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1 Introduction

1.1 The history of the strong interaction

The history of the strong interaction began early in the 20th century with the discovery
of the atomic nucleus and its constituents the proton and the neutron. It was these
discoveries that hinted towards the existence of a new type of interaction: to keep the
nucleus together there had to exist a force powerful enough to overcome the repulsive
electric forces exerted on the tightly packed protons in core of the atom. At this point
the proton and neutron were considered elementary particles and attempts to explain
the force that bounded the nucleons together were not satisfactory. The nature of
the strong force remained a mystery for decades although the applications of nuclear
physics were not hindered by this ignorance.

New light was shed into the mystery of the strong interaction by the discovery of the
pion in 1947 and by the early 60’s particle accelerators and cosmic ray experiments
had found several new particles similar to the nucleons, collectively called hadrons.
These new particles could be classified according to certain symmetries. As in the
case of the periodic system of elements, this hierarchy suggested a more elementary
structure and a new theoretical idea emerged to explain the number and properties of
these newly found particles. The new idea was the quark model, introduced in 1964 [1].
It abandonned the elementary particle status of the hadrons and instead described all
the hadrons as bound states of three different new fermionic particles called quarks,
and their antiparticles, interacting through an unknown force. The quark model had
great success in describing and predicting the properties of hadrons, but no experiment
succeeded in observing quarks and their existence as real particles was doubted. It
became also clear that the suggested quark composition of the hadrons required the
quarks to have an additional quantum number, which became known as color. These
and other problems in the simple quark model were resolved by the discovery of non-
Abelian gauge theories and the further construction of Quantum ChromoDynamics
(QCD) in the early 70’s. In QCD the quarks have, in addition to their electric charge,
a color charge that was mediated by the gluons. This new type of interaction was the
previously elusive and mysterious strong force.

Today QCD is a firmly tested part of the standard model of particle physics, however,
this does not mean that all about the strong interaction is known. Due to its non-
abelian nature and confining properties, QCD is a hard theory to investigate, both
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2 Introduction

theoretically and experimentally. The work carried out in this thesis is an attempt
to investigate one of the most interesting unresolved question regarding the strong
interaction: the behaviour of strongly interacting matter at a very high density or
temperature. In this context “very high” means several times denser than nuclear
matter or thousands of times hotter than the core of the sun. The study of these
extreme conditions might seem like a purely theoretical exercise, but it is not. Such
conditions may be found inside exotic stellar bodies such as neutron stars and almost
certainly existed right after the birth of our universe. Surprisingly, such conditions,
can also be created and studied in the laboratory in relativistic heavy ion collisions.

1.2 Quark gluon plasma and heavy ion collisions

In the early 80’s lattice QCD theorists proposed [2] that there exists a deconfined
phase of quarks and gluons at a high temperature region of the theory. This phase is
nowadays referred to as the Quark Gluon Plasma (QGP). One can imagine this phase
as a system where the quarks and gluons have such high energies, that the asymptotic
freedom of QCD allows them to travel freely in this medium. However, as one might
expect, the experimental verification of such matter was still far away as experiments
capable of producing it had to be designed and built.

The first hadron colliders ISR (Intersecting Storage Rings) and SPS (Super Proton
Synchrotron) at CERN (Organisation Européenne pour la Recherche Nucléaire) as
well as the later Tevatron at Fermilab collided mainly protons with fixed targets or
with anti–protons and, although they made other great particle physics discoveries,
they were not ideally suited for QGP production. It took until the year 2000 that
RHIC (Relativistic Heavy Ion Collider), a dedicated heavy ion collider, started taking
data at BNL (Brookhaven National Laboratory) and now after a decade of running
RHIC has provided compelling evidence that indeed QGP exists and can be produced
in laboratory conditions. Alongside the continuing RHIC experiments the LHC (Large
Hadron Collider) heavy ion program is about to start, attempting to produce hotter
and larger volumes of QGP with longer lifetimes. Further down the line is the CBM
(Condensed Baryonic Matter) experiment at the FAIR (Facility for Antiprotons and
Ions Research) facility in Germany which is supposed to probe the high net baryon
density region of the QCD phase diagram.

1.3 Outline of this thesis

Although experiments are compatible with the existence of QGP there is still much to
learn about its properties and the phase structure of QCD in general. The work done
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in this thesis aims to investigate some of the aspects still unknown about the phases
of QCD. These include the location of the phase boundaries between hadronic matter
and QGP, the order of the phase transitions and the existence of critical points in
the (T, µ) –phase diagram. Also some thermodynamic variables such as the pressure,
trace anomaly and quark number density are investigated.

The above mentioned QCD phenomena are studied in this thesis through the use of
effective models that try to incorporate the key properties of QCD into a simpler and
more easily solved framework. The hope is that these models could be then utilized to
predict and explain observed strong interaction phenomena with reasonable accuracy.

The layout of this thesis is the following: In Chapter 2 the aspects of QCD that are
incorporated into the models used in this thesis are introduced and also some lattice
QCD results are discussed. In Chapter 3 the effective models studied in this thesis,
as well the parameters used to set them up, are discussed in detail. Chapter 4 then
presents the results published in papers [I, II, III] along with some yet unpublished
results. Finally, this thesis is concluded in Chapter 5 where the future prospects of
the effective model approach used in this thesis are discussed.

1.4 Notation

The notation in this thesis follows that of [3] and is commonly used in modern particle
physics and field theory texts.

For relativistic quantummechanics we use the metric

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.1)

with the Greek indeces running over 0, 1, 2 and 3. The index 0 corresponds to the time
coordinate, while indeces 1, 2 and 3 correspond to spatial directions. When Roman
indeces i, j and k are used they run over 1, 2 and 3 and correspond to the three spatial
directions. All repeated indeces are summed. The often used Dirac gamma matrices
γ0, γ1 γ2 and γ3 are defined by their anticommutation relation

{γµ, γν} = 2gµν . (1.2)

The fifth gamma matrix is defined as

γ5 = iγ0γ1γ2γ3. (1.3)
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Also the three Pauli matrices are of importance:

τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
. (1.4)

The Pauli matrices obey the commutation relation

[τ i, τ j] = 2iεijkτ
k, (1.5)

where ε is the Levi–Civita antisymmetric symbol.

We use units in which ~ = c = 1. This means that

[mass] = [energy] = [time]−1 = [lenght]−1. (1.6)

Most quantities are given in electronvolts (eV) but also in some cases femtometers
(fm) are used. The relation between these is

1 MeV = 5.0677 · 10−3 fm−1. (1.7)



2 Features of QCD

2.1 Introduction

In this chapter I will discuss some aspects of QCD relevant to the work presented in
this thesis. First, in Section 2.2, I introduce the symmetry properties of QCD that are
used as quidelines in building the effective models in Chapter 3. Second, in Section
2.3, I present results from lattice QCD calculations that motivate the use of effective
models of the type studied in this thesis and also discuss results used to fit some
of the parameters in these models. I will not go into these subjects in detail, rather
I will give a very brief overview, since the emphasis of this thesis is in Chapters 3
and 4. In writing this chapter I have used the information presented in articles and
textbooks [3–16] where the reader may find a much more detailed description of the
properties of QCD discussed here. For those aspects of QCD, or gauge theories in
general, that are not discussed here at all, I refer the reader to textbooks like e.g. [3].

2.2 Symmetries of QCD

2.2.1 The SU(3) gauge symmetry

Quantum Chromodynamics is a non–Abelian gauge theory describing the interactions
of elementary particles called quarks and gluons. These interactions are ultimately
described by the QCD Lagrangian which is required to remain invariant under local
SU(3) gauge transformations with quark colors being the quantum numbers associated
with this gauge group. In QCD the quarks are set to be in the fundamental, and the
gluons in the adjoint, representation of the gauge group and thus the Lagrangian is

LQCD = ψ̄f (iγ
µDµ −mf )ψf −

1

4
F a
µν F µνa. (2.1)

Here ψf denote the quarks fields and γµ are the standard Dirac gamma matrices. The
field strenght tensor F a

µν and the covariant derivative Dµ are defined as

Dµ ≡ ∂µ − igstaAaµ (2.2)

F a
µν ≡ ∂µA

a
ν − ∂νA a

µ − gsfabcA b
µ A

c
ν , (2.3)

5
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where Aaµ are the gluon fields. The matrices ta are the SU(3) generators and fabc is
the group structure constant defined by the SU(3) Lie algebra

[ta, tb] = ifabctc. (2.4)

The Lagrangian (2.1) satisfies the requirement of local gauge invariance under the
SU(3) gauge transformations U(x)

ψ → U(x)ψ , Dµ → U(x)DµU
†(x), (2.5)

where the spacetime dependence of the gauge transformations can be arbitrary.

2.2.2 Flavour and chiral symmetries

In addition to the defining SU(3) gauge symmetry QCD has other symmetry proper-
ties many of which are exact only with certain constraints. Two of these symmetries
are the flavor symmetry and the chiral symmetry, both of which are related to the
mass of the quarks.

Since in QCD quark flavors differ from each other only by their masses, setting the
masses of two or more flavors equal will result in a SU(Nf ) symmetry that rotates the
mass degenerate flavors. In reality the masses of the flavors differ and this accounts
for the observed hadron masses, or rather their mass differences. However, since the
two lightest quarks u and d have comparable masses that are small relative to the
QCD scale, the SU(2) flavor symmetry is a good approximate symmetry of QCD.
This symmetry, if exact, would imply mu = md and is called the isospin symmetry. If
exactly isospin symmetric, the Lagrangian (2.1) is invariant under the transformations

ψ → USU(2)ψ, (2.6)

where ψ is now a quark doublet consisting of u and d quarks. In the work that makes
up this thesis we have assumed that the isospin symmetry is exact and the four
heaviest quarks are considered too heavy to be excited and are thus ignored.

At the limit, where one takes the two lightest quark masses to zero (and ignores rest
of the quarks), the QCD Lagrangian (2.1) has isospin symmetry, as described above,
allowing transformations mixing the u and d quarks. However, due to the masslessness
of the quarks, and thus a lack of coupling between left– and right–handed states, the
Lagrangian now becomes symmetric under individual unitary rotations of left– and
right–handed quarks as well

ψL → USU(2)LψL, ψR → USU(2)RψR, (2.7)
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where the chiral components of the quark doublet are

ψL =

(
1− γ5

2

)
ψ, ψR =

(
1 + γ5

2

)
ψ. (2.8)

This SU(2)L×SU(2)R is called the chiral symmetry. Chiral symmetry can be reformu-
lated as a vector and an axial vector symmetry of the form SU(2)V × SU(2)A, where
the SU(2)V vector symmetry corresponds to the transformations USU(2)L = USU(2)R

i.e. the isospin symmetry and the axial vector symmetry SU(2)A then is made up from
the transformations USU(2)L = U †SU(2)R

. The corresponding currents are the isospin and
chiral currents,

J iµ = ψ̄γµτ
iψ and J i5µ = ψ̄γµγ5τ

iψ, (2.9)

respectively. Although neither chiral or isospin symmetry is exact in QCD, in view of
experimental results the isospin current is approximately conserved, while the chiral
current is not connected to any observed conservation law. This can be explained by
the mechanism of spontaneous symmetry breaking that occurs in the QCD vacuum.

