1 4.49
Noticing that In(1/z) is the rapidity difference between the gluons, the
constraint can be written as

e
0 (Y —y—In ﬁ) : (4.50)

where Y and y are the rapidities of the parent and the daughter gluon,
respectively. Notice that we again dropped the subscript T" as all the vectors
from now on in this chapter are transverse. Substituting the constraint
directly into the momentum space BK equation to limit the phase space
available to the real term we get

o a2 |0 (Y —y—1In Z—§> ¢°N(q,y) — K*N(k,y)
N(k,Y)=N(k,0)+as | dy = K2 — ¢
0

k2N (k,y)

Y
2 I, | dyN2(k,y).
oy /0 yN=(k,y)

(4.51)
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To get an integro-differential equation we differentiate both sides w.r.t Y and
notice that ' (x) = d(x). The result is

dg? |0(k? — ¢®*)¢®?N(q,Y 0(4? — k)N (2 Y —1 2
aYN<k7y):as/i2[< ¢°)¢*N(q )Tk;q . )a"N(q n )
q —q

CEN(KY) | KN(k,Y)

_l’_
B2 =¢?l gt + K

— a,N2(k,Y).

(4.52)

Notice that Eq. is not local in rapidity anymore but it depends on all
steps in the evolution. We will study this equation numerically in Sec. [5.4]

For completeness we also mention a few other approaches to include kine-
matical constraint or energy conservation corrections to the BK equation. In
Refs. [31} 32] the authors propose a modified kernel in coordinate space which
makes the production of large dipoles exponentially suppressed. In Ref. [33]
the kinematical constraint is modeled by requiring that the subsequent gluon
emissions are separated by some minimum rapidity interval, which gives a
nonlocal BK equation, but the nonlocality does not depend on momentum as
it does in Eq. (1.52).

In Ref. [34] a BK equation where the expression for d,N(r) is multiplied
by a factor 1—0, is derived. This can be interpreted as an energy conservation
correction, and it has been studied numerically e.g. in Ref. [35]. A similar
energy conservation correction, where the multiplier is 1 — N (r,y), is derived
in [36]. In this work we do not study these in detail.

4.5 Initial condition and fit to experimental
data

The Balitsky-Kovchegov equation, Eq. , is an integro-differential equa-
tion whose solution gives the scattering amplitude at any rapidity y > 0 if
the inital condition (dipole-hadron scattering amplitude at y = 0) is known.
This information, however, is of the non-perturbative origin and must be
modeled [1].

Many different dipole models have been studied in the literature and
compared with the experimental data, see e.g. Refs. [8 [37]. As a result it has
been shown that a few different models can describe the current experimental
data well. These results justify the use of these dipole models, but the current
experimental data is not accurate enough and we cannot say which model
is the most realistic one. It has been proposed that the future electron-ion
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colliders could be used to study the difference of these dipole models in more
detail [38].

The simplest initial condition is the so called Golec-Biernat and Wiisthoff
(GBW) dipole cross section introduced first in Ref. [39]. We add an anomalous
dimension v to this model to get what we call a GBW” model:

1202\ 7

NOBW (= 0) = 1 — exp {— (TSO> } : (4.53)

where the fit parameters are Q%;, which is the initial saturation scale squared

(recall our discussion about the saturation scale from Sec. [2.2)), and the
anomalous dimension 7.

The second initial condition is called McLerran-Venugopalan (MV) model

derived in Ref. [40]. By including an anomalous dimension we obtain an MV?

model which reads

NMY'(r,y=0)=1—exp {— (%)Vm ( ! + e)] : (4.54)

TAQCD

where again the fit parameters are Q%, and 7. In the original GBW and MV
models the anomalous dimension is identically one, v = 1. The anomalous di-
mension mainly affects the shape of the unintegrated gluon density, Eqs. (4.18)
and , at large transverse momentum k. As a consequence, different
values for v cause significantly different transverse momentum distribution in
inclusive hadron production in proton-proton and proton-nucleus collisions
[41].

The GBW?” and MV?” initial conditions are fitted to the HERA data
in Ref. [27], where the authors solved the BK equation using the Balitsky
prescription for the running coupling and computed the proton structure
function F5, see Eq. . The kinematical constraint was not included in
the analysis. Even though the subtraction term is neglected in the analysis,
the conclusion is that one can obtain a good description of the current
experimental data. The values of the fit parameters for the GBW? and MV”
initial conditions are presented in Table [4.1]

As the impact parameter dependence is neglected in the analysis, o9
resulting from the | d?b integral is also a fit parameter, and it is defined via
Eq. (2.7). In Ref. [27] the authors fixed the anomalous dimension 7 to be 1
in the GBW? model as the fits where v is a free parameter did not show an
improvement with respect to those where v = 1 was fixed. Thus we use in
this work the original GBW model and the MV? model.

