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i



ii



Abstract

This thesis is about deriving a few equations of state for white
dwarfs below the regime of neutron drip. White dwarfs — also called
degenerate dwarfs, composed mostly of electron-degenerate matter —
are luminous and the color of the light they are emitting is white,
hence their name. Because of the relatively enormous density, the
gravitational potential of a white dwarf causes a collapse.

White dwarfs are classified as compact objects, meaning that their
life begins when a star dies, and are therefore considered as
one possibility of a final stage of stellar evolution since they
are considered static over the lifetime of the Universe. Star death is
a point where the most of its nuclear fuel has been consumed. After
the birth, white dwarfs are slowly cooling, radiating away their
residual thermal energy.

White dwarfs resist the gravitational collapse with electron
degeneracy pressure. The temperature of white dwarfs is much
higher than that of normal stars. These properties, together with
exceedingly small size, are characteristic of white dwarfs. Cooling of
white dwarfs offers information of solid state physics in a new setting
— the circumstances of an original star can not be built up
in a laboratory. Also, it would not be possible to realize the
distance, which includes many advantages in sketching timescales
and fundamental interactions by observation. More over, the
evolution and the equation of state of white dwarfs provide us with
more understanding of matter and physics describing the Universe.

In this study, the equation of state for white dwarf matter
is derived first by treating the matter as ideal Fermi gas, then
including also electrostatic forces and considering the effects of
inverse β-decay. We conclude with an overview of the equation
of gravitational potential energy arising from hydrostatic equilibrium.

The accuracy of the equation of state was concluded to depend on
which interactions and phenomenon are included in the consideration.
On the other hand, choosing the white dwarf model for
an application depends significantly on the density of the matter,
as well. The equations of state of ideal Fermi gas, with Coulomb
correction and with the inverse β-decay correction were concluded to
be accurate enough to provide a quantitatively adequate description
of the phenomenon.
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1 Introduction

1.1 The Luminous Living Dead

This study is about deriving a couple of equations of state for white
dwarfs below the regime of neutron drip, which means densities less
than 4×1011 g cm−3. White dwarfs — also called degenerate dwarfs,
composed mostly of electron-degenerate matter — are luminous and
the color of the light they are emitting is white, hence their name. [1]
Most observed white dwarfs have relatively high surface temperatures,
between 8, 000 K and 40, 000 K [2]. The surface temperature of
∼ 104K implies a white color [3].

White dwarfs are classified as compact objects, meaning that their
life begins when a star dies. Star death is a point where the most of its
nuclear fuel has been consumed. Like other compact objects such as
black holes and neutron stars, white dwarfs have small radii, relatively
large mass (in comparison to Sun, for instance) — and therefore have
a large density, especially in the interior and at the surroundings of the
core. [1], [4], [5], [6], [7] Despite the high surface temperature these
stars are still considered cold, however, because temperature does not
affect the equation of state [3].

Figure 1: Hubble Space Telescope image of Sirius A along with its stellar
companion Sirius B. (Figure taken from [8].)

White dwarfs are described as faint stars below the main sequence
in the Hertzsprung–Russell diagram (Fig. 2), a plot of luminosity
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against spectral type (color), because of having high surface
temperature and small diameter. [7], [9], [10] In other words, white
dwarfs are less luminous than main-sequence stars of corresponding
colors. [3], [9] It is also mentioned in the literature that the name
given is deceptive because some white dwarfs are yellow and at least
one is red. [9] While slowly cooling, the white dwarfs are changing
in color from white to red and finally to black. [10] So, the visible
radiation emitted by white dwarfs varies over a wide color range, from
the blue-white color of a main sequence star to red of the red dwarf.
[11] There ought to be a large number of invisible black dwarfs in the
Milky Way. [10]

