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ABSTRACT

Kuznetsov, Nikolay V.
Stability and Oscillations of Dynamical Systems: Theory and Applications
Jyväskylä: University of Jyväskylä, 2008, 116 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 96)
ISBN 978-951-39-3798-0 (PDF), 978-951-39-3428-6 (nid.)
Finnish summary
Diss.

The present work is devoted to questions of qualitative theory of discrete and
continuous dynamical systems and its applications.

In the first Chapter, following the works of A.M. Lyapunov, O. Perron, and
N.G. Chetaev, the problem of justifying the method of investigation of stability
and instability by the first approximation of discrete and continuous dynamical
systems is considered. A classical problem of stability by the first approximation
of time-varying motions is completely proved in the general case. The Perron ef-
fects of sign reversal of characteristic exponent in solutions of the original system
and the first approximation system with the same initial data are considered.

In the second Chapter, in the case when there exist two purely imaginary
eigenvalues of the system of the first approximation, the qualitative behavior of
two-dimensional autonomous systems is considered. Here, by the classical works
of A. Poincare and A.M. Lyapunov, the method for the calculation of Lyapunov
quantities, which define a qualitative behavior (winding or unwinding) of trajec-
tories in the plane, is used. A new method for computing Lyapunov quantities,
developed for the Euclidian coordinates and in the time domain and not requir-
ing a transformation to normal form, is obtained and applied. The advantages
of this method are due to its ideological simplicity and visualization power. The
general formulas of the third Lyapunov quantity expressed in terms of the coeffi-
cients of the original system are obtained with the help of modern software tools
of symbolic computation.

The content of the third Chapter is the application of qualitative theory to
differential equations for the study of mathematical models of phase synchro-
nization such as the systems of connected pendulums in the Huygens problem
and the control systems by frequency of phase-locked loops.

Keywords: Lyapunov stability, instability, time-varying linearization, first approx-
imation, Lyapunov exponents, Perron effects, Lyapunov quantity, fo-
cus value, limit cycles, symbolic computation, phase-locked loop, syn-
chronization
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INTRODUCTION AND STRUCTURE OF THE STUDY

The present work is devoted to questions of qualitative theory of discrete and
continuous dynamical systems and its applications.

In the first Chapter, following the works of A.M. Lyapunov, O. Perron, and
N.G. Chetaev, the problem of justifying the method of investigation of stability
and instability by the first approximation of discrete and continuous dynamical
systems is considered. A classical problem of stability by the first approximation
of time-varying motions is completely proved in the general case. The material of
this Chapter is based on the survey "Time-Varying Linearization and the Perron
effects", written jointly with G.A. Leonov for International Journal of Bifurcation
and Chaos in 2007. The original results of the author, represented in the paper,
were reported at different international conferences [Kuznetsov & Leonov, 20053;
Kuznetsov & Leonov, 20054] and published in the works [Kuznetsov & Leonov,
20051; Kuznetsov & Leonov, 20052; Kuznetsov et al., 20061]. In these works the
solutions of problems, posed by the second supervisor, are obtained by the au-
thor. The first Chapter contains the following author’s results: criteria of stability
by the first approximation for regular and nonregular linearizations for discrete
systems, two examples of discrete systems with the Perron effect of sign reversal
of characteristic exponent of solutions of the original system and the first approx-
imation system with the same initial data, criteria of stability and instability of
solutions cascade (the case of uniform stability with respect to initial data), crite-
ria of instability by Krasovsky for discrete and continuous systems, and criteria
of instability by Lyapunov for discrete systems.

The problems, discussed in the first Chapter, are of importance for the de-
velopment of the theory itself as well as for applications. The latter is connected
to the fact that, at present, many specialists in chaotic dynamics believe that the
positiveness of the largest characteristic exponent of linear system of the first ap-
proximation implies the instability of solutions of the original system. Moreover,
there are a great number of computer experiments, in which various numerical
methods for calculating characteristic exponents and Lyapunov exponents of lin-
ear system of the first approximation are applied. As a rule, the authors ignore
the justification of the linearization procedure and use the numerical values of
exponents so obtained to construct various numerical characteristics of attractors
of the original nonlinear systems.

In the second Chapter, in the case when there exist two purely imaginary
eigenvalues of the system of the first approximation, the qualitative behavior of
two-dimensional autonomous systems is considered. Here, by the classical works
of A. Poincare and A.M. Lyapunov, the method for the calculation of Lyapunov
quantities, which define a qualitative behavior (winding or unwinding) of trajec-
tories in the plane, is used. A new method for computing Lyapunov quantities,
developed for the Euclidian coordinates and in the time domain and not requir-
ing a transformation to normal form, is obtained and applied. The advantages
of this method are due to its ideological simplicity and visualization power. The
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general formulas of the third Lyapunov quantity expressed in terms of the coeffi-
cients of the original system are obtained with the help of modern software tools
of symbolic computation (MatLab and Maple). The material of the second Chap-
ter is based on the works [Kuznetsov & Leonov, 2007; Kuznetsov et al., 20082;
Leonov et al., 2008; Kuznetsov & Leonov, 20081; Kuznetsov & Leonov, 20082],
in which the formulation of problem is due to the supervisors and a computa-
tional procedure, symbolic expressions of Lyapunov quantities, and the proof of
correctness of the suggested method are due to the author.

The content of the third Chapter is the application of qualitative theory to
differential equations for the study of mathematical models of phase synchro-
nization such as the systems of connected pendulums in the Huygens problem
and the control systems by frequency of phase-locked loops.

In 1669 Christian Huygens discovered that two pendulum clocks attached
to a common support beam converged (regardless of the initial conditions), after

FIGURE 1 Drawing by Christian Huygens of two pendulum clocks attached to a beam
which is supported by chairs

some transient, to an oscillatory regime with identical frequency of oscillations,
while two pendulum angles moved in anti-phase.

The experiments carried out by the group of Professor H. Nijmeijer include
a similar setup with two metronomes on a common support, and they demon-
strate, along with anti-phase oscillations, an in-phase synchronization, where
metronomes’ pendulums agree not only in frequency but also in angles [Oud
et. al., 2006]. In Section 3.1 a mathematical model of system, consisting of two
metronomes resting on a light wooden board that sits on two empty soda cans,
is considered. The problem of analytical consideration of in-phase synchroniza-
tion was also studied. This work was completed by the author together with
Prof. Nijmeijer, Prof. Leonov, and Dr. A. Pogromsky within the framework of a
Russian-Dutch research project [Kuznetsov et al., 20071].

In Section 3.2 the analysis of phase-looked loops operation is carried out.
A phase-locked loop (PLL) had been invented in the 1930s-1940s [De Belles-

cize, 1932; Wendt, Fredentall, 1943] and nowadays is frequently encountered in
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FIGURE 2 Experimental setup in Eindhoven Technical University

radio engineering and communication. One of the first applications of the phase-
locked loop is related to the problems of data transfer by means of radio signal.
In radio engineering the PLL is applied to a carrier synchronization, carrier re-
covery, demodulation, and frequency division and multiplication.

In the last ten years, PLLs have widely been used in array processors and
other devices of digital information processing. The main requirement to PLLs
for array processors is that they must be floating in phase. This means that the
system must eliminate completely a clock skew. The elimination of clock skew
is one of the most important problems in parallel computing and information
processing (as well as in the design of array processors [Kung, 1988]). Several ap-
proaches to solving the problem of eliminating the clock skew have been devised
for the last thirty years. When developed the design of multiprocessor systems,
it was suggested [Kung, 1988] joining the processors in the form of an H-tree in
which the lengths of the paths from the clock to every processor are the same.
However, in this case the clock skew is not eliminated completely because of the

FIGURE 3 H-tree
heterogeneity of wires [Kung, 1988]. Moreover, for a great number of proces-
sors, the configuration of communication wires is very complicated. This leads
to various difficult technological problems.

The increase in the number of processors in multiprocessor systems required
an increase in the power of the clock. But the powerful clock came to produce sig-
nificant electromagnetic noise. About ten years ago, a new approach to eliminat-
ing the clock skew and reducing generator’s power was put forward. It consists
of introducing a special distributed system of clocks controlled by PLL. This ap-
proach enables us to reduce significantly the power of clocks.

Also, in the present work the classical ideas by Viterbi [Viterbi, 1966] are
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FIGURE 4 Distributed system of clocks controlled by PLLs

extended and generalized for the design of PLL with pulse modulation. Using
rigorous mathematical analysis, new methods for the design of different block
diagrams of PLL are proposed. All results presented below were reported at dif-
ferent international conferences [Kuznetsov et al., 20062; Kuznetsov et al., 20072;
Kuznetsov et al., 20081].



1 STABILITY BY THE FIRST APPROXIMATION1

1.1 Introduction

In 1892, the general problem of stability by the first approximation was consid-
ered by Lyapunov [Lyapunov, 1892]. He proved that if the system of the first
approximation is regular and all its characteristic exponents are negative, then
the solution of the original system is asymptotically Lyapunov stable. In 1930, it
was stated by O. Perron [Perron, 1930] that the requirement of regularity of the
first approximation is substantial . He constructed an example of the second-
order system of the first approximation, which has negative characteristic ex-
ponents along a zero solution of the original system but, at the same time, this
zero solution of original system is Lyapunov unstable. Furthermore, in a certain
neighborhood of this zero solution almost all solutions of original system have
positive characteristic exponents. The effect of a sign reversal of characteristic
exponents of solutions of the original system and the system of first approxima-
tion with the same initial data was subsequently called the Perron effect [Leonov,
1998; 20021;20022;2003;2004;2008]. The counterexample of Perron impressed on
the contemporaries and gave an idea of the difficulties arising in the justification
of the first approximation theory for nonautonomous and nonperiodic lineariza-
tions. Later, Persidskii [1947], Massera [1957], Malkin [1966], and Chetaev [1955],
obtained sufficient conditions of stability by the first approximation for nonregu-
lar linearizations generalizing the Lyapunov theorem.

At the same time, according to Malkin ([1966], pp. 369–370): ([translated
from Russian into English)

"... The counterexample of Perron shows that the negativeness of characteristic
exponents is not a sufficient condition of stability by the first approximation. In the
general case necessary and sufficient conditions of stability by the first approximation are
not obtained."

1 This chapter is mostly based on the survey Leonov G.A., Kuznetsov N.V. "Time-Varying Lin-
earization and the Perron effects", Int. J. of Bifurcation and Chaos, Vol. 17, No. 4, 2007, pp. 1079–
1107. Reprinted with kind permission of World Scientific Publishing Co.
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For certain situations, the results on stability by the first approximation can
be found in the books [Bellman & Cooke, 1963, Davies & James, 1966, Willems, 1970,
Coppel, 1965, Wasow, 1965, Bellman, 1953, Bacciotti & Rosier, 2005, Yoshizawa, 1966,
Lakshmikantham et al., 1989, Hartman, 1984, Halanay, 1966, Sansone & Conti 1964].

In the 1940s Chetaev [1948] published the criterion of instability by the first
approximation for regular linearizations. However, in the proof of these criteria
a flaw was discovered [Leonov, 2008, Leonov, 2004] and, at present, the complete
proof of Chetaev theorems is given for a more weak condition in comparison
with that for instability by Lyapunov, namely, for instability by Krasovsky only
[Leonov, 20021].

The discovery of strange attractors was made obvious with the study of
instability by the first approximation.

Nowadays the problem of the justification of the nonstationary lineariza-
tions for complicated nonperiodic motions on strange attractors bears a striking
resemblance to the situation that occurred 120 years ago. The founders of the au-
tomatic control theory D.K. Maxwell [1868], and A.I. Vyschegradskii [1877] coura-
geously used a linearization in a neighborhood of stationary motions, leaving the
justification of such linearization to A. Poincare [1886] and A.M. Lyapunov [1892].
At present, many specialists in chaotic dynamics believe that the positiveness of
the largest characteristic exponent of a linear system of the first approximation
implies the instability of solutions of the original system (see, for example [Schus-
ter, 1984, Moon, 1987, Neimark & Landa, 1992, Heagy & Hammel, 1994,
Wu et al., 1994, Ryabov, 2002]

Moreover, there is a number of computer experiments, in which the various
numerical methods for calculating the characteristic exponents and the Lyapunov
exponents of linear systems of the first approximation are used [Luca & Vleck, 2002,
Luca et al., 1997, Goldhirsch et al., 1987].

As a rule, authors ignore the justification of the linearization procedure and
use the numerical values of exponents so obtained to construct various numer-
ical characteristics of attractors of the original nonlinear systems (Lyapunov di-
mensions, metric entropies, and so on). Sometimes, computer experiments serve
as arguments for the partial justification of the linearization procedure. For ex-
ample, some computer experiments [Russel et al., 1980, Neimark & Landa, 1992]
show the coincidence of the Lyapunov and Hausdorff dimensions of the attrac-
tors of Henon, Kaplan–Yorke and Zaslavskii. But for B-attractors of Henon and
Lorenz, such a coincidence does not hold [Leonov, 20012, Leonov, 20022].

So, the approach based on linearizations along the trajectories on the strange
attractors require justification. This motivates to the development of the nonsta-
tionary theory of instability by the first approximation.

This chapter shows the contemporary state of the art of the problem of the
justification of nonstationary linearizations. Here for the discrete and continuous
systems the results of stability by the first approximation for regular and nonreg-
ular linearizations are given, the Perron effects are considered, the criteria of the
stability and instability of the flow and cascade of solutions and the criteria of
instability by Lyapunov and Krasovsky are obtained.
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1.2 Classical Definitions of Stability

Consider a continuous system

dx
dt

= F(x, t), x ∈ R
n, t ∈ R , (1)

where the vector-function F(·, ·) : R n × R → R n is continuous.
Along with system (1) we consider its discrete analog [LaSalle, 1980,

Bromberg, 1986, Leonov, 2001]

x(t + 1) = F
(

x(t), t
)
, x ∈ R

n, t ∈ Z , (1′)

where F(·, ·) : R n × Z → R n.
For Eq. (1) there are many theorems of existence and uniqueness [Cesari, 1959,

Filippov, 1988, Hartman, 1984]. For (1′) it is readily shown that in all cases the tra-
jectory is defined for all t = 0, 1, 2, . . ..

We consider the solution x(t) of system (1) or (1′), given on the interval
a < t < +∞.

Definition 1 The solution x(t) is said to be Lyapunov stable if for any ε > 0 and t0 > a
there exists a number δ = δ(ε, t0) such that

1) all solutions y(t), satisfying the condition

|y(t0) − x(t0)| < δ,

are defined in the interval t0 ≤ t < +∞;
2) for these solutions the inequality

|x(t) − y(t)| < ε, ∀t ≥ t0

is valid.
If δ(ε, t0) is independent of t0, then the Lyapunov stability is called uniform.

Definition 2 The solution x(t) is said to be asymptotically Lyapunov stable if it is Lya-
punov stable and for any t0 > a there exists a positive number Δ = Δ(t0) such that
all solutions y(t), defined in the interval t0 ≤ t < +∞ and satisfying the condition
|y(t0)− x(t0)| < Δ, have the following property:

lim
t→+∞

|y(t) − x(t)| = 0.

In other words, for any ε′ > 0 there exists a positive number T = T(ε′, y(t0), t0) such
that the inequality

|x(t) − y(t)| < ε′, ∀t ≥ t0 + T

is valid.
If x(t) is uniformly stable and Δ(t0) and T(ε′, y(t0), t0) is independent of t0, then

the Lyapunov asymptotic stability is called uniform.
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Definition 3 The solution x(t) is said to be exponentially stable if for any t0 > a there
exist positive numbers δ = δ(t0), R = R(t0), and α = α(t0) such that

1) all solutions y(t), satisfying the condition

|y(t0) − x(t0)| < δ,

are defined in the interval t0 ≤ t < +∞;
2) the inequality

|y(t) − x(t)| ≤ R exp
(− α (t − t0)

)|y(t0)− x(t0)|, ∀t ≥ t0

is satisfied. If δ, R, and α are independent of t0, then the exponential stability is called
uniform.

Assuming α = 0, we obtain the definition of stability by Krasovsky [Leonov, 20021].

Definition 4 The solution x(t) is said to be Krasovsky stable if for any t0 > a there exist
positive numbers δ = δ(t0) and R = R(t0) such that

1) all solutions y(t), satisfying the condition

|y(t0) − x(t0)| < δ,

are defined in the interval t0 ≤ t < +∞;
2) the following inequality

|x(t) − y(t)| ≤ R|y(t0)− x(t0)|, ∀t ≥ t0

is valid. If δ and R are independent of t0, then stability by Krasovsky is called uniform.

Hence, it follows that the stability of solution by Krasovsky yields its stability by
Lyapunov. Relations with uniform stability can be found in [Willems, 1970].

If for any interval (t1, t2) ⊂ (a, +∞) the solutions, given on it, are continu-
able on the whole interval (a, +∞), then the following assertion is valid
[Demidovich, 1967].

Suppose that the solution x = x(t), given on the interval a < t < +∞, is stable
for the fixed moment t0 ∈ (a, +∞). Then it is stable for any moment t′0 ∈ (a, +∞).
Therefore, we can restrict ourselves by checking of the stability of solution for the certain
given initial moment t0 only.

Further the initial moment t0 is assumed to be fixed.

Without loss of generality, we consider solutions with t0 = 0. Denote by
x(t, x0) a solution of either system (1) or system (1′) with the initial data:

x(0, x0) = x0,

and suppose that all solutions x(t, x0) of continuous system are defined on the
interval [0, +∞) and the solutions of discrete system are defined on the set N 0 =
0, 1, 2... .
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Consider the function V(t, x) (V(·, ·) : [0, +∞) × R n → R 1) differentiable
in a certain neighborhood of the point x = 0. Introduce the following notation.
Let

V(t, x)• =
∂

∂t
V(t, x) + ∑

i

∂V
∂xi

Fi(t, x).

The function V(t, x)• is often called a derivative of the function V(t, x) along the solu-
tions of system (1). Here xi is the ith component of the vector x and Fi is the ith
component of the vector-function F.

For the discrete system, consider the function V(t, x) (V(·, ·) : N 0 × R n →
R

1), and let
�V
(
t, x
)

= V
(
t + 1, x(t + 1)

)− V
(
t, x(t)

)
,

where x(t) is a solution of system (1′).

1.2.1 Reduction of the problem to the study of zero solution

The first procedure in studying the stability (or instability) of the solution
x(t, x0) of systems (1) and (1′) is, as a rule, the following transformation

x = y + x(t, x0).

Using this change of variable for continuous system (1) and discrete system (1′),
we have, respectively, the equations

dy
dt

= F
(
y + x(t, x0), t

)− F
(

x(t, x0), t
)

(2)

y(t + 1) = F
(
y(t) + x(t, x0), t

)− F
(

x(t, x0), t
)

(2′),

which are often called equations of perturbed motion. It is evident that the prob-
lem of the stability of the solution x(t, x0) is reduced to the problem of the stability
of the trivial solution y(t) ≡ 0.

In this case we assume that the right-hand sides of (2) and (2′) are known
since F(x, t) and the solution x(t, x0) are known. At present, the difficulties of the
calculation of x(t, x0) can often be overcome with the help of numerical methods
and computational experiments.
 
1.3 Characteristic Exponents, Regular Systems, Lyapunov Exponents

Consider systems (2) and (2′) with a marked linear part. In the continuous case
we have

dx
dt

= A(t)x + f (t, x), x ∈ R
n, t ∈ [0, +∞), (3)

where A(t) is a continuous (n × n)-matrix, f (·, ·) : [0, +∞) × R n → R n is a
continuous vector-function. Suppose,

sup
t∈[0,+∞)

|A(t)| < +∞
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in the continuous case.
In the discrete case, we have

x(t + 1) = A(t)x(t) + f
(
t, x(t)

)
, x(t) ∈ R

n, t ∈ N 0, (3′)

where A(t) is an (n× n)-matrix, f (·, ·) : N 0 × R n → R n. In this case, we assume
that

det A(t) 
= 0, sup
t∈N 0

|A(t)| < +∞, sup
t∈N 0

|A(t)−1| < +∞.

Here | · | is the Euclidean norm.
Suppose, in a certain neighborhood Ω(0) of the point x = 0 the nonlinear

parts of systems (3) and (3′) satisfy the following condition

| f (t, x)| ≤ κ|x|ν ∀t ≥ 0, ∀x ∈ Ω(0), κ > 0, ν > 1. (4)

We shall say that the first approximation system for (3) is the following linear sys-
tem

dx
dt

= A(t)x (5)

and that for discrete system (3′) is the linear system

x(t + 1) = A(t)x(t). (5′)

Consider a fundamental matrix X(t) =
(

x1(t), ..., xn(t)
)
, consisting of the

linear-independent solutions {xi(t)}n
1 of the first approximation system. For the

determinant of the fundamental matrix we have the Ostrogradsky–Liouville for-
mula, which in the continuous case is as follows

det X(t) = det X(0) exp
(∫ t

0
Tr A(τ)dτ

)
, (6)

and in the discrete one takes the form

det X(t) = det X(0)
t−1

∏
j=0

det A(j). (6′)

The fundamental matrices are often considered to satisfy the following con-
dition

X(0) = In,

where In is a unit (n × n)-matrix.
These definitions and results are valid for continuous system as well as for

the discrete one. The proofs will be given, if necessary, for each situation sepa-
rately.

Consider the vector-function f (t) such that lim
t→+∞

sup | f (t)| 
= 0.
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Definition 5 The value (or the symbol +∞, or − ∞), defined by formula

X [ f (t)] = lim
t→+∞

sup
1
t

ln | f (t)|,

is called a characteristic exponent of the vector-function f (t).

The characteristic exponent is equal to that taken with inverse sign characteristic
number, introduced by Lyapunov [1892].

Definition 6 The characteristic exponent of the vector-function f (t) is said to be exact
if the finite limit

X [ f (t)] = lim
t→+∞

1
t

ln | f (t)|
exists.

Consider the characteristic exponents of solutions of linear system (5) or (5′).

Definition 7 [Demidovich, 1967] A set of distinctive characteristic exponents of all so-
lutions (except a zero solution), being different from ±∞, of linear system is called its
spectrum.

Note that the number of different characteristic exponents is bounded by the di-
mension of the considered space of system states.

1.3.1 Regular systems

Consider the normal fundamental systems of solutions introduced by Lya-
punov [1892].
Definition 8 A fundamental matrix is said to be normal if the sum of characteristic
exponents of its columns is minimal in comparison with other fundamental matrices.

For discrete [Demidovich, 1969, Gayschun, 2001] and continuous systems
[Demidovich, 1967] the following result is well known.

Lemma 1

1) In all normal fundamental systems of solutions, the number of solutions with
equal characteristic exponents is the same.

2) Each normal fundamental system realizes a spectrum of linear system.

Thus, we can introduce the following definition.

Definition 9 [Demidovich, 1967] The set of characteristic exponents

λ1, ..., λn

of a certain normal fundamental system of solutions is called a complete spectrum and

the number σ =
n
∑
1

λi is a sum of characteristic exponents of linear system.
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Note that any fundamental system of solutions has a solution with the largest
characteristic exponent max

1≤j≤n
λj.

Consider a class of regular systems, introduced by Lyapunov.

Definition 10 A linear system is said to be regular if for the sum of its characteristic
exponents σ the following relation holds

σ = lim
t→+∞

inf
1
t

ln |det X(t)|.

Taking into account formula (6), in the continuous case we obtain a classical def-
inition [Demidovich, 1967, Adrianova, 1998] of the regularity of system

σ = lim
t→+∞

inf
1
t

t∫
0

Tr A(τ) dτ.

Similarly, formula (6′) gives a definition of regularity [Demidovich, 1969] in the
discrete case

σ = lim
t→+∞

inf
1
t

ln
t−1

∏
j=0

|det A(j)|.

Definition 11 The number

Γ = σ − lim
t→+∞

inf
1
t

ln |det X(t)|

is called an irregularity coefficient of linear system.

As was shown in [Demidovich, 1967], the systems with constant and periodic
coefficients are regular.

For continuous [Demidovich, 1967] and discrete systems [Demidovich, 1969,
Gayschun, 2001] the following is well known

Lemma 2 (Lyapunov inequality)
Let all characteristic exponents of solutions of linear system be < +∞ ( or all

characteristic exponents be > −∞.)
Then, for any fundamental system of solutions X(t) the following inequality

lim
t→+∞

sup
1
t

ln |det X(t)| ≤ σX, (7)

where σX is a sum of characteristic exponents of the system of solutions X(t), is satisfied.

Thus, for regular systems there exists the limit

lim
t→+∞

1
t

ln |det X(t)|.

Note that from the condition of regularity of linear system it follows
[Demidovich, 1967] that for its solutions x(t) 
= 0 there exist the limits

lim
t→+∞

1
t

ln |x(t)|.
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Note 1 As was shown in [Bylov et al., 1966], the opposite, generally speaking, is not
valid. We give an example of nonregular system, all characteristic exponents of which are
exact [Bylov et al., 1966].

Consider system (5) with the matrix

A(t) =

⎛⎝ 0 1

0 (cos ln t − sin ln t − 1)

⎞⎠ , t ≥ 1 (8)

and its fundamental matrix X(t)

X(t) =
(

x1(t), x2(t)
)

=

⎛⎜⎝ 1
t∫

1
eγ(τ) dτ

0 eγ(t)

⎞⎟⎠ ,

where γ(t) = t(cos ln t − 1). In this case for the determinant of fundamental
matrix the following relation

lim
t→+∞

inf
1
t

ln |det X(t)| = −2 (9)

is satisfied. We now find characteristic exponents of solutions. For x1(t) we have

lim
t→+∞

sup
1
t

ln |x1(t)| = lim
t→+∞

inf
1
t

ln |x1(t)| = 0. (10)

Since eγ(t) ≤ 1 for t ≥ 1, we conclude that the characteristic exponent x2(t) is less
than or equal to zero

lim
t→+∞

sup
1
t

ln |x2(t)| ≤ 0.

On the other hand, since the integral of eγ(τ) is divergent, namely

+∞∫
1

eγ(τ) dτ = +∞, (11)

for x2(t) we have the following estimate

lim
t→+∞

inf
1
t

ln |x2(t)| ≥ 0.

This implies that

lim
t→+∞

sup
1
t

ln |x2(t)| = lim
t→+∞

inf
1
t

ln |x2(t)| = 0. (12)

Thus, by (9), (10), and (12) the linear system with matrix (8) has exact char-
acteristic exponents but it is nonregular:

Γ = 2.
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We prove that the integral of eγ(τ) is divergent.
Suppose, tu(k) = e2kπ+δ(k) and tl(k) = e2kπ−δ(k), where δ(k) = e−kπ, k =

1, 2... . From the definition of tl(k) and tu(k) we obtain

tu(k) − tl(k) ≥ e2kπ−δ(k)(e2δ(k) − 1) ≥ e2kπ−δ(k)2δ(k) ≥ 2ekπ−1. (13)

In the case τ ∈ [tl(k), tu(k)
]

for γ(τ) the estimate

−γ(τ) ≤ τ
(
1 − cos(δ(k))

) ≤ tu(k)
δ2(k)

2
≤ 1

2
e2kπ+δ(k)e−2πk ≤ eδ(k)

2
≤ e

2
(14)

is valid. Then we have

tu(k)∫
1

eγ(τ)dτ ≥ (tu(k) − tl(k)
)

e−e/2 ≥ 2ekπ−1−e/2 → +∞

as k → +∞.

1.3.2 Boundedness conditions for characteristic exponents

Consider the boundedness conditions for characteristic exponents of linear
systems (5) and (5′).

We shall show that the boundedness of the norm of matrix |A(t)| of linear
continuous system (5) implies that the characteristic exponents are finite. This re-
sult follows from the inequality of Vazhevsky [Demidovich, 1967] for continuous
system. We shall formulate it in the required form.

Theorem 1 For solutions of system (5) the inequalities

|x(τ)| exp
t∫

τ
α(s) ds ≤ |x(t)| ≤ |x(τ)| exp

t∫
τ

β(s) ds, ∀t ≥ τ,

|x(τ)| exp
t∫

τ
β(s) ds ≤ |x(t)| ≤ |x(τ)| exp

t∫
τ

α(s) ds, ∀t ≤ τ

are satisfied.
Here α(t) and β(t) are the smallest and largest eigenvalues, respectively, of the

matrix
1
2
[A(t) + A(t)∗ ].

Proof.
Since the inequalities

α(t)|x|2 ≤ 1
2

x∗[A(t) + A(t)∗]x ≤ β(t)|x|2, ∀x ∈ R
n

and the relation
d
dt

(|x(t)|2) = x(t)∗[A(t) + A(t)∗]x(t),
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are satisfied, we have the following estimate

2α(t) ≤ (|x(t)|2)•
|x(t)|2 ≤ 2β(t).