First consider the case where the quarks are massless. Then the energy cost of pro-
ducing a quark anti–quark pair from the vacuum is very low. Since momentum and
angular momentum are conserved, the produced quark and anti–quark will have op-
posite momentum and opposite spin, which results in net chirality of the pair. In a
vacuum that contains a condensate of such pairs the expectation value 〈Ω|ψ̄ψ|Ω〉 will
obtain a non–zero value and since

ψ̄ψ = ψ̄LψR + ψ̄RψL (2.10)

this expectation value is not invariant under the axial transformations SU(2)A. This
means that the axial symmetry is not a symmetry of the vacuum, eventhough it is a
symmetry of the Lagrangian. This phenomenon, in which the vacuum does not obey a
symmetry of the Lagrangian, is called spontaneous symmetry breaking. The physical
consequence of this is that, although the quarks have zero mass in the Lagrangian,
they propagate through the vacuum as if they had significant masses.

Since 〈Ω|ψ̄ψ|Ω〉 is invariant under the vector transformations SU(2)V the isospin
symmetry is still respected by the vacuum and the isospin current is thus conserved.
The spontaneous symmetry breaking pattern is then

SU(2)V × SU(2)A → SU(2)V , (2.11)

which corresponds to three broken continuous symmetries, one for each broken axial
current. The Goldstone theorem tells us that we should find three massless spin zero
particles that are generated by the spontaneous symmetry breaking.

If we now consider real QCD with explicitly broken axial symmetry i.e. the u and
d quarks have small non–zero masses in the Lagrangian, the vacuum has net axial
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charge in a similar fashion to the massless case since creating a pair of light quarks is
not costly in terms of energy. Again a spontaneous symmetry breaking pattern occurs
through the vacuum expectation value 〈Ω|ψ̄ψ|Ω〉. However, now the axial charge is
carried not only by the vacuum but also by the massive quarks. This means that the
new particles created by this symmetry breaking are not massless and thus not true
Goldstone bosons. In QCD the pions form an isotriplet of light mesons that can be
considered as the isotriplet associated with the symmetry breaking.

In addition to the SU(2)V and SU(2)A symmetries the massless QCD Lagrangian
has two singlet symmetries U(1)V and U(1)A which I have not discussed above. With
these, the fermionic symmetry group of the Lagrangian can be written as

SU(2)V × SU(2)A × U(1)V × U(1)A. (2.12)

The axial U(1) symmetry is however anomalously broken when the theory is quantiz-
ized since it is not respected by the full quantum path integral. However, the vector
U(1) symmetry is respected by QCD and the corresponding conserved quantum num-
ber is the baryon number

jµ = ψ̄γµψ. (2.13)

I will not discuss these U(1) symmetries further here since they do not play a signifi-
cant role in the work presented in this thesis.

2.2.3 The Z(3) symmetry and deconfinement

Since QCD is, by construction, symmetric under local gauge transformations of the
SU(3) gauge group, it is also symmetric under subgroups of SU(3). One of these is
the center group of SU(3)

Z(3) = {z ∈ SU(3) | zU = Uz ∀ U ∈ SU(3)} (2.14)

i.e. the elements of SU(3) that commute with all other elements of SU(3). The Z(3)
group has three elements

1, 1e2πi/3 and 1e4πi/3 (2.15)

each consisting of a unit matrix and a constant phase. Since the Z(3) group has only a
finite number of elements the group transformation cannot change continuously from
point to point and thus it constitutes a global symmetry of the Lagrangian. Unlike the
isospin and chiral symmetries, which are only approximate symmetries of the QCD
Lagrangian, global Z(3) symmetry is an exact symmetry of the Lagrangian.

Consider now QCD at finite temperature. In the imaginary time formalism the imag-
inary time coordinate τ is periodic with a period β corresponding to the inverse of
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the temperature T and the boundary conditions for boson and fermion fields are then
given by the quantum statistics for the corresponding fields, see e.g. [17]. The result
is that bosons are required to be periodic with respect to τ while fermions must be
anti–periodic. For QCD quarks and gluons this means:

ψ(0, ~x) = −ψ(β, ~x) and Aµ(0, ~x) = Aµ(β, ~x). (2.16)

Since the Lagrangian is invariant under local SU(3) transformations, let us see what
happens to the boundary conditions:

ψ(0, ~x)→ U(0, ~x)ψ(0, ~x)

ψ(β, ~x)→ U(β, ~x)ψ(β, ~x)
(2.17)

Aµ(0, ~x)→ U †(0, ~x)Aµ(0, ~x)U(0, ~x)

Aµ(β, ~x)→ U †(β, ~x)Aµ(β, ~x)U(β, ~x).
(2.18)

Due to the quarks being in the fundamental representation their transformation in-
volves only one transformation matrix and thus only periodic gauge transformations

U(0, ~x) = U(β, ~x) (2.19)

do not violate the boundary conditions (2.16) for quarks. So, although the QCD La-
grangian is invariant under local SU(3) transformations with arbitrary dependence on
x, the finite temperature boundary conditions for the quarks require the transforma-
tions to be periodic in the imaginary time τ . The gluons, however, are adjoint fields
and their transformations involve also the inverse of the transformation matrix which
means that any transformation matrix that commutes with the gluon field Aµ will
keep it unchanged. By definition, the SU(3) matrices that commute with all possible
gluon fields constitute the Z(3) symmetry group. As a result transitions for the gluons
need to be periodic only up to an element of Z(3) i.e.

U(0, ~x) = zU(β, ~x) where z ∈ Z(3) (2.20)

in order to satisfy the boundary conditions (2.16).

If we now consider a pure gauge QCD with no dynamical quarks, which is in essence
the opposite of considering massless quarks, the finite temperature formulation is
invariant with respect to the choice of z in (2.20). It is important to note that this
Z(3) symmetry arising from the boundary conditions is not the same as the Z(3)
symmetry of the Lagrangian, although it is related to it. The global symmetry Z(3)
of the Lagrangian requires that the fields are rotated by the same Z(3) element at
every point, particularly at τ = 0 and τ = β, and such rotations would be trivially
periodic. Instead the Z(3) symmetry of the boundary conditions is a symmetry under
Z(3) rotations of the gluon fields only at τ = β.
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As we saw with the SU(2)A axial symmetry, even though the field equations respect
a symmetry, it does not mean that the vacuum of the theory does. To examine this in
the case of the Z(3) symmetry we need a quantity, an order parameter, that behaves
similarly as the expectation value 〈Ω|ψ̄ψ|Ω〉 in the case with axial symmetry breaking.
For the center symmetry such a quantity is the Polyakov loop [6]

`(~x) =
TrL(~x)

3
, (2.21)

where L(~x) is the thermal Wilson line

L(~x) = P exp[

∫ β

0

igsA0(τ, ~x)dτ ]. (2.22)

The P in (2.22) denotes path ordering i.e. the gauge fields in the power–series ex-
pansion of the exponential are in the order they appear in the taken path, with the
beginning of the path being to the right.

Since in gauge transformations the Wilson line transforms as

L(~x)→ U †(β)L(~x)U(0) (2.23)

the Polyakov loop, as a trace of L, is invariant under periodic gauge transformation.
However transformations of the type (2.20) lead to a transformation law

`(~x)→ z`(~x) (2.24)

for the Polyakov loop. Now the vacuum expectation value 〈`(~x)〉 of the Polyakov loop
has to be zero in order for the vacuum to be invariant under the Z(3) symmetry. This
connection with the Polyakov loop also relates the Z(3) symmetry to confinement.

The free energy for a static quark Fq can be written in term of the Polyakov loop [11,12]

Fq = −T ln[〈`(~x)〉] (2.25)

and the free energy of a static quark anti–quark pair can then be written as the
correlation function of two Polyakov loops

Fq̄q(~x− ~y) = −T ln[〈`(~y)†`(~x)〉]. (2.26)

A vanishing vacuum expectation value for the Polyakov loop then implies an infinite
free energy for a single quark or, in the case of the quark anti–quark correlator, an
infinite pair potential. These imply quark confinement and thus the Polyakov loop can
also be considered as an order parameter for confinement. In [16] the interpretation
of the Polyakov loop as the free energy of a static quark is challenged since the
expectation value 〈`(~x)〉 can be complex while the free energy must be always real.
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Instead it is suggested that the Polyakov loop should be understood as the propagator
of the quark and confinement is then equivalent with a vanishing propagator.

Since in real QCD with finite temperature and finite mass quarks the Z(3) symmetry is
broken explicitly also the Polyakov loop will be always non–zero at finite temperature.
This means that at finite temperature total confinement does not occur. However, at
low temperatures we still expect `(~x) ≈ 0. And since the QCD coupling gs runs and
approaches zero at high energies, one could then expect the absolute value of the
Polyakov loop to approach one at high temperatures signalling a strongly deconfined
phase. Between these extremes one would naturally expect to find a phase transition.
This is similar to the chiral symmetry case where the broken symmetry of the vacuum
becomes less broken at high tempreratures, conversely in the Z(3) symmetry case the
symmetry is broken at high temperature and is a better symmetry at lower energies.
The order of the deconfinement transition may depend on several factors, particularly
the masses of the lightest quarks including the s quark, see [18]. In QCD, lattice
simulations indicate that the deconfinement transition is a crossover, see [19] or Figure
2.2.

2.3 On lattice QCD

One approach to solving QCD is evaluating the necessary functional integrals on a
discrete spacetime lattice. This method was first envisioned by Wilson in [20]. The
lattice approach is unique in its ability to study non-perturbative aspects of QCD
by simulating the complete QCD Lagrangian, thus making it a very powerful albeit
expensive tool. Here, however, I will not discuss lattice formulation of QCD nor nu-
merical methods, for those I refer the reader to reviews such as [13]. Instead, I will
discuss some results and aspects of lattice QCD that motivate the use of effective
models such as the ones studied in this thesis.