White dwarfs were established in the early 20th century and have
been studied and observed ever since. [1] They comprise an estimated
3% of all the stars of our galaxy. Because of their low luminosity,
white dwarfs (except the very nearest ones) have been very difficult to
detect at any reasonable distance and that is why there was very little
observational data supporting the theory in the time of them being
discovered. The companion of Sirius, discovered in 1915, was among
the earliest to become known (Fig. 1). [6], [9], [10]

Because of the relatively enormous density (compared to regular
still living stars), the gravitational field of a white dwarf causes
a collapse. White dwarfs resist the gravitational collapse with
electron degeneracy pressure. The temperature of white dwarfs is
much higher than that of normal stars. These properties, together
with exceedingly small size are characteristic of white dwarfs. After
birth, the life and the life quality of these living dead objects depend
on the equation of state — the white dwarfs spend their lives slowly
cooling, radiating away their residual thermal energy. White dwarfs
can be considered as one possibility of a final stage of stellar evolution
since they are considered static over the lifetime of the Universe.

1.2 Motivation for the Study of White Dwarfs

White dwarfs are believed to originate from light mass stars with
masses M ≤ 4M�. The mass of a typical white dwarf is about one
solar mass and the radii is about 5000 km. Mean densities of white
dwarfs are around 106 cm−3. [1], [3] According to some sources masses
of white dwarfs are average half of the Sun’s mass and their diameter
is generally range between 1/4− 4 times the Earth’s diameter, having
densities of 2×105 times the density of the Sun and even greater values.
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Figure 2: The Hertzsprung-Russell diagram. The diagonal is the main
sequence, going from the hot and bright to the cooler and less bright. White
dwarfs are in the lower–left. The Sun is found on the main sequence at
luminosity 1 (absolute magnitude 4.8) and B–V color index 0.66 (temperature
5780K, spectral type G2). (Figure taken from [12].)

[9] According to [13] the maximum radius of equation of state is
Rmax = 0, 021R�, with mass of M = 0, 02M�, where the solar radius
is R� ≈ 6, 96× 1010 cm and the solar mass M� ≈ 1, 989× 1033 gm.
The lowest possible value of the critical mass is Mcre = 1, 015M�. [13]
At high densities the degenerate electron gas becomes relativistic and
when it is taken to be an ideal Fermi gas, dynamical instability will set
in when the mass exceeds the critical mass. [3] This mass is given by
[14] and [15] as Mcre ≈ 1, 4587M�, also known as the Chandrasekhar
limit.

The mass of the best known white dwarf, Sirius B, was determined
applying Kepler’s Third Law to the binary star orbit (as the Sirius B
is the binary companion of Sirius). In 1915 W.S. Adams discovered,
that Sirius B had the spectrum of a white star. Adams reported
measurements of the gravitational redshifts of several spectral lines
emitted from the surface of Sirius B in his book in 1925 and Sir Arthur
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Eddington applied the theory of general relativity to determine M/R
ratio from the redshifts using these measurements in 1926.
Eddington once wrote that ”Adams killed two birds with one stone; he
has carried out a new test of Einstein’s general theory of relativity and
confirmed our suspicion that matter 2000 times denser than platinum
is not possible, but actually present in Universe”. In 1926 P. Dirac
formulated Fermi–Dirac statistics on the foundations established by
E. Fermi, and R.H. Fowler applied Fermi–Dirac statistics to identify
the pressure holding up the stars from gravitational collapse with
electron degeneracy pressure. [1]