Integrating these inequalities from τ to t, for t ≥ τ we obtain the first estimate in
the theorem and for t ≤ τ the second one.

Corollary 1 If the norm of the matrix A(t) of linear continuous system is bounded on
R 1, then there exists a number ν such that for any t and τ the estimate

|X(t)X(τ)−1 | ≤ exp
(
ν|t − τ|) (15)

is valid.

Estimate (15) results from Theorem 1 and from the following obvious relation

X(t)X(τ)−1 x(τ) = x(t).

Actually, we can choose ν in such a way that the following inequalities

|X(t)X(τ)−1 | = max
y 
=0

|X(t)X(τ)−1y|
|y| ≤

≤ max
(

exp
t∫

τ

β(s) ds, exp
t∫

τ

α(s) ds
)

≤ exp
(
ν|t − τ|)

are satisfied.
Consider now the discrete case.

Lemma 3 [Demidovich, 1969] If the conditions

1. sup
t∈N 0

|A(t)| < +∞,

2. sup
t∈N 0

|A(t)−1| < +∞

are satisfied, then each nontrivial solution of system (5′) has a finite characteristic expo-
nent.

Proof of lemma. Consider together with system (5′) its conjugate system

z(t + 1) = A(t)−1∗z(t), z(t) ∈ R
n, t = 0, 1, ... ,

and its fundamental matrix

Z(t) =
t

∏
j=1

A(t − j)−1∗ = A(t − 1)−1∗A(t − 2)−1∗... A(0)−1∗.

Here A∗ is Hermitian conjugate matrix.
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For any solution x(t) of system (5′) we have the following estimate

|x(t)| ≤ |x(0)| ∣∣ t

∏
j=1

A(t − j)
∣∣.

Then by condition 1 of lemma, for all nonzero solutions of system (5′) we
obtain

X [x(t)] < +∞. (16)

In this case, Lyapunov inequality (7) implies that

lim
t→+∞

sup
1
t

ln
∣∣det X(t)

∣∣ < +∞.

We have a similar inequality also for the conjugate system

lim
t→+∞

sup
1
t

ln
∣∣( det X(t)

)−1∣∣ = lim
t→+∞

sup
1
t

ln
∣∣det Z(t)

∣∣ < +∞.

Then

lim
t→+∞

inf
1
t

ln |det X(t)| > −∞.

By the Lyapunov inequality, we have

σX ≥ lim
t→+∞

sup
1
t

ln
∣∣ det X(t)

∣∣ ≥ lim
t→+∞

inf
1
t

ln
∣∣ det X(t)

∣∣ > −∞,

where σX is a sum of characteristic exponents of solutions of the fundamental
system X(t). By (16) we have

−∞ < X [x(t)] < +∞.

Further extension of this result can be found in [Kuznetsov & Leonov, 20052]:

Preposition 1 If for the matrix of linear system (5′) the following inequalities

1. lim
t→+∞

sup
1
t

ln
∣∣ t

∏
j=1

A(t − j)
∣∣ < +∞;

2. lim
t→+∞

sup
1
t

ln
∣∣ t

∏
j=1

A(t − j)−1∣∣ < +∞,

are satisfied, then each nontrivial solution of system (5′) has a finite characteristic expo-
nent.
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1.3.3 Lyapunov exponents and singular values

Consider singular values of the matrix X(t) [Hahn, 1967, Katok & Hasselblat, 1995,
Boichenko et al., 2005].
Definition 12 The singular values {αj

(
X(t)

)}n
1 of the matrix X(t) are the square roots

of the eigenvalues of the matrix X(t)∗X(t).

The following geometric interpretation of singular values is known: the numbers
αj
(
X(t)

)
coincide with a principal semiaxis of the ellipsoid X(t)B, where B is a

ball of unit radius.

Definition 13 [Temam, 1988] The Lyapunov exponent μj is as follows

μj = lim
t→+∞

sup
1
t

ln αj
(
X(t)

)
. (17)

In the case (17) the term "upper singular exponent" is also used [Barabanov, 2005].
Let μ1 and λ1 be the largest Lyapunov exponent and the largest characteris-

tic exponent, respectively.

Lemma 4 For the linear systems the largest characteristic exponent is equal to the largest
Lyapunov exponent.

Proof. Recall that a geometric interpretation of singular values implies the rela-
tion |X(t)| = α1

(
X(t)

)
. Here |X| is a norm of the matrix X, defined by formula

|X| = max
|x|=1

|Xx|, x ∈ R
n.

Then the relation
lim

t→+∞
sup

1
t

ln |X(t)| = λ1

yields the relation λ1 = μ1.

Note 2 We will show that there exist systems such that the characteristic exponents do
not coincide with the Lyapunov exponents

We give an example [Leonov, 2008] of such system in the continuous case. Con-
sider system (5) with the matrix

A(t) =

⎛⎝ 0 sin(ln t) + cos(ln t)

sin(ln t) + cos(ln t) 0

⎞⎠ t > 1

and with the fundamental normal matrix

X(t) =

⎛⎝ eγ(t) e−γ(t)

eγ(t) −e−γ(t)

⎞⎠ ,
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where γ(t) = t sin(ln t). It is obvious that λ1 = λ2 = 1 and

α1(X(t)) =
√

2 max(eγ(t), e−γ(t))

α2(X(t)) =
√

2 min(eγ(t), e−γ(t)).

This implies the following relations μ1 = 1, μ2 = 0. Thus, we have λ2 
= μ2.
Now we present a criterion of regularity for linear system in terms of Lya-

punov exponents.

Lemma 5 [Barabanov, 2005] A linear system is regular if and only if

lim
t→+∞

inf
1
t

ln αj
(
X(t)

)
= lim

t→+∞
sup

1
t

ln αj
(

X(t)
)

, j = 1, .., n. (18)

1.3.4 Estimates of a norm of Cauchy matrix

Consider a normal fundamental matrix X(t) of linear system, and let

Λ = max
j

λj, λ = min
j

λj.

Here {λj}n
1 is a complete spectrum of linear system.

We shall say that X(t)X(τ)−1 is a Cauchy matrix.
The following result is well known and is often used.

Theorem 2 [Leonov, 2008] For any number ε > 0 there exists a number C > 0 such
that the following inequalities

|X(t)X(τ)−1 | ≤ C exp
(
(Λ + ε)(t − τ) + (Γ + ε)τ

)
,

∀ t ≥ τ ≥ 0
(19)

|X(t)X(τ)−1 | ≤ C exp
(
λ(t − τ) + (Γ + ε)τ

)
,

∀ τ ≥ t ≥ 0
, (20)

where Γ is the irregularity coefficient, are satisfied.

Proof. Let

X(t) =
(

x1(t), . . . , xn(t)
)
, x̃j(t) = xj(t) exp

(
(−λj − ε)t

)
X(t)−1 =

⎛⎜⎝ u1(t)∗
...
un(t)∗

⎞⎟⎠ , ũj(t) = uj(t) exp
(
(λj + ε)t

)
,

Σ =
n
∑
1

λj.

From the definition of λj and by the rule of matrix inversion we obtain that for a
certain number L > 0 the inequality∣∣(x̃1(t), . . . , x̃n(t)

)−1 det
(

x̃1(t), . . . , x̃n(t)
)∣∣ ≤ L, ∀ t ≥ 0 (21)
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is satisfied. A sufficiently large number L1 exists such that relation (21) yields the
estimate ∣∣(x̃1(t), . . . , x̃n(t)

)−1∣∣ ≤ L exp
(
(Σ + nε)t − ln

∣∣det X(t)
∣∣) ≤

≤ L1 exp
(
(2nε + Γ)t

)
, ∀t ≥ 0.

(22)

We have the following obvious relations:

|X(t)X(τ)−1 | = |∑
j

xj(t)uj(τ)∗| =

=
∣∣∑

j
x̃j(t) exp

(
(λj + ε)t − (λj + ε)τ

)
ũj(τ)∗

∣∣.
Taking into account that for t ≥ 0 the vector-function x̃j(t) is bounded, for suffi-
ciently large number L2 we obtain the following estimate∣∣X(t)X(τ)−1 ∣∣ ≤ L2 ∑

j
exp

(
(λj + ε)(t − τ)

)|ũj(τ)|. (23)

Since ⎛⎜⎝ ũ1(t)∗
...
ũn(t)∗

⎞⎟⎠ =
(

x̃1(t), . . . , x̃n(t)
)−1,

by (22) and (23) we obtain the estimates (19) and (20).

1.3.5 The Nemytskii — Vinograd counterexample

Consider a continuous system [Bylov et al., 1966]

dx
dt

= A(t)x

with the matrix

A(t) =

(
1 − 4(cos 2t)2 2 + 2 sin 4t
−2 + 2 sin 4t 1 − 4(sin 2t)2

)
.

In this case, its solution is the vector-function

x(t) =

(
et sin 2t
et cos 2t

)
. (24)

It follows that
det(A(t) − pIn) = p2 + 2p + 1.

Therefore for the eigenvalues ν1(t) and ν2(t) of the matrix A(t) we have

ν1(t) = ν2(t) = −1.

On the other hand, the characteristic exponent λ of solution (24) is equal to 1.
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This counterexample shows that all eigenvalues of the matrix A(t) can have
negative real parts even if the corresponding linear system has positive charac-
teristic exponents.

It also shows that the formulas, obtained in the book [Anishchenko et al., 2002],
namely

λj = lim sup
t→+∞

1
t

t∫
0

Reνj(τ) dτ

are untrue.

1.4 The Perron Effects

In 1930, O. Perron [Perron, 1930] showed that the negativeness of the largest
characteristic exponent of the first approximation system does not always result
in the stability of zero solution of the original system. Furthermore, in an arbi-
trary small neighborhood of zero, the solutions of the original system with posi-
tive characteristic exponent can be found. These results of Perron impressed on
the specialists in the theory of stability of motion.

The effect of sign reversal of characteristic exponent of the solutions of the
first approximation system and of the original system with the same initial data
we shall call [Leonov, 1998, Leonov, 2004] the Perron effect.

We now present the outstanding result of Perron [1930] and its discrete ana-
log [Kuznetsov & Leonov, 2001, Gayschun, 2001].

Consider the following system

dx1

dt
= −ax1

dx2

dt
=
(

sin(ln(t + 1)) + cos(ln(t + 1)) − 2a
)

x2 + x2
1

(25)

and its discrete analog

x1(t + 1) = exp(−a)x1(t)

x2(t + 1) =
exp

(
(t + 2) sin ln(t + 2)− 2a(t + 1)

)
exp
(
(t + 1) sin ln(t + 1)− 2at

) x2(t) + x1(t)2.
(25′)

Here a is a number satisfying the following inequalities

1 < 2a < 1 +
1
2

exp(−π). (26)

The solution of the first approximation system for systems (25) and (25′) takes the
form

x1(t) = exp(−at)x1(0)

x2(t) = exp
(
(t + 1) sin(ln(t + 1)) − 2at

)
x2(0).
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It is obvious that by condition (26) for the solution of the first approximation
system for x1(0) 
= 0, x2(0) 
= 0 we have

X [x1(t)] = −a, X [x2(t)] = 1 − 2a < 0.

This implies that a zero solution of linear system of the first approximation is
Lyapunov stable.

Now we consider the solution of system (25)

x1(t) = exp(−at)x1(0),

x2(t) = exp
(
(t + 1) sin(ln(t + 1)) − 2at

)×
×
⎛⎝x2(0) + x1(0)2

t∫
0

exp
(− (τ + 1) sin(ln(τ + 1))

)
dτ

⎞⎠ .
(27)

Assuming t = tk = exp
((

2k +
1
2
)
π

)
− 1, where k is an integer, we obtain

exp
(
(t + 1) sin(ln(t + 1)) − 2at

)
= exp

(
(1 − 2a)t + 1

)
, (1 + t)e−π − 1 > 0,

t∫
0

exp
(− (τ + 1) sin(ln(τ + 1))

)
dτ >

>

g(k)∫
f (k)

exp
(− (τ + 1) sin(ln(τ + 1))

)
dτ >

>

g(k)∫
f (k)

exp
(

1
2
(τ + 1)

)
dτ >

g(k)∫
f (k)

exp
(

1
2
(τ + 1) exp(−π)

)
dτ =

= exp
(

1
2
(t + 1) exp(−π)

)
(t + 1)

(
exp

(− 2π

3
)− exp(−π)

)
,

where
f (k) = (1 + t) exp(−π) − 1,

g(k) = (1 + t) exp
(
−2π

3

)
− 1.

Hence we have the following estimate

exp
(
(t + 1) sin(ln(t + 1)) − 2at

) t∫
0

exp
(− (τ + 1) sin(ln(τ + 1))

)
dτ >

> exp
(

1
2
(2 + exp(−π)

)(
exp

(− 2π

3
)− exp(−π)

)
(t + 1)×

× exp
((

1 − 2a +
1
2

exp(−π)
)

t
)

.
(28)
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From the last inequality and condition (26) it follows that for x1(0) 
= 0 one of the
characteristic exponents of solutions of system (25) is positive:

X [x1(t)] = −a, X [x2(t)] ≥ 1 − 2a + e−π/2 > 0. (29)

Thus, we obtain that all characteristic exponents of the first approximation
system are negative but almost all solutions of the original system (25) tend ex-
ponentially to infinity as tk → +∞.

Consider now the solution of discrete system (25′)

x1(t) = x1(0)e−at

x2(t) = exp
(
(t + 1) sin ln(t + 1)− 2at

)×
×
(

x2(0) + x1(0)2
t−1
∑

k=0
exp

(− (k + 2) sin ln(k + 2) + 2a
))

,
(30)

and show that for this system inequalities (29) are also satisfied. For this purpose
we obtain the estimate similar to estimate (28) in the discrete case.

Obviously, for any N > 0 and δ > 0 there exists a natural number (t′ =
t′(N, δ), t′ > N) such that

sin ln(t′ + 1) > 1 − δ.

Then

exp
(
(t′ + 1) sin ln(t′ + 1)− 2at′

) ≥ exp
(
(1 − δ − 2a)t′ + 1 − δ

)
. (31)

Now we estimate from below the second multiplier in the expression for
x2(t). For sufficiently large t′ there exists a natural number m

m ∈
(

t′ + 1
eπ

− 2, t′
)

such that
sin ln(m + 2) ≤ −1

2
.

Then we have

−(m + 2) sin ln(m + 2) + 2a ≥ t′ + 1
2eπ

.

This implies the following estimate

t′−1

∑
k=0

exp
(− (k + 2) sin ln(k + 2) + 2a

) ≥ exp
(

(t′ + 1)
1
2

e−π

)
. (32)

From (31), (32) and condition (26) it follows that for x1(0) 
= 0 one of charac-
teristic exponents of solutions (30) of system (25′) is positive and inequalities (29)
are satisfied.

We give an example, which show the possibility of the sign reversal of char-
acteristic exponents “on the contrary", namely the solution of the first approx-
imation system has a positive characteristic exponent while the solution of the
original system with the same initial data has a negative exponent [Leonov, 2003].
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Consider the following continuous system [Leonov, 2004]

ẋ1 = −ax1

ẋ2 = −2ax2

ẋ3 =
(

sin(ln(t + 1)) + cos(ln(t + 1)) − 2a
)

x3 + x2 − x2
1

(33)

and its discrete analog

x1(t + 1) = e−ax1(t)
x2(t + 1) = e−2ax2(t)

x3(t + 1) =
exp

(
(t + 2) sin ln(t + 2)− 2a(t + 1)

)
exp
(
(t + 1) sin ln(t + 1)− 2at

) x3(t) + x2(t) − x1(t)2

(33′)

on the invariant manifold

M = {x3 ∈ R
1, x2 = x2

1}.

Here the value a satisfies condition (26).
The solutions of (33) and (33′) on the manifold M take the form

x1(t) = exp
(− at

)
x1(0)

x2(t) = exp
(− 2at

)
x2(0)

x3(t) = exp
(
(t + 1) sin(ln(t + 1)) − 2at

)
x3(0),

x1(0)2 = x2(0).

(34)

Obviously, these solutions have negative characteristic exponents.
For system (33) in the neighborhood of its zero solution, consider the system

of the first approximation

ẋ1 = −ax1

ẋ2 = −2ax2

ẋ3 =
(

sin(ln(t + 1)) + cos(ln(t + 1)) − 2a
)

x3 + x2.

(35)

The solutions of this system are the following

x1(t) = exp
(− at

)
x1(0)

x2(t) = exp
(− 2at

)
x2(0)

x3(t) = exp
(
(t + 1) sin(ln(t + 1)) − 2at

)×
×
(

x3(0) + x2(0)

t∫
0

exp
(− (τ + 1) sin(ln(τ + 1))

)
dτ

)
.

(36)

For system (33′) in the neighborhood of its zero solution, the system of the first
approximation is as follows

x1(t + 1) = exp(−a)x1(t)
x2(t + 1) = exp(−2a)x2(t)

x3(t + 1) =
exp

(
(t + 2) sin ln(t + 2)− 2a(t + 1)

)
exp

(
(t + 1) sin ln(t + 1)− 2at

) x3(t) + x2(t).
(35′)
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Then the solutions of system (35′) take the form

x1(t) = exp
(− at

)
x1(0)

x2(t) = exp
(− 2at

)
x2(0)

x3(t) = exp
(
(t + 1) sin ln(t + 1)− 2at

)×
×
(

x3(0) + x2(0)2
t−1
∑

k=0
exp
(− (k + 2) sin ln(k + 2) + 2a

))
.

(36′)

By estimates (28) and (32) for solutions (36) and (36′) for x2(0) 
= 0 we obtain

X [x3(t)] > 0.

It is easily shown that for solutions of systems (33) and (35) the following
relations (

x1(t)2 − x2(t)
)•

= −2a
(

x1(t)2 − x2(t)
)

are valid. Similarly, for system (35′) we have

x1(t + 1)2 − x2(t + 1) = exp(−2a)
(

x1(t)2 − x2(t)
)

.

Then
x1(t)2 − x2(t) = exp

(− 2at
)(

x1(0)2 − x2(0)
)
.

It follows that the manifold M is an invariant exponentially attractive manifold
for solutions of continuous systems (33) and (35), and for solutions of discrete
systems (33′) and (35′).

This means that the relation x1(0)2 = x2(0) yields the relation x1(t)2 = x2(t)
for all t ∈ R

1 and for any initial data we have∣∣x1(t)2 − x2(t)
∣∣ ≤ exp

(− 2at
)∣∣x1(0)2 − x2(0)

∣∣.
Thus, systems (33) and (35) have the same invariant exponentially attractive

manifold M on which almost all solutions of the first approximation system (35)
have a positive characteristic exponent and all solutions of the original system
(33) have negative characteristic exponents. The same result can be obtained for
discrete systems (33′) and (35′).

The Perron effect occurs here on the whole manifold

{x3 ∈ R
1, x2 = x2

1 
= 0}.

To construct the exponentially stable system, the first approximation of which
has a positive characteristic exponent we represent system (33) in the following
way

ẋ1 = F(x1, x2)

ẋ2 = G(x1, x2)

ẋ3 =
(

sin ln(t + 1) + cos ln(t + 1)− 2a
)

x3 + x2 − x2
1.

(37)
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Here the functions F(x1, x2) and G(x1, x2) have the form

F(x1, x2) = ±2x2 − ax1, G(x1, x2) = ∓x1 − ϕ(x1, x2),

in which case the upper sign is taken for x1 > 0, x2 > x2
1 and for x1 < 0, x2 < x2

1,
the lower one for x1 > 0, x2 < x2

1 and for x1 < 0, x2 > x2
1.

The function ϕ(x1, x2) is defined as

ϕ(x1, x2) =

{
4ax2 for |x2| > 2x2

1

2ax2 for |x2| < 2x2
1.

The solutions of system (37) are regarded in the sense of A.F. Filippov [Filippov, 1988,
Yakubovich et al., 2004]. By definition of ϕ(x1, x2) the following system

ẋ1 = F(x1, x2)
ẋ2 = G(x1, x2)

(38)

on the lines of discontinuity {x1 = 0} and {x2 = x2
1} has sliding solutions, which

are given by the equations

x1(t) ≡ 0, ẋ2(t) = −4ax2(t)

and
ẋ1(t) = −ax1(t), ẋ2(t) = −2ax2(t), x2(t) ≡ x1(t)2.

In this case the solutions of system (38) with the initial data x1(0) 
= 0, x2(0) ∈ R 1

attain the curve {x2 = x2
1} in a finite time, which is less than or equal to 2π.

This implies that for the solutions of system (37) with the initial data x1(0) 
=
0, x2(0) ∈ R 1, x3(0) ∈ R 1, for t ≥ 2π we obtain the relations F(x1(t), x2(t)) =
−ax1(t), G(x1(t), x2(t)) = −2ax2(t). Therefore, based on these solutions for t ≥
2π system (35) is a system of the first approximation for system (37).

System (35), as was shown above, has a positive characteristic exponent. At
the same time, all solutions of system (37) tend exponentially to zero.

The considered technique permits us to construct the different classes of
nonlinear continuous and discrete systems for which the Perron effects occur.

1.5 The Lyapunov Matrix Equation

In the continuous case the Lyapunov matrix equation has the form

Ḣ(t) + P(t)∗H(t) + H(t)P(t) = −G(t) (39)

with respect to the symmetric differentiable matrix H(t) and in the discrete case it takes
the form

P(t)∗H(t + 1)P(t) − H(t) = −G(t) (39′)

with respect to the symmetric matrix H(t). Here P(t) and G(t) are the bounded
(n × n)-matrices

(
and, in addition, the continuous ones in (39)

)
G∗(t) = G(t),

∀t ≥ 0.
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Denote by X(t) the fundamental matrices of the continuous system

dx
dt

= P(t)x

and of the discrete system

x(t + 1) = P(t)x(t).

Let for certain constants α > 0, C > 0, γ ≥ 0 the following estimate

|X(s)X(t)−1 | ≤ C exp
(− α(s − t) + γt

)
, ∀s ≥ t ≥ 0 (40)

be valid. Then the solution of Eq. (39) is the matrix

H(t) =

+∞∫
t

(
X(s)X(t)−1)∗G(s)

(
X(s)X(t)−1) ds (41)

and the solution of Eq. (39′) is the matrix

H(t) =
∞

∑
s=t

(
X(s)X(t)−1)∗G(s)

(
X(s)X(t)−1). (41′)

This statement can be verified directly by means of substituting H(t) in the orig-
inal equation. The estimate of the type (40) is due to Theorem 2.

The convergence of relation for H(t) results from estimate (40). In addition,
from (40) it follows that there exists a number R such that

|H(t)| ≤ R exp
(
2γt
)
, ∀ t ≥ 0. (42)

Along with estimate (42) an important role is played by the lower estimate
of the quadratic form z∗H(t)z, which can be found by using in the continuous
and discrete cases the following

Theorem 3 [Leonov, 2008] Suppose, estimate (40) is valid and the estimate

z∗G(t)z ≥ δ|z|2, ∀t ≥ 0, ∀z ∈ R
n (43)

holds for a certain positive number δ > 0.
Then there exists a number ε > 0 such that the inequality

z∗H(t)z ≥ ε|z|2, ∀ t ≥ 0, ∀z ∈ R
n (44)

is satisfied.

Proof. Consider the continuous case. Condition (43) gives the following esti-
mates

z∗H(t)z ≥ δ

+∞∫
t

∣∣X(s)X(t)−1z
∣∣2ds ≥

≥ δ

+∞∫
t

|z|2∣∣(X(s)X(t)−1)−1
∣∣2 ds = δ|z|2

+∞∫
t

1∣∣X(t)X(s)−1
∣∣2 ds.
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Then from the corollary of Theorem 1 we obtain

z∗H(t)z ≥ δ|z|2
+∞∫
t

exp
(
2ν(t − s)

)
ds = ε|z|2,

where
ε = δ(2ν)−1.

In the continuous case, the theorem is proved.
Now we prove this theorem in the discrete case. Let

yt(s) = X(s)X(t)−1z.

By condition (43) we have yt(s)∗G(s)yt(s) ≥ 0 for all s ≥ 0. Then

z∗H(t)z =
∞

∑
s=t

yt(s)∗G(s)yt(s) = z∗G(t)z +
∞

∑
s=t+1

yt(s)∗G(s)yt(s) ≥ δ|z|2.

Note that for γ = 0 the norm of the matrix H(t) is bounded.
Consider now the first-order equation

dy
dt

= q(t)y, y ∈ R , (45)

where q(t) is a continuous and uniformly bounded function. We assume that
system (45) has the solution y(t) with the positive lower characteristic exponent
ρ:

lim
t→+∞

inf
1
t

ln |y(t)| = ρ > 0. (46)

Since system (45) can be represented as

dx
dt

= −q(t)x, x(t) = y(t)−1,

from Theorem 2 we obtain that for any α ∈ (0, ρ) and for a certain γ ≥ 0, estimate
(40) is satisfied. Then for P(t) = −q(t) we have the solution H(t) of the Lyapunov
equation with properties (42) and (44).

Assuming then m(t) = H(t)−1 and G(t) ≡ 1, we obtain the following

Corollary 2 If ρ > 0, then there exists a continuously differentiable bounded for t ≥ 0
positive function m(t) such that

ṁ(t) + 2q(t)m(t) = m(t)2, ∀ t ≥ 0.

In the discrete case we similarly have
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Corollary 3 Let the scalar equation

y(t + 1) = q(t)y(t) (45′)

have the positive lower characteristic exponent ρ :

ρ = lim
t→+∞

inf
1
t

ln
∣∣ t−1

∏
j=0

q(j)
∣∣ > 0. (46′)

Then there exists a positive bounded for t ≥ 0 function m(t) such that

q(t)m(t + 1)q(t) − m(t) = q(t)2m(t + 1)m(t) > 0, ∀ t = 0, 1, 2... .

Proof. Represent Eq. (45′) as

x(t + 1) = p(t)x(t), x(t) = y(t)−1, p(t) = q(t)−1.

Then from (46′) we obtain

X [x(t)] = lim
t→+∞

sup
1
t

ln
∣∣ t−1

∏
j=0

p(t)
∣∣ = − lim

t→+∞
inf

1
t

ln
∣∣ t−1

∏
j=0

q(j)
∣∣ = −ρ < 0.

Note that for any α ∈ (0, ρ) and for a certain γ ≥ 0, estimates (40) are satisfied,
namely

|x(t)x(τ)−1| ≤ Ce−α(t−τ)+γτ, t ≥ τ,

where α = ρ − ε, γ = Γ + ε (see Theorem 2). Then for p(t) = q(t)−1 there exists
the solution of the Lyapunov equation h(t) with properties (42), (44):

|h(t)| ≤ Re2γt, z∗h(t)z ≥ ε|z|2.

Put m(t) = h(t)−1 and G(t) ≡ 1. Then from (39′) we obtain assertion of the
Corollary.

By corollaries of Theorem 3, for the first-order equation we can easily prove
[Leonov, 2008] the following

Preposition 2 For the first-order equation with bounded coefficients the positiveness of
lower characteristic exponent of the first approximation system results in the exponential
instability of zero solution of the original system.

1.6 Stability criteria by the first approximation

1.6.1 The lemmas of Bellman — Gronwall, Bihari and their discrete analogs

For the proof of theorems on stability by the first approximation, the lemmas
of Bellman — Gronwall, Bihari [Demidovich, 1967] and their discrete analogs
[Demidovich, 1969, Kuznetsov & Leonov, 20052] are often used.
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Lemma 6 (Bellman — Gronwall) If for the non-negative continuous functions u(t) and
v(t) for t ≥ 0 and for a number C > 0 the following inequality

u(t) ≤ C +

t∫
0

v(τ)u(τ) dτ, ∀t ≥ 0 (47)

holds, then the estimate

u(t) ≤ C exp

⎛⎝ t∫
0

v(τ) dτ

⎞⎠ , ∀t ≥ 0 (48)

is valid.

Lemma 7 (Bihari) If for the non-negative continuous functions u(t) and v(t) for t ≥ 0
and for certain numbers ν > 1 and C > 0 the following inequalities

u(t) ≤ C +

t∫
0

v(τ)
(

u(τ)
)ν dτ, ∀t ≥ 0, (49)

(ν − 1)Cν−1
t∫

0

v(τ) dτ < 1, ∀t ≥ 0 (50)

hold, then the estimate

u(t) ≤ C

⎛⎝1 − (ν − 1)Cν−1
t∫

0

v(τ) dτ

⎞⎠−1/(ν−1)

, ∀t ≥ 0 (51)

is valid.

Proof. We introduce the function Φ(u) = u for the proof of Lemma 6 and the
function Φ(u) = uν for the proof of Lemma 7. Since Φ increases, from inequalities
(47) and (49) we have the following estimate

Φ
(
u(t)
) ≤ Φ

(
C +

t∫
0

v(τ)Φ(u(τ)) dτ
)

.