Since the first Monte Carlo simulations [9], one of the goals of lattice QCD has been the
study of the QCD equation of state. This involves the study of phase transition such
as the chiral and deconfinement transitions. Early lattice studies showed that these
seemingly unrelated transitions occur at the same temperature in QCD [13, 21, 22].
This is illustrated in Figure 2.1 where the chiral and deconfinement order parameters
are shown along with their susceptibilities. The coincidence of these two transitions
then might suggest that they are, in fact, related somehow. The conclusion would
then be that in order to describe correctly the QCD phase diagram with respect to
either one of these transition one has to take into account the other as well. This
is also then reflected in the models that attempt to describe these phenomena. The
models used in this thesis, PNJL and PLSM, are good examples of models that take
lattice findings, like the one discussed, as a guideline in choosing the relevant degrees
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of freedom present in the models. More recent lattice studies [19, 23] have found out
that the coincidence of the two transitions is not perfect, see Figure 2.2. Still the
relative closeness of the two transitions necessitates the inclusion of them both into
models describing QCD phase transition phenomena.
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0.3
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mq/T = 0.08

m
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mq/T = 0.08L

L

Figure 2.1: The behaviour of the chiral condensate, the Polyakov loop and their susceptibilities as
seen in lattice simulations. Figures from [18].

One might wonder why use effective models in the first place if the exact QCD La-
grangian can be studied by lattice methods. The answer is simple: QCD is a very
hard theory to solve and although lattice calculations are a precise way of studying
QCD, they require a lot of computing power and definite answers to several questions
cannot be answered by the power of todays computers. Also the study of non–zero
baryon number density on the lattice has great inherent problems, in addition to the
need of considerable computer time. At non–zero baryon number density the fermion
matrix becomes complex and this makes the direct application of Monte Carlo sim-
ulation techniques impossible [13], although the functional integrals themselves are
well defined even in this case. Different methods such as reweighing, Taylor expansion
and analytic continuation, have been suggested to overcome this problem [24], but
still the study of the QCD phase diagram away from the µ = 0 line on the lattice is
very exploratory [25].

In the work constituting this thesis we have used effective models that do not have the
constraints of the lattice when it comes to computer power or doing calculations at
finite baryon density. However, lattice results such as [26–29] are nevertheless needed
to fit several parameters in the models. Thus, lattice calculations and effective models
should be viewed as complementary approaches in describing strongly interacting
phenomena. In the next chapter I will describe in detail the models studied in this
thesis as well as the fits to lattice data that go into these models.
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Figure 2.2: The temperature dependence of the chiral susceptibility χψ̄ψ, the strange quark number
susceptibility χs and the renormalized Polyakov loop P as seen on the lattice [19]. The solid vertical
lines indicate the critical temperatures for each transition.
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3 The effective model approach

3.1 Overview

Although perturbative attempts to describe the QCD phase diagram exist [30], there
are great difficulties with this approach, particularly at low energies where pertur-
bation theory breaks down, and thus several effective theories are used instead of
QCD to describe the phenomena associated with the strong interaction. All of these
effective theories retain some essential features of QCD, but have a reduced degree of
complexity. Of course the features one should choose depend on the phenomena one
is interested in.

As discussed in Chapter 2, the QCD phase diagram can be drawn with the transition
lines of chiral symmetry and deconfinement. In this work we have studied models that
incorporate the two approximate symmetries of QCD that govern these transitions:
the chiral symmetry and the Z(3) symmetry. The chiral symmetry is described by two
different models that have been used since the 60’s: the Nambu-Jona-Lasinio (NJL)
model and the linear sigma model (LSM). The Z(3) symmetry is then added to these
models through a static background field that couples to quarks and a lattice data
fitted potential describing the symmetry breaking. The resulting combinations are
then called the Polyakov extended Nambu-Jona-Lasinio model or linear sigma model
abbreviated PNJL and PLSM, respectively. In recent years the interest in these type
of models has been abundant and they have been studied for example in [31–57].

In the following sections I will write down the Lagrangians for the models used in this
thesis and verify that their symmetry properties indeed correspond to those of QCD.

3.2 The model Lagrangians

3.2.1 The NJL model

The Nambu-Jona-Lasinio (NJL) model was originally constructed as a theory of nu-
cleons before the appearance of QCD [58]. The modern variants of the theory exhibit
quark degrees of freedom instead of the nucleons. I will not discuss the history of the

15



16 The effective model approach

model or its variants. Instead, I will present the model used in the work presented in
this thesis. For a review on the NJL model, see e.g. [59].

We consider the NJL model with only the two lightest quark flavors: u and d. The
model Lagrangian is

L = q̄(iγµ∂µ −mq)q +
G

2

[
(q̄q)2 + (q̄iγ5~τq)

2
]
, (3.1)

where ~τ are the Pauli matrices. If the quark masses are zero i.e the matrix mq is zero,
then indeed the Lagrangian is chirally symmetric. This can be seen by applying the
SU(2)A transformation to the quark fields

q → exp[−iτ · θ
2
γ5]q. (3.2)

By using

exp[±i~θ · ~τ ] = cos |θ| ± i
~θ · ~τ
|θ|

sin |θ| (3.3)

we get
(q̄q)→ (q̄q) cos θ − (q̄iγ5θ̂ · ~τq) sin θ

(q̄iγ5τiq)→ (q̄iγ5τiq) + (q̄q)θ̂i sin θ − (q̄iγ5
~θ · ~τq)θ̂i(1− cos θ),

(3.4)

where θ̂i = θi/|θ|. Inserting (3.4) into the Lagrangian (3.1), we see that the sum of
(q̄q)2 and (q̄iγ5~τq)

2 is invariant in the transformation. The kinetic term q̄(iγµ∂µ)q is in
itself invariant under (3.3) since the matrix γ5 commutes with any pair of γ matrices.
However, since (q̄q) was not alone invariant neither can the mass term (mq q̄q) be, and
so the Lagrangian (3.1) is invariant under (3.3) only if mq = 0.

Since chiral symmetry is explicitly broken in QCD we will also break it explicitly in
our effective models. This means that we will keep the mass term mq and assign a
small mass for the quarks. We will, however, retain isospin symmetry i.e. invariance
under the SU(2)V transformations

q → exp[−iτ · ω
2

]q. (3.5)

This symmetry is preserved if we have degenerate masses for the two quark flavors.

3.2.2 The linear sigma model

The linear sigma model has a history comparable to the NJL model, but again I will
only discuss the particular model used in the work presented in this thesis.
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The linear sigma model we use features the sigma meson and the pions, their mutual
interactions and interactions with quarks. The Lagrangian is

L = q̄ (iγµ∂µ − g(σ + iγ5~τ · ~π)) q +
1

2
(∂µσ∂

µσ + ∂µ~π · ∂µ~π) + U(σ, ~π), (3.6)

where the potential is

U(σ, ~π) =
m2

2
(σ2 + π2) +

λ2

4
(σ2 + π2)2 −Hσ. (3.7)

We will use the form

U(σ, ~π) =
λ2

4
(σ2 + π2 − v2)2 −Hσ, (3.8)

which is equivalent to (3.7) with v2 = −m2/λ2.

Now the term −Hσ acts as the symmetry breaking term similarly to the quark mass
in the NJL model. If we set H = 0 and apply the SU(2)A transformations

q → exp[−iτ · θ
2
γ5]q ' (1− iτ · θ

2
γ5)q

σ → σ′ ' σ − π · θ
~π → ~π′ ' ~π + σ~θ

(3.9)

the Lagrangian stays invariant. This also holds for the SU(2)V transformations

q → exp[−iτ · ω
2

]q ' (1− iτ · ω
2

)q

σ → σ′ = σ

~π → ~π′ ' ~π − π × ω.

(3.10)

Again we want to retain the isospin symmetry and break the chiral symmetry explicitly
making it only approximate as in QCD. This is achieved by the inclusion of the term
−Hσ in (3.8). One can easily verify that it conserves the SU(2)V symmetry but breaks
the SU(2)A symmetry.

3.2.3 The Polyakov extension

The NJL and LSM Lagrangians presented in the previous sections have the desired
chiral and isospin symmetry properties and now we need to add the Z(3) symmetry
to the models. This is done by adding a lattice fitted mean field potential for the
Polyakov loop to the Lagrangians (3.1) and (3.6). To connect the chiral and pure
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gauge sectors the coupling between a static background gauge field and the quarks is
also introduced.

We start with the definition of the thermal Wilson line L

L = P exp[

∫ β

0

igsA0(~x, τ)dτ ], (3.11)

where gs is the gauge coupling and A0 is defined as A0 = Aa0
λa
2
. Here Aa0 are the

SU(3) gauge fields and λa are then the Gell-Mann matrices. In the work presented
here we consider only the A0 component of the field and treat it as a constant static
background field i.e. independent of ~x and τ . The Polyakov loop is defined as the color
trace of the thermal Wilson line

` =
TrcL
Nc

(3.12)

and is included in our Lagrangians through a mean field potential

U` ≡ U(`, `∗, T ) =

(
−b2(T )

2
|`|2 − b3

6
(`3 + `∗3) +

b4

4
(|`|2)2

)
T 4, (3.13)

where the coefficient b2 depends on the temperature

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (3.14)

The parameters a0, a1, a2, a3, b3 and b4 are fitted to the lattice data from pure
gauge theory. The values of these parameters will be discussed in Section 3.4.3. While
the potential (3.13) used in our work is a simple polynomial obtained from [35],
logarithmic forms for the potential also exist [33,37,45]. These forms have advantages
over the simple polynomial form such as contraining the Polyakov loop ` to be always
smaller than 1 [37]. However, in [45] it was found that the polynomial form (3.13) is
consistent with the logarithmic potentials used in [37, 45] at temperatures up to 300
MeV. Since this temperature is approximately 1.5Tc we can safely use the polynomial
potential to investigate the phase transition. It is also worth to mention that both the
polynomial and logarithmic versions of the potential contain only traces of the Wilson
loop, although the center symmetry would allow also terms such as Tr[L3 + L†

3
].

In [III] we also consider a µ–dependent Polyakov potential, where the dependence on
the chemical potential was introduced through the critical temperature T0. We use
the parametrisation

T0(µ) = Tτe
−1/(α0b(µ)) (3.15)

introduced in [42] and used also for example in [44]. This parametrisation is based on
perturbative estimates on how the QCD running coupling α is changed by fermionic
contributions. The µ–dependence is in the coefficient b(µ), which also depends on the
number of quark flavors and colors. I will discuss the form we use for b(µ) and also
the values of the parameters α0 and Tτ in Section 3.4.3.
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3.3 Model thermodynamics

3.3.1 The mean field approximation

We study the model thermodynamics in the mean field approximation. This is done
in a slightly different way in the PLSM and PNJL models due to the different degrees
of freedom in the models. However, the approximation scheme used will result in quite
similar mean field potentials for the two models.

Mean field approximation in the PNJL model

The mean field approximation in the PNJL model involves the linearization of the
quadratic quarks fields. This is achieved by the following expansion around the vacuum
expectation values

(q̄q)→ 〈q̄q〉+ (q̄q)f , (q̄iγ5~τq)→ 〈q̄iγ5~τq〉+ (q̄iγ5~τq)f , (3.16)

where the subscript f now denotes a small fluctuation. Inserting this expansion to the
Lagrangian (3.1) and neglecting the squares of the fluctuations, one gets

LPNJL = q̄ (iγµ(∂µ − gsA0δµ0)−mq +G(〈q̄q〉+ iγ5~τ · 〈q̄iγ5~τq〉)) q

+
G

2

(
〈q̄q〉2 + 〈q̄iγ5~τq〉2

)
+ U`.