The GBW initial condition is simple enough to be Fourier transformed
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Initial condition | ¢ (mb) | Q%, (GeV?) | C? vy x%/d.o.f.
GBW"? 31.59 0.24 5.3 | 1 (fixed) 1.086
MV? 32.77 0.15 6.5 1.13 1.075

Table 4.1. Values of the free parameters for the GBW? and MV? initial condi-
tions obtained in Ref. [27].

into momentum space analytically as we have fixed v = 1. The result is

NCBW (. o — () — /ﬁeik'wGBW(r y=0 = r (02 s
’ 2mr? ’ 2 Q%) '
Here T'(0, z) is the incomplete gamma function which at large = behaves as
['(0,z) ~ e~*. We use this initial condition when we study the BK equation
in momentum space.

4.6 Analytical solutions

Let us first study a toy model in 0 + 1 dimensions, when the amplitude
depends only on the rapidity: N = N(y), and the kernel is simply constant
which we denote by w > 0. Then the BK equation reduces to

d9,N = w(N — N?). (4.56)

This kind of differential equation describes, for example, a self-limiting pop-
ulation growth. The solution of this equation is called a logistic curve and

reads
ey

N(y) = ————
(y) ewy + 0717
with initial condition N(y = 0) = C. We see that for all C' > 0 the amplitude
saturates:

(4.57)

N(y) — 1, when y — o0. (4.58)

This toy model teaches us that the fixed point N = 0 is unstable and
N =1 is stable. If we considered only the linear part of the BK equation
(the BFKL equation), there would be an exponential growth in N(y) when y
increases.

Let us then study the properties of the linearized BK equation, namely the
BFKL equation, in 1+ 1 dimension (that is, we neglect the impact parameter
dependence). As a starting point we take the BFKL equation in momentum
space which we obtain by dropping the nonlinear term from Eq. :

9,N (k) = as/d_qQ [CJQN(‘]) ZEN() KNG | (4.59)

+
q* |k? — ¢?| VAgt + K
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The following discussion follows Ref. [7]

Instead of N (k) let us study the function f(k*) = k*N(k). We keep the
y dependence of both N(k) and f(k?) implicit. To solve Eq. we first
take the Mellin transform of f(k) with respect to k*:

The inverse transform is
) 1 c+io0o k’2 vy
k*) = — dv [ = . 4.61
1= [ () 1o (4.61)

Here kg is an arbitrary scale introduced for dimensional reasons and c is a
real number. The integral is taken over a straight vertical line in the complex
plane.

Replacing N (k) by f(k?,y) in Eq. (4.59) and substituting Eq. (4.61]) into
it one obtains
1 ctioco k’2 Y & c+ioc0 ]{72
— dv [ — =2 d do? =
2mi c—100 ! (k(%) ayf(,)/) 2m /c—ioo ry/ 1 q2
1 2\ 12\ 7 1 12\ 7
N \2) e |t =) (T
k2 — @2 [\ kg ko Vgt + k* \ kg
To proceed we write (¢?/k2)" = (k*/k2)?(¢*/k*)? and require that the inte-

grands are equal. Finally we make a change of variables and integrate over
u = ¢*/k*. After these modifications we obtain

(4.62)

Oy f(v) = K(v) (), (4.63)
where the kernel K is given by
Cdu [ur—1 1
KA)=a, | — n . 4.64
=a [ E [ o (4.64)

This is an ordinary differential equation for f(~,y) in rapidity and it is easy
to solve:

f(fyv y) = f(77 yO)eK(’Y)y' (465)

We then want to get the solution in momentum space, which can be
obtained by calculating the inverse Mellin transform of f(v,y) by using
Eq. (4.61)). However let us first study the kernel K () in more detail. First
we notice that it can be written in terms of the digamma function
_dInl'(z) TI'(=)

= (4.66)

v(z) dz I'(x)
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using the property

1—2°

1—=x

Y(s+1)=—yp+ /01 dz (4.67)

valid for s > 0. Here vg = ¢(0) is the Euler-Mascheroni constant v ~ 0.577.
As a result one obtains

K(y) = as [29(1) = ¢(7) = (1 =9)]. (4.68)

As K'(1/2) = 0 and we want to expand K as a Taylor series, we choose
the integration contour in the inverse Mellin transform to be along the line
1/2 + iv and write

o0 2\ 1/2
p0) =5 [ avr /i) (G

o (4.69)
X exp [iuln <p> + K(1/2 +iv) y} :
0
Then we expand K (1/2 +iv) = X — 1/2Nv?* + O(v*), where A = @,41n 2
and N = @,28((3). Here ((3) ~ 1.202 is the Riemann zeta function. We also
need the expansion of f(1/2 + iv,yy) around v = 0:

(1/2 4 iv,yo)
v v=0
Oln f(1/2 4+ iv,yo)
v
Oln f(1/2 + iv,yo)
ov

P2+ v g0) ~ F(1/2,00) + v

— £(1/2.0) (1 ey

V:o> (4.70)

»

~ F(1/2,y0) exp (

Substituting these expansions back to Eq. (4.69) we get

2 1 kQ 2 Ay
f(k ,y):% W2 f(1/2,0)e
> , k? Oln f(1/2 +iv,yo) 1., 5
In| —= ’ — )
x/_oodyexp [w n(k3)+u £y L 2)\1/3/}

(4.71)

We can furthermore include the derivative d1In f/0v into the arbitrary scale
k2 by defining

~ 1 1/2 +1
SIOIRLLY VLR

(4.72)
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After this definition we can and perform the v integration. Finally we get

~.11/2 -
k2 k2 In®(k2/k2)
2 — )y 0 . 0 A
[k y) =e [m'y] expl vy | (4.73)
or
e In®(k?/k2)
kN (k,y) = mexp [—W . (4.74)

A few words about this results are in order. First, the leading energy depen-
dence is ~ e*. In addition the distribution is Gaussian in In k? with a width
growing as \'y when y increases. This causes diffusion of the momenta into
the ultraviolet and infrared regions. Both of these properties are universal,
meaning that they do not depend on the initial condition f(k?, o).

Diffusion into the infrared region causes a potential problem, as even
though the evolution was started at hard perturbative scale ky, the nonper-
turbative regime Aqcp ~ k < ko is eventually reached. This problem is not
present in the solutions to the full BK equation, where the diffusion into the
infrared region is strongly suppressed, and the peak of the function kN (k,y)
moves toward larger values of k [23].

A completely analogous result can be derived also in coordinate space:
dropping the nonlinear term from Eq. (4.17), substituting U(r) = N(r)/r? and
performing the angular integrals one obtains the same equation as Eq.
(without the nonlinear term) for U [42].

4.7 Impact parameter dependence

The BK equation was derived in Sec. by neglecting the impact parameter
dependence. As a result the BK equation, Eq. , is translationally
invariant. On the other hand if we consider, for example, electron-nucleus
scattering, we expect to have quite strong dependence on the impact parameter
(distance between the center of the nucleus and the center of the dipole). For
example, the dipole-nucleus scattering amplitude N(r,b) should vanish at
large b > R4, where R4 is the radius of the nucleus (or proton). The initial
condition is chosen in such a way that it satisfies this requirement.

The BK equation with impact parameter dependence has been studied nu-
merically e.g. in Refs. [32] 23], and the corresponding equation in momentum
space is derived and studied numerically in Ref. [19]. In coordinate space the
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equation reads

= 2
(9yN(b,1:01) = %/dQLCQ 21:012 [N (b+ @,$20> —|—N <b— @,5612)

2m T50T1a 2 2

—N(b, 1'01) — N (b+ %,Igo) N <b - %,Igo)] .

(4.75)

Here z;; = x; — x; and b is the impact parameter of the parent dipole. The
numerical results obtained in Ref. [23] show that with the impact parameter
dependence the scattering amplitude has a very different behavior at large r
and constant b: when r increases the amplitude first approaches unity, but
then decreases to zero when r > b. This is a consequence of the fact that in
this limit the quarks miss the target but the impact parameter b, which is
the average of the positions of the quark and the antiquark, can be small.

When the impact parameter b is large, the amplitude is small and the BK
equation reduces to the BFKL equation and causes an exponential growth of
the scattering amplitude. This evolution at large b can be interpreted as a
growth of the target hadron. This causes the cross section to grow rapidly, as
the d?b integral in Eq. does not result in a constant factor but increases
as a function of rapidity. This growth violates the Froissart boundﬂ. Currently
there is no consistent way to cut off these long range contributions from the
BK equation [23].

As there are still some problems related to the impact-parameter dependent
BK equation and as the b-independent equation can be used to describe
to experimental data accurately, we did not study the impact parameter
dependent equation in this work. The b-independent solutions can be also
used to describe, for example, dipole-nucleus scattering if the nucleus is large,
as in that case the impact parameter mainly affects the initial saturation
scale (4o which is a free fit parameter in our calculations.

2Unitarity in QCD requires that the cross section does not grow faster than (In s)? as a
function of invariant energy s. This requirement is called the Froissart bound [43].
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Numerical analysis

5.1 Numerical methods

Let us recall the master results from Chapter 4] The Balitsky-Kovchegov
equation was derived in Sec. [4.1] and in transverse coordinate space it reads

ON() = 52 [ Er' s NG+ NG = 1) = NG = NN G =)
(5.1)

where N(r) is the scattering amplitude and r = |7| is the size of the parent
dipole. Momentum space version, derived in Sec. [4.2] reads

2 [ 2 2 2

0,N (k) :as/di ¢N@) ZkNK) | KN |5 N (5.2)
7 |k* — ¢ VAgt+ kA

Here k is the transverse momentum of the parent dipole, and the transforms

between N (k) and N(r) are shown in Egs. and ([4.20)).