This implies the inequality

v(t)Φ(u(t))

Φ

⎛⎝C +

t∫
0

v(τ)Φ(u(τ)) dτ

⎞⎠ ≤ v(t).
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Setting w(t) = C +
t∫

0
v(τ)Φ(u(τ)) dτ and integrating the last inequality from 0

to t, we obtain the estimate

t∫
0

ẇ(s)
Φ(w(s))

ds ≤
t∫

0

v(s) ds.

For Φ(u) = u this inequality can be represented as

w(t)
w(0)

≤ exp

⎛⎝ t∫
0

v(s) ds

⎞⎠
and for Φ(u) = uν as

1
1 − ν

(
1

w(t)ν−1 − 1
w(0)ν−1

)
≤

t∫
0

v(s) ds.

Taking into account the conditions u(t) ≤ w(t), w(0) = C and (50), we obtain the
assertions of Lemmas 6 and 7.

Consider now the discrete analogs of these lemmas [Kuznetsov & Leonov, 20052].

Lemma 8 If for the non-negative sequences {u(t)}∞
t=0 and {v(t)}∞

t=0 there exists a
number C > 1 such that the following condition

u(t) ≤ Cu(0) +
t−1

∑
n=0

v(n)u(n), t = 1, 2... (52)

is satisfied, then the inequality

u(t) ≤ Cu(0)
t−1

∏
n=0

(v(n) + 1), t = 1, 2... (53)

is valid.

Proof. Consider the sequence

ũ(t) = ũ(0) +
t−1

∑
n=0

v(n)ũ(n), ũ(0) = Cu(0).

By the assumption C > 1 and condition (52) we have the estimate u(t) ≤ ũ(t).
Then from the form of ũ(t) it follows that

ũ(t + 1) = ũ(0) +
t−1

∑
n=0

v(n)ũ(n) + v(t)ũ(t) = ũ(t)(v(t) + 1).

Hence

u(t) ≤ ũ(t) = ũ(0)
t−1

∏
n=0

(v(n) + 1), t = 1, 2... .

Lemma is proved.
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Corollary 4 If the sequences {u(t)}∞
t=0, {v(t)}∞

t=0 satisfy the conditions of Lemma 8,
then

u(t) ≤ Cu(0) exp
( t−1

∑
n=0

v(n)
)
. (54)

Proof. The proof follows directly from the inequality 1 + t ≤ et and (53).

Corollary 5 Suppose, for the non-negative sequence {u(t)}∞
t=0 there exist numbers C ≥

1, 0 ≤ r < 1, m > 1 and Cr ≥ 0 such that the following condition

u(t) ≤ Cu(0) +
t−1

∑
n=0

Crrnu(n)m , t = 1, 2... (55)

is satisfied. Then for sufficiently small u(0) the inequality

u(t) < 1, t = 0, 1...

is satisfied.

Proof.

By the assumption for the sequence v(t) = Crrt we have
+∞

∑
n=0

v(n) < +∞. Put

u(t)′ = Cu(0)′ +
t−1

∑
n=0

v(t)u(n)′ .

By Corollary 4 we can choose u(0)′ such that u(t)′ < 1 for all t.
A further proof is by induction. Assuming u(0) < u(0)′ , by (55) we have

u(1) ≤ Cu(0) + v(0)u(0)m ≤ Cu(0)′ + v(0)u(0)′ = u(1)′ < 1.

If u(t)′ < 1, then

u(t + 1) ≤ Cu(t) + v(t)u(t)m ≤ Cu(t)′ + v(t)u(t)′ = u(t + 1)′ < 1.

1.6.2 Stability criteria by the first approximation

Represent the solutions of systems (3) and (3′) in the Cauchy form. In the contin-
uous case we have

x(t) = X(t)x(0) +

t∫
0

X(t)X(τ)−1 f
(
τ, x(τ)

)
dτ, (56)

and in the discrete one

x(t) = X(t)x(0) +
t−1

∑
τ=0

X(t)X(τ + 1)−1 f
(
τ, x(τ)

)
, t = 1, 2.... (57)
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Here X(t) is a fundamental matrix of the linear part of the system.
Recall that by condition (4) the nonlinear part f (t, x) of systems (3) and (3′)

in a certain neighborhood Ω(0) of the point x = 0 satisfies the following condition

| f (t, x)| ≤ κ|x|ν ∀t ≥ 0, ∀x ∈ Ω(0), κ > 0, ν > 1.

We now describe the most famous stability criteria for the solution x(t) ≡ 0
by the first approximation.

Consider the continuous case. We assume that there exists a number C > 0
and a piecewise continuous function p(t) such that for the Cauchy matrix X(t)X(τ)−1

the estimate

|X(t)X(τ)−1 | ≤ C exp
t∫

τ

p(s) ds, ∀t ≥ τ ≥ 0 (58)

is valid.

Theorem 4 [Leonov, 2008] If condition (4) with ν = 1 and the inequality

lim
t→+∞

sup
1
t

t∫
0

p(s) ds + Cκ < 0

are satisfied, then the solution x(t) ≡ 0 of system (3) is asymptotically Lyapunov stable.

Proof. From (56) and the hypotheses of theorem we have

|x(t)| ≤ C exp

⎛⎝ t∫
0

p(s) ds

⎞⎠ |x(0)| + C
t∫

0

exp

⎛⎝ t∫
τ

p(s) ds

⎞⎠ κ|x(τ)| dτ.

This estimate can be rewritten as

exp

⎛⎝−
t∫

0

p(s) ds

⎞⎠ |x(t)| ≤ C|x(0)| + Cκ

t∫
0

exp

⎛⎝−
τ∫

0

p(s) ds

⎞⎠ |x(τ)|) dτ.

By Lemma 6 the following estimate

|x(t)| ≤ C|x(0)| exp

⎛⎝ t∫
0

p(s) ds + Cκt

⎞⎠ , ∀t ≥ 0

is satisfied. This completes the proof of theorem.
We now consider a discrete analog of this theorem. In the discrete case we assume
that in place of inequality (58) we have

|X(t)X(τ)−1 | ≤ C
t−1

∏
s=τ

p(s), ∀t > τ ≥ 0, (59)

where p(s) is a positive function.
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Theorem 5 If condition (4) with ν = 1 and the inequality

lim
t→+∞

sup
1
t

ln
t−1

∏
s=0

(
p(s) + Cκ

)
< 0 (60)

are satisfied, then the solution x(t) ≡ 0 of system (3′) is asymptotically Lyapunov stable.

Proof. By (57) and (59) we have

|x(t)| ≤ C
t−1

∏
s=0

p(s)|x(0)| + C
t−1

∑
τ=0

(
t−1

∏
s=τ+1

p(s)

)
κ|x(τ)|.

This estimate can be rewritten as

|x(t)|
t−1

∏
s=0

p(s)−1 ≤ C|x(0)| + Cκ
t−1

∑
τ=0

p(τ)−1|x(τ)|
τ−1

∏
s=0

p(s)−1. (61)

Applying Lemma 8 to the relations

u(t) = |x(t)|
t−1

∏
s=0

p(s)−1, u(0) = x(0), v(t) = Cκp(t)−1,

we obtain the following estimate

|x(t)|
t−1

∏
s=0

p(s)−1
< C|x(0)|

t−1

∏
s=0

(
Cκp(s)−1 + 1

)
or, the same,

|x(t)| < C|x(0)|
t−1

∏
τ=0

(
Cκ + p(τ)

)
.

These estimates and condition (60) prove the theorem.

Corollary 6 For the first-order system the negativeness of characteristic exponent of the
first approximation system implies the asymptotic stability of zero solution.

We now assume that for the Cauchy matrix X(t)X(τ)−1 the following estimate

|X(t)X(τ)−1 | ≤ C exp
(− α(t − τ) + γτ

)
, ∀t ≥ τ ≥ 0, (62)

where α > 0, γ ≥ 0, is satisfied.

Theorem 6 [Chetaev, 1955, Malkin, 1966, Massera, 1956] Let condition (4) with suffi-
ciently small κ and condition (62) be valid. Then if the inequality

(ν − 1)α − γ > 0 (63)

holds, then the solution x(t) ≡ 0 is asymptotically Lyapunov stable.
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Theorem 6 strengthens the well-known Lyapunov theorem on stability by the first
approximation for regular systems [Lyapunov, 1892].

Proof. Consider the continuous case. Relations (4), (62) and (56) yield the
estimate

|x(t)| ≤ Ce−αt|x(0)| + C
t∫

0

exp
(− α(t − τ) + γτ

)
κ|x(τ)|ν dτ.

This inequality can be rewritten as

(eαt|x(t)|) ≤ C|x(0)| + Cκ

t∫
0

exp
(
((1 − ν)α + γ)τ

)(
eατ |x(τ)|)ν dτ.

By Lemma 7 we have the following estimate

|x(t)| ≤ C|x(0)| exp
(− αt

)[
1 − (ν − 1)

(
C|x(0)|)(ν−1)

(Cκ)×

×
t∫

0

exp
(
((1 − ν)α + γ)τ

)
dτ
]−1/(ν−1), ∀ t ≥ 0.

From this estimate and condition (63) for sufficiently small |x(0)| we obtain the
assertion of the theorem.

Now we prove this theorem in the discrete case.
Proof. From (62) we have

|X(t)X(τ + 1)−1| ≤ C exp
(− α(t − τ) + γτ

)
eα+γ

By estimate (4) from (57) we obtain

|x(t)| ≤ Ce−αt|x(0)| + C
t−1

∑
τ=0

exp
(− α(t − τ) + γτ

)
eα+γκ|x(τ)|ν .

This estimate can be rewritten in the form

(eαt|x(t)|) ≤ C|x(0)| + Ceα+γκ
t−1

∑
τ=0

e(α(1−ν)+γ)τ(eατ |x(τ)|)ν .

Since by condition (63) of theorem the inequality (α(1 − ν) + γ) < 0 holds, by
Corollary 5 of Lemma 8 for sufficiently small |x(0)| we obtain

(eαt|x(t)|) ≤ 1.

Theorem is proved.
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1.6.3 Stability criteria for the flow and cascade of solutions

Consider a continuous system

dx
dt

= F(x, t), x ∈ R
n, t ≥ 0, (64)

and the discrete one

x(t + 1) = F
(
t, x(t)

)
, x(t) ∈ R

n, t = 0, 1, 2, ..., (64′)

where F(·, ·) is a twice continuously differentiable vector-function.
Consider the linearizations of these systems along solutions with the initial

data y = x(0, y) from the open set Ω, which is bounded in R n

dz
dt

= Ay(t)z, (65)

z(t + 1) = Ay(t)z(t). (65′)

Here the matrix

Ay(t) =
∂F(x, t)

∂x
|x=x(t,y)

is Jacobian matrix of the vector-function F(x, t) on the solution x(t, y). Let X(t, y)
be a fundamental matrix of linear system and X(0, y) = In.

We assume that for the largest singular value α1(t, y) of systems (65) and
(65′) for all t the following estimate

α1(t, y) < α(t), ∀y ∈ Ω, (66)

where α(t) is a scalar function, is valid.

Theorem 7 [Leonov, 1998, Kuznetsov & Leonov, 20052] Suppose, the function α(t) is
bounded on the interval (0, +∞). Then the flow (cascade) of solutions x(t, y), y ∈ Ω, of
systems (64) and (64′) are Lyapunov stable.

If, in addition,
lim

t→+∞
α(t) = 0,

then the flow (cascade) of solutions x(t, y), y ∈ Ω, is asymptotically Lyapunov stable.

Proof. It is well known that

∂x(t, y)

∂y
= X(t, y), ∀t ≥ 0.

It is also known [Zorich, 1984] that for any vectors y, z, and a number t ≥ 0 there
exists a vector w such that the relations

|w − y| ≤ |y − z|,

|x(t, y) − x(t, z)| ≤
∣∣∣∣∂x(t, w)

∂w

∣∣∣∣|y − z|
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are satisfied. Therefore for any vector z from the ball centered at y and placed
entirely in Ω the following estimate

|x(t, y) − x(t, z)| ≤ |y − z| sup α1(t, w) ≤ α(t)|y − z|, ∀t ≥ 0 (67)

is valid. Here the supremum is taken over all w from the ball {w : |w − y| ≤
|y − z|}.
Estimate (67) gives at once the assertions of theorem.

Corollary 7 The Perron effects are possible on the boundary of the stable by the first
approximation solutions flow (cascade) only.

Consider the flow of solutions of system (25) with the initial data in a neighbor-
hood of the point x1 = x2 = 0: x1(0, x10, x20) = x10, x2(0, x10, x20) = x20.

Hence it follows easily that

x1(t, x10, x20) = exp
(− at

)
x10.

Therefore for continuous system the matrix A(t) of linear system takes the form

A(t) =

( −a 0
2 exp

(− at
)

x10 r(t)

)
, (68)

where
r(t) = sin(ln(t + 1)) + cos(ln(t + 1)) − 2a.

For the discrete system we have

A(t) =

(
e−a 0

2 exp
(− at

)
x10 r(t)

)
, (68′)

r(t) =
exp

(
(t + 2) sin ln(t + 2)− 2a(t + 1)

)
exp

(
(t + 1) sin ln(t + 1)− 2at

) .

The solutions of system (65) and (65′) with matrices (68) and (68′), respectively,
are the following

z1(t) = exp
(− at

)
z1(0),

z2(t) = p(t)(z2(0) + 2x10z1(0))q(t)).
(69)

Here
p(t) = exp

(
(t + 1) sin(ln(t + 1)) − 2at

)
,

q(t) =

t∫
0

exp
(− (τ + 1) sin(ln(τ + 1))

)
dτ

in the continuous case and

p(t) = exp
(
(t + 1) sin(ln(t + 1)) − 2at

)
,
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q(t) =
t−1

∑
k=0

exp
(− (k + 2) sin ln(k + 2) + 2a

)
in the discrete case.

As was shown above (29), if relations (26) are satisfied and

z1(0)x10 
= 0,

then the characteristic exponent of z2(t) is positive.
Hence in an arbitrary small neighborhood of the trivial solution x1(t) ≡

x2(t) ≡ 0 there exist the initial data x10, x20 such that for x1(t, x10, x20), x2(t, x10, x20)
the first approximation system has the positive largest characteristic exponent
(and the Lyapunov exponent μ1).

Therefore in this case there does not exist a neighborhood Ω of the point
x1 = x2 = 0 such that uniform estimates (66) are satisfied. Thus, for systems
(25), (25′) the Perron effect occurs.

1.7 Instability Criteria by the First Approximation

1.7.1 The Perron — Vinograd triangulation method

One of basic procedures for analysis of instability is a reduction of the linear
part of the system to the triangular form. In this case the Perron — Vinograd
triangulation method for a linear system [Demidovich, 1967, Bylov et al., 1966,
Coppel, 1978] turns out to be most effective. It will be described below.

Let
Z(t) =

(
z1(t), ..., zn(t)

)
be a fundamental system of solutions of linear continuous system (5) or discrete
system (5′).

We apply the Schmidt orthogonalization procedure to the solutions zj(t).

v1(t) = z1(t)

v2(t) = z2(t) − v1(t)∗z2(t)
v1(t)

|v1(t)|2

. . . . . . . . . . . . . . .

vn(t) = zn(t) − v1(t)∗zn(t)
v1(t)

|v1(t)|2 − . . . − vn−1(t)∗zn(t)
vn−1(t)

|vn−1(t)|2 .

(70)

Relations (70) yield the following relations

vi(t)∗vj(t) = 0, ∀j 
= i, (71)

|vj(t)|2 = vj(t)∗zj(t). (72)
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If for the fundamental matrix Z(t) the relation Z(0) = In holds, we conclude that
V(0) =

(
v1(0), .., vn(0)

)
= In.

From (72) we have the following

Lemma 9 The following estimate

|vj(t)| ≤ |zj(t)|, ∀t ≥ 0 (73)

is valid.

We proceed now to the description of the triangulation procedure of Perron — Vino-
grad.

Consider the unitary matrix

U(t) =

(
v1(t)
|v1(t)| , · · · ,

vn(t)
|vn(t)|

)
,

and make the change of variable: z = U(t)w in the linear system. In the continu-
ous case we obtain the system

dw
dt

= B(t)w, (74)

where
B(t) = U(t)−1 A(t)U(t) − U(t)−1U̇(t), (75)

and in the discrete case the system

w(t + 1) = B(t)w(t), (74′)

where
B(t) = U(t + 1)−1A(t)U(t). (75′)

The unitarity of the matrix U(t) implies that for the columns w(t) of the
fundamental matrix

W(t) =
(
w1(t), . . . , wn(t)

)
= U(t)∗Z(t), (76)

the relations |wj(t)| = |zj(t)| are satisfied.
By (70)–(72) we obtain that the matrix W(t) has the upper triangular form

with the diagonal elements |v1(t)|,..,|vn(t)|, namely

W(t) =

⎛⎜⎝ |v1(t)| · · ·
. . . ...

0 |vn(t)|

⎞⎟⎠ . (77)

From the fact that W(t) is an upper triangular matrix it follows that W(t)−1, Ẇ(t)
are also upper triangular matrices. Hence B(t) is an upper triangular matrix with
the diagonal elements b1(t),..,bn(t):

B(t) =

⎛⎜⎝ b1(t) · · ·
. . . ...

0 bn(t)

⎞⎟⎠ , (78)
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where in the continuous case bi(t) = (ln |vi(t)|)• and in the discrete one

bi(t) =
|vi(t + 1)|
|vi(t)| .

Thus, we proved the following

Theorem 8 (Perron triangulation [Demidovich, 1967, Kuznetsov & Leonov, 20051]) By
means of the unitary transformation z = U(t)w the linear system can be reduced to the
linear system with the upper triangular matrix B(t).

Note that if |A(t)| is bounded for t ≥ 0, then |B(t)|, |U(t)|, and |U̇(t)| are also
bounded for t ≥ 0. If in the discrete case, in addition, |A(t)−1| is bounded for
t ≥ 0, then |B(t)−1| is also bounded for t ≥ 0.

Define the vector z′i = zi − vi. Then the vector z′i is orthogonal to the vector
vi, where i ≥ 2. Consider the angle included between the vectors zi and z′i. Note
that from definition of the angle included between the vectors we have ∠(zi , z′i) ≤
π. In this case the following relation

|vi| = |zi| sin
(
∠(zi, z′i)

)
i ≥ 2 (79)

is valid.
By (79) from (76) and (77) we have

|det Z(t)| = |det U(t)|
n

∏
i=1

|vi| =
n

∏
i=1

|zi|
n

∏
k=2

| sin
(
∠(zk, z′k)

)|.
With the help of this relation in [Vinograd, 1954] the following criterion of

system regularity was obtained.

Theorem 9 [Vinograd, 1954]
Consider a linear system with bounded coefficients and its certain fundamental

system of solutions Z(t) =
(
z1(t), ..., zn(t)

)
. Let there exist the exact characteristic

exponents of |zi(t)|
lim

t→+∞

1
t

ln |zi(t)| i = 1, ..., n (80)

and let there exist and be equal to zero the exact characteristic exponents of sines of the
angles ∠(zi, z′i)

lim
t→+∞

1
t

ln
∣∣ sin

(
∠(zi , z′i)

)∣∣ = 0 i = 2, ..., n . (81)

Then the linear system is regular and Z(t) is a normal system of solutions.
Conversely, if the linear system is regular and Z(t) is a normal system of solutions,

then (80) and (81) are satisfied.

We now obtain another useful estimate for the vector-function vj(t). We might
ask how far the vector-function vj(t) can decrease in comparison with the original
system of the vectors zj(t) . The answer is due to the following
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Lemma 10 If for a certain number C the inequality

n

∏
j=1

|zj(t)| ≤ C|det Z(t)| ∀ t ≥ 0 (82)

is valid, then there exists a number r > 0 such that the following estimate

|zj(t)| ≤ r|vj(t)|, ∀t ≥ 0, j = 1, . . . , n (83)

is satisfied.

Proof. The Ostrogradsky — Liouville formula [Demidovich, 1967] and inequal-
ity (82) give ∣∣∣det

(
z1(t)
|z1(t)| , . . . , zn(t)

|zn(t)|
)∣∣∣ =

=
(|z1(t)|, . . . , |zn(t)|)−1∣∣det

(
z1(0), . . . , zn(0)

)∣∣∣∣det Z(t)
∣∣ ≥

≥ C−1
∣∣det

(
z1(0), . . . , zn(0)

)∣∣, ∀ t ≥ 0.

This implies that for (1 ≤ m < n) for the linear subspace L(t), spanned on the
vectors z1(t), . . . , zm(t), a number ε ∈ (0, 1) can be found such that the estimate

|zm+1(t)∗e(t)|
|zm+1(t)| ≤ 1 − ε, ∀t ≥ 0 (84)

is valid for all e(t) ∈ L(t), satisfying the relation |e(t)| = 1.
Relations (70) can be rewritten as

vj(t)
|zj(t)| =

j−1

∏
i=1

(
In − vi(t)vi(t)∗

|vi(t)|2
)

zj(t)
|zj(t)| . (85)

Suppose, the lemma is false. Then there exists a sequence tk → +∞ such that

lim
k→+∞

vj(tk)

|zj(tk)| = 0.

However by (85) we obtain that there exists a number l < j such that

lim
k→+∞

[
zj(tk)

|zj(tk)|
− vl(tk)

|vl(tk)|

]
= 0. (86)

Since vl(t) ∈ L(t), relations (84) and (86) are incompatible. This contradiction
proves the estimate (83).

Corollary 8 Condition (82) is necessary and sufficient for the existence of the number
r > 0 such that estimate (83) holds.

Note that condition (82) is necessary and sufficient for the nondegenaracy of nor-
malized fundamental matrix of the first approximation system, as t → +∞,:

lim
t→+∞

inf
∣∣∣∣det

(
z1(t)
|z1(t)| , · · · ,

zn(t)
|zn(t)|

)∣∣∣∣ > 0.
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Lemma 11 The following estimate

|vn(t)|
|vn(τ)| ≥

|det Z(t)|
|det Z(τ)|

n−1

∏
j=1

|vj(τ)|
|zj(t)| , ∀t, τ ≥ 0 (87)

is valid.

Proof. Relation (77) yields the relation

|vn(t)|
|vn(τ)| =

|det W(t)|
n−1
∏
j=1

|vj(τ)|

|det W(τ)|
n−1
∏
j=1

|vj(t)|
.

From the unitarity of the matrix U(t) and from (76) we have

|det Z(t)| = |det W(t)|.

1.7.2 Instability criterion by Krasovsky

Consider instability by Krasovsky for the solution x(t) ≡ 0 of continuous system
(3) and of discrete system (3′).

In the continuous case the following theorem strengthens the result, ob-
tained in [Leonov, 20021, Leonov, 2004]. In the discrete case this result is reduced
to that, obtained in [Kuznetsov & Leonov, 20051].

Theorem 10 If the relation

sup
1≤k≤n

lim
t→+∞

inf

[
1

ln t

(
ln
∣∣det Z(t)

∣∣ − ∑
j 
=k

ln
∣∣zj(t)

∣∣)] > 1 (88)

is satisfied, then the solution x(t) ≡ 0 is unstable by Krasovsky.

Proof. We can assume, without loss of generality, that in (88) the supremum,
taken over k, is attained for k = n. Then by Lemma 11 from condition (88) we
obtain that there exists a number μ > 1 such that for sufficiently large t the fol-
lowing estimate

ln |vn(t)| ≥ μ ln t, μ > 1 (89)

holds. Suppose now that the solution x(t) ≡ 0 is stable by Krasovsky. This means
that in a certain neighborhood of the point x = 0 there exists a number R > 0 such
that the estimate

|x(t, x0)| ≤ R|x0|, ∀t ≥ 0 (90)

is valid. We make use of the Perron — Vinograd change of variable

x = U(t)y (91)



50

to obtain a system with the upper triangular matrix B(t) of the type (78).
1. Consider the continuous case. Using (91), from continuous system (3) we
obtain

dy
dt

= B(t)y + g(t, y), (92)

where
g(t, y) = U(t)−1 f

(
t, U(t)y

)
.

Thus, the last equation of system (92) takes the form

dyn

dt
=
(

ln |vn(t)|)•yn + gn(t, y). (93)

Here yn and gn are the nth components of the vectors y and g, respectively. Con-
ditions (4) and (90) yield the estimate∣∣g(t, y(t)

)∣∣ ≤ κRν
∣∣y(0)

∣∣ν. (94)

Note that the solution yn(t) of Eq. (93) can be represented in the form

yn(t) =
|vn(t)|
|vn(0)|

⎛⎝yn(0) +

t∫
0

|vn(0)|
|vn(s)| g

(
s, y(s)

)
ds

⎞⎠ . (95)

Estimate (89) implies that there exists a number ρ > 0 such that the following
inequalities

t∫
0

|vn(0)|
|vn(s)| ds ≤ ρ, ∀t ≥ 0 (96)

are valid. Now we take the initial condition x0 = U(0)y(0) in such a way that
yn(0) = |y(0)| = δ, where the number δ satisfies the inequality

δ > ρκRνδν. (97)

Then from (94)–(96) for sufficiently large t ≥ 0 we obtain the following estimate

yn(t) ≥ tμ(δ − ρκRνδν), μ > 1.

By (97)
lim

t→+∞
inf yn(t) = +∞.

The latter contradicts the assumption on stability by Krasovsky of a trivial
solution of system (3).

2. Now we prove the theorem in the discrete case. By (91), from discrete
system (3′) we have

y(t + 1) = B(t)y(t) + g
(
t, y(t)

)
, (98)

where
g
(
t, y(t)

)
= U(t + 1)−1 f

(
t, U(t)y(t)

)
.
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Then the last equation of system (98) takes the form

yn(t + 1) =
|vn(t + 1)|
|vn(t)| yn(t) + gn

(
t, y(t)

)
, (99)

where yn and gn are the nth components of the vectors y and g, respectively.
Conditions (4) and (90) give the following estimate∣∣g(t, y(t)

)∣∣ ≤ κRν
∣∣y(0)

∣∣ν. (100)

Note that the solution yn(t) of Eq. (99) can be represented as

yn(t) =
|vn(t)|
|vn(0)|

(
t−1

∑
j=0

|vn(0)|
|vn(j + 1)| gn

(
j, y(j)

)
+ yn(0)

)
. (101)

Estimate (89) implies that there exists a number ρ > 0 such that the following
inequality

t−1

∑
j=0

|vn(0)|
|vn(j + 1)| < ρ, t ≥ 1 (102)

is satisfied. Taking the same initial data as in the continuous case (97), we obtain

lim
t→+∞

inf yn(t) = +∞.

The latter contradicts the assumption on stability by Krasovsky of a trivial
solution of system (3′).

This proves the theorem.
Remark, concerning the method for the proof of theorem.
Assuming that the zero solution of the considered system is Lyapunov sta-

ble and using the same reasoning as in the case of stability by Krasovsky, we need
to prove in the continuous case the following inequality

yn(0) +

+∞∫
0

|vn(0)|
|vn(s)| g

(
s, y(s)

)
ds 
= 0. (103)

While the above inequality is easily proved in the case of stability by Krasovsky,
this becomes an intractable problem in the case of stability by Lyapunov.

A scheme similar to that, considered above for reducing the problem to one
scalar equation of the type (93), was used by N.G. Chetaev [1990; 1948] to ob-
tain instability criteria. In the scheme, suggested by N.G. Chetaev for proving
inequality (103), a similar difficulty occurs. Therefore, at present, Chetaev’s tech-
nique permits us to obtain the criteria of instability by Krasovsky only.

The method to obtain the criteria of instability by Lyapunov invites fur-
ther development. Such development under certain additional restrictions will
be presented in Theorem 12.

Condition (88) of Theorem 10 is satisfied if the following inequality

Λ − Γ > 0 (104)
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is valid.
Here Λ is the largest characteristic exponent, Γ is the irregularity coefficient.
The condition of instability by Krasovsky (104) was obtained under the ad-

ditional condition of the analyticity of the function f (t, x) by N.G. Chetaev [1990;
1948]

Recall here stability condition (63) of Theorem 6, which by Theorem 2 can
be represented as

(ν − 1)Λ + Γ < 0. (105)

Since Theorems 4–6 give, at the same time, the criteria of stability by Krasovsky,
we can formulate the following

Theorem 11 [Leonov, 2004]) If

Λ <
−Γ

(ν − 1)
,

then the solution x(t) ≡ 0 is Krasovsky stable and if

Λ > Γ,

then the solution x(t) ≡ 0 is Krasovsky unstable.