(3.17)

Similarly as in the PLSM case we can simplify also the PNJL model further by setting
〈q̄iγ5~τq〉 = 0. Again this can be done due to the fact that in an isospin symmetric
system the pseudoscalar isotriplet has a zero expectation value.

As in the PLSM case we write the PNJL mean field Lagrangian in terms of the
constituent quark mass which is M = mq−G 〈q̄q〉 in the PNJL case. The Lagrangian
then is

LPNJL = q̄ (iγµ(∂µ − gsA0δµ0)−M) q + Uχ + U`, (3.18)
where the chiral potential is

Uχ =
(mq −M)2

2G
. (3.19)

Mean field approximation in the PLSM model

In the mean field approximation for the PLSM case we replace the meson fields with
their vacuum expectation values and neglect possible mesonic fluctuations. This im-
plies

σ → 〈σ〉 ~π → 〈~π〉 (3.20)
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and
∂µ〈σ〉 → 0 ∂µ〈~π〉 → 0. (3.21)

After these approximations have been made the PLSM mean field Lagrangian is

LPLSM = q̄ (iγµ(∂µ − gsA0δµ0)− g(〈σ〉+ iγ5~τ · 〈~π〉)) q

+
λ2

4

(
〈σ〉2 + 〈π〉2 − v2

)2 −H 〈σ〉+ U`,
(3.22)

A further simplification arises from the unbroken isospin symmetry. In an isospin
symmetric system the expectation value of a pseudoscalar isotriplet is zero, for us this
implies 〈~π〉 = 0. Here we see the importance in the way we broke chiral symmetry
in the model. The symmetry breaking term in the potential (3.8) was −Hσ, this
term, linear in the sigma field, does not alter the fact that 〈~π〉 = 0. If we had broken
the symmetry with a term that would also break the isospin symmetry this property
would have been lost.

We now write the Lagrangian in its final form

LPLSM = q̄ (iγµ(∂µ − gsA0δµ0)−M) q + Uχ + U`, (3.23)

where we have introduced the constituent quark mass M ≡ g 〈σ〉 and the chiral
potential is

Uχ =
λ2

4

((
M

g

)2

− v2

)2

− HM

g
. (3.24)

3.3.2 Derivation of the grand potential

In this section I will show how to obtain the grand potential from the model La-
grangians (3.18) and (3.23). This derivation follows the one presented in [17].

The model Lagrangians (3.18) and (3.23) differ slightly but can be both expressed in
the form

L = q̄(iγµ(∂µ − gsA0δµ0)−M)q + U, (3.25)
where the q– and q̄–independent potential U now includes the chiral potentials of
the models (3.19) or (3.24) and the Polyakov potential (3.13). Also it is important
to remember that the quark fields q and q̄ have, in addition to their Dirac indeces,
indeces of color and flavor, although they are omitted for the most part in order to
keep the notation tidy.

The first thing to do is to calculate the partition funtion Z since all thermodynamics
can be derived from it. It is given as a functional integral

Z =

∫
Dq̄(x, τ)

∫
Dq(x, τ) exp

[∫ β

0

dτ

∫
V

d3x (L+ µq̄γ0q)

]
, (3.26)
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which is written in imaginary time formalism, where τ = it and β = 1/T with T being
the temperature. Inserting the Lagrangian into (3.26) we immediately get

Z = exp

[
UV

T

] ∫
Dq̄(x, τ)

∫
Dq(x, τ) exp

[∫ β

0

dτ

∫
V

d3x q̄ D q

]
, (3.27)

where D now denotes the matrix

D ≡
(
iγµ∂µ −M + (−igsA0 + µ)γ0

)
. (3.28)

Note that the potential U comes directly out accompanied with the integration vol-
umes since it is not only independent of the quark fields but also of x and τ . In order
to do the functional integrals in (3.27) we discretize the action

S ≡
∫ β

0

dτ

∫
V

d3x q̄ D q (3.29)

by switching from (x, τ )-space to (p, ωn )-space. This is done by discretizing the quark
fields using the following Fourier transformation

q(x, τ) =
1√
V

∞∑
n=−∞

∞∑
p=−∞

exp [i(p · x + ωnτ)] q̂(p, n) (3.30)

where the discrete frequency must be ωn = (2n + 1)πT in order to keep the fermion
fields antiperiodic. By inserting (3.30) into the action (3.29), operating with the matrix
D and cancelling out the exponential factors, one gets

S =

∫ β

0

dτ

∫
V

d3x
1

V

∑
n

∑
p

ˆ̄q(p, n) D̂ q̂(p, n), (3.31)

where
D̂ = −γµpµ −M + (−igsA0 + µ)γ0 (3.32)

and pµ = (iωn,p). The integrals over x and τ are now trivial and can be performed
to obtain the result

S =
1

T

∑
n

∑
p

ˆ̄q(p, n) D̂ q̂(p, n). (3.33)

Now we can insert this discretized action into the partition function (3.27), rewrite
the functional integrals as a product and obtain

Z = exp

[
UV

T

] ∏
n,p,d,f,c

∫
dˆ̄qd,f,c(p, n)dq̂d,f,c(p, n) exp [S] , (3.34)

where the product is over momentum p, frequency ωn, Dirac indeces d, color c and
flavorf . Recalling the integral formula∫

dψ†1dψ1 · · · dψ†NdψN exp
[
ψ† D ψ

]
= detD (3.35)
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for Grassmann variables ψ1 · · ·ψN and ψ†1 · · ·ψ
†
N , we can now do the integrals in (3.34)

and arrive at a deceivingly simple formula

Z = exp

[
UV

T

]
detp,n,d,f,c D̂

T
, (3.36)

where the determinant is taken again over momentum p, frequency ωn, Dirac indeces
d, color c and flavor f . To make progress, we turn to the definition of the grand
potential

Ω = −T
V

lnZ (3.37)

and by inserting (3.36), the potential separates into two terms

Ω = −U − Ωq̄q (3.38)

where U is still the quark–independent part of our initial Lagrangian (3.25) and the
term with the quarks integrated out is simply

Ωq̄q ≡
T

V
ln

[
det D̂

T

]
. (3.39)

Here we can utilize the connection

ln det D̂ = Tr ln D̂ (3.40)

and write

Ωq̄q =
T

V

∑
n

∑
p

Trc,f ln

[
detd D̂

T

]
, (3.41)

where the sums correspond to traces over n and p and the Dirac determinant is left to
be taken over the matrix D̂. The remaining determinant can be evaluated as follows

det D̂ = det
(
−γµpµ −M + (−igsA0 + µ)γ0

)
=

(
M2 + |p|2 − (−igsA0 + µ− p0)2

)2

=
(
(ωn + i(−igsA0 + µ− p0))2 + E2

)2
,

(3.42)

where E2 = M2 + |p|2. The potential is then

Ωq̄q =
T

V

∑
n

∑
p

Trc,f 2 ln
[
β2
(
(ωn + i(−igsA0 + µ))2 + E2

)]
. (3.43)

Since the frequencies ωn are summed over both negative and positive values one can
make subsititution ωn → −ωn without changing the sum. With this in mind we write

Ωq̄q =
T

V

∑
n

∑
p

Trc,f ln
[
β2
(
(ωn + i(−igsA0 + µ))2 + E2

)]
+ ln

[
β2
(
(−ωn + i(−igsA0 + µ))2 + E2

)] (3.44)
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and after some algebra we arrive in

Ωq̄q =
T

V

∑
n

∑
p

Trc,f ln
[
β2
(
ω2
n + (E − (µ− igsA0))2)]

+ ln
[
β2
(
ω2
n + (E + (µ− igsA0))2)] . (3.45)

The frequency summation can be done using methods presented for example in [17].
The result is

Ωq̄q = 2T

∫
d3p

(2π)3
Trc,f

(
βE + ln

[
1 + Le−β(E−µ)

]
+ ln

[
1 + L†e−β(E+µ)

])
, (3.46)

where L = exp[igsA0β] and L† = exp[−igsA0β] are now the Polyakov loop matrices.

Finally the remaining traces have to be calculated. The trace over flavor gives in our
case a factor 2 since we are only dealing with two degenerate flavors. The trace over
color is a little more complicated since the Polykov loop matrices have color structure.
However in the so called Polyakov gauge [60] the Polyakov loop matrix can be written
in a convenient diagonal form

L = diag
(
eiθ1 , eiθ2 , e−i(θ1+θ2)

)
. (3.47)

We use (3.40) again and evaluate the resulting determinant

Tr ln
[
1 + Le−β(E−µ)

]
= ln det

[
1 + Le−β(E−µ)

]
= ln

[
1 + Tr(L)e−β(E−µ) + Tr(L†)e−2β(E−µ) + e−3β(E−µ)

]
.

(3.48)

With this result, we can now write the whole grand potential (3.38) as

Ω = −U − 4

∫
d3p

(2π)3
3E

+ ln
[
1 + 3

(
`+ `∗e−β(E−µ)

)
e−β(E−µ) + e−3β(E−µ)

]
+ ln

[
1 + 3

(
`∗ + `e−β(E+µ)

)
e−β(E+µ) + e−3β(E+µ)

]
.

(3.49)

This potential is then used to solve the thermodynamics of the two models with
U including the appropriate chiral potential for the NJL and LSM cases. Also, the
divergent term in (3.49) is treated differently in NJL and LSM: In the NJL case the
divergent term is included and regulated by a cut–off while in the LSM case two
different approaches are used. In [I, II] the vacuum term was omitted in LSM and
in [III] a renormalized form was used. This will be discussed in more detail in Sections
3.4.1 and 3.4.2.
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3.3.3 Solving the thermodynamics

Once we have derived the grand potential for our models we can proceed to evaluate
the thermodynamics. This is achieved by first solving the equations of motion for the
three order parameters

∂Ω

∂M
= 0,

∂Ω

∂`
= 0,

∂Ω

∂`∗
= 0. (3.50)

We use M as the order parameter for chiral symmetry rather than 〈qq̄〉 or σ which
are typically used in the NJL ans LSM models. We feel that using the same physi-
cal quantity for this purpose in both models aids in comparing the results. Here it
should also be noted that ` and `∗ are treated as independent real variables in this
minimization process, although they by definition are complex. This approximation is
done to avoid the problems arising from minimizing a complex potential. In [38] the
minimization is done to the real part of Ω and ` and `∗ are replaced with temporal
gauge fields θ1 and θ2 that appear in the Polyakov gauge presentation for L [33]. It is
then found that treating ` and `∗ as independent real quantities without taking into
account the reality contraints for the gauge fields overestimates the difference between
` and `∗. This overestimation is however not of great importance in our work since we
are mainly interested in the qualitative behaviour of the models.