S. Chandrasekhar constructed the actual white dwarf models,
taking into account the special relativistic effects in the degenerate
equation of state in 1930 (Appendix A, Table 1 and Fig. 5). In
1932 L.D. Landau presented an explanation of the Chandrasekhar
limit, the exact value depending on the composition of matter. In
1949 Kaplan discussed the mass-radius relation modifying effects of
the general relativity. [1] In 1954 J. L. Greenstein published many
reports about the study of white dwarfs. He described white dwarfs as
“mainly a degenerate mass devoid of hydrogen, surrounded by a non-
degenerate envelope 65 miles deep, and above this an atmosphere of a
sort only a few hundred feet deep”. Degenerate matter conforms to an
equation of state different from the ordinary gas laws and according
to the theory the radius of a completely degenerate star is inversely
proportional to the mass, which cannot exceed 1,4 times the
Sun’s mass. [9] Greenstein reported on his studies of the spectra of
50 white dwarfs. Some spectra showed prominent helium absorption,
others showed dark hydrogen lines and at least one spectra had only
the hydrogen and the potassium lines of ionized calsium and a line
of neutral calsium. [9], [16] In 1958 Harrison, Wakano and Wheeler
incorporated inverse beta decay in the equation of state for white dwarf
matter (Appendix A, Table 1 and Fig. 5). Chandrasekhar discovered
the general relativistic instability of the white dwarfs in 1964 . [1]

White dwarfs are compact objects — they no longer burn nuclear
fuel, but they are cooling by radiating thermal energy. An isolated
white dwarf star cools to zero temperature, since it has no internal
sources of energy. The pressure associated with matter at
T = 0 supports the star against the gravitational collapse. [1], [10]
The cooling of white dwarfs is not only a fascinating phenomenon but
in addition offers information of solid state physics in a new setting
— the circumstances of an original star can not be built
up in a laboratory. Also, it would not be possible to realize the
distance, which includes many advantages in sketching timescales and
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fundamental interactions by observation. More over, the evolution and
the equation of state for white dwarfs together with the dependencies
between the quantities affecting the equation of state can therefore
be useful on Earth providing us more understanding of matter and
physics describing the Universe.

In what follows, the pressure–density relation as an equation of
state will be derived for white dwarf matter in three different sets
of conditions. First by treating the matter as ideal Fermi gas, then
taking electrostatic forces into account and considering the effects
of inverse β–decay to the equation of state. We conclude with an
overview of the equation of gravitational potential energy, arising from
hydrostatic equilibrium.

2 Equation of State

2.1 ES of a Degenerate Ideal Fermi Gas

The pressure associated with matter at zero temperature supports the
white dwarfs against the gravitational collapse. White dwarf matter
has very high density and the dominant contribution to its pressure
arises from the Pauli Exclusion Principle — the constituent fermions
are forbidden to occupy identical quantum states. However,
increasing density forces many of the particles very close to
each other and apparently to higher–energy quantum states.
Degeneracy pressure arises from this compression, resisting it.

The simplest case of equation of state can be derived with a single
species of non–interacting fermions. Let us next consider electron gas
at T = 0. Ignoring the electrostatic forces, the gas can be treated as
ideal. Defining the Fermi momentum pF by [17]

EF ≡
(
p2
F c

2 +m2
ec

4
)1/2 (1)

gives

ne =
2
h3

∫ pF

0
4πp2 dp =

8π
3h3

p3
F . (2)

In terms of dimensionless relativity parameter,

x =
pF
mec

, (3)
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we have
ne =

1
3π2λ3

e

x3. (4)

where λe = ~/mec is the Compton wavelength of the electron. [1] The
pressure of the electron gas is then given by [1]

Pe =
1
3

2
h3

∫ pF

0

p2c2

(p2c2 +m2
ec

4)1/2
4πp2 dp

=
8πm4

ec
5

3h3

∫ x

0

x4dx

(1 + x2)1/2
dx

=
mec

2

λ3
e

φ(x)

= 1.42180× 1025 φ(x) dyn cm−2,

(5)

where1 φ(x) is given parametrically in terms of x :

φ(x) =
1

8π2

{
x
(
1 + x2

)1/2 (2x2/3− 1
)

+ ln
[
x+

(
1 + x2

)1/2]}
. (6)

The energy density is given by

ε =
∫
E

dN

d3x d3p
d3p, (7)

where E =
(
p2c2 +m2c4

)1/2, m is the particle rest mass and
dN/d3x d3p is the number density in phase space. [1], [17] So, the
energy density of electrons is given, similarly to equation (5), by [1]