For regular systems (the case Γ = 0), Theorem 11 gives a complete solution of the
problem of stability by Krasovsky in the noncritical case (Λ 
= 0).

Note that for system (35) the relation Γ = Λ + 2a + 1 holds. Therefore for
system (35) condition (104) is untrue.

1.7.3 Instability criterion by Lyapunov

The Lyapunov instability of solutions of one-dimensional system was considered
in Proposition 2. Consider now the Lyapunov instability of the solution x(t) ≡ 0
of multidimensional continuous system (3) and of discrete system (3′).

Theorem 12 [Leonov, 2004, Kuznetsov & Leonov, 20051] Let for certain values C >

0, β > 0, α1, ..., αn−1 (αj < β for j = 1, . . . , n − 1) the following conditions hold:
1)

|zj(t)| ≤ C exp(αj(t − τ))|zj(τ)|,
∀ t ≥ τ ≥ 0, j = 1, . . . , n − 1,

(106)

2)
1

(t − τ)
ln |det Z(t)| > β +

n−1

∑
j=1

αj, ∀ t ≥ τ ≥ 0, (107)

and, if n > 2,
3)

n

∏
j=1

|zj(t)| ≤ C|det Z(t)|, ∀t ≥ 0. (108)

Then the zero solution of the system considered is Lyapunov unstable.



53

Proof. Using the Perron — Vinograd triangulation method, we change variables

x = U(t)w

and separate the last equation (for xn). Then we obtain a system of (n − 1) equa-
tions, a fundamental matrix of which is truncated in the upper triangular matrix
(77), namely

W̃(t) =
(
w̃1(t), ..., w̃n−1(t)

)
=

⎛⎜⎜⎜⎜⎝
w11(t) · · · wn−1,1(t)

. . .
...

0 wn−1,n−1(t)

⎞⎟⎟⎟⎟⎠ .

We introduce the following notation for truncated matrix (78)

B̃(t) =

⎛⎜⎝ b1(t)
. . .

0 bn−1(t)

⎞⎟⎠ .

For n > 2 from condition (108) and the identities |wj(t)| ≡ |zj(t)|, which result
from the unitary of the matrix U(t), we obtain the following estimates

|w̃j(t)| ≤ C exp
(
αj(t − τ)

)|w̃j(τ)|,
∀t ≥ τ ≥ 0, j = 1, . . . , n − 1

. (109)

In addition, by Lemma 10 from condition (108) we obtain estimates (83) and
by Lemma 11 from conditions (106) and (107) the estimate

|vn(t)|
|vn(τ)| ≥ exp

(
β(t − τ)

)
C1−n

n−1

∏
j=1

|vj(τ)|
|zj(τ)| , ∀ t ≥ τ ≥ 0. (110)

By (83), (110)

|vn(t)|
|vn(τ)| ≥ exp

(
β(t − τ)

)
(Cr)1−n, ∀t ≥ τ ≥ 0. (111)

Since for n = 2 the relation v1(t) = z1(t) is satisfied, from inequality (110) we
obtain a similar estimate

|v2(t)|
|v2(τ)| ≥ C−1 exp

(
β(t − τ)

)
, ∀t ≥ τ ≥ 0

without assumption (108).
In the original system we make the change of variables

x = edtU(t)y, (112)

choosing the number d > 0 in such a way that

α < d < β,
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where α = max αj, j = 1, . . . , n − 1.
Denote by yk the components of the vector y

y =

(
ỹ
yn

)
, ỹ =

⎛⎜⎝ y1
...

yn−1

⎞⎟⎠ .

1. In the case of continuous system (3), using (112), we obtain

dy
dt

=
(

B(t) − dIn
)
y + g(t, y), (113)

where
g(t, y) = e−dtU(t)−1 f

(
t, edtU(t)y

)
.

Condition (4) implies that for any number ρ > 0 there exists a neighborhood Ω(0)
of the point y = 0 such that

|g(t, y)| ≤ ρ|y|, ∀t ≥ 0, ∀y ∈ Ω(0). (114)

Note that by (109) for the system

dỹ
dt

=
(

B̃(t) − dIn−1
)
ỹ, ỹ ∈ R

n−1 (115)

we have the following estimate

|ỹ(t)| ≤ C exp
(
(α − d)(t − τ)

)|ỹ(τ)|, ∀t ≥ τ ≥ 0. (116)

In this case by Theorem 3 there exist a continuously differentiable matrix H(t)
bounded on [0, +∞) and positive numbers ρ1 and ρ2 such that

ỹ∗
(

Ḣ(t) + 2H(B̃(t) − dIn−1)
)
ỹ ≤ −ρ1|ỹ|2,

∀ỹ ∈ R n−1, ∀t ≥ 0,
(117)

ỹ∗H(t)ỹ ≥ ρ2|ỹ|2, ∀ỹ ∈ R
n−1, ∀t ≥ 0. (118)

For the scalar equation

dyn

dt
=
(
(ln |vn(t)|)• − d

)
yn, yn ∈ R

1,

from relation (111) for n 
= 2 we obtain the following estimate

|yn(t)| ≥ (Cr)−1 exp
(
(β − d)(t − τ)

)|yn(τ)|, ∀t ≥ τ ≥ 0.

For n = 2 a similar estimate takes the form

|y2(t)| ≥ C−1 exp
(
(β − d)(t − τ)

)|y2(τ)|, ∀t ≥ τ ≥ 0.
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Then by the corollary of Theorem 3 there exist a continuously differentiable func-
tion h(t) bounded on [0, +∞) and positive numbers ρ3 and ρ4 such that

ḣ(t) + 2h(t)
(

ln |vn(t)|• − d
) ≤ −ρ3,

h(t) ≤ −ρ4,
∀t ≥ 0.

(119)

We now show that for sufficiently large ω the function

V(t, y) = ỹ∗H(t)ỹ + ωh(t)y2
n

is the Lyapunov function, which for system (113) satisfies all conditions of the
classical Lyapunov instability theorem [Lyapunov, 1892].

Actually, system (113) can be written in the form

dỹ
dt

=
(

B̃(t) − dIn−1
)
ỹ + q(t)yn + g̃(t, ỹ, yn),

dyn

dt
=
(
(ln |vn(t)|)• − d

)
yn + gn(t, ỹ, yn).

(120)

Here q(t) is a certain bounded on [0, +∞) vector-function, g̃ and gn are such that

g(t, y) =

(
g̃(t, y)
gn(t, y)

)
.

In this case estimates (117), (119) give the inequalities

V(t, y)• ≤ −ρ1|ỹ|2 − ωρ3y2
n + 2ỹ∗H(t)q(t)yn + 2ỹ∗H(t)g̃(t, ỹ, yn)+

+2ωh(t)yn gn(t, ỹ, yn) ≤
≤ −ρ1|ỹ|2 − ωρ3y2

n + 2
(|yn||ỹ| sup

t
|H(t)| sup

t
|q(t)|+

+|ỹ| sup
t

|H(t)|ρ(|ỹ| + |yn|) + ω|yn| sup
t

|h(t)|ρ(|ỹ| + |yn|)
)
.

From these inequalities and the boundedness of the matrix-function H(t), the
vector-function q(t), and the function h(t) it follows that for sufficiently large ω

and sufficiently small ρ there exists a number θ > 0 such that

V(t, y)• ≤ −θ|y|2. (121)

The boundedness of H(t), h(t) implies that there exists a number a such that

|y|2 ≥ −aV(t, y), ∀t ≥ 0, ∀y ∈ R
n.

Then by (121) we have the following inequality

V(t, y)• ≤ aθV(t, y), ∀t ≥ 0, ∀y ∈ R
n. (122)

Choose the initial data y(0) in such a way that V(0, y(0)) < 0. Then by (121)
we have

V
(
t, y(t)

)
< 0, ∀ t ≥ 0
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and by inequality (122) the following estimate

−V
(
t, y(t)

) ≥ eaθt(− V
(
0, y(0)

))
.

In this case inequalities (118) and (119) give the estimate

−ωh(t)yn(t)2 ≥ eaθt(− V
(
0, y(0)

))
, ∀t ≥ 0.

Then

yn(t)2 ≥ eaθt

ω sup
t

(−h(t))

(− V
(
0, y(0)

))
. (123)

This implies the Lyapunov instability of the solution y(t) ≡ 0. In addition, from
estimate (123) it follows that in a neighborhood of the point y = 0 the solution
y(t) with the initial data V

(
0, y(0)

)
< 0 increases exponentially.

Since d > 0 and U(t) is a unitary matrix, the zero solution of system (3) is
also Lyapunov unstable.

2. By (112) for discrete system (3′) we obtain the following system

y(t + 1) =
(

B(t)e−d
)

y(t) + g
(
t, y(t)

)
, (124)

where
g
(
t, y(t)

)
= e−d(t+1)U−1(t + 1) f

(
t, edtU(t)y(t)

)
.

Condition (4) implies that for any number ρ > 0 there exists a neighborhood Ω(0)
of the point y = 0 such that

|g(t, y)| ≤ ρ|y|, ∀t ≥ 0, ∀y ∈ Ω(0). (125)

Note that by (109) for the following system

ỹ(t + 1) =
(

B̃(t)e−d
)

ỹ(t) (126)

we have the estimate

|ỹ(t)| ≤ C exp
(
(α − d)(t − τ)

)|ỹ(τ)|, ∀ t ≥ τ ≥ 0. (127)

Then by Theorem 3 there exist a bounded on [0, +∞) matrix H(t) and positive
values ρ1 and ρ2 such that the following relations

ỹ∗
(

B̃(t)∗e−dH(t + 1)B̃(t)e−d − H(t)
)

ỹ ≤ −ρ1|ỹ|2, (128)

ỹ∗H(t)ỹ ≥ ρ2|ỹ|2, ∀t ≥ 0, ∀ỹ ∈ R
n−1 (129)

are satisfied. From relation (111) for the scalar equation

yn(t + 1) =
|vn(t + 1)|
|vn(t)| e−dyn(t),
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for n 
= 2 we obtain the estimate

|yn(t)| ≥ (Cr)−1e(β−d)(t−τ)|yn(τ)|, ∀ t ≥ τ ≥ 0.

For n = 2 a similar estimate is as follows

|y2(t)| ≥ (C)−1e(β−d)(t−τ)|y2(τ)|, ∀ t ≥ τ ≥ 0.

In this case by corollary 2 there exists a continuously differentiable function h(t)
bounded on [0, +∞) and positive numbers ρ3 and ρ4 such that

yn(t)2
( |vn(t + 1)|

|vn(t)| e−dh(t + 1)
|vn(t + 1)|
|vn(t)| e−d − h(t)

)
≤ −ρ3yn(t)2, (130)

h(t) ≤ −ρ4, ∀ t ≥ 0, ∀ yn ∈ R
1.

Now we show that for sufficiently large ω the function

V(t, y) = ỹ∗H(t)ỹ + ωynh(t)yn

is the Lyapunov function, which for system (124) satisfies all conditions of the
Lyapunov instability theorem for discrete systems.

Denote
K(t) = B̃(t)e−d,

k(t) =
|vn(t + 1)|
|vn(t)| e−d.

Then system (124) can be represented in the form

ỹ(t + 1) = K(t)ỹ(t) + q(t)yn(t) + g̃
(
t, ỹ(t), yn(t)

)
yn(t + 1) = k(t)yn(t) + gn

(
t, ỹ(t), yn(t)

)
,

(131)

where q(t) is a certain bounded sequence, g̃ and gn are such that

g(t, y) =

⎛⎝ g̃(t, y)

gn(t, y)

⎞⎠ .

We introduce the following notations

V1(t, y) = ỹ∗H(t)ỹ,

V2(t, yn) = ωh(t)y2
n .

Then estimates (128), (130) give

�V1(t, ỹ) ≤ −ρ1|ỹ|2 + q2H|yn|2 + ρ2(|ỹ| + |yn|)2H+

+2H
(
Kq|ỹ||yn| + Kρ(|ỹ| + |yn|)|ỹ|+ qρ(|ỹ| + |yn|)|yn|

)
,

�V2(t, yn) ≤ −ωρ3|yn|2 + ωh
(

ρ2(|ỹ| + |yn|)2 + 2kρ(|ỹ| + |yn|)|yn|
)
,
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where the positive values H,K,q,k,h are supremums for the corresponding norms.
Since A(t), H(t), h(t), q(t) are bounded for t ∈ N 0, they are finite.

The above inequalities imply that for sufficiently large ω and sufficiently
small ρ there exists a positive number θ such that

�V(t, ỹ, yn) ≤ −θ
(|ỹ|2 + |yn|2

)
. (132)

From the boundedness of H(t), h(t) it follows that there exists a positive
number a such that the inequality

|y|2 ≥ −aV(t, y), ∀y ∈ R
n,

is valid for all t. Hence by (132) we have the inequality

�V(t, y) ≤ aθV(t, y), t = 0, 1..., ∀y ∈ R
n. (133)

Suppose that the initial data y(0) are such that V(0, y(0)) < 0. Then by (132) we
have

V
(
t, y(t)

)
< 0, ∀ t = 0, 1...,

and by (122)
−V
(
t, y(t)

) ≥ (aθ + 1)t(− V
(
0, y(0)

))
.

This implies that by inequalities (129) and (130) the estimate

−ωh(t)yn(t)2 ≥ (aθ + 1)t(− V
(
0, y(0)

))
, ∀t ≥ 0

is valid. Then

yn(t)2 ≥ (aθ + 1)t

ω sup
t

(− h(t)
) (− V

(
0, y(0)

))
. (134)

This inequality implies that the solution yn(t) ≡ 0 is Lyapunov unstable.
Then the zero solution y(t) ≡ 0 is also Lyapunov unstable.
Since d > 0 and U(t) is a unitary matrix, the solution x(t) ≡ 0 of the original

system is Lyapunov unstable as well.

1.7.4 Instability criterion for the flow and cascade solutions

The problem arises naturally as to the weakening of instability conditions, which
are due to Theorems 10 and 12. However the Perron effects impose restrictions
on such weakening.

We now turn to continuous and discrete systems (64) and (64′), respectively.
Suppose, for a certain vector-function ξ(t) the following relations

|ξ(t)| = 1, inf
y∈Ω

∣∣X(t, y)ξ(t)
∣∣ ≥ α(t), ∀t ≥ t0 (135)

hold.
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Theorem 13 [Leonov, 1998, Kuznetsov & Leonov, 20051] Let for the function α(t) the
following condition

lim
t→+∞

sup α(t) = +∞ (136)

be satisfied.
Then the flow (cascade) of solutions x(t, y), y ∈ Ω is Lyapunov unstable.

Proof. Holding a certain pair x0 ∈ Ω and t ≥ t0 fixed, we choose the vector y0
in any δ-neighborhood of the point x0 in such a way that

x0 − y0 = δξ(t). (137)

Let δ be so small that the ball of radius δ centered at x0 is entirely placed in Ω.
For any fixed values t, j and for the vectors x0, y0 there exists [Zorich, 1984] a
vector wj ∈ R n such that

|x0 − wj| ≤ |x0 − y0|,

xj(t, x0)− xj(t, y0) = Xj(t, wj)(x0 − y0). (138)

Here xj(t, x0) is the jth component of the vector-function x(t, x0), Xj(t, w) is the
jth row of the matrix X(t, w).

By (138) we have

|x(t, x0)− x(t, y0)| =

√
∑

j
|Xj(t, wj)(x0 − y0)|2 ≥

≥ δ max{|X1(t, w1)ξ(t)|, . . . , |Xn(t, wn)ξ(t)|} ≥
≥ δ max

j
inf
Ω

|Xj(t, x0)ξ(t)| = δ inf
Ω

max
j

|Xj(t, x0)ξ(t)| ≥

≥ δ√
n

inf
Ω

|X(t, x0)ξ(t)| ≥ α(t)δ√
n

.

This estimate and conditions (136) imply that for any positive numbers ε

and δ there exist a number t ≥ t0 and a vector y0 such that

|x0 − y0| = δ, |x(t, x0)− x(t, y0| > ε.

The latter means that the solution x(t, x0) is Lyapunov unstable.
Now we consider the hypotheses of Theorem 13.
The hypotheses of Theorem 13 is, in essence, the requirement that, at least,

one Lyapunov exponent of the linearizations of the flow of solutions with the ini-
tial data from Ω is positive under the condition that the “unstable directions ξ(t)"
(or unstable manifolds) of these solutions depend continuously on the initial data
x0. Actually, if this property holds, then, regarding (if necessary) the domain Ω

as the union of the domains Ωi, of arbitrary small diameter, on which conditions
(135) and (136) are valid, we obtain the Lyapunov instability of the whole flow of
solutions with the initial data from Ω.
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Apply Theorem 13 to systems (33) and (33′).
For the solutions x(t, t0, x0) with the initial data t0 = 0,

x1(0, x10, x20, x30) = x10,

x2(0, x10, x20, x30) = x20,

x3(0, x10, x20, x30) = x30

in the continuous case we have the following relations

x1(t, x10, x20, x30) = exp(−at)x10,

∂F(x, t)
∂x

|x=x(t,0,x0) =

⎛⎝ −a 0 0
0 −2a 0

−2 exp(−at)x10 1 r(t)

⎞⎠ , (139)

where
r(t) = sin(ln(t + 1)) + cos(ln(t + 1)) − 2a.

For discrete system we obtain

∂F(x, t)
∂x

|x=x(t,0,x0) =

⎛⎝ exp(−a) 0 0
0 exp(−2a) 0

−2 exp(−at)x10 1 r(t)

⎞⎠ , (139′)

where

r(t) =
exp

(
(t + 2) sin ln(t + 2)− 2a(t + 1)

)
exp

(
(t + 1) sin ln(t + 1)− 2at

) .

Solutions (65) and (65′) with matrices (139) and (139′), respectively, have the
form

z1(t) = exp(−at)z1(0),

z2(t) = exp(−2at)z2(0),

z3(t) = p(t)
(

z3(0) + (z2(0) − 2x10z1(0)) q(t)
)

.

(140)

Here in the continuous case we have

p(t) = exp
(
(t + 1) sin(ln(t + 1)) − 2at

)
,

q(t) =

t∫
0

exp
(− (τ + 1) sin(ln(τ + 1))

)
dτ.

and in the discrete case

p(t) = exp
(
(t + 1) sin(ln(t + 1)) − 2at

)
,

q(t) =
t−1

∑
k=0

exp(−(k + 2) sin ln(k + 2) + 2a).
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Relations (140) give

X(t, 0, x0) =

⎛⎝ exp(−at) 0 0
0 exp(−2at) 0

−2x10p(t)q(t) p(t)q(t) p(t)

⎞⎠ .

If we assume that

ξ(t) =

⎛⎝0
1
0

⎞⎠ ,

then for Ω = R n and

α(t) =
√

exp(−4at) + (p(t)q(t))2

relations (135) and (136) are satisfied (see estimate (28)).
Thus, by Theorem 13 any solution of system (33) is Lyapunov unstable.
Now we restrict ourselves to the consideration of the manifold

M = {x3 ∈ R
1, x2 = x2

1}.

In this case the initial data of the unperturbed solution x0 and the perturbed so-
lution y0 belong to the manifold M:

x0 ∈ M, y0 ∈ M. (141)

The analysis of the proof of Theorem 13 (see (137)) implies that the vector-
function ξ(t) satisfies the following additional condition: if (137) and (141) hold,
then the inequality ξ2(t) 
= 0 yields the relation ξ1(t) 
= 0.

In this case (135) and (136) are not valid since for either 2x10ξ1(t) = ξ2(t) 
=
0 or ξ2(t) = 0 the value

|X(t, x0)|
is bounded on [0, +∞).

Thus, since in conditions (135) and (136) the uniformity with respect to x0 is
violated, for system (33) on the set M the Perron effects are possible under certain
additional restrictions on the vector-function ξ(t).

1.8 Conclusion

We summarize the investigations of stability by the first approximation.
Theorems 7 and 13 give a complete solution for the problem on the flows

and cascade of solutions in the noncritical case when for small variations of the
initial data of the original system the system of the first approximation preserves
its stability (or instability in the certain "direction" ξ(t)).

Thus, the classical problem of stability by the first approximation of nonsta-
tionary motions is completely proved in the general case [Malkin, 1966].
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The Perron effects are possible only on the boundaries of the flows that are
either stable or unstable by the first approximation. From this point of view we
have here the special case.

In the general case, the progress became possible since the theorem on finite
increments permits us to reduce the estimate of the difference between perturbed
and unperturbed solutions to the analysis of the first approximation system, lin-
earized along a certain "third" solution of the original system. Such an approach
makes the proof of the theorem "almost obvious".

Thus, the difficulties, arising in studying the individual solutions, are con-
nected to the fact that these solutions can be situated on the boundaries of the
flows that are stable (or unstable) by the first approximation. In this case a special
situation occurs which requires the development of finer (and, naturally, more
complicated) tools for investigation. Such methods of investigation of the indi-
vidual solutions are given in the present study.



2 LYAPUNOV QUANTITIES AND LIMIT CYCLES

2.1 Introduction

The study of limit cycles of two-dimensional dynamical systems was stimulated
by purely mathematical problems (Hilbert’s sixteenth problem, the center-and-
focus problem) as well as by many applied problems (the oscillations of electronic
generators and electrical machines, the dynamics of populations, and the dan-
gerous and safe boundaries of stability, see, for example, [Shilnikov et al., 2001;
Bautin & Leontovich, 1976; Andronov et al., 1966; Blows & Perko, 1990; Perko,
1990; Anosov et al., 1997] and others).

One of the central problems in studying small limit cycles in the neighbor-
hood of equilibrium of two-dimensional dynamical systems is the computation of
Lyapunov quantities [Poincare, 1885; Lyapunov, 1892; Cherkas, 1976; Marsden &
McCracken, 1976; Lloyd, 1988; Yu, 1998; Yu & Han, 2005; Lynch, 2005; Roussarie,
1998; Reyn, 1994; Li, 2003; Chavarriga & Grau, 2003; Christopher & Li 2007; Yu
& Chen, 2008]. The problems of greater dimension (when there are two purely
imaginary roots and the rest are negative) can be reduced to two-dimensional
problems with the help of procedure, proposed in [Lyapunov, 1892].

At present, there exist different methods for determining Lyapunov quan-
tities and the computer realizations of these methods, which permit us to find
Lyapunov quantities in the form of symbolic expressions, depending on expan-
sion coefficients of the right-hand sides of equations of system (see., for example,
surveys [Li, 2003] and others). These methods differ in complexity of algorithms
and compactness of obtained symbolic expressions. The first method for finding
Lyapunov quantities was suggested by Poincare [Poincare, 1885]. This method
consists in sequential constructing time-independent holomorphic integral for
approximations of the system. Further, different methods for computation, which
use the reduction of system to normal forms, were developed (see, for example,
[Li, 2003, Yu & Chen, 2008]).

Another approach to computation of Lyapunov quantities is related with
finding approximations of solution of the system. So, in a classical approach [Lya-
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punov, 1892] it is used changes for reduction of "turn" time of all trajectories to a
constant (as, for example, in the polar system of coordinates) and procedures for
recurrent construction of solution approximations.

In the present work, together with the classical Poincare-Lyapunov method
to calculate Lyapunov quantities based on constructing the time independent in-
tegral, a new method of computation of Lyapunov quantities is suggested based
on constructing approximations of solution (as a finite sum in powers of degrees
of initial data) in the original Euclidean system of coordinates and in the time
domain. The advantages of this method are due to its ideological simplicity and
visualization power. This approach can also be applied to the problem of distin-
guishing of isochronous center since it permits us to find out approximation of
time of trajectory "turn" depend on initial data [Chavarriga & Grau, 2003, Gine,
2007, Gasull et al., 1997].

While a general form of the first and second Lyapunov quantities were com-
puted for two-dimensional real autonomous system (in terms of coefficients of
the right-hand side of system) in the 40-50s of the last century [Bautin, 1949;
Bautin, 1952; Serebryakova, 1959], the third Lyapunov quantity was computed
only in certain special cases [Lloyd & Pearson, 1997; Yu & Han, 2005; Lynch,
2005].

In the present work, general formula for calculation of Lyapunov’s third
quantity is presented. The calculation of Lyapunov quantity by two different an-
alytic methods involving modern software tools for symbolic computing enables
us to justify the expression obtained for Lyapunov’s third quantity.

The first steps in the development of this method were carried out in [Kuznetsov
& Leonov 2007].

2.2 Calculation of Lyapunov quantities in the Euclidean system of
coordinates and in the time domain

2.2.1 Approximation of solution in the Euclidean system of coordinates

Consider a system of two autonomous differential equations

dx
dt

= −y + f (x, y),
dy
dt

= x + g(x, y),
(142)

where x, y ∈ R and the functions f (·, ·) and g(·, ·) have continuous partial deriv-
atives of (n + 1)th order in the open neighborhood U of radius RU of the point
(x, y) = (0, 0)

f (·, ·), g(·, ·) : R × R → R ∈ C
(n+1)(U). (143)
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Suppose, the expansion of the functions f , g begins with the terms of at least the
second order and therefore we have

f (0, 0) = g(0, 0) = 0,
d f
dx

(0, 0) =
d f
dy

(0, 0) =
dg
dx

(0, 0) =
dg
dy

(0, 0) = 0. (144)

Further we will use a smoothness of the functions f and g and will follow the
first Lyapunov method on finite time interval (see f.e. classical works [Lindelof,
1894; Lefschetz, 1957; Cesari, 1959] and others). By assumption on smoothness
(143) in the neighborhood U we have

f (x, y) =
n
∑

k+j=2
fkjxkyj + o

(
(|x| + |y|)n

)
= fn(x, y) + o

(
(|x| + |y|)n

)
,

g(x, y) =
n
∑

k+j=2
gkjxkyj + o

(
(|x| + |y|)n) = gn(x, y) + o

(
(|x| + |y|)n). (145)

The existence condition of (n + 1) partial derivatives with respect to x and y for
f and g is used for simplicity of exposition and can be weakened.

Let x(t, x(0), y(0)), y(t, x(0), y(0)) be a solution of system (142) with the
initial data

x(0) = 0, y(0) = h. (146)

Denote
x(t, h) = x(t, 0, h), y(t, h) = y(t, 0, h).

Below a time derivative will be denoted by x′ and ẋ.

Lemma 12 A positive number H ∈ (0, RU) exists such that for all h ∈ [0, H] the
solution

(
x(t, h), y(t, h)

)
is defined for t ∈ [0, 4π].

The validity of lemma follows from condition (144) and the existence of two
purely imaginary eigenvalues of the matrix of linear approximation of system
(142).

This implies [Hartman, 1984] the following

Lemma 13 If smoothness condition (143) is satisfied, then

x(·, ·), y(·, ·) ∈ C
(n+1)

(
[0, 4π] × [0, H]

)
(147)

Further we will consider the sufficiently small initial data h ∈ [0, H], a finite time
interval t ∈ [0, 4π] and use a uniform boundedness of the solution (x(t, h), y(t, h))
and its mixed partial derivatives with respect to h and t up to the order (n + 1)
inc in the set [0, 4π] × [0, H].

We apply now a well-known linearization procedure [Leonov & Kuznetsov,
2007]. From Lemma 13 it follows that for each fixed t the solution of system can
be represented by the Taylor formula

x(t, h) = h
∂x(t, η)

∂η
|η=0 +

h2

2
∂2x(t, η)

∂η2 |η=hθx(t,h) 0 ≤ θx(t, h) ≤ 1,

y(t, h) = h
∂y(t, η)

∂η
|η=0 +

h2

2
∂2y(t, η)

∂η2 |η=hθy(t,h) 0 ≤ θy(t, h) ≤ 1.
(148)
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Note that by Lemma 13 and relation (148), the functions

h2

2
∂2x(t, η)

∂η2 |η=hθx(t,h),
h2

2
∂2y(t, η)

∂η2 |η=hθy(t,h)

and their time derivatives are smooth functions of t and have the order of small-
ness o(h) uniformly with respect to t on a considered finite time interval [0, 4π].

Introduce the following denotations

x̃hk(t) =
∂kx(t, η)

∂kη
|η=0, ỹhk(t) =

∂ky(t, η)

∂kη
|η=0.

We shall say that the sums

xhm(t, h) =
m
∑

k=1
x̃hk(t)

hk

k!
=

m
∑

k=1

∂kx(t, η)

∂ηk |η=0
hk

k!
,

yhm(t, h) =
m
∑

k=1
ỹhk(t)

hk

k!
=

m
∑

k=1

∂ky(t, η)

∂ηk |η=0
hk

k!

are the mth approximation of solution of system with respect to h. Substitute
representation (148) in system (142). Then, equating the coefficients of h1 and
taking into account (144), we obtain

dx̃h1(t)
dt

= −ỹh1(t),
dỹh1(t)

dt
= x̃h1(t).