After solving the equations of motion (3.50) the pressure p(T, µ) is then simply

p(T, µ) = Ω(T, µ) (3.51)

with the potential evaluated at its minimum. Other thermodynamic quantities such
as entropy density s(T, µ), energy density ε(T, µ) and quark number density nq(T, µ)
can then be obtained from the pressure

s(T, µ) =
∂p

∂T
, ε(T, µ) = Ts(T, µ)− p(T, µ), nq(T, µ) =

∂p

∂µ
. (3.52)

The phase boundaries in the (T, µ)–plane can be studied through the order parameters
M , ` and `∗. The constituent quark mass M is the order parameter for the chiral
symmetry and the Polyakov loops ` and `∗ describe the deconfinement transition. In
Chapter 4 the methods used to determine the phase transition are discussed.

3.4 Model parameters

There are several parameters in both NJL and LSM chiral models as well as in the
Polyakov potential that have to be set before any numerical work can be done. Most
of the parameter sets we use are based on literature [31, 35] and used widely. In the
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following sections I will go through the various parameters that have to be set, the
values we have chosen for them. I will also discuss the extension of the models to
unphysical pion masses.

3.4.1 Setting the NJL model parameters

In NJL model Lagrangian (3.1) we had two parameters: the quark mass mq and the
four-fermion couplingG. Also, since the couplingG has dimension (mass)−2, the model
is non–renormalizable and to regulate the resulting divergent integrals, such as the
vacuum energy term in (3.49), we introduce an additional parameter Λ, which acts
as a momentum cut–off. The baseline for these parameters is set by choosing them so
that they reproduce the vacuum values of the pion decay constant and the pion mass.
In [II, III] we also studied the models away from the physical point i.e. the observed
QCD vacuum by varying the amount of explicit chiral symmetry breaking.

Parameters at the physical point

At the physical point we want to set the parameters mq, G and Λ so that the model
is consistent with the measured values for the pion mass and the pion decay constant.
Both quantities can be calculated also from the model. We use the mean field formulas
calculated in [61] using the ring approximation. The pion mass is then the smallest
non–zero solution to the equation

1−GNcNf

π2
P

∫ Λ

0

p2

E

(
1− m2

π

m2
π − 4E2

)
(1− nq − nq̄) dp = 0 (3.53)

and the pion decay constant can be obtained from the equation

fπ =
GπqMNcNf

4π2
P

∫ Λ

0

p2

E(E2 − 1
4
m2
π)

(1− nq − nq̄) dp, (3.54)

where the pion quark coupling is

G2
πq =

4π2

NcNf

[
P

∫ Λ

0

Ep2

(E2 − 1
4
m2
π)

(1− nq − nq̄) dp
]−1

. (3.55)

In the above equations P denotes a principal value integral. The quark and anti-quark
number densities are given by

nq =
1

1 + exp[(E − µ)/T ]
nq̄ =

1

1 + exp[(E + µ)/T ]
. (3.56)
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The parameters mq, G and Λ are set to values shown in Table 3.1. Using (3.53) and
(3.54) we see that these values correspond to mπ = 140 MeV and fπ = 94 MeV. Also
the sigma mass mσ can be calculated from the model [61] and is given by the smallest
non–zero solution to the equation

1−GNcNf

π2
P

∫ Λ

0

p2

E

(
1− m2

π − 4M2

m2
π − 4E2

)
(1− nq − nq̄) dp = 0. (3.57)

With our choice of parameters the sigma mass obtained from the model is mσ = 657
MeV.

Table 3.1: Nambu–Jona–Lasinio model parameters corresponding to the QCD vacuum. The exact
values are assigned by hand and the approximate values arise from the model.

mq Λ G
5.5 MeV 651 MeV 10.08 (GeV)−2

fπ mπ mσ

≈ 94 MeV ≈ 140 MeV ≈ 657 MeV

The model away from the physical point

In the NJL model the extension to larger explicit chiral symmetry breaking is in
principle simple since the bare quark mass mq, which is the origin of the broken chiral
symmetry, is a direct parameter of the model. However, it is not clear if the other
parameters of the model, G and Λ, should evolve when mq is changed. In Figure 3.1
the pion mass obtained from the NJL model is compared to a lattice fit is used to
parametrize the LSM model in Section 3.4.2. Although the two curves agree at low
mq the NJL overshoots the lattice result at higher mq. Thus, in order to get an better
agreement, we should tune the parameters G and Λ so that the NJL curve would
come down. In Figure 3.2 the G– and Λ–dependence of the pion mass is shown for
three different quark mass values with the dashed vertical line indicating our choice of
parameters. Because the vertical line is close to the minima of the pion mass curves,
the pion mass cannot be significantly lowered for a given mq by tuning either G or Λ.
This result leads us to conclude that the agreement of the NJL model with the lattice
data cannot be improved tuning G or Λ. Thus the values for G and Λ determined at
the physical point need not be changed when considering the model away from the
physical point.
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Figure 3.1: Pion mass mπ and pion decay constants fπ as functions of the bare quark mass mq in
the PLSM and PNJL models. The PLSM curves are based on a lattice parametrization discussed in
Section 3.4.2 while the PNJL curves can be obtained using Equations (3.53) and (3.54).
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Figure 3.2: The dependence of the pion mass on the parameters G and Λ in the PNJL model. The
pion mass is obtained from Equation (3.53).

3.4.2 Setting the LSM parameters

Parameters at the physical point

The LSM Lagrangian (3.6) has four adjustable parameters g, λ, v and H. As with the
NJL case we want to set the parameters so that the model is consistent with observed
values for the pion decay constant, pion mass and sigma mass. When one neglects the
vacuum energy contribution that appears in (3.49), as we have done in [I, II], these
quantities can be determined in the model by taking derivatives of the chiral potential
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(3.8) with respect to the pion and the sigma fields. The zeros of the derivatives

∂U

∂σ
= λ2(σ2 + π2 − v2)σ −H = 0

∂U

∂π
= λ2(σ2 + π2 − v2)π = 0

(3.58)

give the condition for the expectation values of the fields i.e. the minimum of the
potential. The latter condition is satisfied by 〈π〉 = 0 and the sigma expectation value
is identified with the pion decay constant 〈σ〉 = fπ. The pion and sigma masses are
then obtained by evaluating the second derivatives of the potential

∂2U

∂σ2
= λ2(3σ2 + π2 − v2)

∂2U

∂π2
= λ2(σ2 + 3π2 − v2)

(3.59)

at the minimum resulting in

m2
σ = λ2(3f 2

π − v2) and m2
π = λ2(f 2

π − v2). (3.60)

The parameters λ, v and H can now be solved from the above equations giving us

λ2 =
m2
σ −m2

π

2fπ
, v2 = f 2

π −
m2
π

λ2
and H = fπm

2
π. (3.61)

The physical values for the pion mass and decay constant as well as the sigma mass
can be now inserted. We use the values shown in Table 3.2. The fourth parameter in
the LSM case, g, is evaluated through the relation M = gfπ, where the constituent
mass M is approximately one third of the nucleon mass. The coupling g is then set
to g = 3.3, which corresponds to a nucleon mass ∼ 1 GeV.

In [III] we included in LSM also the vacuum term of the potential (3.49) in its renor-
malized form

Ωreg
q̄q = −6g4

8π2
σ4 ln

(gσ
Λ

)
(3.62)

which we obtained from [56]. Here Λ is a renormalization scale parameter and we
choose it to be equal with the cut–off in the NJL case i.e. we take Λ = 651 MeV.
Including the vacuum term also effects the derivatives of the potential and results in
new equations for the pion and sigma masses

m2
π = λ2(f 2

π − v2)− 6g4

8π2
f 2
π

[
4 ln

(
gfπ
Λ

)
+ 1

]
m2
σ = λ2(3f 2

π − v2)− 6g4

8π2
f 2
π

[
12 ln

(
gfπ
Λ

)
+ 7

]
.

(3.63)
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The parameter λ and v can then be written as

λ2 =
m2
σ −m2

π

2fπ
− 6g4

8π2

[
4 ln

(
gfπ
Λ

)
+ 3

]
v2 = f 2

π −
m2
π

λ2
− 1

λ2

6g4

8π2

[
4 ln

(
gfπ
Λ

)
+ 1

]
.

(3.64)

The equation for H or the way how we set g are not affected by the inclusion of
the vacuum term. Also, we use as input the same values for fπ, mπ and mσ as in
the case without the vacuum term, so the values of the physical observables are not
affected by the inclusion of the vacuum term. Actually, it turns out that the only
parameter changed by the inclusion of the vacuum term is v since with our choice of
renormalization scale, Λ = 651 MeV, the contribution from the vacuum term to λ in
(3.64) is negligible. This, however, holds only for the physical pion mass.

Table 3.2: Linear sigma model parameters corresponding to the QCD vacuum. The exact values
are assigned by hand and the approximate values arise from the model. All the parameters are the
same with and without the vacuum term included, except for v for which vvac and vnovac denote the
values with and without the vacuum term, respectively.

fπ mπ mσ g
93 MeV 138 MeV 600 MeV 3.3
vvac vnovac H λ
≈ 1.56 · 104 MeV2 ≈ 7.68 · 103 MeV2 ≈ 1.77 · 106 MeV3 ≈ 4.44

The model away from the physical point

In considering the linear sigma model away from the physical point a little more effort
is needed than in the NJL model case. In the LSM the chiral symmetry breaking is
characterized by the parameter H. As discussed in the previous section H is related
to the pion decay constant and the pion mass, which are not independent and are
also related to the sigma mass. In order to set the model parameters consistently for
different amounts of explicit chiral symmetry breaking we introduce a scheme to relate
the parameters to each other using results obtained from lattice calculations [27–29].
To get maximum comparability with the NJL model we choose the bare quark mass
as the tunable parameter that controls the amount of symmetry breaking, as it is in
the NJL model, and relate the pion mass to it. The rest of the parameters are then
given in terms of the pion mass.

In [27] the pion mass is related to the quark mass through the relation

m2
πa

2 = (A1(mqa)
1

1+δ +B(mqa)2), (3.65)
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which is based on quenched chiral perturbation theory [62]. In [27] the parameters
A1, B and δ are then fitted to lattice data. We adopt the values from [27] and they
are shown in Table 3.3. The leftover parameter a is the lattice spacing which in [27]
is obtained from the equation

√
2fπa = 0.06672 + 0.221820× (mqa) (3.66)

by evaluating it at mq = 0 MeV and fπ = 93 MeV 1. This gives a lattice spacing of
a = 0.505306 GeV−1. We, however, would want fπ = 93 MeV ⇔ mq = 5 MeV, which
would lead to a different lattice spacing and subsequently alter the parameters used
to fit (3.66). Since we do not want to alter the fit parameters, we shift the value of fπ
by a constant C = 1.18. From (3.66) we then get

mqa =

√
2(fπ + C)a− 0.06672

0.221820
. (3.67)

In combination with (3.65) this gives the pion mass mπ in relation with the pion decay
constant fπ. The pion mass and the pion decay constant are plotted in Figure 3.1 as
functions of the bare quark mass.