Equations (5.1)) and are integro-differential equations, but they are
numerically straightforward to solve on a lattice. We neglect the impact
parameter dependence throughout this work, and thus the amplitude in
coordinate space does not depend on angle, N(7) = N(|7|). This allows us
to solve N(r) at discrete values of transverse separation, and we can view
Eq. as a set of differential equations, where the number of equations
equals the number of points on the r grid.

This set of differential equations can then be solved by using standard
methods. In order to compute the integral on the r.h.s of Eq. using
numerical integration routines we interpolate the values of N(r) between the
grid points. To be more specific, we use the GNU Scientific Library (GSL)
which contains routines for solving the differential equations using the Runge-
Kutta method, calculating numerical integrals using adaptive integration
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routines and interpolating data points using the cubic spline interpolation.
A similar method can be used to solve momentum space version which is
numerically less demanding to solve, as the expression for d,N(k) contains
only a one-dimensional integral which is easy to compute numerically.

However this straightforward method cannot be used if the kinematical
constraint is applied, as one can see from Eq. (4.52)), the BK equation in
momentum space with kinematical constraint. Equation contains a
term which is not local in rapidity, and dy N(k,Y") depends on N(q,y) for
all y < Y. This makes it impossible to use standard Runge-Kutta methods,
and we are forced to use lowest order Euler method to solve this equation
numerically. Using small enough step size we have checked that this method
gives, within the numerical accuracy, the same results than the Runge-Kutta
method if the kinematical constraint is not applied.

In our numerical calculations the initial conditions used in transverse
coordinate space are the MV? model, Eq. , and the GBW model,
Eq. , with the fit parameters explained in Sec. In momentum space
we use the GBW model transformed to momentum space, Eq. (4.55). When
the kinematical constraint is applied we formally evaluate the amplitude at
negative rapidities, and we assume that N(k,y < 0) = N(k,y = 0). Notice
that the initial conditions are fit to the experimental data using the Balitsky
prescription for the running coupling. We use the same initial conditions also
with other running coupling prescriptions in order to see differences between
these prescriptions. When comparing with the experimental data the Balitsky
prescription must be used.

5.2 Dipole-proton scattering amplitude

We have solved the scattering amplitude N(r) up to asymptotically large
rapidities y = 60, which corresponds to Bjorken z as small as  ~ 1072, This
is far below what can be archived in current and foreseeable future colliders,
but is done to understand the asymptotic behavior of the solutions of the BK
equation. The result is shown in Fig. [5.1], from which we see that there is
little difference between the results obtained using different initial conditions.
In addition we notice that the ad-hoc parent dipole kernel gives almost the
same results as the KW kernel, but both of these cause much faster evolution
than the Balitsky kernel.

In order to study the difference between the two initial conditions and
between the running coupling prescriptions in more detail we calculated the
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Figure 5.1. Dipole-proton scattering amplitude at rapidities (from right to left)
y=1,4y=>5,y=230and y = 60.

anomalous dimension 7 defined as

~ dInN(r)
7= dInr?

Notice that at y = 0 and at small r the GBW model, Eq. , gives v =1
and MV7” model, Eq. , gives v = 1.13. The anomalous dimension is
plotted in Fig. [5.2] Even though it behaves differently in MV? and GBW
models, this difference is washed out by the evolution rapidly, and as early as
at y = 5 the anomalous dimension is basically the same in both cases.

Different evolution speeds can also be seen from Fig. 5.2l As we noticed
before, the evolution is much slower when we use the Balitsky prescription.
In addition we see that at small r the Balitsky prescription gives the same
result as the parent dipole running coupling, which follows from the fact that
KBl ~ [parent at small 7 as discussed in Sec. 1.3} At larger 7 the parent
dipole prescription is closer to the KW kernel. We conclude that the main
difference between the Balitsky and the KW prescriptions is that the Balitsky
prescription causes slower evolution, but the shape of the solution is the
same in both cases. Parent dipole prescription interpolates between these
two prescriptions and leads to a slightly different shape for the solution.

In the fixed coupling case (a; = 0.2) the solution behaves differently. The
anomalous dimension at small r is significantly smaller and this is not just a
consequence of the faster evolution speed. As one can see from Fig. [5.2] at

(5.3)
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Figure 5.2. Anomalous dimension « at rapidities (from right to left) y = 5,
y = 30 and y = 60. Constant a; = 0.2 is not shown at y = 60, as at that point
the solution has evolved outside the region shown in the plots.

y = 5, the anomalous dimension at large r is actually larger than what is
obtained by using the parent dipole or KW prescription.