(149)

Hence, by conditions on initial data (146) for the first approximation with respect
to h of the solution (x(t, h), y(t, h)), we have

xh1(t, h) = x̃h1(t)h = −h sin(t), yh1(t, h) = ỹh1(t)h = h cos(t). (150)

Similarly, to obtain the second approximation (xh2(t, h), yh2(t, h)), we substitute
representation

x(t, h) = xh2(t, h) +
h3

3!
∂3x(t, η)

∂η3 |η=hθx(t,h),

y(t, h) = yh2(t, h) +
h3

3!
∂3y(t, η)

∂η3 |η=hθy(t,h).

(151)

in formula (145) for f
(

x, y
)

and g
(

x, y
)
. Note that in expressions for f and g by

virtue of (144) the coefficients of h2 (denote them by u f
h2 and ug

h2 , respectively)
depend only on x̃h1(t) and ỹh1(t), i.e., by (150) they are known functions of time
and are independent of the unknown functions x̃h2(t) and ỹh2(t). Thus, we have

f
(

xh2(t, h) + o(h2), yh2(t, h) + o(h2)
)

= u f
h2(t)h2 + o(h2),

g
(

xh2(t, h) + o(h2), yh2(t, h) + o(h2)
)

= ug
h2(t)h2 + o(h2).



67

Substituting (151) in system (142), for the determination of x̃h2(t) and ỹh2(t)
we obtain

dx̃h2(t)
dt

= −ỹh2(t) + u f
h2(t),

dỹh2(t)
dt

= x̃h2(t) + ug
h2(t).

(152)

Lemma 14 For solutions of the system

dx̃hk(t)
dt

= −ỹhk(t) + u f
hk (t),

dỹhk(t)
dt

= x̃hk(t) + ug
hk(t)

(153)

with the initial data
x̃hk(0) = 0, ỹhk(0) = 0 (154)

we have

x̃hk(t) = ug
hk(0) cos(t) + cos(t)

t∫
0

cos(τ)
(
(ug

hk (τ))′ + u f
hk (τ)

)
dτ+

+ sin(t)
t∫

0
sin(τ)

(
(ug

hk (τ))′ + u f
hk (τ)

)
dτ − ug

hk(t),

ỹhk(t) = ug
hk(0) sin(t) + sin(t)

t∫
0

cos(τ)
(
(ug

hk (τ))′ + u f
hk (τ)

)
dτ−

− cos(t)
t∫

0
sin(τ)

(
(ug

hk (τ))′ + u f
hk(τ)

)
dτ.

(155)

The relations (155) can be verified by direct differentiation.
Repeating this procedure for the determination of the coefficients x̃hk and

ỹhk of the functions u f
hk(t) and ug

hk(t), by formula (155) we obtain sequentially the
approximations (xhk(t, h), yhk (t, h)) for k = 1, ..., n. For h ∈ [0, H] and t ∈ [0, 4π]
we have

x(t, h) = xhn(t, h) +
hn+1

(n + 1)!
∂n+1x(t, η)

∂ηn+1 |η=hθx(t,h) =

= xhn(t, h) + o(hn) =
n
∑

k=1
x̃hk(t)

hk

k!
+ o(hn),

y(t, h) = yhn(t, h) +
hn+1

(n + 1)!
∂n+1y(t, η)

∂ηn+1 |η=hθy(t,h) =

= yhn(t, h) + o(hn) =
n
∑

k=1
ỹhk(t)

hk

k!
+ o(hn),

0 ≤ θx(t, h) ≤ 1, 0 ≤ θy(t, h) ≤ 1.

(156)

Here by Lemma 13

x̃hk(·), ỹhk (·) ∈ C
n([0, 4π]), k = 1, ..., n (157)

and the estimate o(hn) is uniform ∀t ∈ [0, 4π]. From (154) and by the choice of
initial data in (149) we obtain

xhk(0, h) = x(0, h) = 0, yhk(0, h) = y(0, h) = h, k = 1, ..., n.
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2.2.2 Computation of Lyapunov quantities in the time domain

Consider for the initial datum h ∈ (0, H] the time T(h) of first crossing of the
solution

(
x(t, h), y(t, h)

)
of the half-line {x = 0, y > 0}. Complete a definition

(by continuity) of the function T(h) in zero: T(0) = 2π. Since by (150) the first
approximation of solution crosses the half-line {x = 0, y > 0} at the time 2π, then
the crossing time can be represented as

T(h) = 2π + ΔT(h),

where ΔT(h) = O(h). We shall say that ΔT(h) is a residual of crossing time.
By definition of T(h) we have

x(T(h), h) = 0. (158)

Since by (147), x(·, ·) has continuous partial derivatives with respect to either
arguments up to the order n inc and ẋ(t, h) = cos(t)h + o(h), by the theorem on
implicit function [Zorich, 2002], the function T(·) is n times differentiable. It is
possible to show (for example, considering the function z(t, h) = x(t, h)/h and
completing its definition in zero by the function xh1(t) or making use of special
theorems of mathematical analysis) that T(h) is also differentiable n times in zero.
By the Taylor formula we have

T(h) = 2π +
n
∑

k=1
T̃khk + o(hn), (159)

where T̃k =
1
k!

dkT(h)

dhk (usually called period constants [Gine, 2007]). We shall say

that the sum

ΔTk(h) =
k

∑
j=1

T̃jh
j (160)

is the kth approximation of the residual of the time T(h) of the crossing of the
solution

(
x(t, h), y(t, h)

)
of the half-line {x = 0, y > 0}. Substituting relation

(159) for t = T(h) in the right-hand side of the first equation of (156) and denoting
the coefficient of hk by x̃k, we obtain the series x(T(h), h) in terms of powers of h:

x(T(h), h) =
n

∑
k=1

x̃khk + o(hn). (161)

In order to express the coefficients x̃k by the coefficients T̃k of the expansion of
residual of crossing time we assume that in (156) t = 2π + τ:

x(2π + τ, h) =
n
∑

k=1
x̃hk(2π + τ)

hk

k!
+ o(hn). (162)

By smoothness condition (157) we have

x̃hk(2π + τ) = x̃hk(2π) +
n

∑
m=1

x̃(m)

hk (2π)
τm

m!
+ o(τn), k = 1, ..., n.
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Substitute this representation in (162) for the solution x(2π + τ, h) for τ = ΔT(h),
and bring together the coefficients of the same exponents h. Since (ΔT(h))n =
O(hn), by (158) and taking into account (159) for T(h), we obtain

h : 0 = x̃1 = x̃h1(2π),
h2 : 0 = x̃2 = x̃h2(2π) + x̃′h1(2π)T̃1,

h3 : 0 = x̃3 = x̃h3(2π) +
1
2

x̃′h2(2π)T̃1 + x̃′h1(2π)T̃2 +
1
2

x̃′′h1(2π)T̃2
1 ,

· · ·
hn : 0 = x̃n = . . .

From the above we sequentially find T̃j. The coefficients Tk=1,...,n−1 can be deter-
mined sequentially since the expression for x̃k involves only the coefficients Tm<k
and the factor x̃′h1(2π) multiplying Tk−1 is equal to −1.

We apply a similar procedure to determine the coefficients ỹk of the expan-
sion

y(T(h), h) =
n

∑
k=1

ỹkhk + o(hn).

Substitute the representation

ỹhk(2π + ΔT(h)) = ỹhk(2π) +
n

∑
m=1

ỹ(m)

hk (2π)
ΔT(h)m

m!
+ o(hn), k = 1, ..., n

in the expression

y(2π + ΔT(h), h) =
n

∑
k=1

ỹhk(2π + ΔT(h))
hk

k!
+ o(hn).

Equating the coefficients of the same exponents h, we obtain the following rela-
tions

h : ỹ1 = ỹh1(2π),
h2 : ỹ2 = ỹh2(2π) + ỹ′h1(2π)T̃1,

h3 : ỹ3 = ỹh3(2π) +
1
2

ỹ′h2(2π)T̃1 + ỹ′h1(2π)T̃2, +
1
2

ỹ′′h1(2π)T̃2
1 ,

· · ·
hn : ỹn = . . .

for the sequential determination of ỹi=1,...,n. Here ỹhk=1,..,n(·) and T̃k=1,..,n−1 are the
obtained above quantities.

Thus, for n = 2m + 1 under the condition f (·, ·), g(·, ·) ∈ C(2m+2)(U) we
sequentially obtained the approximations of the solution

(
x(t, h), y(t, h)

)
at the

time t = T(h) of the first crossing of the half-line {x = 0, y > 0} accurate to
o(h2m+1) and the approximation of the time T(h) itself accurate to o(h2m). If in
this case ỹk = 0 for k = 2, .., 2m, then ỹ2m+1 is called the mth Lyapunov quantity
Lm. Note, that, according to the Lyapunov theorem, the first nonzero coefficient
of the expansion ỹi is always of an odd number and for sufficiently small initial
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data h the sign of ỹi (of the Lyapunov quantity) designates a qualitative behavior
(winding or unwinding) of the trajectory

(
x(t, h), y(t, h)

)
on plane [Lyapunov,

1892].
Expression for the first, second, and third Lyapunov quantities in the gen-

eral form can be found in Appendix 1.

2.2.3 Duffing equation

Consider the Duffing equation ẍ + x + x3 = 0 written as the system

ẋ = −y,
ẏ = x + x3.

(163)

Suppose that x0 = 0, y0 = hy. Then

y(t)2 + x(t)2 +
1
2

x(t)4 = y2
0, (164)

and, therefore,

y(t) = ±
√

h2
y − x(t)2 − x(t)4

2
, x(t)2 = −1 +

√
1 + 2h2

y − 2y(t)2.

By virtue of system (163), this gives us

dt
dy

=
1

x(1 + x2)
=

1√
−1 +

√
1 + 2h2

y − 2y2
√

1 + 2h2
y − 2y2

.

Then, for the intersection time T(hy), we have

T(hy) = 4

hy∫
0

dy√
−1 +

√
1 + 2h2

y − 2y2
√

1 + 2h2
y − 2y2

.

Having changed the variables

y = hy cos(z), z = arccos
y
hy

, y = hy ⇒ z =
π

2
, dy = −hy sin(z)dz

we obtain

T(hy) =
π/2∫
0

−hy sin(z)dz√
−1 +

√
1 + 2h2

y sin2 z
√

1 + 2h2
y sin2 z

.

Expanding T(h)) in powers of h gives an estimate for the time when the
trajectory meets the vertical half-line (x = 0, y > 0)

T(hy) = 2π − 3π

4
h2

y +
105π

128
h4

y −
1155π

1024
h6

y + o(h6
y),
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this corresponds to the values obtained by the above algorithm. Below, we list
the solutions obtained by the solutions approximation algorithm:

x̃h1(t) = − sin(t), ỹh1(t) = cos(t);

x̃h2(t) = ỹh2(t) = 0;

x̃h3(t) =
1
8

cos(t)2 sin(t) − 3
8

t cos(t) +
1
4

sin(t),

ỹh3(t) = −3
8

t sin(t) +
3
8

cos(t) − 3
8

cos(t)3;

x̃h4(t) = ỹh4(t) = 0;

x̃h5(t) = − 1
64

sin(t) cos(t)4 − 45
256

cos(t)2 sin(t) +
69

256
cos(t)t+

+
9

128
sin(t)t2 − 7

32
sin(t) +

9
64

t cos(t)3,

ỹh5(t) =
33

256
sin(t)t +

5
64

cos(t)5 +
27
64

t cos(t)2 sin(t)−
− 9

128
cos(t)t2 +

83
256

cos(t)3 − 103
256

cos(t),

Thus, a periodic solution is approximated by a series with nonperiodic coeffi-
cients.

Note that Lyapunov quantities computed above are equal to zero,

L1 = L2 = ... = 0,

which agrees with condition (164).

2.2.4 Application of Lyapunov function in order to weaken smoothness re-
quirements when calculating Lyapunov quantities

Suppose that n = 2m and

f (·, ·), g(·, ·) ∈ C
(2m+1)(U). (165)

In this case, the above procedure enables us to calculate only the coefficients of
ỹ1, ..., ỹ2m and does not work for ỹ2m+1 (to calculate the latter, we formally need
that f (·, ·), g(·, ·) ∈ C(2m+2)(U)).

In the case when ỹk=2,...,2m = 0, with the scope to estimate the qualitative
behavior of the trajectories in a neighborhood of zero, let us consider a Lyapunov
function and its derivative by virtue of system (142)

V(x, y) =
(x2 + y2)

2
, V̇(x, y) = x f (x, y) + yg(x, y). (166)

Introduce the notation:

L(h) =
T(h)∫
0

V̇
(

x(t, h), y(t, h)
)

dt

= V
(

x(T(h), h), y(T(h), h)
) − V

(
x(0, h), y(0, h)

)
.
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Lemma 15

L(h) =
2π+ΔTn(h)∫

0
xhn(t, h) f

(
xhn(t, h), yhn (t, h)

)
+

+yhn(t, h)g
(

xhn(t, h), yhn (t, h)
)

dt + o(hn+2).
(167)

Proof. Applying (156) gives

x(t, h) = xhn(t, h) + o(hn) =
n
∑

k=1
x̃hk(t)

hk

k!
+ o(hn),

y(t, h) = yhn(t, h) + o(hn) =
n
∑

k=1
ỹhk(t)

hk

k!
+ o(hn).

Here, coefficients x̃hk(t) are bounded functions of time, and the estimate o(hn) is
uniform for any ∀t ∈ [0, 4π]. From (166) and (144), we have

V̇(x(t, h), y(t, h)) = x(t, h) f
(

x(t, h), y(t, h)
)

+ y(t, h)g
(

x(t, h), y(t, h)
)

= o(h2).

Therefore,
ΔTn(h)+o(hn)∫

ΔTn(h)

V̇(x(t, h), y(t, h)) dt = o(hn+2). (168)

Allowing for (145) and (166), we obtain the representation

V̇(x(t, h), y(t, h)) = V̇(xhn(t, h), yhn (t, h)) + o(hn+2),

the estimate o(hn+2) being uniform for any ∀t ∈ [0, 4π]. On account of (168), this
gives us

L(h) =

2π+Tn(h)∫
0

V̇(xhn(t, h), yhn (t, h)) dt + o(hn+2).

�

Inserting the solutions in the form (167) into expression (156) for L(h), integrating,
and grouping together the coefficients of the same powers of h, we obtain

L(h) =
2m+2

∑
k=3

L̃khk + o(h2m+2).

Lemma 16 Suppose that system (142) is sufficiently smooth,

f (·, ·), g(·, ·) ∈ C
(2m+2)(U)

and
ỹk = 0 k = 2, .., 2m, ỹ2m+1 = Lm 
= 0.

Then L̃2m+2 = Lm.
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Proof. From the conditions of the Lemma 16 and definition of T(h), we have

x(T(h), h) = 0, y(T(h), h) = h + ỹ2m+1h2m+1.

Then, applying (166) gives

V
(

x(T(h), h), y(T(h), h)
)

=
y(T(h), h)2

2
=

h2

2
+ y2m+1h2m+2 + o(h2m+2),

V
(

x(0, h), y(0, h)
)

=
h2

2
.

Therefore,
L(h) = y2m+1h2m+2 + o(h2m+2).

�

Note that if we weaken the smoothness requirement,

f (·, ·), g(·, ·) ∈ C
(2m)(U), (169)

and require that the estimate o(hn) and the estimate (156) be uniform in t, then the
above procedure to calculate L̃2m+2 enables us to extend the notion of Lyapunov
quantity Lm to insufficiently smooth systems (if L̃3 = ... = L̃2m+1 = 0, then
the sign of L̃2m+2 also determines the qualitative behavior of the trajectory for
sufficiently small initial data).

2.3 Classical method for computation of Lyapunov quantities

Following the classical work [Poincare, 1885; Lyapunov, 1892], we consider a
problem of computation of Lyapunov quantities by constructing the time inde-

pendent integral V(x, y) for system (142). Since V2(x, y) =
(x2 + y2)

2
is an inte-

gral of system of the first approximation and for the right-hand side of system
smoothness condition (145) is satisfied, then in certain small neighborhood of
zero state we seek the approximation of integral in the form

V(x, y) =
x2 + y2

2
+ V3(x, y) + ... + Vn+1(x, y) (170)

Here Vk(x, y) are the following homogeneous polynomials

Vk(x, y) = ∑
i+j=k

Vi,jx
iyj k = 3, ..., n + 1

with the unknown coefficients {Vi,j}i+j=k, i,j�0. By (145) for the derivative of
V(x, y) by virtue of system (142) we have

V̇(x, y) =
∂V(x, y)

∂x
(−y +

n

∑
k+j=2

fkjx
kyj)+

∂V(x, y)

∂y
(x +

n

∑
k+j=2

gkjx
kyj)+ o

(
(|x|+ |y|)n+1).

(171)
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The coefficients of the forms Vk can always be chosen in such a way that

V̇(x, y) = w1(x2 + y2)2 + w2(x2 + y2)3 + ... + o
(
(|x| + |y|)n+1). (172)

Here wi are expressions depending only on coefficients of the functions f and g.
Then sequentially determining the coefficients of the forms Vk for k = 3, ...

(for that at each step it is necessary to solve a system of (k + 1) linear equations),
from (171) and (172) we obtain the coefficient wm that is the first not equal to zero

V̇(x, y) = wm(x2 + y2)m+1 + o
(
(|x| + |y|)2m+2).

The expression wm is usually [Chavarriga & Grau, 2003] called a Poincare-Lyapunov
constant (2πwm is mth Lyapunov quantity [Frommer, 1934]). Let the additional
conditions [Lynch, 2005]

V2m,2m+2 + V2m+2,2m = 0, V2m,2m = 0

be satisfied. Then at the kth step of iteration the coefficients {Vi,j}i+j=k can be de-
termined uniquely from the linear equations system via the coefficients { fij}i+j<k
and {gij}i+j<k and the coefficients {Vi,j}i+j<k, determined at the previous steps
of iteration.

2.4 The Lienard equation

Assuming in (142)

f (x, y) ≡ 0,
dg(x, y)

dy
= gx1(x), g(x, 0) = gx0(x),

dgx0

dx
(0) = 0,

we obtain the following system

ẋ = −y,
ẏ = x + gx1(x)y + gx0(x),

(173)

or the equivalent Lienard equation

ẍ + x + ẋgx1(x) + gx0(x) = 0.

Let gx1(x) = g11x + ..., gx0(x) = g11x2 + .... Then

L1 = −π

4
(g20g11 − g21).

If g21 = g20g11, then L1 = 0 and

L2 =
π

24
(3g41 − 5g20g31 − 3g40g11 + 5g20g30g11).

If g41 =
5
3

g20g31 + g40g11 − 5
3

g20g30g11, then L2 = 0 and

L3 = − π

576
(70g3

20g30g11 + 105g20g51 + 105g2
30g11g20 + 63g40g31

−63g11g40g30 − 105g30g31g20 − 70g3
20g31 − 45g61 − 105g50g11g20 + 45g60g11).

The above expressions can be obtained by MatLab programm in Appendix
2 and for L4 and L5 see [Leonov & Kuznetsova, 2008].
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2.5 Application of Lyapunov quantities for investigation of quadratic
systems

Let us consider transformation of quadratic system to a special type of Lienard
system

ẋ = y,
ẏ = −F(x)y − G(x),

(174)

where
F(x) = (Ax + B)x|x + 1|q−2,

G(x) = (C1x3 + C2x2 + C3x + 1)x
|x + 1|2q

(x + 1)3 .
(175)

We have the following results [Leonov, 1997; Leonov et al. 2008].

Lemma 17 Suppose, for the coefficients A, B, C1, C2, C3, q of equation (174) the relations

(B − A)

(2q − 1)2 ((1 − q)B + (3q − 2)A) = 2C2 − 3C1 − C3, (176)

(B − A)

(2q − 1)2 (B + 2(q − 1)A) = C2 − 2C1 − 1. (177)

are satisfied. Then equation (174) can be reduced to the quadratic system

ẋ = p(x, y) = a1x2 + b1xy + α1x + β1y,
ẏ = q(x, y) = a2x2 + b2xy + c2y2 + α2x + β2y.

(178)

with the coefficients b1 = 1, α1 = 1, β1 = 1, c2 = −q, α2 = −2, β2 = −1,

a1 = 1 +
B − A
2q − 1

,

a2 = −(q + 1)a2
1 − Aa1 − C1,

b2 = −A − a1(2q + 1).

(179)

Then by the above relations for the Lyapunov quantities L1 and L2, we obtain the
following

Lemma 18 if L1 = L2 = 0, 5A − 2Bq − 4B = 0 and A 
= B, AB 
= 0, q 
= 1
2

then

C1 = (q + 3)
B2

25
− (1 + 3q)

5
,

C2 =
(
15(1 − 2q) + 3B2) 1

25
,

C3 =
3(3 − q)

5
;

L3 = −πB(q + 2)(3q + 1)[5(q + 1)(2q − 1)2 + B2(q − 3)]

20000
.
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Thus, if the conditions of Lemma 18 and L3 
= 0, then by small disturbances of
system we can obtain three "small" cycles around the zero equilibrium of system
and seek "large" cycles on a plane of the rest two coefficients (B,q).

Lemma 19 For b1 
= 0 system (178) can be reduced to the Lienard equation (174) with
the functions

F(x) = R(x)ep(x) = R(x)|β1 + b1x|q,

G(x) = P(x)e2p(x) = P(x)|β1 + b1x|2q.

Here q = − c2

b1
,

R(x) = − (b1b2 − 2a1c2 + a1b1)x2 + (b2β1 + b1β2 − 2α1c2 + 2a1β1)x + α1β1 + β1β2

(β1 + b1x)2 ,

P(x)= −
(

a2x2+α2x
β1+b1x

− (b2x + β2)(a1x2 + α1x)

(β1 + b1x)2 +
c2(a1x2+α1x)2

(β1+b1x)3

)
.

The above results were applied to quadratic systems and the experiments for
computing "large" cycles were performed. Such computer experiments were car-
ried out by Kudryashova [Leonov et al. 2008]. In these experiments the reduction
of quadratic system to the Lienard equation of special form (174)-(175) was used
and with its help a set of parameters B, q (Fig. 5), which correspond to the exis-
tence of "large" cycle, was estimated.

FIGURE 5 Domain of existence of "large" limit cycles
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In Fig. 5 it is shown a domain bounded by lines, which correspond to the
lines of reversal sign of the third Lyapunov quantity. The curve C in the graph
is a curve of the parameters B and q of the Lienard system, which correspond to
parameters of quadratic system, such that for these parameters the results on the
existence of four cycles were obtained in [Shi, 1980].

Since two Lyapunov quantities are equal to zero, by small disturbances it is
possible to construct systems with four cycles for the considered domain of pa-
rameters: three small cycles around one equilibrium and one large cycle around
another equilibrium.

Note that if the conditions of Lemma 18 are satisfied, then the changes of
the time t → −t and the parameter of system B → −B don’t modify system
(175). Therefore, analogous domain, of existence of large cycle, which is symmet-
ric about the straight line B = 0, holds.

These results were applied to quadratic systems and the experiments for
computing "large" cycles were performed. Our experience of computations shows
that it is practically impossible to trace "small" cycles in the neighborhood of equi-
librium, where the zero and first Lyapunov quantities are equal to zero. However
in a number of computer experiments we can distinctly see "large" cycles.

For example in Fig. 6 it is shown a "large" cycle for the system

ẋ = 0.99x2 + xy + x + y,
ẏ = −0.58x2 + 0.17xy + 0.6y2 − 2x − y,

the parameters of which correspond to the point P in Fig. 5.

FIGURE 6 Stable limit cycle in quadratic system



3 STABILITY AND OSCILLATIONS IN
PENDULUM-LIKE SYSTEMS

3.1 Synchronization of two metronomes

3.1.1 Introduction

The synchronization phenomenon of two pendulum clocks was first discovered
by Christian Huygens in 1662. He observed what is now called the anti-phase
synchronization of two pendulums of the clocks attached to a common support
beam. Regardless of the initial conditions these two pendulums converged af-
ter some transient process to an oscillatory regime characterized by identical
frequency of the oscillations, while the two pendulum angles moved in anti-
phase. Huygens [Huygens, 1669,1986] found an explanation of this phenomenon
noticing that imperfect synchronization resulted in small beam oscillation that
in turn drove the pendulum towards the agreement. Though his explanation is
physically correct, rigorous analytical results become available later on with in-
vention of differential calculus. Within 300 years of Huygens’ discovery it turned
out that this phenomenon finds a lot of potential applications in different fields
of science and engineering. For some related analytical results, see e.g.[Bennet et.
al., 2005, Pogromsky et. al., 2005].

Together with anti-phase oscillations, a similar setup with two metronomes
on a common support demonstrates also in-phase synchronization, where metro-
nomes’ pendulum agree not only in frequency but also in angles [Oud et. al.,
2006].

In the book [Blekhman, 1988], Blekhman also discusses Huygens’ observa-
tions, and recounts the results of a laboratory reproduction of the coupled clocks
as well as presenting a theoretical analysis of oscillators coupled through a com-
mon supporting frame. He predicted that both in-phase and anti-phase motions
are stable under the same circumstances.

The problem of analytical study of in-phase synchronization turns out to
be more difficult. In this work this problem is considered for the model of two
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metronomes on the common support proposed in [Pantaleone, 2002].

3.1.2 Problem statement

We consider a system consisting of two metronomes resting on a light wooden
board that sits on two empty soda cans

FIGURE 7 [Pantaleone, 2002] Two metronomes sitting on a light wooden board which
lies on two empty soda cans

The motion of such system can be described [Pantaleone, 2002] by the fol-
lowing equations

m(lφ̈i + ẍ cos φi) + mg sin φi = κesc
(
1 − φ̂i

2

Φ2

)
φ̇i = fesc(φi)φ̇i

Mẍ + m
2
∑

i=1

(
lφ̈i cos φi − lφ̇i

2 sin φi + ẍ
)

= 0
(180)

Here m is a mass of each weight of metronomes, M is a mass of platform, φi is an
angle of deviation of the ith pendulum of metronome from a vertical, l is a length
of the pendulum of metronome, fesc(·) is an internal force of metronome, (κesc is
a small parameter, φ̂i = φi mod 2π), g is a gravitational acceleration, and x is a
horizontal displacement of platform beginning from equilibrium.

We find conditions under which the in-phase regime occurs.
To this end, we need new variables

θ+ =
φ1 + φ2

2
, θ− =

φ1 − φ2

2
.

In this case by trigonometric formulas we obtain

sin φ1 + sin φ2

2
= sin θ+ cos θ−,

sin φ1 − sin φ2

2
= sin θ− cos θ+,

cos φ1 + cos φ2

2
= cos θ+ cos θ−,

cos φ1 − cos φ2

2
= sin θ− sin θ+.

The second equation of (180) gives the following expression for the acceleration
ẍ of the platform

ẍ = −ml
(
(sin φ1)

′′ + (sin φ2)
′′)

(M + 2m)
.
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This implies that, written a half-sum and half-difference of equations for the mo-
tion of weights of metronomes (180) in new variables θ+, θ−, we obtain

m(l ¨θ+ − 2ml(sin θ+ cos θ−)′′

M + 2m
cos θ+ cos θ− + g sin θ+ cos θ−) =

= ( fesc(φ1) + fesc(φ2))/2,

m(l ¨θ− − 2ml(sin θ+ cos θ−)′′

M + 2m
sin θ− sin θ+ + g sin θ− cos θ+) =

= ( fesc(φ1)− fesc(φ2))/2,

(181)

fesc(φ1)φ̇1 + fesc(φ2)φ̇2 = κesc
(
1 − φ2

1
Φ2

)
φ̇1+

+κesc
(
1 − φ2

2
Φ2

)
φ̇2 =

= κesc(2 ˙θ+ − 1
Φ2

(
(θ+ + θ−)2( ˙θ+ + ˙θ−) + (θ+ − θ−)2( ˙θ+ − ˙θ−)

))
=

= κesc
(
2 ˙θ+ − 1

Φ2

(
2θ2

+
˙θ+ + 4θ+θ− ˙θ− + 2θ2− ˙θ+

))
,

fesc(φ1)φ̇1 − fesc(φ2)φ̇2 = κesc(1 − φ2
1

Φ2

)
φ̇1 − κesc(1 − φ2

2
Φ2

)
φ̇2 =

= κesc
(
2 ˙θ− − 1

Φ2

(
(θ+ + θ−)2( ˙θ+ + ˙θ−)− (θ+ − θ−)2( ˙θ+ − ˙θ−)

))
=

= κesc(2 ˙θ− − 1
Φ2

(
2θ2

+
˙θ− + 4θ+θ− ˙θ+ + 2θ2− ˙θ−

))
.