We connect the sigma mass mσ to the pion mass mπ through the relation

mσ = ξm2
π +D, (3.68)

where the slope ξ = 1.83 GeV−1 is obtained from [28]. The constant D is set so that
the vacuum value of the pion mass mπ = 138 MeV corresponds to the vacuum sigma
mass mσ = 600 MeV. This condition leads to D = 565.15 MeV.

The last parameter g in the linear sigma model was defined so that gfπ = MN/3,
where MN is the nucleon mass. At the physical point mπ = 138 MeV the nucleon
mass is ∼ 1 GeV, but altering the pion mass will also affect the nucleon mass. We
estimate the nucleon mass with a chiral perturbation theory formula

MN = M0 + 4C1m
2
π −

3g2
A

32πf 2
π

m3
π (3.69)

obtained from [29] and truncated to O(m3
π). In [II] we used a fit truncated to O(m2

π),
but found that this overestimated the coupling g to such extent that it would have
large effects on the phase diagram. Therefore in [III] we included the O(m3

π) –term in
(3.69) in order to get a better approximation. The parameters C1 and gA in (3.69) are
taken directly from the lattice fit made in [29] with only a small adjustment to C1,
which stays within the errors of the fit. The parameter M0 is then set so that (3.69)
in conjunction with gfπ = MN/3 is consistent with g = 3.3 in the vacuum. Values for
the parameters discussed above are listed in Table 3.3.

1The actual value stated in [27] is fπ = 132 MeV, but due to a different definition of fπ this
corresponds to the value

√
2fπ in our work.
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Table 3.3: The parameters used to relate mq with fπ, mπ, mσ and g in the linear sigma model.

a A1 δ B C
0.505306 (GeV)−1 0.82725 0.16413 1.88687 1.18 MeV
D ξ M0 C1 gA
565.15 MeV 1.83 (GeV)−1 868 MeV 0.9 (GeV)−1 1.267

3.4.3 Parameters for the Polyakov potential

In Section 3.2.3 we introduced the polynomial Polyakov potential (3.13). The param-
eters ai and bi can be fitted to reproduce pure gauge lattice data. We use the fit made
in [35] to lattice data from [26]. The parameter values used are shown in Table 3.4.
The pure gauge critical temperature T0 is set at 270 MeV. In [35] it was found that
in the two–flavor case a lower critical temperature T0 ≈ 190 MeV would be required
to fit lattice data in [63]. This is consistent with the perturbation theory estimates
presented in [42]. We, however, used the pure gauge critical temperature T0 = 270
MeV in our calculations [I, II, III] since fitting lattice calculations precisely was not a
main concern for us.

In addition to the parameters ai and bi of the potential, we need to set the parameters
that govern the µ–dependence of the Polyakov potential we use in [III]. As mentioned
in Section 3.2.3 the µ–dependence of the critical temperature, T0, is implemented
through the relation (3.15), which we have obtained from [42]. We also adopt the
values for Tτ and α0 determined also in [42] and shown in Table 3.4. For the coefficient
b in (3.15) we use the form

b(µ) =
11Nc

6π
− 16Nf

π

µ2

T 2
τ

, (3.70)

where we have dropped one of the terms proportional to Nf that appear in [42]. This
will result in T0(µ = 0) = 270 MeV whereas with the additional term the critical
temperature would be, for our two–flavor case, T0(µ = 0) = 208 MeV. We thus drop
this term to make comparison with the µ–independent case easier, since in that case
the constant critical temperature is T0 = 270 MeV.

Table 3.4: Polyakov potential coefficients
a0 a1 a2 a3 b3 b4 α0 Tτ
6.75 -1.95 2.625 -7.44 0.75 7.5 0.304 1.770 GeV
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4 Results

In this chapter I will go through the main results obtained in papers [I, II, III] upon
which this thesis is based. The main focus of our work in papers [I,II,III] is the phase
diagram of the PNJL and PLSM models in the (T, µ)–plane. Knowing that these
kind of effective models are sensitive to the parameters used, we were not particularly
interested in the absolute locations of the transition boundaries or critical points, nor
did we aim to make exact fits to lattice data. Instead we focused on the qualitative
and quantitative differences between the NJL and LSM cases with and without the
Polyakov extension and their sensitivity to the bare quark mass. Also the possibility
of recently advocated quarkyonic matter is studied along with a way of implementing
chemical potential dependence into the Polyakov potential.

4.1 Pressure and trace anomaly

In [I] we studied how the pressure and the trace of the energy momentum tensor
are affected by the inclusion of the Polyakov loop degrees of freedom into the LSM
and NJL chiral models. The results are shown in Figure 4.1 where also a QCD result
is plotted for comparison. The QCD curves in Figure 4.1 correspond to a pQCD
calculation [64, 65] which is then at low temperatures matched to a resonance gas
result from [66].

From Figure 4.1 it is evident that the inclusion of the Polyakov loop is necessary to
obtain the Stefan–Boltzmann limit of QCD pressure. This can be explained by the
degrees of freedom that are taken into account: In the pure LSM and NJL cases the
degrees of freedom are those of the quarks but the inclusion of the Polyakov loop
introduces also gluonic degrees of freedom to the models. The ideal gas pressure is

pSB =
π2T 4

45
(gg + gq) =

π2T 4

45

(
(N2

c − 1) +
7NcNf

4

)
. (4.1)

For Nc = 3 and Nf = 2 the ratio of quark and gluon contributions is gg/gq = 16/21 ≈
0.76 which means roughly an 80% increase in the pressure when the gluonic degrees of
freedom are included. This is what is observed between the models with and without
the Polyakov extension. The pressure of the Polyakov extended models above Tc is in
quite good agreement with the QCD result. Below Tc, PLSM and PNJL underestimate

33



34 Results

0 1 2 3 4 5
0

1

2

3

4

p /
 T4

T  /  T C

 L S M
 N J L
 P L S M
 P N J L
 p Q C D  +  r e s o n a n c e  g a s
 S - B  l i m i t  f o r  Q C D

0 1 2 3 4 5
0

1

2

3

4

5

(ε 
− 

3p)
 / T

4

T  /  T C

 L S M
 N J L
 P L S M
 P N J L
 p Q C D  +  r e s o n a n c e  g a s

Figure 4.1: Left panel: Pressure from the models with and without the Polyakov loop at µ = 0.
Also shown is the curve interpolating between the resonance gas and resummed perturbation theory
results [64] as well as the constant corresponding to the Stefan–Boltzmann limit of two-flavor QCD.
Right panel: Similar figure for the trace anomaly (ε− 3P )/T 4.

the pressure. This is, however, expected since the models do not contain the degrees
of freedom relevant in the hadron gas region.

As with the pressure, the trace anomaly is better described by the Polyakov extended
models than the purely chiral ones. In the LSM and NJL models there is a structure
qualitatively different from the QCD result near Tc. The difference disappears in the
PLSM and PNJL cases. Also the asymptotic behaviour of the trace anomaly is better
described by the Polyakov extended models.

For a comparison between the model and QCD results for effective degrees of freedom

geff ≡
ε(T )[
π2T 4

30

] , heff ≡
s(T )[
2π2T 3

45

] , ieff ≡
c(T )[
2π2T 3

15

] , (4.2)

see [I]. Also results for the “equation of state parameter” w(T ) = p(T )/ε(T ) and the
speed of sound cs(T ) =

√
∂ε/∂p can be found in [I] and will not be discussed here.

4.2 The phase diagram

4.2.1 The chiral transition and the critical point

The chiral transition can be accessed through the constituent quark mass M which
can be treated as the order parameter for chiral symmetry in our models. Ideally
an order parameter would have two discrete values, one in the symmetric phase and
another in the phase of broken symmetry. However, as discussed in Chapter 3, we
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have purposefully broken the chiral symmetry explicitly in the models we use since
the symmetry is also explicitly broken in QCD. This leads to constituent quark mass
behaviour such as shown in Figure 4.2, where M starts out large, but as tempera-
ture grows it drops rapidly at near a certain temperature and then asymptotically
approaches zero. The value of M indicates the amount of chiral symmetry breaking,
the smaller M is the closer the system is to chiral symmetry. If M would reach zero,
then chiral symmetry would be again an exact symmetry.

Although there is no exactly chirally symmetric phase we still want to define a phase
boundary between the chirally broken phase (M � 0) and the almost chirally sym-
metric phase (M ≈ 0). In the case portrayed on the right hand side of Figure 4.2 the
discontinuity inM is a natural choice for this phase boundary with a first order phase
transition. This choice can be then extended to the continuous case shown on the left
hand side of Figure 4.2 by defining the transition as the fastest point of change in or-
der parameter. This point can be easily determined from the temperature derivatives
of M , where it shows as a distinct peak. This is illustrated in Figure 4.3.
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Figure 4.2: Constituent mass and Polyakov loop behaviour as a function of temperature in the
PLSM model. Constituent mass normalized to unity at T = 0 MeV. Left : µ = 0 MeV. Right : µ = 250
MeV.

Effect of the Polyakov extension

In [I] we studied the differences between the two chiral models with (PNJL and PLSM)
and without (NJL and LSM) the Polyakov extension. The resulting (T, µ)– phase dia-
grams are shown in Figures 4.4, where the solid lines represent a first order transition
ending in the critical points denoted by the different symbols. The dotted part of
the curves is the crossover transition determined from the peak in the temperature
derivative.

One immediately sees that including the Polyakov degrees of freedom increases the
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Figure 4.3: Constituent mass and Polyakov loop temperature derivative behaviour as a function of
temperature in the PLSM model. Derivatives normalized to unity at maximum. Left : µ = 0 MeV.
Right : µ = 250 MeV.

area of the chirally broken phase i.e. making the transition temperature higher for a
given chemical potential. Also it brings the chiral transitions of the two models closer
when at zero chemical potential [I].

The critical points, however, move even further apart with the Polyakov extension
which could be due to several reasons. Maybe some important degrees of freedom,
such as the diquarks [38], are being missed or as recently suggested in [56, 57] the
vacuum terms in LSM should be regulated and included in the calculation. We did
the inclusion of the vacuum terms for the LSM case in [III] and it is discussed in Section
4.2.1. In any case both models exhibit a similar behaviour and contain a critical point
in the (T, µ)–plane. The critical point locations are summarized in Table 4.1.

Table 4.1: Critical temperatures at µ = 0, critical chemical potentials at T = 0 and critical point
locations for LSM, NJL, PLSM and PNJL models as observed in [I]. All values are in MeV.