Let us then study the evolution speed in more detail. Following Ref. [27],
we define the saturation scale @, trough the condition (compare with Eq. (4.53))

N(r=1/Qy),y) =1—e Y4~ 0.22. (5.4)

As we discussed in Sec. [2.2] Q; sets the scale at which the nonlinear effects
(gluon recombination) become important.
In Sec. we saw that the scattering amplitude behaves asymptotically as
e if the running coupling corrections and nonlinear term are neglected. For
the BK equation the saturation scale can be shown to behave approximately
as [44]

VY

Qs(y) = (5.5)

at large y, and v = 2.44. As the running coupling corrections slow down the
evolution, we expect to get smaller exponent v with the running coupling
kernel. Notice that @ is not the same as the initial saturation scale in the
GBW and MV” models (Egs. and (4.54)).

The numerically solved saturation scale is shown in Fig. [5.3al The result is
as expected, the evolution speed is clearly slower when the running coupling
is applied compared with the fixed coupling case. The shape of the function
Qs(y) is also significantly different between the fixed coupling and running
coupling solutions. At fixed coupling the solution to the BFKL equation (the
BK equation without the nonlinear term) evolves faster than the solution to

/
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Figure 5.3. The saturation scale in the proton and its logarithmic derivative as
a function of rapidity. Initial condition is GBW. The BFKL and fixed coupling
BK equations are solved at as = 0.2. The theoretical prediction for the asymp-
totic value dln Q,/dy = asv = 0.2-2.44 at large y for the fixed coupling BK
equation is also shown.

the fixed coupling BK equation, but the shape of the function Q(y) is almost
the same in both situations.

The evolution speed can be seen in more detail from Fig. [5.3b] where
the logarithmic derivative of the saturation scale (the evolution speed) is
shown as a function of rapidity. Our numerical results are consistent with
the theoretical prediction v = 2.44 at large y. The results suggest that the
nonlinear term causes little difference to the evolution speed at large rapidities,
as the evolution speeds extracted from the solutions to the fixed coupling BK
and BFKL equations are close to each other at large .

All the running coupling prescriptions can be seen to cause the same
evolution speed at large rapidities, and this speed is significantly smaller than
what is obtained with fixed coupling. The difference between the running
coupling prescriptions is in the evolution speed at moderated rapidities. The
parent dipole and KW prescriptions cause almost identical evolution of the
saturation scale, whereas the Balitsky prescription yields to much slower
evolution.

5.3 Unintegrated gluon distribution

Let us then study the BK equation in momentum space and solve Eq. ([5.2))
using the initial condition Eq. (4.55)), that is, the GBW initial condition
transformed to momentum space. The result is the proton unintegrated gluon
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Figure 5.4. Momentum space solution to the BK equation, N(k), and anoma-

lous dimension -y at rapidities (from right to left) y =1, y = 5, y = 30 and y = 60.
In the running coupling case the scaling parameter in the expression for a; is set
to C? = 160.

distribution (up to a constant) as we discussed in Sec. The momentum
space solution to the BK equation, N(k), is plotted in Fig. |5.4al at various
rapidities. We use the parent dipole prescription for the running coupling
and compare it with the result obtained by using fixed &y = 0.2.

In the running coupling case we set the free parameter C? = 160 in the
expression for oy, Eq. . This value is obtained by transforming the
solution back to coordinate space and requiring that we obtain the same
function as what we would obtain by using the original GBW model and the
parent dipole kernel in coordinate space. By setting C? = 6000 we would get
approximately the same result as with the Balitsky running coupling kernel
in coordinate space, which we recall to be a fit result describing the currently
available experimental data. A comparison of amplitudes from coordinate
space and momentum space evolution equations is shown in Fig. |5.5

The large factor C? in the momentum space expression for the running
coupling, Eq. , is somewhat problematic, as it can be interpreted as a
scaling of Aqcp by a large factor C'. This factor is required in order to get
slow enough evolution speed to reproduce a fit result to the experimental
data. An explanation is that the momentum space BK equation with the
parent dipole running coupling kernel is not the same as the corresponding
equation in coordinate space. This difference comes from the fact that when
we transform the BK equation into momentum space, we consider &, as a
constant. However with running coupling prescription it depends on the
dipole size r, and thus cannot be moved outside the integral in Eq. as
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Figure 5.5. Fourier transformed amplitude with parent dipole running coupling
and various values of C? compared with the solution obtained in coordinate space
using the Balitsky and the parent dipole running coupling kernels. Rapidities are
from right to left: y =1, y = 10 and y = 20.

was done in the derivation of the momentum space BK equation in Sec. 4.2
With fixed coupling the equations in momentum and coordinate space are
equivalent.