(182)

It follows that in the mechanical system there can occur the in-phase regime
(2θ− = φ1 − φ2 = 0 ⇒ φ1 ≡ φ2), in which for the half-sum of angles of devi-
ation of metronomes pendulum θ = θ+ satisfies the equation

m(lθ̈ − 2ml(sin θ)′′

M + 2m
cos θ + g sin θ) = κesc

(
1 − θ2

Φ2

)
θ̇. (183)

Having performed the transformations

m(lθ̈ − 2ml(θ̈ cos θ − θ̇2 sin θ)

M + 2m
cos θ + g sin θ) = κesc(1 − θ2

Φ2

)
θ̇, (184)

θ̈(1 − 2m cos2 θ

M + 2m
) + θ̇2 2m sin θ cos θ

M + 2m
+

g
l

sin θ =
κesc

ml

(
1 − θ2

Φ2

)
θ̇, (185)

θ̈
M + 2m sin2 θ

M + 2m
+ θ̇2 m sin 2θ

M + 2m
+

g
l

sin θ =
κesc

ml

(
1 − θ2

Φ2

)
θ̇, (186)

for

εm,M(θ) =
2m cos2 θ

M + 2m sin2 θ
,

κesc
ml =

κesc

ml
, ε 2m

M
=

2m
M

,

we obtain
θ̈ − θ̇F(θ, κesc) + θ̇2H(θ) + G(θ) = 0, (187)
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F(θ, κesc) = κesc M + 2m
ml(M + 2m sin2 θ)

(
1 − θ2

Φ2

)
=

= κesc
ml

(
1 − θ2

Φ2

)
(1 + εm,M(θ)),

H(θ) =
m sin 2θ

M + 2m sin2 θ
= tan θεm,M(θ),

G(θ) =
g(M + 2m) sin θ

l(M + 2m sin2 θ)
=

g sin θ

l
(1 + εm,M(θ))

Then for linearization at the equilibrium θ = 0, θ̇ = 0 we have

θ̇ = η

η̇ = −G′
θ(θ)|θ=0,η=0θ + F(θ, κesc)|θ=0,η=0η =

= −g(M + 2m)

Ml
θ +

κesc(M + 2m)

Mml
η

Since
κesc(M + 2m)

Mml
> 0,

this implies the instability of zero solution and the unwinding of phase trajectory
for small θ.

Following the strategy described in [Pogromsky et. al., 2005; Bennet et. al.,
2005], we consider the question of the existence and setting of an in-phase regime.

3.1.3 Proof of the existence of a periodic regime

Having performed some transformation in system (183) and taking into account
the relations

κ =
√

g/l, εM =
m

M + 2m
,

δM(θ) = εM(θ̈2 cos2 θ − θ̇2 sin 2θ),

f esc
ml (θ) = κesc

ml
(
1 − θ2

Φ2

)
,

we obtain
θ̈ + κ2 sin θ = f esc

ml (θ)θ̇ + δM(θ) (188)

In the approximation when sin θ ≈ θ, 0 ≤ θ < π/3 equation (188) takes the form

¨̃θ + κ2θ̃ = f esc
ml (θ̃) ˙̃θ + δM(θ̃). (189)

The solution of this equation with the initial states θ̃(0) = θ(0) = θ0, ˙̃θ(0) =
θ̇(0) = 0 can be represented as

θ̃(t) = θ0 cos(κt) + g1(t, κesc , M),

˙̃θ(t) = −θ0κ sin(κt) + g2(t, κesc , M).
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For small κesc and 1/M for the time T of second crossing of the trajectory (θ̃, ˙̃θ) of
the straight line θ̇ = 0, we approximately obtain

T ≈ T̃ =
2π

κ
: ˙̃θ(T) = ˙̃θ(0) = 0

Let us consider now the Lyapunov function V( ˙̃θ, θ̃) and its derivative by
virtue of system (189), i.e.

V( ˙̃θ, θ̃) = ˙̃θ
2
/2 +

κ

2
θ̃2

> 0

and

V̇( ˙̃θ, θ̃) = ˙̃θ( ¨̃θ + κθ̃) = ˙̃θ
2

f esc
ml (θ̃) + ˙̃θδM(θ̃),

respectively. Following [Leonov, 2008], we then estimate the relation

V( ˙̃θ(T), θ̃(T)) − V( ˙̃θ(0), θ̃(0)) =

T∫
0

V̇( ˙̃θ(t), θ̃(t))dt ≈
T̃∫

0

V̇( ˙̃θ(t), θ̃(t))dt.

For this purpose we integrate ˙̃θ
2

f esc
ml

(
θ̃(τ)

)
from 0 to T̃:

T̃∫
0

˙̃θ
2
κesc

ml

(
1 − θ̃2(τ)

Φ2

)
dτ = κesc

ml θ2
0κ2

T̃∫
0

sin2(κτ)
(

1 − θ2
0 cos2(κτ)

Φ2

)
dτ + g̃1(κesc, M) =

= κesc
ml θ2

0κ2 π(4Φ2 − θ2
0)

4κΦ2 + g̃1(κesc , M)

where
lim

κesc,1/M→0
g̃1(κesc , M) = 0.

For the approximate values

cos θ̃(t) ≈ cos
(
θ0 cos(κt)

)
, sin

(
2θ̃(t)

) ≈ sin
(
θ02 cos(κt)

)
,

the following relations hold

T̃∫
0

˙̃θ(t) ¨̃θ(t) cos2(θ̃(t))dt = g̃2(κesc, M)

T̃∫
0

˙̃θ
3
(t) sin(2θ̃(t))dt = g̃3(κesc, M),

lim
κesc,1/M→0

g̃i(κesc, M) = 0.
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Taking into account these relations, we integrate ˙̃θδM
(
θ̃(τ)

)
from 0 to T̃

T̃∫
0

˙̃θ(t)δM
(
θ̃(t)
)

dt =
T̃∫
0

˙̃θ(t)εM
[ ¨̃θ(t)2 cos2 θ̃(t) − ˙̃θ

2
(t) sin 2θ̃(t)

]
dt =

=
T̃∫
0
−θ0κ sin(κt)εM

[− θ0κ2 cos(κt)2 cos
(
θ0 cos(κt)

)−
−θ2

0κ2 sin2(κt) sin
(
θ02 cos(κt)

)]
dt + g̃4(κesc, M) = 0 + g4(κesc, M),

where
lim

κesc,1/M→0
g(κesc, M) = 0.

Then we obtain

V( ˙̃θ(T), θ̃(T)) − V( ˙̃θ(0), θ̃(0)) ≈
≈

T̃∫
0

V̇(θ̇(τ), θ(τ))dτ =

=
T̃∫
0

[ ˙̃θ
2

f esc
ml

(
θ̃(τ)

)
+ ˙̃θδM

(
θ̃(τ)

)]
dτ =

=
T̃∫
0

˙̃θ
2

f esc
ml

(
θ̃(τ)

)
dτ +

T̃∫
0

˙̃θδM
(
θ̃(τ)

)
dτ =

= κesc
ml θ2

0κ2 π(4Φ2 − θ2
0)

4κΦ2 + g(κesc , M),

where
lim

κesc,1/M→0
g(κesc, M) = 0.

In this case for −2Φ < θ0 < 2Φ we have an unwinding and for 2Φ < |θ0| a
twisting of the phase trajectory for sufficiently small κesc, 1/M. Thus, it is proved
the existence of in-phase regime, i.e. we proved that for φ1 − φ2 = 0, for the sum
of the angles φ1 + φ2 there occurs a periodic regime.

3.2 Phase-locked loops

3.2.1 Introduction

The phase-locked loops are widespread in a modern radio electronics and cir-
cuit technology [Viterbi, 1966; Gardner, 1966; Lindsey, 1972; Lindsey and Chie,
1981; Leonov et al., 1992; Leonov et al., 1996; Leonov & Smirnova, 2000; Kroupa,
2003; Best, 2003, Razavi, 2003; Egan, 2000; Abramovitch, 2002]. In this study the
technique of PLL description on three levels is suggested:

1) on the level of electronic realizations,
2) on the level of phase and frequency relations between inputs and outputs

in block diagrams,
3) on the level of differential and integro-differential equations.
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The second level, involving the asymptotical analysis of high-frequency os-
cillations, is necessary for the well-formed derivation of equations and for the
passage to the third level of description. For example, the main for the PLL theory
notion of phase detector is formed exactly on the second level of consideration. In
this case the characteristic of phase detector depends on the class of considered
oscillations. While in the classical PLL it is used the oscillation multipliers, for
harmonic oscillations the characteristic of phase detector is also harmonic, for the
impulse oscillations (for the same electronic realization of feedback loop) that is
a continuous piecewise-linear periodic function.

In the present work the development of the above-mentioned technique of
PLL is proposed. Here for the standard electronic realizations, the characteristics
of phase detectors are computed and the differential equations, describing the
PLL operation, are derived.

Here the classical ideas by Viterbi [Viterbi, 1966] are extended and general-
ized for design of PLL with pulse modulation. Introduction of a relay element in
the block diagram after filter is essentially new construction for floating PLL with
respect to previous design of floating PLL for radio engineering [Viterbi, 1966].
In this work it is shown that the main requirement to PLL for multiprocessor
systems is global stability. Necessary and sufficient conditions of global stability
for floating PLL are obtained. For the proof of these results the direct Lyapunov
method is applied.

3.2.2 Block diagram and mathematical model of PLL

Consider a PLL on the first level (Fig. 8)

FIGURE 8 Electronic circuit of PLL

Here OSCmaster is a master oscillator, OSCslave is a slave oscillator, which
generates high-frequency "almost harmonic oscillations"

fj(t) = Aj sin(ωj(t)t + ψj). (190)

Block
⊗

is a multiplier of oscillations of f1(t) and f2(t). At its output the
signal f1(t) f2(t) occurs. The relations between the input ξ(t) and the output σ(t)



85

of linear filter have the form

σ(t) = α0(t) +

t∫
0

γ(t − τ)ξ(τ) dτ.

Here γ(t) is an impulse transient function of filter, α0(t) is an exponentially damped
function, depending on the initial data of filter at the moment t = 0.

Now we reformulate the high-frequency property of oscillations f j(t) to ob-
tain the following condition.

Consider the great fixed time interval [0, T], which can be partitioned into
small intervals of the form [τ, τ + δ], (τ ∈ [0, T]), where the following relations

|γ(t) − γ(τ)| ≤ Cδ, |ωj(t) − ωj(τ| ≤ Cδ,

∀ t ∈ [τ, τ + δ], ∀ τ ∈ [0, T],
(191)

|ω1(τ) − ω2(τ)| ≤ C1, ∀ τ ∈ [0, T], (192)

ωj(t) ≥ R, ∀ t ∈ [0, T] (193)

are satisfied. Here we assume that the quantity δ is sufficiently small with respect
to the fixed numbers T, C, C1, the number R is sufficiently great with respect to
the number δ.

The latter means that on the small intervals [τ, τ + δ] the functions γ(t) and
ωj(t) are "almost constants" and the functions f j(t) rapidly oscillate as harmonic
functions. It is clear that such conditions occur for high-frequency oscillations.

Consider two block diagrams described in Fig. 9 and 10.

FIGURE 9 Multiplier and filter with transfer function K(p)

Filter

K(p)PD

FIGURE 10 Phase detector and filter
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Here θj(t) = ωj(t)t + Ψj are phases of the oscillations f j(t), PD is a nonlin-
ear block with the characteristic ϕ(θ) (being called a phase detector or discrimina-
tor). The phases θj(t) enter the inputs of PD block and the output is the function
ϕ(θ1(t) − θ2(t)).

The signals f1(t) f2(t) and ϕ(θ1(t) − θ2(t)) enter the same filters with the
same impulse transient function γ(t). The filter outputs are the functions g(t)
and G(t) respectively.

A classical PLL synthesis is based on the following result [Viterbi, 1966]:

Theorem 14 If conditions (191)–(193) are satisfied and

ϕ(θ) =
1
2

A1A2 cos θ,

then for the same initial data of filter the following relation

|G(t) − g(t)| ≤ C2δ, ∀ t ∈ [0, T].

is valid. Here C2 is a certain number not depending on δ.

Thus, the outputs of two block diagrams in Fig. 9 and Fig. 10: g(t) and G(t),
respectively, differ little from each other and we can pass (from a standpoint of
the asymptotic with respect to δ) to the following description level, namely to the
level of phase relations 2).

In this case a block diagram in Fig. 8 passes to the following block diagram
(Fig. 11)

PD

FIGURE 11 Block diagram of PLL on the level of phase relations

Consider now the high-frequency oscillators, connected by a diagram in
Fig. 8. Here

f j(t) = Ajsign (sin(ωj(t)t + ψj)). (194)

We assume, as before, that conditions (191)–(193) are satisfied.
Consider a 2π-periodic function ϕ(θ) of the form

ϕ(θ) =

{
A1A2(1 + 2θ/π) for θ ∈ [−π, 0],

A1A2(1 − 2θ/π) for θ ∈ [0, π].
(195)

and block diagrams in Fig. 9 and 10.
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Theorem 15 If conditions (191)–(193) are satisfied and the characteristic of phase detec-
tor ϕ(θ) has the form (195), then for the same initial data of filter the following relation
holds

|G(t) − g(t)| ≤ C3δ, ∀ t ∈ [0, T].

Here C3 is a certain number not depending on δ.

Theorem 15 is a base for the synthesis of PLL with impulse oscillators. It permits
us for the impulse clock oscillators to consider two block diagrams in parallel:
on the level of electronic realization (Fig. 8) and on the level of phase relations
(Fig. 11), where the common principles of the phase synchronization theory can
be applied. Thus, we can construct the theory of phase synchronization for the
distributed system of clocks in multiprocessor cluster.

Let us make a remark necessary to derive the differential equations of PLL.
Consider a quantity

θ̇j(t) = ωj(t) + ω̇j(t)t.

For the well-synthesized PLL, namely possessing the property of global sta-
bility, we have an exponential damping of the quantity ω̇j(t):

|ω̇j(t)| ≤ Ce−αt.

Here C and α are certain positive numbers not depending on t. Therefore
the quantity ω̇j(t)t is, as a rule, sufficiently small with respect to the number R
(see condition (191)– (193)).

From the above we can conclude that the following approximate relation

θ̇j(t) = ωj(t) (196)

is valid. When derived the differential equations of this PLL, we make use of a
block diagram in Fig. 11 and relation (196), which is assumed to be valid precisely.

Note that, by assumption, the control law of tunable oscillators is linear:

ω2(t) = ω2(0) + LG(t). (197)

Here ω2(0) is the initial frequency of tunable oscillator, L is a certain num-
ber, and G(t) is a control signal, which is a filter output (Fig. 11).

Thus, the equation of PLL is as follows

θ̇2(t) = ω2(0) + L(α0(t) +

t∫
0

γ(t − τ). ϕ(θ1(τ) − θ2(τ))dτ).

Assuming that the master oscillator is such that ω1(t) ≡ ω1(0), we obtain
the following relations for PLL

(θ1(t) − θ2(t))• + L(α0(t) +

t∫
0

γ(t − τ).

ϕ(θ1(τ) − θ2(τ))dτ) = ω1(0)− ω2(0).

(198)
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This is an equation of PLL.
By a similar approach we can conclude that in PLL it can be used the filters

with transfer functions of more general form

K(p) = a + W(p),

where a is a certain number, W(p) is a proper fractional rational function. In this
case in place of equation (198) we have

(θ1(t) − θ2(t))• + L(a(ϕ(θ1(t) − θ2(t))+

+ α0(t) +

t∫
0

γ(t − τ)ϕ(θ1(τ) − θ2(τ))dτ) =

= ω1(0)− ω2(0).

(199)

In the case when the transfer function of the filter a +W(p) is non-degenerate,
i.e. its numerator and denominator do not have common roots, equation (199) is
equivalent to the following system of differential equations

ż = Az + bψ(σ)

σ̇ = c∗z + ρψ(σ).
(200)

Here A is a constant (n × n)-matrix, b and c are constant (n × n)-vectors, ρ is a
number, and ψ(σ) is a 2π-periodic function, satisfying the relations:

ρ = −aL,

W(p) = L−1c∗(A − pI)−1b,

ψ(σ) = ϕ(σ) − ω1(0) − ω2(0)

L(a + W(0))
.

Note that in (11) σ = θ1 − θ2.
Using Theorem 15, we can make the design of a block diagram of floating

PLL, which plays a role of the function of frequency synthesizer and the function
of correction of the clock-skew (see parameter τ in Fig. 12).

Such a block diagram is shown in Fig. 12.
Here OSCmaster is a master oscillator, Delay is a time-delay element, Filter is

a filter with transfer function

W(p) =
β

p + α
,

OSCslave is a slave oscillator, PD1 and PD2 are programmable dividers of frequen-
cies, and Processor is a processor.

The Relay element plays a role of a floating correcting block. The introduc-
tion of it allows us to null a residual clock skew, which arises for the nonzero
initial difference of frequencies of master and slave oscillators.

Note that the electronic realization of clock and delay can be found in [Ugru-
mov, 2000; Razavi, 2003] and that of multipliers, filters, and relays in [Aleksenko,
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FIGURE 12 Block diagram of PLL

2004; Razavi, 2003]. The description of dividers of frequency can be found in
[Solonina et al., 2000].

Assume, as usual, that the frequency of master oscillator is constant, namely
ω1(t) ≡ ω1 = const. The parameter of delay line T is chosen in such a way that
ω1(T + τ) = 2πk + 3π/2. Here k is a certain natural number, ω1τ is a clock skew.

By Theorem 15 and the choice of T the block diagram, shown in Fig. 12, can
be changed by the close block diagram, shown in Fig. 13.

Here ϕ(θ) is a 2π-periodic characteristic of phase detector. It has the form

ϕ(θ) =

⎧⎨⎩
2A1A2θ/π for θ ∈ [−π

2 , π
2 ]

2A1A2(1 − θ/π) for θ ∈ [π
2 , 3π

2 ],
(201)

θ2(t) =
θ3(t)

M
, θ4(t) =

θ3(t)
N

, where the natural numbers M and N are parameters

of programmable divisions PD1 and PD2, respectively.

FIGURE 13 Equivalent block diagram of PLL
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For a transient process (a capture mode) the following conditions:

lim
t→+∞

(θ4(t) − M
N

θ1(t)) =
2πkM

N
(202)

(a phase capture) and

lim
t→+∞

(θ̇4(t) − M
N

θ̇1(t)) = 0 (203)

(a frequency capture), must be satisfied.
Relations (202) and (203) are the main requirements to PLL for array proces-

sors. The time of transient processors depends on the initial data and is suffi-
ciently large for multiprocessor system [Leonov & Seledzhi, 2002; Kung, 1988].

Assuming that the characteristic of relay is of the form Ψ(G) = signG and
the actuating element of slave oscillator is linear, we have

θ̇3(t) = RsignG(t) + ω3(0), (204)

where R is a certain number, ω3(0) is the initial frequency, and θ3(t) is a phase of
slave oscillator.

Taking into account relations (204), (190), (201) and the block diagram in
Fig. 13, we have the following differential equations of PLL

Ġ + αG = βϕ(θ)

θ̇ = − R
M

signG + (ω1 − ω3(0)

M
).

(205)

Here θ(t) = θ1(t) − θ2(t).

3.2.3 Criterion of global stability of PLL

Rewrite system (205) as follows

Ġ = −αG + βϕ(θ)

θ̇ = −F(G),
(206)

where

F(G) =
R
M

signG − (ω1 − ω3(0)

M
).

Theorem 16 If the inequality

|R| > |Mω1 − ω3(0)| (207)

is valid, then any solution of system (206) tends to a certain equilibrium as t → +∞.
If the inequality

|R| < |Mω1 − ω3(0)| (208)

is valid, then all the solutions of system (206) tends to infinity as t → +∞.
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Consider equilibria for system (206). For any equilibrium we have

θ̇(t) ≡ 0, G(t) ≡ 0, θ(t) ≡ πk.

Theorem 17 Assume that relation (207) is valid. In this case if R > 0, then the follow-
ing equilibria

G(t) ≡ 0, θ(t) ≡ 2kπ (209)

are locally asymptotically stable and the following equilibria

G(t) ≡ 0, θ(t) ≡ (2k + 1)π (210)

are locally unstable. If R < 0, then equilibria (210) are locally asymptotically stable and
equilibria (209) are locally unstable.

Thus, for relations (202) and (203) to be satisfied it is necessary to choose the
parameters of system in such a way that the inequality holds

R > |Mω1 − ω3(0)|. (211)

3.2.4 Proofs of theorems

Proof of Theorem 14
For t ∈ [0, T], we obviously have

g(t) − G(t) =

t∫
0

γ(t − s) [A1A2 sin(ω1(s)s − ψ1)·

sin(ω2(s)s + ψ2)− ϕ(ω1(s)s − ω2(s)s + ψ1 − ψ2] ds =

= −A1A2

2

t∫
0

γ(t − s) [cos ((ω1(s) + ω2(s))s + ψ1 + ψ2)] ds.

Consider the intervals [kδ, (k + 1)δ], where k = 0, . . . , m and the number m
is such that

t ∈ [mδ, (m + 1)δ].

From conditions (191)–(193) it follows that for any s ∈ [kδ, (k + 1)δ] the
relations

γ(t − s) = γ(t − kδ) + O(δ) (212)

ω1(s) + ω2(s) = ω1(kδ) + ω2(kδ) + O(δ) (213)

are valid on each interval [kδ, (k + 1)δ]. Then by (213) for any s ∈ [kδ, (k + 1)δ]
the estimate

cos ((ω1(s) + ω2(s))s + ψ1 + ψ2) =

= cos ((ω1(kδ) + ω2(kδ))s + ψ1 + ψ2) + O(δ)
(214)



92

is satisfied.
Relations (212) and (214) imply that

t∫
0

γ(t − s) [cos ((ω1(s) + ω2(s))s + ψ1 + ψ2)] ds =

=
m

∑
k=0

γ(t − kδ)

(k+1)δ∫
kδ

[cos ((ω1(kδ) + ω2(kδ))s + ψ1 + ψ2)] ds + O(δ).

(215)

From (193) we have the estimate

(k+1)δ∫
kδ

[cos ((ω1(kδ) + ω2(kδ))s + ψ1 + ψ2)] ds = O(δ2)

and the fact that R is sufficiently great (Fig. 14) as compared with δ. Then we

FIGURE 14 High frequency oscillation

have

t∫
0

γ(t − s) [cos ((ω1(s) + ω2(s))s + ψ1 + ψ2)] ds = O(δ).

�

Proof of Theorem 15
It is well known that for a filter with the impulse transition function γ(t),

input ε(t), output σ(t), and eigen oscillation α(t), the following relation holds

σ(t) = α(t) +

t∫
0

γ(t − s)ξ(s) ds.
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In this case the formula holds

g(t) − G(t) =
t∫

0
γ(t − s)[A1 A2sign[sin(ω1(s)s+

+ψ1) sin(ω2(s)s + ψ2)]−
−ϕ(ω1(s)s − ω2(s)s + ψ1 − ψ2)] ds.

Partitioning the interval [0, t] into the intervals [kδ, (k + 1)δ] and making use
of assumptions (193) and (194), we replace the above integral with the following
sum

m
∑

k=0
γ(t − kδ)[

(k+1)δ∫
kδ

A1A2sign[cos((ω1(kδ)−
ω2(kδ))kδ + ψ1 − ψ2)− cos((ω1(kδ)+
+ω2(kδ))s + ψ1 + ψ2)] ds − ϕ((ω1(kδ)−
−ω2(kδ))kδ + ψ1 − ψ2)δ].

The number m is chosen in such a way that t ∈ [mδ, (m + 1)δ]. Since (ω1(kδ) +
ω2(kδ))δ � 1, the relation

(k+1)δ∫
kδ

A1A2sign[cos((ω1(kδ) − ω2(kδ))kδ + ψ1 − ψ2)−

− cos((ω1(kδ) + ω2(kδ))s + ψ1 + ψ2)] ds ≈
≈ ϕ((ω1(kδ) − ω2(kδ))kδ + ψ1 − ψ2)δ, (216)

is satisfied. Here we applied the relation

A1A2

(k+1)δ∫
kδ

sign[cos α − cos(ωs + ψ0)] ds ≈ ϕ(α)δ

for ωδ � 1, α ∈ [−π, π], ψ0 ∈ R1.
Formula (216) yields inequality (195).
�

To prove Theorem 16, we formulate an extension of Barbashin–Krasovsky
theorem to dynamical systems with a cylindrical phase space. Consider the dif-
ferential inclusion

dx
dt

∈ f (x), x ∈ Rn, t ∈ R1, (217)

where f (x) is a semicontinuous vector function whose values are the bounded
closed convex sets f (x) ⊂ Rn. Here Rn is an n-dimensional Euclidean space.
Recall now the basic definitions of the theory of differential inclusions.

Definition 14 We say that Uε(Ω) is an ε-neighborhood of the set Ω if

Uε(Ω) = {x | inf
y∈Ω

|x − y| < ε},

where | · | is the Euclidean norm in Rn.
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Definition 15 A function f (x) is called semicontinuous at a point x if for any ε > 0
there exists a number δ(x, ε) > 0 such that the following containment holds

f (y) ∈ Uε( f (x)), ∀ y ∈ Uδ(x).

Definition 16 A vector function x(t) is called a solution of differential inclusion if it
is absolutely continuous and for the values of t such that the derivative ẋ(t) exists, the
inclusion

ẋ(t) ∈ f (x(t))

is valid.

Under the above assumptions on the function f (x) the theorem on the existence
and continuability of solution of differential inclusion (217) holds [Yakubovich
et al., 2004]. We assume that linearly independent vectors d1, . . . , dm satisfy the
relation

f (x + dj) = f (x), ∀ x ∈ Rn. (218)

As a rule, d∗j x is called a phase or angular coordinate of system (217). Since
property (218) allows us to introduce a cylindrical phase space [Yakubovich et al.,
2004], system (217) with property (218) is often called a system with cylindrical
phase space.

The following theorem is an extension of the well–known Barbashin–Krasovsky
theorem to differential inclusions with cylindrical phase space.

Theorem 18 Suppose that there exists a continuous function V(x) : Rn → R1 such
that the following conditions hold:

1) V(x + dj) = V(x), ∀x ∈ Rn, ∀j = 1, . . . , m;

2) V(x) +
m
∑

j=1
(d∗j x)2 → ∞ as |x| → ∞;

3) for any solution x(t) of inclusion (217) the function V(x(t)) is nonincreasing;
4) if V(x(t)) ≡ V(x(0)), then x(t) is an equilibrium.
Then, any solution of inclusion (217) tends to a stationary set as t → +∞.

Recall that if the solution tends to the stationary set Λ as t, we have

lim
t→+∞

inf
z∈Λ

|z − x(t)| = 0.

A proof of Theorem 18 can be found in [Yakubovich et al., 2004].
Proofs of Theorems 16 and 17
Let R > |Mω1 − ω2(0)|. Consider the Lyapunov function

V(G, θ) =

G∫
0

Φ(u)du + β

θ∫
0

ϕ(u)du,
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where Φ(G) is a single-valued function coinciding with F(G) for G 
= 0. At the
point G = 0 the function Φ(G) can be defined arbitrary. At the points t such that
G(t) 
= 0, we have

dV(G(t), θ(t))
dt

= −αG(t)F(G(t)). (219)

Note that for G(t) = 0 the first equation of system (201) becomes

Ġ(t) 
= 0 for θ(t) 
= kπ.

It follows that there are no sliding solutions of system (201). Then relation (219)
and the inequality F(G)G > 0, ∀G 
= 0 result in the fact that conditions (192)
and (193) of Theorem 18 are satisfied. Moreover V(G, θ + 2π) ≡ V(G, θ) and
V(G, θ) → +∞ as G → +∞. Then conditions (190) and (191) of Theorem 5 are
satisfied. Hence any solution of system (201) tends to a stationary set as t → +∞.
Since a stationary set of system (201) consists of isolated points, any solution of
system (201) tends to equilibrium as t → +∞.

If the inequality
− R > |Mω1 − ω3(0)| (220)

is valid, then in place of the function V(G, θ) we can consider the Lyapunov
function W(G, θ) = −V(G, θ) and repeat the above considerations.

Due to inequality (220) we have the relation
F(G) 
= 0, ∀G ∈ R1. Together with the second equation of system (201) this
implies that

lim
t→+∞

θ(t) = ∞.

Thus, Theorem 16 is completely proved.
To prove Theorem 17, we note that if condition (207) is valid in a neighbor-

hood of the points G = 0, θ = 2πk, then the function V(G, θ) has the property

V(G, θ) > 0 for |G| + |θ − 2kπ| 
= 0.