LSM NJL
Tc(µ = 0) µc(T = 0) CP (T, µ) Tc(µ = 0) µc(T = 0) CP (T, µ)
147 305 ( 99,207) 178 345 ( 33,334)
PLSM PNJL
Tc(µ = 0) µc(T = 0) CP (T, µ) Tc(µ = 0) µc(T = 0) CP (T, µ)
212 345 (195,141) 230 345 ( 88,329)

Varying the bare quark mass

Effects of varying the bare quark mass mq were studied in [I, II, III]. The bare quark
mass is a direct input parameter of the PNJL model and the parameters of the linear
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Figure 4.4: Comparison of the chiral transition boundaries and critical points in LSM, NJL, PLSM
and PNJL. The dashed lines correspond to a crossover transition while the solid lines represent a
first order transition. The critical points are portrayed by the different symbols. Figure from [I].

sigma model could also be given in terms of it as described in Chapter 3. It is also
the parameter governing the amount of chiral symmetry breaking and thus varying it
could give us valuable information on the dynamics between the chiral and Polyakov
sectors. It turns out, however, that varying the bare quark mass has very little effect
on the deconfinement transition described by the Polyakov order parameters ` and
`∗. This will be discussed in more detail in Section 4.2.2. One the other hand, the
chiral transition, as one might expect, is affected greatly by the amount of explicit
symmetry breaking.

The chiral phase diagrams for several quark masses are shown in Figures 4.5, 4.6 and
4.7 for PLSM with and without the quark vacuum contribution and PNJL, respec-
tively. One immediately sees that the qualitative features between the models are
quite similar: An increase in the bare quark mass from its physical value expands the
area of the broken phase shifting the transition higher in T at µ = 0 and higher in
µ at T = 0. The opposite is true for a decrease in the quark mass. Also the quanti-
tative differences in transition temperature are below 15 % between the models for
the quark masses shown in Figure 4.5, indicating that the quark mass scaling works
well. Despite the overall similarity in shape and location of the phase boundaries, the
critical point seems to move quite differently in the different cases.

In PLSM, when the fermionic vacuum fluctuations are taken into account, the critical
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Figure 4.5: The chiral phase diagram of PLSM, with the fermion vacuum contribution included,
for several quark masses. The solid curves indicate a first order (discontinuous) transition with the
critical endpoints marked by squares. The locations of the critical points are summarized in Table
4.2.

point is present only for the two lowest quark masses studied and for higher quark
masses the transition is a crossover throughout the plane. The result for the physical
quark mass mq = 5 MeV is compatible with results obtained in [57] and [67], although
both references exhibit higher temperatures for the critical point. Also the value of
mq above which there is no critical point is similar to [50]. Without the fermionic
vacuum fluctuations, the critical point seems to exist only at a finite mq interval with
the transition being completely first order at low mq and a complete crossover at high
mq. A similar result has been obtained for a three flavor linear sigma model with a
different method of controlling the amount of chiral symmetry breaking in [47]. The
locations of the critical points with and without the vacuum term are given in Table
4.2.

In contrast to the PLSM case where the critical point was present only at a some
values of mq, the PNJL model critical point is observed for all studied quark masses.
Since the fermion vacuum energy is included in the PNJL model, the critical point
persists for the smallest quark masses as we would expect in light of the PLSM results.
However, in the high mq region the critical temperature at the critical point starts
to rise when going towards larger quark masses having a low point between quark
masses of 15 and 50 MeV. This is strikingly different behaviour than in the PLSM
case. A similar result was observed in [38], where a saturation of the critical point
temperature was mentioned and attributed to a diquark dominated phase. Our work
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Figure 4.6: The chiral phase diagram of PLSM, without the fermion vacuum contribution, for
several quark masses. The solid curves indicate a first order (discontinuous) transition with the
critical endpoints marked by squares. The locations of the critical points are summarized in Table
4.2.

does not include diquarks, so we conclude that this behaviour is a more generic feature
of the PNJL model. In [68] the Cornwall-Jackiw-Tomboulis effective potential in the
improved-ladder approximation was used in a two–flavor QCD calculation where the
minimum Tc(µ) appears at nearly the same values ofmq as in our analysis of the PNJL
model. However, the temperatures of the critical points vary clearly more in [68] than
in the PNJL model.

In either case multiple critical points as suggested for example in [69] or [50] were not
observed.

4.2.2 The deconfinement transition

The deconfinement properties of our models arise from the Polyakov loop variables `
and `∗ introduced in Chapter 3. The deconfinement transition can be determined from
these variables using different methods. As with the chiral transition, temperature (or
chemical potential) derivatives can be used, as we did in [I,II], or one could use chiral
susceptibilities. However, the use of derivatives gave rise to the double peak problem
in which the chiral transition induces a double peaked structure in the derivative
of the Polyakov order parameters making it difficult to consistently assign a critical
temperature in all cases [I, II]. The double peak structure is illustrated in Figure 4.3.
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Figure 4.7: The chiral phase diagram of PNJL for several quark masses. The solid curves indicate
a first order (discontinuous) transition with the critical endpoints marked by squares. The locations
of the critical points are summarized in Table 4.2.

For deconfinement transitions determined from the softer peaks, see [I]. The double
peak issue is not further discussed here. For details, see [I, II].

In [III] we adopted a method to determine the deconfinement from the absolute value
of the Polyakov loop variables. Since in PLSM and PNJL deconfinement is achieved
through numerical suppression of quark states with colour by ` and `∗, it is a natural
choice to associate the amount of confinement to the values of ` and `∗. Ideally the
values of the Polyakov loop variables would lie between 0 and 1, where 0 means total
confinement and 1 means total deconfinement. However, due to our choice of potential,
see Chapter 3, ` and `∗ range from 0 to ≈ 1.2 with the values over 1 actually giving an
enhacement of colored states over colorless ones. Anyway, the deconfinement transition
occurs between values from 0 to 1, so the values ` = 1/2 and `∗ = 1/2 are a good
choice to be the indicator of when the system turns from a mostly confined state to
a mostly deconfined state. Also in [III] the two transitions associated with ` and `∗

were replaced with their average in order to simplify the analysis and increase the
readability of figures.

Deconfinement without explicit µ–dependence

A Polyakov potential without an explicit µ–dependence was considered in [I, II, III].
As discussed above, in [I, II] the deconfinement transition was determined from the
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Table 4.2: Bare quark masses with corresponding pion masses and critical points for both models.
In the PLSM case there are separate entries for the critical point for the cases where the vacuum
term is either included or omitted. In the cases where there is no critical end point, the order of the
transition is given. All values are in MeV.

PLSM PNJL
mq mπ CP (T, µ) with vacuum term CP (T, µ) w/o vacuum term mq mπ CP (T, µ)
0.1 26 (118,297) Totally 1st order 0.1 19 (147, 270)
5 138 ( 8,325) (196, 135) 5.5 140 ( 88, 329)
15 222 Totally crossover (168, 235) 15 231 ( 59, 364)
50 377 Totally crossover (120, 353) 50 421 ( 58, 435)
100 518 Totally crossover ( 30, 455) 100 603 ( 92, 496)
150 629 Totally crossover Totally crossover 150 752 (120, 536)

derivatives of ` and `∗ and in [III] the absolute values of ` and `∗ were used. In Figure
4.8 are the phase diagrams with the deconfinement now determined from the absolute
value of the average of the Polyakov order parameters [III]. The differences between
the two methods are small and the qualitative behaviour is identical. However, with
the latter method we are able to consistently assign a transition temperature for
deconfinement even when it is close to the chiral transition.

At the physical point mq ≈ 5 MeV, portrayed in Figures 4.8, the deconfinement
transition lines for both PLSM and PNJL cases are located near T ≈ 230 MeV
at µ = 0 MeV and slowly curve downwards as µ increases. Since the pure gauge
potential, see Chapter 3, has a constant transition temperature of 270 MeV with no
µ–dependence, the coupling to the chiral models brings the deconfinement transition
temperature down closer to the chiral transition and induces a slight µ–dependence
on it. However, the two models exhibit almost identical deconfinement transition lines
despite difference in the chiral transitions, which indicates that the deconfinement
transition is insensitive to the amount of chiral symmetry breaking. This is confirmed
by increasing the bare quark mass to 50 MeV as shown in Figure 4.9. Although
the Tc of the chiral transition increases by ∼ 10 % at zero µ, the deconfinement
transitions are almost unaffected. So, if one has tuned the Polyakov potential (or the
chiral sector) in such a way as to obtain coincidence of the chiral and deconfinement
transitions in a certain chiral model and for a certain quark mass, the coincidence
will not hold for other quark masses or chiral models. In other words: the PLSM and
PNJL type models do not exhibit a mechanism that would automatically force the
chiral and deconfinement transitions to occur simultaneously at µ = 0. Since recent
lattice studies [19, 23] show that the two transitions do not happen at exactly the
same temperature at µ = 0, the lack of this feature in the PLSM and PNJL models
is not alarming. Also the weak µ–dependence in the deconfinement transition makes
it impossible to have coincidence of two transitions for µ beyond ∼ 100 MeV due to
the strong µ–dependence of the chiral transition. Whether or not in QCD the chiral
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and deconfinement transitions stay close to each other also at finite µ remains to
established, however, in the next section a method of achieving this in the effective
model framework is presented.
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Figure 4.8: The phase diagrams of the models at the physical point mq ≈ 5 MeV with no explicit
µ–dependence in the Polyakov potential. The solid line is the chiral transition and the dashed line
the deconfinement transition. The dotted lines correspond to quark number densities of 1 fm−3 and
2 fm−3. Left : PLSM with fermion vacuum contributions. Right : PNJL.
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Figure 4.9: The phase diagrams of the models at mq = 50 MeV with no explicit µ–dependence in
the Polyakov potential. The solid line is the chiral transition and the dashed line the deconfinement
transition. The dotted lines correspond to quark number densities of 1 fm−3 and 2 fm−3. Left : PLSM
with fermion vacuum contributions. Right : PNJL.

Including a explicit µ–dependence

A dependence on quark chemical potential can be included in the Polyakov potential.
In [III] we used a formulation adopted from [42] with slight modifications discussed in
[III] and in Chapter 3. The deconfinement transitions from the µ–dependent Polyakov
potential can be seen in Figures 4.10 and 4.11. Comparison with Figures 4.8 and 4.9
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reveals, as one would expect, that now the deconfinement transition temperature drops
much more rapidly with increasing µ and thus is in better agreement with the chiral
transition. However, as with the case without explicit chemical potential dependence
in the Polyakov potential, Figures 4.10 and 4.11 illustrate that the deconfinement
transition is independent from the amount of chiral symmetry breaking i.e. the bare
quark mass, even when explicit µ–dependence is included in the potential. Thus the
coincidence of the chiral and deconfinement transitions must be tuned into the models
by hand. With the µ–dependent Polyakov potential this coincidence can be achieved
for the whole lenght of the phase boundary, unlike in the case with no explicit µ–
dependence in the Polyakov potential. Lattice calculations at finite µ indicating that
the transition temperatures of chiral symmetry and deconfinement stay close to each
other would provide a incentive to use the µ–dependent potential also in PLSM and
PNJL type models.
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Figure 4.10: The phase diagrams of the models at the physical point mq ≈ 5 MeV with an explicit
µ–dependence in the Polyakov potential. The solid line is the chiral transition and the dashed line
the deconfinement transition. The dotted lines correspond to quark number densities of 1 fm−3 and
2 fm−3. Left : PLSM with fermion vacuum contributions. Right : PNJL.