The parent dipole kernel itself is just an ad hoc prescription without any
rigorous justification. As the Fourier transform to momentum space is also
done by assuming a constant a(r), it would be surprising if we actually got
the same solution in both coordinate and momentum space. In this context
it is interesting to notice that one free scaling parameter in oy, which slows
the evolution, is sufficient to get a good match with the experimental data
even when we use an ad hoc type parent dipole kernel.

In addition to the difference in the evolution speed we also notice that
if the running coupling is applied, the Fourier transformed amplitude does
not respect the unitarity requirement N < 1. This can be understood, as
now we do not have any reason to expect that the momentum space equation
with running coupling has the same solution (and same fixed points) as the
corresponding coordinate space equation.

In order to study the evolution in more detail we also show the anomalous
dimension in momentum space, defined as

~ dIn N(k)

7T T dm e (5.6)

Even though the definition is analogous to the coordinate space definition,
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Eq. (5.3), one should notice that the quantities are slightly different. For
example, at small k one gets v ~ —1/(2N(k)), but in coordinate space the
anomalous dimension goes to zero at large r (both of these results follow from
the requirement N(r) — 1 at large r).

The anomalous dimension in momentum space is shown in Fig. [5.4b] We
can conclude from Figs. and that the running coupling slows down
the evolution significantly. In addition the anomalous dimension at large k
is different, which can also be seen directly from Fig. [5.4a} at large k the
amplitude falls more steeply when the running coupling is applied. The effect
of the running coupling on the anomalous dimension is thus similar than
what we observed in coordinate space: running coupling both slows down the
evolution and changes the shape of the solution.

5.4 Kinematical constraint

Let us then study the effect of the kinematical constraint discussed in Sec.
We solved the BK equation applying the kinematical constraint using both
the fixed coupling a; = 0.2 and the parent dipole running coupling kernels.
The numerical solutions are shown in Fig. The corresponding anomalous
dimensions are shown in Fig. [5.7]

These numerical results suggest that the kinematical constraint affects
mainly the evolution speed but not the asymptotic behavior of the solution.
The anomalous dimension at large k is the same with and without the
kinematical constraint. We conclude that both running coupling and the
kinematical constraint make the evolution slower, but their difference is that
the running coupling kernel significantly changes the anomalous dimension at
large k but the kinematical constraint does not.

The effect caused by the kinematical constraint is numerically more
significant if running coupling corrections are not taken into account. With
the parent dipole running coupling prescription the effect is still visible even
in the log-scale plot, Fig. but significantly smaller.

5.5 Geometric scaling

As we have already noticed, the solutions of the BK equation seem to reach
a universal shape independently of the particulars of the initial condition.
When this regime is reached, the amplitude is just shifted towards smaller
values of the dipole size (larger momentum) when rapidity increases. This
property is known as geometrical scaling, which means that the scattering
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Figure 5.6. Scattering amplitude in momentum space at rapidities y = 1, y = 5,
y = 30 and y = 60 (from left to right) with and without the kinematical con-
straint (KC). In the running coupling case the scaling parameter in the expression
for ay is set to C? = 160.

amplitude should only depend on a single dimensionless variable

T =1Qs(y) (5.7)

instead of r, (), and y separately. That is, the only rapidity-dependence is
inside the evolution of the saturation scale (),. This requirement is natural, as
the amplitude is dimensionless and the only relevant dimensionless quantity in
the fixed coupling case is rQs (Qs/Agcp is an another dimensionless quantity
if cvs is not a constant). This property has been observed for example in the
HERA data, see e.g. Ref. [45]. Notice that the GBW?” model, Eq.
satisfies this condition whereas the MV” model, Eq. , does not.

Following Ref. [19] we define the saturation scale in momentum space
as a maximum of the function ¥**N(k), where 7. = 0.5. The anomalous
dimension shown in Fig. suggests that the function N (k) decreases as
k=27 with v > 0.5 at large k, and the exact value of v depends on the rapidity.
The running coupling also increases v significantly. Thus the interpretation
of the saturation scale )5 is that for & > @)s the solution has reached a
powerlike shape. Using this definition we can also calculate the momentum
space solution as a function of the dimensionless variable k/Qs.

The scattering amplitude in coordinate space as a function of 7 is shown
in Fig. [5.8, where @), is defined via Eq. . We notice that for the fixed
coupling the universal scaling regime is reached at small r as early as y < 5,
whereas at larger r we have to evolve up to y ~ 20. The asymptotic solution
has considerably different shape than the initial condition. This is consistent



52 CHAPTER 5. NUMERICAL ANALYSIS

| | | | | | | | | bl | | | | | | | |
102 10° 10% 10* 10° 10%10%°10*%10*10%® 10210° 10% 10* 10° 10%10'°10*%10%10%°
k [GeV] k [GeV]
(a) as =0.2 (b) Parent dipole running coupling

Figure 5.7. Anomalous dimension in momentum space at rapidities y = 1,

y =15,y =30 and y = 60 (from left to right) with and without the kinematical
constraint (KC). fixed coupling oy = 0.2, parent dipole running
coupling.

with our results for the anomalous dimension: the initial condition is washed
out quickly in the rapidity evolution.