Taking into account (219), from the above we obtain the asymptotic stability
of these equilibria.

In a neighborhood of the points G = 0, θ = (2k + 1)πk the function V(G, θ)
has the property

V(0, θ) < 0 for θ 
= (2k + 1)π.

Then by (219) we obtain the instability of these equilibria.
If inequality (220) holds, then in place of the function V(G, θ) we make use

of the function W(G, θ) = −V(G, θ) and repeat the considerations.
�



YHTEENVETO (FINNISH SUMMARY)

Käsillä oleva työ keskittyy diskreettien ja jatkuvien dynaamisten systeemien kva-
litatiivisen teorian kysymyksiin ja niiden sovelluksiin.

Ensimmäisessä luvussa tarkastellaan approksimatiivista menetelmää dis-
kreettien ja jatkuvien dynaamisten systeemien stabiiliuden ja epästabiiliuden tut-
kimiseksi seuraten A.M. Lyapunovin, O. Perronin ja N.G. Chetaevin töitä. Ajassa
muuttuvan liikkeen ensimmäisen kertaluvun approksimaation klassinen stabii-
lisuusongelma todistetaan yleisessä muodossa. Kappaleessa tutkitaan myös al-
kuperäisen systeemin ja ensimmäisen kertaluvun approksimoivan systeemin rat-
kaisujen karakteristisen eksponentin merkkimuutoksen Perronin efektejä samoil-
la lähtöarvoilla.

Toisessa luvussa tarkastellaan kaksiulotteisen autonomisen systeemin kva-
litatiivista käyttäytymistä tilanteessa, jossa ensimmäisen kertaluvun approksi-
maation systeemillä on kaksi puhtaasti imaginääristä ominaisarvoa. Tässä käyte-
tään klassista Poincaren-Lyapunovin menetelmää Lyapunov-lukujen laskemisek-
si, jotka määrittelevät lentoratojen (kiertyvä tai suoristuva) kvalitatiivisen käyt-
täytymisen tasossa. Uusi menetelmä, jossa ei tarvita muunnosta normaalimuo-
toon, kehitetään Lyapunov-lukujen laskemiseksi Euklidisissa koordinaateissa ja
aika-alueella ja sille löydetään sovelluskohteita. Tämän menetelmän edut synty-
vät sen ideologisesta yksinkertaisuudesta ja visuaalisesta voimasta. Yleiset kaa-
vat kolmannen Lyapunov-luvun esittämiseksi alkuperäisen systeemin kertoimien
avulla on löydetty käyttäen apuna moderneja symbolisen laskennan tietokoneoh-
jelmia.

Kolmas luku liittyy faasisynkronisaation matemaattisten mallien differenti-
aaliyhtälöiden kvalitatiivisen teorian sovelluksiin, kuten yhdistettyjen heilurien
systeemeihin Huygensin ongelmassa ja systeemien faasilukittujen silmukoiden
taajuuskontrollointiin.



APPENDIX 1 COMPUTATION OF THE FIRST, SECOND, AND
THIRD LYAPUNOV QUANTITIES IN THE
GENERAL FORM

Consider a complete system with the expansion of the right-hand side up to the
seventh order

ẋ = −y + f20x2 + f11xy + f02y2 + f30x3 + f21x2y + f12xy2 + f03y3+
+ f40x4 + f31x3y + f22x2y2 + f13xy3 + f04y4+
+ f50x5 + f41x4y + f32x3y2 + f23x2y3 + f14xy4 + f05y5+
+ f60x6 + f51x5y + f42x4y2 + f33x3y3 + f24x2y4 + f15xy5 + f06y6

+ f70x7 + f61x6y + f52x5y2 + f43x4y3 + f34x3y4 + f25x2y5 + f16xy6 + f07y7+
+o((|x| + |y|)7),

ẏ = x + g20x2 + g11xy + g02y2 + g30x3 + g21x2y + g12xy2 + g03y3+
+g40x4 + g31x3y + g22x2y2 + g13xy3 + g04y4+
+g50x5 + g41x4y + g32x3y2 + g23x2y3 + g14xy4 + g05y5+
+g60x6 + g51x5y + g42x4y2 + g33x3y3 + g24x2y4 + g15xy5 + g06y6

+g70x7 + g61x6y + g52x5y2 + g43x4y3 + g34x3y4 + g25x2y5 + g16xy6 + g07y7+
+o((|x| + |y|)7).

(221)
For the first Lyapunov quantity we have [Bautin, 1949,1952]

L1 =
π

4
(g21 + f12 + 3 f30 + 3g03 + f20 f11 + f02 f11 − g11g20 + 2g02 f02 − 2 f20g20 − g02g11).

Note that since T̃1 = 0, the residual of crossing time does not influence L1.
To compute the second Lyapunov quantity, we obtain the coefficients T̃2 and

T̃3 of the expansion of crossing time residual. They are the following

T̃2 =
π

12
(−9g30 + 4 f 2

20 + 9 f03 − 3g12 + 10g2
20 + 10 f 2

02 + 4g2
02 + g2

11 + f 2
11 + 3 f21−

−5 f20g11 − f11g20 − 5 f11g02 + 10g02g20 − f02g11 + 10 f20 f02),

T̃3 = − π

18
(2 f20 + f02 + g11)(−9g30 + 4 f 2

20 + 9 f03 − 3g12 + 10g2
20 + 10 f 2

02 + 4g2
02

+g2
11 + f 2

11 + 3 f21 − 5 f20g11 − f11g20 − 5 f11g02 + 10g02g20 − f02g11 + 10 f20 f02).

From the condition L1 = 0 we obtain the coefficient g03

g03 = −1
3
(g21 + f12 + 3 f30 + f20 f11 + f02 f11 − g11g20 + 2g02 f02 − 2 f20g20 − g02g11)

and the expression for the second Lyapunov quantity

L2 = − π

72
(−66 f20g04 − 3 f11g30 f20 − 24g20g02g21 + 12 f30g11 f02 + 4 f11 f 2

20g11 −
12 f11 f21 f20 + 2g20g3

11 − 9g11g02g12 − 12 f20 f11 f03 − 12g11g02 f03 + 3g20 f12 f11 + 9g21g30 −
6 f02 f11g12 + 9g20g11g2

02 + 30 f20g02g12 + 30g02 f21 f20 − 60g04 f02 + g2
11 f11 f20 − 5 f11 f 3

20 −
21 f20 f13 − 3 f 3

11 f20 − 9g02g21 f11 + 7g11g21 f02 − 5 f11g11 f 2
02 + 5 f 2

02 f11 f20 − 3g11g20 f21 +
6g02 f20 f 2

11 + 9g21 f03 − 3 f30 f 2
11 + 15 f11 f40 − 21g11g30g02 − 6g11 f03 f11 + f11 f02g2

11 −
18g20 f03 f20 − 42g20g02 f30 − 6g11g12g20 − 30 f 2

02g20 f20 + 3 f 2
11g02 f02 + 60 f40g20 + 9g11g40 +

24 f20g20 f21 − 9g11g20 f03 − 10g11 f 2
20g02 + 18g02g12 f02 − 6g11 f11g30 − 24 f20 f03g02 −

30 f03 f02g02 − 24g11g20g30 − 12 f11 f30g02 − 3g12 f11 f20 + f12g2
11 − 9 f21 f30 + 27 f30g30 +
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3 f30g2
11 + 15 f30g2

02 − 9 f02 f31 − 28g20 f02 f 2
20 − 2g2

11g21 − 3 f22 f11 − 14 f12 f 2
20 − 6 f12g12 +

27g13g02 − 3 f02 f 3
11 + 7 f20g21g11 + 3g2

20 f11 f20 − 10g02g2
11 f20 − 10 f02 f12 f20 − 12g20 f30 f11 +

6 f02 f21g20 + 18 f02 f11g2
02 + 3 f12g02 f11 + 6g20g02 f12 + 18g2

02 f12 + 9g13g20 − 3 f12 f 2
11 −

45g2
20 f30 − 15 f13 f02 + 30 f20g3

20 − 18g02 f04 + 18 f20g40 − 21g20 f 2
20g11 + 2g02g3

11 + 3 f02g20 f 2
11 +

20 f02 f 2
20g02 − 9g2

02g21 − 9g21g20 f11 − 9 f04 f11 + 6 f22g20 + 45 f30 f 2
02 + 15g11g3

20 − 15g11g04 +
12 f02g02 f21 − 5 f12g11 f20 + 18g12g20 f20 − 5 f12g11 f02 + 20 f02g21 f20 + 21g02g31 − 30g20g2

02 f20 +
6g20g12 f02 + 12 f22g02 + 3 f21g21 + 18 f 3

20g02 + 24g11g2
20g02 + 18 f20g02g2

20 + 6 f11g31 −
6g22 f02 + 15g31g20 + 3g22g11 − 12g22 f20 − 9 f30g12 − 18 f20g3

02 − 24 f20g02g30 + 15 f20 f11g2
02 −

7g20 f02g2
11 + 6g20 f02 f11g02 − 6g11 f13 − 28 f02g11g20 f20 − 12g11 f20g02 f02 + 9g02g11 f11g20 −

9 f02 f21 f11 − f11g11 f02 f20 − 15 f30 f 2
20 + 10 f 2

02 f20g02 − 8g2
11 f02g02 + 42 f20 f30 f02 − 15g11g20 f 2

02 +
6 f20g20 f11g02 − 6 f21 f12 + 6g20 f 2

11 f20 + 66 f40g02 + 27 f30 f03 − 45g05 − 9g23 + 15g21 f 2
02 −

27 f20 f31 − 9g41 + 3g21g12 + 9g11g2
20 f11 − 15 f11 f02 f03 − 45 f50 + 12 f30g11 f20 + 10g20 f 3

20 −
48 f20g20g30 − 10g02 f 2

02g11 − 9g2
11g20 f20 + 13g21 f 2

20 − 9 f14 − 9 f32 − 15g21g2
20).

For the first time this result was apparently obtained by Serebryakova [Sere-
bryakova, 1959].

To compute the third Lyapunov quantity, we obtain T̃4:

T̃4 =
π

1152
(784 f 4

20 + 1540g4
20 + 49g4

11 − 352g21g20g11 + 48g2
21 − 336 f40g11 +

2616 f 2
20 f03 + 480g22g02 + 200g2

20 f 2
02 + 700 f11g3

20 + 270 f03g30 − 154 f20g3
11 + 1728g40g02 +

424g2
11g2

02 − 48 f22g11 + 54 f03 f21 + 453 f 2
02g2

11 − 2184 f 2
20g30 + 400g4

02 + 864 f 2
30 + 1540 f 4

02 +
556g2

20 f02g11 + 945g2
30 + 240 f 2

12 + 768 f20 f40 + 2352 f20 f02g2
02 − 320g11g21g02 − 180g2

20 f20g11 −
1134 f11g30g20 + 5172 f20 f03 f02 + 513 f 2

03 + 153g2
12 + f 4

11 − 762 f11 f03g02 − 1800 f 2
20g20 f11 −

708 f20g20g11g02 − 888g12g2
02 − 84 f21g2

20 + 1040 f 2
02g2

02 + 432g40 f11 + 4692 f 2
20 f 2

02 + 648 f21g2
02 +

1180 f 3
02g11 − 96g21 f02g02 − 198 f11g30g02 − 480 f12g20 f02 − 1500g12g20g02 + 228 f 2

20 f02g11 +
912 f02 f12 f11 − 1944g30g2

02 + 672 f02 f40 − 48g22 f11 + 402 f03g2
11 + 2772g2

20g2
02 − 63 f 2

20g2
11 +

150 f21g2
11 + 444 f21 f 2

02 + 3300 f03 f 2
02 + 384 f22 f02 + 432g11 f04 − 712 f11g3

02 + 880 f20 f12 f11 −
18 f11 f03g20 + 1992 f20 f 2

02g11 + 162 f20 f21g11 − 2080 f20 f12g02 − 150 f11 f02g11g02 − 828 f11g20g2
02 −

96 f11 f30g11 + 1392 f11 f30 f02 + 980g2
11g20g02 + 64 f11 f20g21 − 64 f12 f11g11 − 6 f11 f21g20 −

1812g30 f20 f02 + 112g11 f12g02 − 2744 f11 f 2
20g02 − 1280 f20g20 f12 + 680 f 2

02g20g02 + 80 f12g20g11 −
4164 f20 f02 f11g02 − 1212 f20 f02g12 − 408 f20g11g2

02 + 102 f11g20g12 − 3552 f20 f30g20 +
22 f 2

11 f20g11 − 1128 f 2
20g12 − 48g20 f13 + 696 f 2

11 f 2
20 + 672g04g20 + 2336 f 2

20g2
02 − 162 f21g12 +

96g31g11 + 50 f 2
11g2

11 + 1128 f03g2
02 − 3780g30g2

20 + 21 f 2
11g2

20 + 480 f20 f22 − 432g02 f31 +
2016g40g20 + 3080g3

20g02 + 66 f 2
11 f03 − 48 f02g31 + 768g04g02 + 1728 f04 f20 − 54 f 2

11g12 +
3984g2

20 f 2
20 − 2 f 3

11g20 − 198 f03g12 − 432 f20g13 + 630g30g12 − 46 f11 f20g11g02 + 10 f11g20 f20g11 +
30 f20g12g11 + 318 f20 f02g2

11 + 168 f11g2
20g02 − 4788g30g20g02 − 2400 f02 f30g02 + 1734 f20 f03g11 +

4168 f02 f20g20g02 − 62 f02 f11g20g11 + 816 f30g20g11 − 2260 f11g20 f20 f02 − 82 f11g20g2
11 +

2792g2
20 f20 f02 + 96 f13 f11 + 9 f 2

21 − 1536 f02 f12g02 + 928 f20g20g21 + 620 f02g20g11g02 −
924g12g2

20 + 1424g20g3
02 − 396 f 2

02g12 − 546g30g2
11 + 804g2

20g2
11 − 180 f 2

02g30 − 2 f02g3
11 −

528 f13g02 − 18g30 f 2
11 + 6 f21 f 2

11 + 864 f30 f12 − 198g12g2
11 + 4040 f 3

02 f20 + 369 f 2
11g2

02 −
330 f11g2

11g02 − 1728g20 f30 f02 + 90 f21 f02g11 + 216 f02g11g2
02 + 126 f 2

11g20g02 − 90 f02g11g12 +
1392 f20 f30 f11 + 1614 f03 f02g11 + 5488 f 2

20g20g02 + 32 f11g21g11 − 294g30 f20g11 + 1332 f 2
11 f20 f02 −

1876 f11 f 2
02g02 + 1308 f02 f20 f21 − 3840 f20 f30g02 + 800 f20g21g02 + 692 f 2

11 f 2
02 − 300 f03g2

20 −
288 f30g21 + 2768 f 3

20 f02 − 58 f 3
11g02 − 144g20 f31 − 528g31 f20 − 616 f 3

20g11 + 984 f 2
20 f21 +

384g20g22 − 144 f02g13 + 90 f21g30 + 2016 f02 f04 − 336 f11g04 − 366 f02g30g11 + 96 f02 f11g21 −
18 f02 f 2

11g11 + 468 f03g20g02 − 96 f02g20g21 + 144 f41 − 720g50 + 720 f05 + 144 f23 − 144g14 −
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144g32 + 816 f30g11g02 + 510 f11g12g02 + 444 f21g20g02 − 500g20 f11 f 2
02 − 222 f11 f21g02).

To compute L3 in the general case, applying the mentioned above algo-
rithms, it is necessary to treat the symbolic expressions involving more than two
millions of symbols. Therefore, to overcome the restrictions while using a main
memory in the packets of symbolic computations, we consider the following case

f20 = f30 = f40 = f50 = f60 = f70 = 0.

General system (221) is reduced to this form by the change

yold = ynew + f2x2 + f3x3 + f4x4 + f5x5 + f6x6 + f7x7, (222)

where
f2 = f20,
f3 = f30 + f20 f11,
f4 = f02 f 2

20 + f40 + f11 f30 + f20 f 2
11 + f20 f21,

f5 = f20 f31 + f50 + 3 f11 f02 f 2
20 + f11 f40 + f 2

11 f30 + f20 f 3
11 + 2 f11 f20 f21 + f21 f30 +

2 f20 f02 f30 + f12 f 2
20,

f6 = f22 f 2
20 + f20 f41 + f03 f 3

20 + f60 + 3 f21 f02 f 2
20 + 2 f21 f11 f30 + 3 f21 f20 f 2

11 +
2 f31 f20 f11 + 6 f 2

11 f02 f 2
20 + 3 f11 f12 f 2

20 + 2 f20 f02 f40 + 6 f11 f20 f02 f30 + 2 f 3
20 f 2

02 + 2 f20 f12 f30 +
f21 f40 + f20 f 2

21 + f31 f30 + f11 f50 + f 2
11 f40 + f 3

11 f30 + f20 f 4
11 + f02 f 2

30,
f7 = 3 f21 f 2

11 f30 + 2 f20 f02 f50 + 2 f41 f20 f11 + 4 f21 f20 f 3
11 + 6 f 2

20 f12 f 2
11 + 3 f11 f20 f 2

21 +
2 f31 f20 f21 + 3 f02 f11 f 2

30 + 3 f31 f20 f 2
11 + 6 f 2

20 f 2
02 f30 + 3 f03 f 2

20 f30 + 2 f02 f30 f40 + 2 f20 f22 f30 +
2 f11 f21 f40 + 3 f 2

20 f02 f31 + 3 f 2
20 f12 f21 + 4 f03 f 3

20 f11 + 2 f31 f11 f30 + 4 f 3
20 f12 f02 + 3 f 2

20 f22 f11 +
10 f 3

20 f 2
02 f11 + 2 f20 f12 f40 + 10 f 2

20 f02 f 3
11 + f13 f 3

20 + f 2
21 f30 + f32 f 2

20 + f20 f51 + f41 f30 +
f12 f 2

30 + f31 f40 + f11 f60 + f 2
11 f50 + f 3

11 f40 + f 4
11 f30 + f20 f 5

11 + f21 f50 + f70 + 6 f20 f12 f11 f30 +
6 f20 f02 f11 f40 + 12 f20 f02 f 2

11 f30 + 12 f 2
20 f02 f11 f21 + 6 f20 f02 f21 f30.

Note that this change is nonsingular and does not change the Lyapunov
quantities of system since

ynew(0) = yold(0) = h, ynew(T) = yold(T).

For T̃5 we have
T̃5 = − π

4320
(23130 f03 f 2

02g11 + 2340g2
20 f 2

02g11 + 438 f 2
11g11g20g02 − 1110 f11g11 f21g02 −

720g32g11 + 2304 f04g2
11 − 144 f22g2

11 + 1200g11 f 2
12 − 1020g12 f 3

02 + 1296 f04 f03 + 576g2
02g13 +

576 f04g2
02 − 288 f22g12 − 960 f 2

02g21g02 − 1648g21g2
11g02 − 810 f03g30 f02 − 1856g21g20g2

11 +
2880 f22 f 2

02 + 384g31g2
02 + 1296 f03g13 + 960 f22g2

20 − 1296g30 f04 − 432g12g13 + 720 f41g11 +
4725 f02g2

30 + 1000 f 3
02g2

20 + 960 f12g2
20g02 + 8640g40g02 f02 + 16840g3

20g11g02 − 8420 f 3
02 f11g02 −

1530g30 f 2
02g11 − 20724g30g2

20g11 + 144g12 f11g21 + 2160g40g11 f11 − 2286g12 f 2
02g11 −

2160g02 f31g11 + 149g5
11 + 1002 f03 f02 f 2

11 + 144 f12 f21 f11 − 4056 f02g2
02g12 − 128 f02g2

11 f 2
11 +

12096 f04 f02g11 − 318 f02 f 2
11g12 + 4580g02 f 2

02g20g11 + 1014 f 2
11g20 f02g02 − 9026 f11 f 2

02g11g02 −
2032 f02g21g11g02 − 864 f02g13g11 − 954g12 f21g11 + 1856 f02g2

02g2
11 − 432 f11g30 f12 +

2790 f11g11g12g02 + 114 f11 f21g20g11 + 7120g3
02 f02g20 + 3360g04 f02g20 − 132g2

20 f21g11 +
7200 f02 f03g2

11 + 3988g20g3
11g02 − 378 f03g30g11 + 144 f 2

11g13 + 2000g4
02g11 + 960g31g2

20 +
1440 f04g2

20 + 864g30g21g20 − 1440 f 2
02g20g21 − 2400 f 2

02 f12g20 − 240 f02 f13g20 + 1920g20g11g22 +
3400 f 3

02g20g02 − 720 f04g02 f11 − 3600g50 f02 + 792 f11g2
20g11g02 + 8640g40g02g11 + 288g21g20g12 −
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864g21g2
02g20 − 864 f03g21g20 + 5040 f 2

02 f11 f12 + 432 f11g30g21 − 4188 f11g2
02g11g20 +

4740 f03 f02g20g02 − 4290 f11 f03g11g02 − 6540g12 f02g20g02 − 810g12 f21 f02 − 846 f02 f03g12 −
6720 f 2

02 f12g02 − 2640 f13g02g11 + 960g31g02g20 − 144g13 f11g20 − 240 f11g22g11 − 290 f 3
11g11g02 +

2364 f21g11g20g02 + 144g12g02g21 + 900 f02 f03g2
20 + 3500 f11 f02g3

20 − 2000g20 f12 f02g11 +
48g21g2

02 f11 + 3344g2
20 f02g2

11 − 2500 f 3
02 f11g20 − 58 f 3

11g20 f02 + 480 f02 f13 f11 + 288 f21g02 f12 −
1440g02g2

20g21 − 2640 f13g02 f02 + 13860g2
02 f02g2

20 + 426 f03 f 2
11g11 − 186 f 2

11g30g11 + 112 f11g21g2
11 +

400g20 f12g2
11 + 10080g20g40g11 − 1302 f21 f02 f11g02 − 432 f11 f03g21 + 1440g2

20g13 − 1962g30g3
11 +

432 f21g13 − 750g3
11g12 + 480 f13 f11g11 + 3884 f11g3

20g11 − 240 f02g22 f11 − 1680g04g11 f11 −
1854g30 f02 f11g02 + 48g02g20 f11g21 − 6006 f11g30g20g11 − 2160g02 f31 f02 − 1440g30g2

11 f02 −
2090 f 2

02g20 f11g11 − 3560 f11g3
02g11 − 18900g30 f02g2

20 − 288 f11 f12g2
02 − 3660g12 f02g2

20 +
6600 f03 f02g2

02 − 9720 f02g2
02g30 − 318g12 f 2

11g11 − 3176g3
02 f02 f11 − 48 f 2

11 f12g20 + 2286 f02g12g30 +
3732 f03g20g11g02 + 2400g22g02 f02 − 720 f02 f31g20 − 4632g2

02g11g12 + 1557 f 2
11 f02g2

02 −
720 f31g11g20 + 1440g02g20g13 + 432 f12 f03 f11 + 144g11g31 f02 + 7312g20g3

02g11 + 688 f02 f11g21g11 +
11520 f04 f 2

02 + 432 f21 f04 + 3429 f 2
03g11 + 720 f41 f02 + 3840g04g02 f02 − 23940g20 f02g30g02 +

1440 f04g02g20 − 5388g12g2
20g11 − 144g21g02 f21 + 192g21 f 2

11g02 − 144 f11 f04g20 + 3360g20g04g11 +
15400g3

20 f02g02 − 144 f12 f 2
11g02 − 288g12g02 f12 − 4146 f03 f02 f11g02 − 8124g20g11g12g02 +

414 f11g20g12g11 − 96g31 f11g20 + 1584 f02 f22g11 − 522g30 f02 f 2
11 + 5320 f 2

02g2
02g11 + 656 f12g2

11g02 −
240g20 f13g11 − 1710 f03g12g11 − 434 f 3

11 f02g02 − 480g02 f22 f11 + 270 f21 f02 f 2
11 + 14724g2

02g2
20g11 +

7700 f 5
02 − 720g14 f02 + 2000g4

02 f02 − 960g21g3
20 + 53 f 4

11 f02 + 7700g4
20 f02 + 384g2

02 f22 +
720 f23 f02 + 240g2

21g11 + 18900 f 3
02 f03 + 3940 f 3

02 f 2
11 + 384 f12g3

02 − 864g30g31 − 864g30 f22 +
333 f02 f 2

21 + 1200 f02 f 2
12 + 477 f02g2

12 + 1736g2
02g3

11 + 720 f23g11 + 3156g2
20g3

11 − 432 f04g12 +
864 f03 f22 − 720g14g11 + 5200 f 3

02g2
02 + 3600 f05g11 + 288g31 f21 + 96g31 f 2

11 + 909g2
12g11 +

462 f21g3
11 − 1296g30g13 + 4725 f 2

03 f02 − 432g21 f03g02 + 288 f21 f02g2
11 + 1854 f 2

02 f21g11 +
3870g12g30g11 − 864g02 f12g30 + 3624 f21 f02g2

02 − 3180 f11g2
02 f02g20 − 48 f 2

11g20g21 +
585 f02g2

20 f 2
11 + 324 f03g2

20g11 − 144 f11 f21g21 + 246g20 f03 f11g11 − 96 f11 f22g20 + 864g02 f03 f12 −
7216 f12 f02g11g02 − 624 f02 f11g2

11g02 + 384g02g20 f12 f11 + 4592 f02g20g2
11g02 − 126 f21 f02g20 f11 +

3180 f21 f02g20g02 + 144 f04 f 2
11 + 4192 f02 f12 f11g11 − 2144g21 f02g20g11 − 1680g04 f02 f11 −

330 f02 f03g20 f11 + 1800 f11g2
20 f02g02 − 432 f02g20 f11g2

11 − 25332g30g20g11g02 − 510 f11g11g30g02 +
960g02g20 f22 − 720g13g02 f11 + 432g02g30g21 + 240 f02g2

21 + 3180 f21 f 3
02 + 576g31g2

11 +
5 f 4

11g11 + 8660g4
20g11 + 288 f22 f21 − 48 f 3

11g21 − 5 f02g4
11 + 1242 f03g3

11 + 154 f 2
11g3

11 +
144g13g2

11 + 45 f 2
21g11 − 3600g11g50 + 3600 f05 f02 + 48 f 3

11 f12 − 720g32 f02 − 900g30 f 3
02 +

864 f03g31 + 11200 f 4
02g11 − 288g31g12 + 720 f 2

02g13 + 96 f22 f 2
11 − 192g3

02g21 + 5045 f 3
02g2

11 +
1391 f 2

02g3
11 + 5589g2

30g11 + 720g31 f 2
02 + 1854 f03 f21 f02 + 540g2

20 f02 f21 + 2160 f02g40 f11 +
1845g2

02 f 2
11g11 − 480g31g02 f11 + 6024g2

02 f03g11 + 30 f 2
11 f21g11 − 288 f02g12g2

11 − 1170 f11g3
11g02 +

2400g02g11g22 + 3082 f 2
02 f 2

11g11 + 162g11 f21g30 + 153 f 2
11g2

20g11 − 414 f02 f21g30 − 10104g30g2
02g11 −

384 f11g2
20g21 − 288g21 f21g20 + 3840g02g04g11 + 1782g12 f02 f11g02 − 5670g20 f02g30 f11 +

414 f02g12g20 f11 + 38 f 3
11g20g11 + 1920 f02g22g20 + 480 f11 f12g2

20 + 960 f12g2
02g20 − 144g12 f12 f11 +

3240g2
02g11 f21 + 10080g20g40 f02 − 266g20 f11g3

11 + 558 f03 f21g11 − 272 f11 f12g2
11).