4.2.3 Quarkyonic matter

Recently it has been suggested in [70] that a new kind of matter could exist in the
high µ low T region of the QCD phase diagram. This proposition is based on the ’t
Hooft large Nc limit of QCD. It is, however, unclear if Nc = 3 is large enough for the
features of the ’t Hooft limit to remain valid in QCD. Also a further complication
arises from the fact that for QCD the large Nc limit is not unique. We have discussed
these issues briefly in [III]. Also note a recent lattice study of possible quarkyonic
matter [71]. Here, in this thesis, the possibility of examining the phase diagram for
hints of quarkyonic matter withing effective model framework is discussed.

The authors of [70] suggest that the baryon density of the system could serve as an
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Figure 4.11: The phase diagrams of the models at mq = 50 MeV with an explicit µ–dependence in
the Polyakov potential. The solid line is the chiral transition and the dashed line the deconfinement
transition. The dotted lines correspond to quark number densities of 1 fm−3 and 2 fm−3. Left : PLSM
with fermion vacuum contributions. Right : PNJL.

indicator for quarkyonic matter. Particularly a non–vanishing baryon density in the
confined region of the phase diagram is suggested to be characteristic to the quarkyonic
phase. In the PLSM and PNJL models the closest thing we have to probe the baryon
density is quark number density nq. If we consider low temperature where the system
is confined i.e. `, `∗ ≈ 0, we get

nq =
∂Ω

∂µ
=

6

π2

∫ ∞
0

p2dp

[
1

1 + e3(E−µ)
− 1

1 + e3(E+µ)

]
, (4.3)

from which we can see that thermal excitations near T = 0 are three quark states
that are symmetric with respect to the Z(3) symmetry i.e. baryons.

In the case with no µ–dependence in the Polyakov potential there is a rise in the
value of the quark number density located near the chiral transition boundary when
crossing to the chirally symmetric side as seen in Figure 4.12. At T = 5 MeV the
magnitude of the rise is around 1 fm−3 with the relative increase being significant,
since the absolute value of nq is nearly zero in the chirally broken phase. Such a rise
in the value makes it possible to argue that the quark number density indeed jumps
from a (nearly) zero value to a non–zero one. As one goes to higher temperatures the
behaviour of nq becomes smoother and the transition to possible quarkyonic matter
resembles more of a crossover.

One can also try to characterize the quarkyonic transition by assigning a value for
nq above which the system is considered to be in a quarkyonic phase. The problem
here is that such a value is not unique. In Figures 4.8 and 4.9 two dotted lines are
shown corresponding to values 1fm−3 and 2 fm−3 of nq along with the deconfinement
and chiral transition curves. If one estimates a baryon as a sphere with diameter
∼ 1.5 fm [72] then one could expect it to have a quark number density ∼ 2 fm−3.
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As a result, one should then consider having reached a phase with non–zero baryon
density no later than when the average quark number density reaches ∼ 2 fm−3. This
combined with the fact that the deconfinement transition line curves down very slowly
and lies at high temperature, leaves significant room for quarkyonic matter to exist
as pictured in [70].

If one then considers the case where the Polyakov loop potential depends explicitly on
µ, the situation changes considerably. Figures 4.10 and 4.11 illustrate this. The most
important, and obvious, difference is in the behaviour of the deconfinement transition
line. It now follows the chiral transition line more closely, narrowing the window
for a possible quarkyonic phase considerably. If we also keep in mind that when we
implemented the µ–dependence to the Polyakov potential, we neglected effects from
quark masses and the number of quark flavors. These, if taken into account, would
lead to the deconfinement transition line being even lower than in Figures 4.10 and
4.11 and thus possibly closing the window for quarkyonic matter completely. The
quark number densities are somewhat affected by the inclusion of µ–dependence to
the Polyakov potential: The lines nq = 1 fm−3 and nq = 2 fm−3 are now generally closer
together. This means that the nq gradients have grown larger with the inclusion of the
Polyakov loop µ–dependence, particularly at higher T and near the chiral transition.
This can also be observed from Figure 4.12.

The conclusion about the possible existence of quarkyonic matter is then twofold: With
a µ–independent Polyakov potential the window for quarkyonic matter is considerable
while a µ–dependent potential leaves much less room for such matter to exist. Of
course these conclusions are highly model dependent and our implementation of the
µ–dependence is just one possibility to consider. Other approaches with similar results
can be found for example in [44,51,52].

4.3 Adiabats

The isentropic evolution of a thermodynamic system with an equation of state that of
the PLSM and PNJL models was studied in [I]. This study was motivated by claims
that the hydrodynamic evolution of the system could exhibit a focusing behaviour
that would take the system near the critical point from almost any initial condition.
These claims have been advocated for in e.g. [73] which is in turn motivated by [74].
Given the success of ideal hydrodynamics in describing RHIC data, it is likely that the
evolution of the plasma is isentropic. If this assumption is correct then the expansion
of the system would follow the adiabats plotted in Figures 4.13 and 4.14 for the PLSM
and PNJL models, respectively. However, the conclusion from these figures is that no
focusing occurs in these models. Also there is no special behaviour near the critical
points. A lattice calculation [75] shows similar results. Thus the conclusion is that the
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Figure 4.12: The quark number density nq as a function of quark chemical potential µ for three
temperatures T = 5 MeV T = 100 MeV and T = 150 MeV in the PNJL model. The solid lines
correspond to the case where the Polyakov potential has no µ–dependence, while the dashed lines
represent the case where the Polyakov potential depends explicitly on µ.

focusing behaviour observed in [74] is probably a feature of the particular equation of
state used and not of the hydrodynamic approach in general.
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Figure 4.13: Left Panel: Constant S/N curves in the PLSM model. Right Panel: A close–up on the
critical point at (Tc, µc) = (195, 141) MeV. Every second curve has been drawn with the dashed line
to enhance readability.
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Figure 4.14: Left Panel: Constant S/N curves in the PNJL model. Right Panel: A close–up on the
critical point at (Tc, µc) = (88, 329) MeV. Every second curve has been drawn with the dashed line
to enhance readability.
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5 Summary and outlook

In this thesis the thermodynamical properties of QCD were studied through two effec-
tive models, PLSM and PNJL. The models were constructed in a way that combined
chiral dynamics (LSM and NJL) with the pure gauge sector. It was then found that
such a combination describes, for example, the QCD pressure, obtained from pQCD
and lattice calculations, better than the chiral models alone.

In this kind of a framework it is also possible to study the chiral and deconfinement
transitions in a consistent setup and the results at zero chemical potential can be fitted
to reproduce lattice QCD results. Then, unlike on the lattice, the extension to finite
chemical potential is relatively easy. However, the results depend heavily on the model
details. The critical point, for example, is quite differently located in the three cases,
PLSM with and without fermion vacuum contributions and PNJL, studied in this
thesis. Beyond mean field studies of the models, by other authors, have also suggested
multiple critical points to be a possibility. Also the deconfinement transition can be
implemented with or without a dependence on quark chemical potential. These cause
a very different behaviour of the deconfinement transition in the (T, µ)–plane which,
in turn, plays a vital role in determining the possibility of the so called quarkyonic
phase in the QCD phase diagram. The window for quarkyonic matter was found to
be significantly reduced with a µ–dependent gauge potential. Of course the way in
which one includes the possible µ–dependence is also, along with the results, heavily
model dependent.

Since the models incorporate degrees of freedom from two opposite limits of QCD,
the chiral and pure gauge limits, the model dependence on the amount of explicit
chiral symmetry breaking was also studied in order to establish how are the dynamics
between the two sectors affected by this. This was done by controlling the bare quark
mass in the models. The perhaps rather unsurprising result was that the deconfinement
transition was not significantly altered when varying the bare quark mass. This is
because the gauge potential in the models does not explicitly include the quark mass
nor is the interaction connecting the two sectors able to mediate the effects to the pure
gauge sector. In the future this could be improved by the using a gauge potential that
depends explicitly on the quark mass. However, the chiral sector is, as expected, quite
sensitive to the quark mass and the chiral transition line as well as the location of the
critical point are affected. It was also found that the two different chiral approaches,
LSM and NJL, result in qualitatively different behaviour when considering the location
of the critical point as a function of quark mass. This is an interesting result since
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in LSM the extension to unphysical quark masses is done via a lattice formula used
to connect the physical observables, that serve as input to the model, in a consistent
way. In the NJL the physical observables arise from the model and the only tunable
input is the bare quark mass.

Overall the PLSM and PNJL type models seem to be flexible tools in exploring the
QCD phase diagram and a number of different scenarios can be covered within the
model framework. Unfortunately there is currently only a scarce amount of lattice
data and practically no experimental information on which to judge the feasibility
of these different scenarios. Some predictions, like the location of the critical point,
are quite sensitive to model parameters and more information from lattice QCD or
experiments is required to distinguish good parameter choices from bad ones. Also
the coincidence of the chiral and deconfinement transitions is put by hand into these
models and, if QCD indeed has a deeper connection between these transitions, a more
robust mechanism of achieving this coincidence should be found.

Despite the success of the standard model we know that it is incomplete and there
are many open questions to be answered, for example the origin of particle masses is
still unresolved. In addition to describing QCD, the PLSM and PNJL type models
could be used to describe physics beyond the standard model. Particularly technicolor
scenarios, which greatly resemble QCD, could be studied with these models. The
recent beginning of LHC experiments will hopefully shed light to many questions
involving beyond standard model physics and in the spotlight are such theories as
supersymmetry, technicolor and even string theory. But the LHC is expected to answer
questions still open within the realm of the standard model, since now almost a
hundred years after the discovery of the atomic nucleus and over 40 years after the
birth of QCD there is still much to learn also about the strong interaction and the LHC
heavy ion program and the ALICE (A Large Ion Collider Experiment) are designed
with this in mind. However, the LHC will not tackle these questions alone: RHIC has
been running for a decade with great success and will hopefully run for years to come
providing valuable data on the properties of strongly interacting matter. Also by the
end of the second decade of the millennium the CBM experiment will be running at
the FAIR facility increasing our ability to probe the different phases of QCD. All in
all the forthcoming decades will be an age of discovery beyond the standard model,
but also within it.
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