The results obtained with the running coupling seem to have considerably
different shape and the shape changes slowly at large rapidities. However it
is not clear from our numerical results whether or not the universal shape
is eventually reached. As r@), is not the only dimensionless scale with the
running coupling, we do not have any reason to expect that the geometric
scaling also holds if «a; is not constant.

The anomalous dimension in both coordinate and momentum space as
a function of dimensionless quantity rQ, or k/Q is shown in Fig. . In
coordinate space the anomalous dimension clearly reaches the asymptotic
shape at small () with fixed coupling, as the anomalous dimension obtained
at rapidities y = 20 and y = 40 are the same within the numerical accuracy.
With the running coupling the anomalous dimension at small r(); also changes
slowly at large y, but it is not clear that it will eventually reach an asymptotic
shape.

In momentum space the anomalous dimension at large k/Q; still changes
slightly between rapidities y = 20 and y = 40 both with and without the
running coupling. The evolution slows down when rapidity increases, but we
cannot conclude from our results whether or not the anomalous dimension
in momentum space will eventually reach an asymptotic shape even with a
constant a.
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Figure 5.8. Scattering amplitude as a function of rQs(y) at rapidities y = 5,
y = 20, y = 40 and for running coupling kernels also at y = 60 (from up to down
at large rQs). Initial condition is GBW.

5.6 Structure functions and comparison with
the experimental data

In order to check the validity of these calculations we have computed the
proton structure function F3 at small z. This quantity, which is related to
the total inelastic electron-proton cross section, is measured within a high
accuracy at HERA, see e.g. Refs. [46M48]. It can be computed easily from the
dipole-proton scattering amplitude which itself is nothing but our solution to
the BK equation, see Egs. and .

One should keep in mind that this calculation is not a prediction: the
free parameters in our initial conditions are fitted to the HERA F, data, see
discussion in Sec. [£.5] The results are shown in Fig. [5.10] These results are
computed using the GBW initial condition and Balitsky prescription for the
running coupling which is also used when the initial conditions are fitted to
the experimental data, see discussion in Sec. [4.5] The parameters for the
GBW initial condition are given in table 4.1}

From Fig. [5.10 we see that theoretical results agree with the experimental
data accurately. Thus we conclude that our CGC framework, which in this
case consists of the BK equation with the running coupling kernel and lowest
order v* — ¢q wave function, seems to describe the lepton-hadron scattering
at small z very accurately.

In order to test our framework more globally we should calculate also
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Figure 5.9. Anomalous dimension in coordinate and momentum space at rapidi-
tlesy =1,y =5, y = 20 and y = 40 from up to down at small rQ); and from
down to up at large k/Qs or lage Qs). The initial condition is GBW.

other observables using the same fit parameters and compare the results
with the experimental data. This obviously goes beyond the scope of this
work, but for completeness we mention as an example Ref. [49], where the
authors calculate hadron spectra in proton-proton collisions using the same
fit parameters as we used in this work. Their results are shown to agree with
the experimental data from RHIC. It is also shown that one can calculate
hadron spectra in deuteron-gold collisions by solving the BK equation for the
target nucleus.



5.6. STRUCTURE FUNCTIONS AND COMPARISON WITH THE EXPERIMENTAL DATA55

2-0 TTTT T LI \‘ T T LI \‘ TTTT T T T T 17 \‘ T T LI \\‘
— Q% =1.5 GeV? — @ =85 GeV?
151 4 B -

' 1.0 -4+ —

0'0\\\\‘ \\\\\H‘ \\\\\H‘ 1111 | I | |

4-0\\\\ \\\HH‘ T \\\HH‘ T TN \\\HH‘ T \\\HH‘
- — Q* =50GeV? { |- —  @Q® =200 GeV?

O_OHH\ Lol Lol Lol Ll Ll
10 107 10 10 107 107
x X
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Chapter 6

Conclusions

In this work we derived and studied the Balitsky-Kovchegov (BK) equation,
Eq. . As a solution to this equation we obtained the rapidity (energy)
dependence of the dipole-hadron scattering amplitude. We also derived
the momentum space BK equation, Eq. 7 which gives the rapidity
dependence of the unintegrated gluon distribution. In order to derive the
BK equation we introduced some concepts of the light cone quantum field
theory and used it to calculate amplitudes for processes v* — ¢qq, ¢ — qg and
7 — qq9.

As a part of this work numerical codes for solving the BK equation in both
coordinate and momentum space were developed. As the dipole amplitude
is an important quantity and appears presently in many calculations in the
CGC framework, it is important to have a general-purpose BK code available.