From L1 = L2 = 0 we obtain g03 and g05

g03 =
1
3
(g11g20 − f11 f02 − 2g02 f02 + g11g02 − f12 − g21),

g05 =
1

45
(6g20 f02 f21 + 2g3

11g20 − 9g2
02g21 + 9g21g30 + 9g21 f03 − 6 f13g11 + 15g20g31 +

27g02g13 + 9g13g20 − 6g22 f02 + 18g2
02 f12 − 6 f21 f12 + 12 f22g02 + 9g11g40 + 21g02g31 +

15g11g3
20 − 6g12 f12 + 3g11g22 − 7g2

11g20 f02 − 15 f13 f02 − 9g21g20 f11 + 6g20 f02g02 f11 +
9g20g11g02 f11 + 3g02 f11 f12 − 15g2

20g21 + 9g11g2
20 f11 − 6g12g11g20 + 7g11g21 f02 − 5g11 f02 f12 −
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21g11g02g30 − 8g2
11g02 f02 − 3g20g11 f21 + 24g11g2

20g02 − 30g02 f02 f03 − 15g11g20 f 2
02 −

24g11g20g30 + g2
11 f11 f02 + 18 f11 f02g2

02 + 6g20 f02g12 − 5g11 f 2
02 f11 + 18g12g02 f02 − 9 f11 f02 f21 −

15 f11 f02 f03 + 3 f02g20 f 2
11 + 3g02 f02 f 2

11 − 9g11g20 f03 + 9g11g2
02g20 − 12g11 f03g02 − 10g11g02 f 2

02 +
6g02g20 f12 + 12g02 f02 f21 − 9g21g02 f11 − 6 f11 f02g12 − 9g12g11g02 − 6g11 f03 f11 − 6g30g11 f11 +
3g20 f12 f11 − 24g21g20g02 − 9 f04 f11 + 3g12g21 + 6g20 f22 + 6 f11g31 − 9 f32 − 9g41 −
9 f14 − 9g23 − 2g2

11g21 + 2g3
11g02 − 9 f31 f02 − 18g02 f04 − 15g11g04 − 3 f02 f 3

11 + g2
11 f12 −

3 f22 f11 + 15g21 f 2
02 + 3g21 f21 − 3 f12 f 2

11 − 60 f02g04).
Then
L3 =

π

1728
(30g02g3

11g30 + 6g3
21 + 36 f02 f11g12g2

20 − 1080g2
02g11g3

20 − 585g11 f11g4
20 −

140g02g11 f 4
02 + 99 f12g02 f11g30 + 1278g2

20g11 f11g30 + 1575g2
02g20g11g30 − 99 f02g20 f11 f31 −

198 f21g2
20g02 f02 − 90 f12g02g3

20 + 144g30 f21g20 f02 + 540g21g4
20 − 54 f12g2

12 + 216g21g2
30 +

630 f02g2
11g3

20 + 189g20 f11g02g11 f 2
02 − 108 f12g02 f11g2

20 + 135g3
02g11g30 − 261 f02g02 f11 f31 +

36g20g04g21 + 72g32g20g11 + 126g21g20g22 + 306g12 f11g20g02 f02 + 18g02g20 f11 f22 +
9g21 f 2

21 + 4g02g5
11 + 4g20g5

11 − 60g3
20g3

11 − 4g21g4
11 + 210g21 f 4

02 − 576 f03g30g20g11 +
27g21g2

12 − 378 f12g2
02 f03 − 6g3

11g20 f21 − 639g2
02g21g30 − 9 f 2

11 f12g30 + 384 f02 f12g02g21 +
6g21g2

11 f21 + 9 f12 f 4
11 + 24g3

11g20g30 − 540g11g5
20 + 405g30g40g11 − 144 f11 f03g11g30 +

9 f02 f 5
11 + 2 f12g4

11 + 63 f02g2
02g20 f 2

11 − 63 f02g02g12 f 2
11 − 90 f11g30g11g12 − 54g2

12 f11 f02 −
27g12 f32 − 105 f11 f 3

02 f21 − 420 f 2
02 f03g11g02 + 234g30 f02g02g12 + 261g3

20g11 f21 + 270g3
02g20g21 −

54g40 f11g02 f02 + 42g20g2
11 f11g21 + 234 f12g2

02g30 − 504 f03g21g20g02 + 54 f02 f 3
11 f21 +

84 f03g20g2
11 f02 − 180g51 f11 + 210g02 f11g20 f 3

02 − 45 f23g20g11 − 180g04 f11g20 f02 − 81g13g22 +
81 f22 f31 − 360g2

02g21 f 2
02 − 81g22g31 − 84 f02g2

02 f11g2
11 − 204 f02 f11g30g2

11 − 18g20 f12 f 3
11 −

30 f12 f21g2
11 + 240g02 f 2

02g11 f21 + 315g13 f12 f02 − 216 f03g41 + 63 f02g02g20 f 3
11 + 180g30g20g11 f 2

11 +
420 f11g2

20g11 f 2
02 + 216 f02g11g20g13 − 81g12g23 − 237 f02g21g11 f11g20 − 105 f 2

02 f12g2
11 −

72g20 f12 f11 f21 + 18 f02g2
02g20 f21 − 135g33g20 + 495g11g50g02 + 135g30g21g12 + 168g12g02g11 f 2

02 +
36 f13 f21g11 + 342 f02g02g20 f31 + 54g31 f21 f11 + 99 f 2

11g30g02 f02 + 102 f02g2
21g02 − 54 f 2

11g40g11 −
90g20g21 f11 f21 − 18 f02g02g12 f21 + 90 f23 f12 + 210 f02 f 2

12g02 + 210 f22 f 2
02g20 − 180g14g20 f02 −

18g2
11g20g13 − 639g21g02 f11g30 + 369 f02g21g11g30 − 210 f 3

02 f13 + 45g14g21 − 840g04 f 3
02 +

72 f02 f11 f 2
21 + 315 f03g20g11 f 2

02 − 225g14g11g02 − 234 f13g02 f11 f02 − 99g11g2
20 f31 − 135g50g21 +

135g2
20 f32 − 306g21g12g2

20 − 9g20g11 f 2
21 + 144 f21g21 f 2

02 − 12g20 f11g02g3
11 + 9g20 f12 f11g2

11 −
81 f32g30 + 189 f04 f13 − 84 f12g2

02g2
11 + 105 f02 f03 f12g11 + 315g11g2

02 f11g30 + 228g20g2
11g02g21 −

27 f41g21 + 72g2
02g21g2

11 − 207g20 f03 f11g21 − 51 f 2
02g02 f11g21 − 70g11 f11 f 4

02 − 455g20g2
11 f 3

02 +
105 f 2

11g20 f 3
02 + 455g21g11 f 3

02 + 288g22g02g20 f02 + 36 f12 f 2
21 − 135g60g11 + 27 f22g20g2

11 +
9 f32 f 2

11 − 54g30g21g2
11 − 15 f 2

11 f12g2
11 + 162g11g20 f 2

11 f 2
02 + 360g2

02g20g11 f 2
02 − 180 f13g2

02g11 +
423g02 f03g31 − 423g02 f03g11g30 − 345 f 2

02g11 f11g30 − 270g3
02g11g2

20 − 90 f 2
11 f21g20 f02 +

21 f12 f02g3
11 − 9 f22g12 f11 − 132g02g3

11g2
20 + 18 f02 f 3

11g2
20 − 420g20g21 f11 f 2

02 − 540g31g3
20 +

54g41 f 2
11 + 180g24 f02 − 885g30g2

11g02 f02 + 105 f22 f 2
02 f11 + 63g21g02 f13 + 1890 f02g06 +

105g20 f12 f11 f 2
02 + 585g21 f11g3

20 − 135 f31g20 f12 + 72g12 f11g31 + 108 f21g40g11 − 414 f41 f02g02 +
18 f11 f03g11g12 − 54g30 f02g22 − 54 f21g40 f02 − 48 f03g21g2

11 − 156 f02g21g11 f11g02 + 18g02g11 f 2
11 f 2

02 −
288g2

20g2
02 f11 f02 + 9 f23g21 + 135 f06 f11 − 270g3

02g20 f12 − 1005g02g30g11 f 2
02 + 108g30g11g22 −

81 f14 f11g02 − 90 f23 f02g20 + 81 f11g20g23 + 144 f02g02 f11g20g30 + 1080g21g02 f11g2
20 +

18g12 f13g11 − 504g2
02g21 f02g11 + 405g23g2

02 − 315 f 3
02 f31 − 45 f21g02 f11g21 + 54g11g12g22 −

90g12g3
20 f02 − 9 f 2

11g22 f02 + 81 f22 f13 − 6 f02 f22g21 + 210g12 f 3
02g20 + 522g41g2

02 + 315 f 2
03 f11 f02 +

450g50g20g11 − 288g12g2
20g02 f02 − 315g20g51 − 54 f03g02g11 f 2

11 + 396 f11g20g41 + 972g02g20g41 +
63 f12g02g20 f 2

11 + 48 f03g20g3
11 + 12g21g02 f11g2

11 + 54g11 f03 f31 − 198g02 f 2
21 f02 + 6 f02g21g11 f 2

11 +
81 f04 f31 + 9 f14g2

11 − 30 f02g2
21 f11 + 450g41g2

20 + 3 f22g11g21 − 210 f 3
02g22 + 345g31 f 2

02 f11 −
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108g12 f02g22 + 90g2
20 f21g11 f11 + 99g20g21 f31 − 9 f12g2

02 f 2
11 + 108g2

12 f02g20 − 36 f11g22g20 f02 −
969g30g20g2

11 f02 − 135g2
02g11g22 − 45 f32g2

11 − 288g22g02g20g11 − 54 f13g02 f11g11 − 495g51g02 −
210 f 2

02g11 f11 f03 + 54g30g13 f11 − 315 f 2
02 f32 − 27 f31g12 f02 + 216g30g20g13 + 36 f12g30g2

11 −
63 f12g02 f11g12 − 135g3

20g13 − 315 f 2
02g23 + 54 f33g11 + 3105g02g2

20g30g11 + 756 f04g04 +
177 f12 f02g11 f11g20 − 243g02g30g11 f21 − 45 f11 f02g2

11 f21 + 171 f13 f21 f02 − 90 f13 f11g20 f02 −
54 f11g30 f21g11 − 54g33 f11 − 315g31g2

02 f11 + 243g31 f21g02 + 30 f02g2
21g20 + 153 f13 f 2

11 f02 +
18g3

11g20g12 − 135 f05g21 + 66 f21 f02g02g2
11 + 234 f02g02 f11g20 f21 + 351g30g02g13 + 117g04 f 2

11 f02 −
504g04 f02g2

11 − 45 f42 f11 + 504 f04 f02g20g11 − 1140g21g02g20 f 2
02 + 63 f02 f14g11 + 18g13g11 f12 −

54 f 4
11g02 f02 + 144g02g20g30 f12 − 81g04g31 − 27 f02 f22g11 f11 + 63 f04g11 f12 − 63 f 2

02g11g22 −
270 f11g11g2

30 + 270 f11g30g31 − 246g20 f02g02 f12g11 + 108 f41 f12 − 45g12g20g11 f21 +
171 f03 f11 f02 f21 + 81 f03g21 f21 + 180g2

20g11 f11g12 + 405g2
02g20g11g12 + 180g11g50 f11 +

54 f11 f03g13 − 252 f02g11 f32 − 108 f 2
11g20g31 − 90g3

20 f21 f02 + 225g20 f11g02g11g12 − 12 f12 f02g11 f 2
11 +

630 f 2
03g02 f02 − 9 f02 f 3

11g12 + 18 f02 f 2
11g20g12 − 30 f 2

12g21 − 30 f13g3
11 + 54g04 f22 − 531g02g30g11g12 −

216 f03g02g11g12 + 45g24g11 − 660 f02g21g11g2
20 + 18g20 f12 f11g12 − 126g12g20g11 f 2

02 −
189g40g31 − 90g3

20 f22 + 81 f21 f04 f11 − 27g32g21 + 351g3
20g11g12 + 420 f 2

02 f12 f11g02 −
48 f02g21g3

11 + 135 f02 f33 + 54g13 f13 − 18g20g11 f11 f31 + 180 f02g02g30 f21 + 252g02g11 f 2
03 −

15 f02 f 3
11g2

11 − 105 f11 f 3
02g2

11 − 198 f02g02 f03 f 2
11 − 396g21g02g20 f21 + 27 f02g2

02 f11 f21 +
72 f03g20g11g02 f11 + 6g22g3

11 + 315 f03 f13 f02 + 27 f21 f32 − 54g31 f31 − 351g33g02 − 351g30g20g11 f21 +
270g3

02 f22 + 135g21g02g20 f 2
11 + 72g02 f03 f22 + 36 f11 f03 f22 − 54 f24g20 − 414 f42g02 −

45 f02 f11g30 f21 − 180g2
02 f03g11 f11 − 90 f13g02g20 f02 + 27 f24 f11 − 675g15g02 + 81g30g04g11 −

18 f22g12g02 + 48g20 f02g4
11 + 54g32 f12 + 135g11g12g40 − 54g02 f 3

11 f12 − 108g12g41 +
540 f02g2

02 f11g12 − 18 f02 f11g30g12 + 42 f03 f12g2
11 − 180g21g02 f11g12 − 135g31g3

02 − 45 f 2
11g20 f03 f02 −

144g02 f03 f21g11 + 27 f04 f 3
11 − 270g20 f11g3

02 f02 − 54 f12g30g12 + 174 f02 f22g20g11 + 228g11g2
02 f11 f 2

02 −
72 f22 f21g20 − 24g21g12g2

11 − 81g30g23 + 216 f03g21g30 − 270 f14g2
02 − 207 f12g02 f11 f21 +

21 f 2
02 f11g3

11 − 48 f 2
02g11 f 3

11 − 162g04g02g21 + 360 f02g40g2
11 − 70 f12g11 f 3

02 + 135 f51 f02 −
81g40g13 − 135g20g15 + 54g12 f14 + 126 f03 f11 f02g12 − 6 f02 f11g12g2

11 − 216g30g41 +
750g3

20g11 f 2
02 + 792 f02g11g02g13 − 540g2

20 f11g31 + 270 f12 f11g3
02 + 405g12g02g13 + 117g32g11g02 −

195 f 2
02g11 f11 f21 + 216g31 f21g20 − 54g40 f12g02 + 36 f12g2

02 f21 + 63 f12g2
02 f11g20 − 270 f02g2

02g20g12 −
9 f11g22 f12 − 135g2

02g21 f21 + 504 f03g04g11 + 45g31 f12 f02 − 84 f03g21 f02g11 − 108 f03g21 f11g02 −
54g20 f04 f11g02 − 135g13 f11g20g02 − 33g11 f 2

12g02 + 270 f06g02 − 102g20g2
21g11 − 216 f21 f04g02 +

54g42 f02 + 27 f14 f 2
11 − 63g04 f11g20g11 − 420g02 f03 f 3

02 − 210 f03 f11 f 3
02 − 900g14 f02g02 +

54 f21 f14 − 210g20g11 f 4
02 + 216g2

02g20 f03g11 − 891g20g11g2
30 + 945g06g11 − 189g04g13 +

54 f04g22 − 216 f24g02 − 135 f03 f32 + 33 f12g02 f11g2
11 − 231 f12 f02g11g12 + 315 f02 f15 −

450g41 f 2
02 + 180 f15g11 − 84g04g3

11 − 27 f21g23 − 108 f21g41 + 54 f11 f03 f21g11 + 45 f 2
11 f12 f21 +

171 f32g2
02 + 396 f12g02g20g12 + 24g20 f 2

02g11 f21 + 18 f23g11 f11 − 54g40 f22 − 27g42g11 +
630 f05 f02g02 − 198g02g2

20 f22 − 504g40 f11g02g11 − 81g20g11g2
12 + 504 f02g2

02g20g2
11 −

18 f22g20 f 2
11 − 42g31g20g2

11 + 210 f12 f22 f02 + 315 f 2
02g20g13 − 90g02 f03g20 f11 f02 − 36g2

11g23 −
135 f03g23 + 81 f34 + 135 f16 + 135g61 + 135 f52 + 135g25 + 81g43 + 945g07 + 27g13 f21g20 −
45g30 f02 f12g11 + 135g30g21 f21 + 180 f12g14 − 180g20 f42 + 1350g21g02g3

20 + 111g21g20g11 f12 +
495g2

02g21 f11g20 − 954g40g2
20g11 − 360 f03g2

20g21 + 57 f12 f22g11 − 1260g04 f 2
02g11 − 9 f13g2

20g11 +
216g11 f03g40 − 36g04g2

20g11 + 420g2
02 f11 f 3

02 + 126 f04 f02g11 f11 + 1140g02g2
20g11 f 2

02 +
267g2

20 f11g2
11 f02 + 210 f12g02g20 f 2

02 − 96g2
21g11g02 + 15 f 2

12g20g11 − 90g32 f02g20 + 63g04 f11g21 −
18g2

11g41 − 27g20 f14 f11 − 360 f02g41g11 − 45 f12 f11g3
20 − 72 f 2

21g20 f02 − 90 f02g02 f11g3
20 −

126g04g12 f02 − 171g22g2
20g11 − 63 f03 f12 f11g02 + 420g02 f 3

02g12 − 1800g21g02g20g30 +
234 f02g2

02 f11g30 + 1548g20 f11g02g11g30 + 189g21g12 f 2
02 − 1026g04g02 f11 f02 − 117 f03g20g11 f21 +
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135g2
20g23 + 18g40g3

11 − 93g21 f 2
11 f 2

02 + 105 f 2
11 f12 f 2

02 + 450g30g21 f 2
02 + 54 f31 f12 f11 −

198g22 f11g02 f02 − 168g02g3
11 f 2

02 + 9 f 3
11 f22 + 81 f03g21g12 + 90 f12g2

20 f21 + 9 f11g30 f22 −
1350g11g02g4

20 − 1236g02g20 f02g11g21 + 63 f03 f12 f 2
11 − 750g2

20g21 f 2
02 − 1494g20g11g02g40 +

90 f12g12g2
20 − 12g2

20g3
11 f11 − 135 f 2

11g2
20g11g02 + 63 f41 f02 f11 + 213 f12g02g11g21 − 90g14g20g11 +

126 f 2
03g11 f11 − 315 f03g21 f 2

02 − 162 f03g20g11g12 − 234g32 f02g02 + 540 f12g2
02g12 + 210g02 f 3

02 f 2
11 −

270 f04g12g02 + 135g2
20 f02 f31 − 180g04g20 f12 − 18 f21 f02g22 − 432g02g2

20g13 + 1260 f03g04 f02 −
180 f41 f02g20 + 144 f04g2

11g02 − 54 f21 f04g20 − 123 f02 f11g21 f12 + 6 f11g21g11 f12 − 27g20 f04 f 2
11 −

171 f04g21g11 − 15 f12 f02g11 f11g02 − 756g02g11g2
30 + 147g21g2

11 f 2
02 − 1080 f11g02g11g3

20 −
468g30g20g11g12 + 1005g31 f 2

02g02 − 522g40g2
02g11 + 378 f04 f03g02 − 54g20 f14g02 + 360 f03g31g20 −

54g12 f02g40 + 117g04 f11 f12 − 315 f 2
02 f13g11 + 81g21g13 f02 − 30 f12 f02g11g2

20 − 147g3
11g20 f 2

02 +
270 f02g3

02 f 2
11 − 54 f12g30 f21 − 495g11g2

02 f11g2
20 + 108 f03 f02 f 3

11 − 9 f02g2
02 f 3

11 + 156g2
20g21g2

11 −
261 f 2

11 f21g02 f02 − 30g2
21g11 f11 + 72 f02 f 2

11g20g30 − 360 f23 f02g02 − 45g02g11 f11g22 −
350g02 f 3

02g2
11 − 6 f12g12g2

11 + 261g12g20g31 − 99g02 f12 f13 − 84 f02g02 f03g2
11 + 450 f 2

02g11g40 −
288g22g02 f12 − 54g02 f 2

11 f22 − 153 f11g20g12g21 − 147 f03 f11 f02g2
11 + 207 f03g2

20g11 f11 +
45g22g21 f11 + 675g30g20g31 + 162g04g02g20g11 + 144g12 f02g20g30 + 204 f02g11 f11g31 −
450 f13g2

02 f02 + 750 f 2
02g20g31 − 189 f02 f13g2

11 − 90g20g22 f12 + 756g30g02g31 + 117g21g02 f31 −
45 f02 f31g2

11 + 135 f23 f02 f11 + 18g12g20 f22 − 1026g04g02 f12 + 12 f11g2
11g31 − 36g31g11 f12 −

27g40 f12 f11 + 63 f 2
11 f31 f02 + 210 f 3

02g20 f21 + 414g12g02g31 + 18g20g2
02 f22 − 1305g02g2

20g31 +
144g30g20 f22 + 144g22g02g21 + 432g02g20g23 + 36 f21 f02g20g12 + 609 f02g31g20g11 +
18g32g11 f11 + 171g2

02 f31 f02 + 630 f 2
02g02g13 + 162g12g13g20 + 9g20 f13g21 + 90g22g2

20 f02 −
90g02 f 2

11g31 − 9 f22 f11g2
02 + 315 f 2

02g13 f11 + 216 f12g02g20 f21 − 24g2
21 f12 + 180g30g02 f22 +

171 f04g2
11g20 + 270g22g2

02 f02 − 30 f03g3
11 f11 + 144 f11 f03g31 + 315 f05 f02 f11 − 405g20g2

02g13 +
36 f22 f21 f11 + 126 f03 f13g11 + 360g02g11 f05 − 612g02g20g12g21 − 378 f02 f03g02g12 + 33g02 f 2

11 f02g2
11 −

111 f12 f02g11 f21 + 126g12 f13 f02 + 108 f21 f02 f31 − 81 f31g30 f02 + 135 f05g20g11 − 9g31g21 f02 +
36g11 f 2

12 f11 + 36 f11g20 f32 − 144 f23g11g02 + 240 f02g11g02 f22 − 288g02 f03 f21 f02 − 738 f11g20g30g21 −
135g02g11g2

12 + 396g11g02g2
20 f21 − 270g2

02g21g12 − 9 f 2
11 f12g12 − 828 f03 f02g2

02 f11 − 936g20g2
02g31 −

45 f13g20 f12 + 54g04 f21 f02 + 45g20 f11g02g11 f21 + 46g02 f02g4
11 − 348 f02g02g12g2

11 + 156 f02g02 f11g20g2
11 +

180 f05g11 f11 + 135 f11g02g23 − 297 f02g11g23 + 522g40g21g02 − 30g31g2
11g02 − 108g02 f02g2

20 f 2
11 −

270 f04g2
02 f11 + 18g32 f02 f11 + 54 f31g30g11 + 504g40g20g21 + 18 f31g21 f11 − 9 f02 f 3

11g30 +
135g20g2

02g11 f21 − 213 f12g02g2
11g20 + 54g2

11g02g13 + 54g13g11g21 − 252 f31 f 2
02g11 − 18 f12g12 f21 −

18 f02g20 f 4
11 + 30g20 f12 f02g21 + 108 f11 f12 f13 + 18 f03 f 3

11g11 − 1200g20 f 2
02g30g11 − 54 f04g12g20 +

90g02g11 f 2
11g30 + 72g20 f12 f11g30 − 99 f13g02g20g11 − 909g31 f11g20g02 + 90 f03 f22g20 +

27 f41g20g11 − 15 f22g2
11 f11 − 81g2

20 f11g13 − 297 f31g02 f12 + 207 f11g40g21 − 18 f13 f11g20g11 +
63g04g12g11 + 12g02g3

11g12 − 288 f12g2
02g2

20 − 18g20 f03 f 2
11g11 − 45 f02 f 2

11g3
20 + 420 f12g2

02 f 2
02 +

18 f13 f 2
11g11 + 99 f02g22g2

11 + 210g02 f 3
02 f21 + 72g31g11g21 + 105 f02 f 2

12 f11 − 87 f12g2
20g2

11 −
261g2

20g21 f21 + 270 f02g3
02 f21 + 756g12g02g11g2

20 + 180g14 f02 f11 − 12g30g3
11 f11 + 189 f04 f03 f11 +

123 f02g21g11 f21 − 216g2
02 f03g21 − 72 f11g22g20g11 + 9 f02g20 f 2

11g2
11 + 156 f02g21g11g12 −

255g20 f02g2
11g12 − 231 f 2

02g11 f11g12 − 198 f22 f21g02 + 1080g2
02g21g2

20 + 36g12 f21g21 +
270g2

12 f02g02 + 1665g3
20g11g30 − 93g20 f02g2

11 f21 − 72g2
02g20g3

11 + 24 f03g02g3
11 + 1134g2

20g2
11g02 f02 +

2 f11 f02g4
11 + 885g11g31 f02g02 − 27 f21 f02 f11g12 − 27 f 2

11g40 f02 + 135 f03g20g13 + 360 f03g11g3
20 −

603g20g11 f11g40 + 504g02g2
20 f03g11 − 81 f04 f 2

11g02 + 66g2
11g02 f22 + 108g02 f03g13 + 252 f04 f02g11g02 −

135 f 2
11g3

20g11 + 210 f22 f 2
02g02 + 228 f12g2

02 f02g11 − 117g20g11g02 f31 + 342 f32g20g02 −
9 f22g2

20 f11 + 504 f11g02g41 + 36 f11g02 f32 + 81 f21g2
20 f11 f02 + 54 f04g12 f11 + 9 f04g2

11 f11 +
9 f21g11g22 + 81 f03g22g11 − 504 f04g21 f02 + 18 f02g11g13 f11 − 72g30g21 f 2

11 + 135g21 f 2
11g2

20 +
18 f 2

11 f12g2
20 − 1125g30g21g2

20).
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The computation of Lyapunov quantities by two different analytic methods
with applying the modern software tools of symbolic computation permits us to
show that the formulas, obtained for Lyapunov quantities, are correct.



APPENDIX 2 COMPUTATION OF LYAPUNOV QUANTITIES
FOR LIENARD EQUATION IN MATLAB

1 clear all
2 syms x y h t ’real’
3 syms g11 g21 g31 g41 g51 g20 g30 g40 g50 g60 g70 ’real’
4

5 Nfg = 7; %System degree = 2m+1 for the general expression of L_m
6 gxy = (g11*x+g21*x^2+g31*x^3+g41*x^4+g51*x^5)*y;
7 gxy = gxy+g20*x^2+g30*x^3+g40*x^4+g50*x^5+g60*x^6+g70*x^7
8

9 xt_s(1:Nfg-1) = 0*h; yt_s(1:Nfg-1) = 0*h; xth_s = 0*t; yth_s = 0*t;
10 for n=1:Nfg
11 xt_s(n) = sym([’xt_’,int2str(n)],’real’); xth_s = xth_s + xt_s(n)*h^n;
12 yt_s(n) = sym([’yt_’,int2str(n)],’real’); yth_s = yth_s+ yt_s(n)*h^n;
13 end
14

15 NL = 7; % =2m+1 for L_m
16 sT_h_cur = 0;
17 for i = 1:NL-1
18 sT_h(i,1) = sym([’T’,int2str(i)],’real’); sT_h_cur = sT_h_cur + sT_h(i,1)*h^i;
19 end;
20

21 ugt(1:Nfg) = 0*t; xt(1:Nfg)=0*t; yt(1:Nfg)=0*t;
22 xt(1) = -sin(t); yt(1) = cos(t); xt_cur = xt(1)*h; yt_cur = yt(1)*h;
23 for i=2:NL
24 ugt_s = subs(diff(subs(gxy, [x y], [xth_s yth_s]),h,i)/factorial(i),h,0);
25 ugt(i) = subs(ugt_s, [xt_s yt_s], [xt yt]);
26 uIt = diff(ugt(i),t);
27 Iucos = int(cos(t)*uIt,t); Iucos_t0 = (Iucos - subs(Iucos,t,0));
28 Iusin = int(sin(t)*uIt,t); Iusin_t0 = (Iusin - subs(Iusin,t,0));
29 ug0 = subs(ugt(i),t,0);
30 xt(i) = simplify(cos(t)*ug0+Iucos_t0*cos(t) + Iusin_t0*sin(t)-ugt(i));
31 yt(i) = simplify(sin(t)*ug0+Iucos_t0*sin(t) - Iusin_t0*cos(t));
32 xt_cur = xt_cur + xt(i)*h^i; yt_cur = yt_cur + yt(i)*h^i;
33 end;
34

35 xh_cur = subs(xt_cur,t,2*pi);
36 for k = 1:NL
37 xh_cur = xh_cur + subs(diff(xt_cur,k,t),t,2*pi)*sT_h_cur^k/factorial(k);
38 end;
39 for k = 1:NL
40 xh(k,1) = subs(diff(xh_cur,k,h)/factorial(k),h,0);
41 end;
42

43 xh_temp = xh; T_cur = 0;
44 for k = 2:NL
45 T(k-1,1) = solve(xh_temp(k,1),sT_h(k-1,1));
46 T_cur = T_cur + T(k-1,1)*h^(k-1);
47 xh_temp = subs(xh_temp,sT_h(k-1,1),T(k-1,1));
48 end;
49

50 yh_cur = subs(yt_cur,t,2*pi);
51 for k = 1:NL
52 yh_cur = yh_cur + subs(diff(yt_cur,k,t),t,2*pi)*T_cur^k/factorial(k);
53 end;
54 for k = 1:NL
55 yh(k,1) = subs(diff(yh_cur,k,h)/factorial(k),h,0);
56 end;
57 yh = factor(yh);
58

59 % L_m = yh(2m+1,1) if L_{k<m}=0
60 L1 = factor(yh(3,1))
61 g21_s = solve(L1,’g21’)
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62 L2 = factor(subs(yh(5,1),’g21’,g21_s))
63 g41_s = factor(solve(L2,’g41’))
64 L3 = factor(subs(yh(7,1),’g41’,g41_s))
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