In our numerical studies in coordinate space we noticed that the different
running coupling prescriptions to the BK equation yield to significantly
different results. The naive way to include the running coupling by replacing a;
by as(r) is a good approximation of the Kovchegov-Weigert running coupling,
Eq. (4.41). However, both of these prescriptions cause significantly faster
evolution than the Balitsky prescription at moderated rapidities, which is
argued to be the most accurate running coupling kernel as discussed in Sec. [4.3]
At asymptotically large rapidities all the running coupling prescriptions lead
to similar evolution speed, and at all rapidities the evolution is significantly
slower than what is obtained from solutions with a fixed a.

In momentum space we also noticed that the running coupling slows down
the evolution. In these calculations we were able to use only the parent
dipole kernel for the running coupling, that is, we replaced a, by a,(k).
In addition we noticed that the asymptotic behavior is changed when the
running coupling is applied which is clear from our results for the anomalous
dimension: the slope in the In N(k),In k plane is significantly steeper with
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running coupling. The anomalous dimension in coordinate space was also
found to behave differently in the fixed coupling and running coupling cases.
In order to obtain the same evolution speed in momentum space and in
coordinate space, we had to add an arbitrary scaling factor to the definition of
as(k). Fixing this one scaling parameter appropriately we were able to obtain
the same evolution speed in momentum space with parent dipole kernel and
in coordinate space with the Balitsky or parent dipole kernels.

In both momentum and coordinate space we saw that the specific form of
the initial condition is washed out rapidly. With fixed &, the solution has
reached its asymptotic shape at y ~ 5, and at large values of y it only travels
to smaller values of r (larger values of k). With running coupling it is not
clear whether or not an asymptotic shape is eventually reached, at least the
shape of the solution still changes slightly around y ~ 40 — 60.

The BK equation is derived in a leading logarithm approximation, whereas
the running coupling takes into account part of the next to leading logarithm
corrections. In order to get some insight of the full next to leading logarithm
BK equation we studied the momentum space BK equation with a kinematical
constraint, Eq. . This equation is nonlocal in rapidity which makes
numerical calculations more difficult. Our results suggest that the kinematical
constraint slows down the evolution significantly in the fixed coupling case,
but it is numerically less important if the parent dipole running coupling
kernel is used. On the other hand the anomalous dimension (or the shape of
the solution) does not change significantly when the kinematical constraint is
applied.



Appendix A

Fourier transforms and
integrals

A.1 Fourier transform of a dot product

Let us calculate the Fourier transform of a dot product, namely integral

i .Tk‘x
/d2]€6k ?, (Al)

where x is an arbitrary 2-dimensional vector. Denoting the angle between k
and r by « and between r and z by  we can write Eq. (A.1)) as

x / dkda e cos(a + f3), (A.2)

where we denote by x, r and k the lengths of the vectors. Using the trigono-
metric identity cos(a + ) = cos acos f — sin asin [§ we get

/de eik'rkk;f = x/dk:/d@eik“ose [cos av cos € — sin v sin 6]

T T-r (A.3)
= 2T cos a / dkJy(kr) = 2mi— cos v = 2mi—-,
r r
where we used the fact that Jj(z) = —Jy(x) and noticed that e**" st gin 6 is

ikr cos

proportional to the derivative of e and thus the integral over 6 in the

second term vanishes.
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A.2 Angular integrals

When transforming the BK equation into momentum space on page [30] we

used an identity
l/d—‘f _ /d—q2 (A.4)
A N

This result can be shown as follows. First we notice that making a change
of variables ¢ — ¢ + k we can write

LN Y N
/(q—k)Q(q—k)%rq? _/ PERPEI PRI (A.5)

Let us now calculate the angular integrals over #, the angle between the
vectors k and ¢, using a standard trigonometric integral

21
/ dé 2 (A6)
0

a+bcosh az — 2’

valid for a + b > 0. From now on we keep the integration limits implicit. The
right hand side of Eq. (A.5)) directly gives

/d_zq 1 _/ dqgqdé
? @2+ (q+k)? ) 2+ k> + 2k cos o)

/ daq (A.7)
=21 | ——.
/At + i
The left hand side of Eq. (A.5)) can be computed by noticing that
1 1 1 —k)?
1 1 b (A38)

(—k2+¢ @ @@+ (q—Fk)?

After this substitution one can directly use Eq. ({A.6) to calculate the angular
integrals to obtain

/ d’q 1 5 / dgq dgq
=27 -2 | ——.
(g—k)? (g —Fk)?+¢ 0*\/(¢* — k?)? ¢*\/4q* + k*
(A.9)
Combining Eqs. (A.9), (A.7) and (A.5]), one directly obtains Eq. (A.4)).
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