εe =
2
h3

∫ pF

0

(
p2c2 +m2

ec
4
)1/24πp2 dp

=
mec

2

λ3
e

χ(x),
(8)

where

χ(x) =
1

8π2

{
x(1 + x2)1/2(1 + 2x2)− ln

[
x+ (1 + x2)1/2

]}
. (9)

Considering φ(x) of equation (6) at the non–relativistic limit,
x � 1 , gives

φ(x)→ 1
15π2

(
x5 − 5

14
x7 +

5
24
x9 . . .

)
(10)

1Dyne is a unit of force specified in the CGS system of units, a predecessor of the
modern SI. 1 dyn = 1 g cm s−2 = 10 µN
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and for relativistic electrons, x � 1 ,

φ(x)→ 1
12π2

(
x4 − x2 +

3
2

ln 2x . . .
)
. (11)

[1] As we see, equations (10) and (11) differ — relativistic effects are
significant.

The density of degenerate electrons is dominated by the rest mass
of the ions:

ρ0 =
∑
i

nimi, (12)

where mi is the mass of ion of species i. [1] Defining the mean baryon
rest mass as

mB ≡
1
n

∑
i

nimi =
∑

i nimi∑
i niAi

, (13)

where Ai is the baryon number of the ith species. Then the density is

ρ0 = nmB =
nemB

Ye
, (14)

where Ye ≡ ni/n is the mean number of electrons per baryon. If the
quantity mean molecular weight per electron,

µe =
mB

muYe
, (15)

is used, then

ρ0 = µemune = 0.97395× 106µex
3 g cm−3. (16)

The mean molecular weight is particularly useful in the non-
degenerate limit, when the pressure is given by the perfect gas law
[1], [17]

P =

(
ne +

∑
i

ni

)
kT

=
ρ0

µmu
kT

. (17)

Quantity mu/mB can be taken equal to unity, except when extreme
accuracy is needed. The total density is ρ = ρ0+εe/c2, but usually the
term εe/c

2 is neglibly small. Combining equations (5), (6) and (16),
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the electron gas pressure, P = P (ρ0), can be written as a function of
density as

Pe =
mec

2

8π2λ3
e

{
1.0088× 10−2 ×

(
ρ0

µe
g−1 cm3

)1/3

×

√√√√1 +

(
1.0088× 10−2 ×

(
ρ0

µe
g−1 cm3

)1/3
)2

×

(√2× 1.0088× 10−2

√
3

×
(
ρ0

µe
g−1 cm3

)1/3
)2

− 1


+ ln

[(
1.0088× 10−2 ×

(
ρ0

µe
g−1 cm3

)1/3
)

+

√√√√1 +

(
1.0088× 10−2 ×

(
ρ0

µe
g−1 cm3

)1/3
)2

 .

(18)

In this chapter we have derived the simplest equation of state for
a single species of noninteracting fermions ignoring the electrostatic
forces and treating the electron gas as ideal gas. Equations
(5) and (16) or the combination of these two, as equation (18), give
the pressure associated with white dwarf matter of this model at zero
temperature. This ideal Fermi gas equation of state was first employed
by Chandrasekhar in 1931.

2.2 Electrostatic Correction to ES

Let us now take the electrostatic interactions into account. This will
lead to a correction to the equation of state due to electrostatic inter-
actions among the ions and electrons in the white dwarf matter. The
positive charges are not uniformly distributed in the gas. They are
localized in the nuclei of the atoms, each of charge Z. This decreases
the energy and pressure of the electrons. The mean distance between
the electrons and the nucleus is smaller than the distance between the
electrons — the attractive forces are greater than the repulsive ones.

The more the density increases, the more important the Coulomb
effects become in a nondegenerate gas. The ratio of Coulomb energy
and thermal energy is approximately

Ec
kT

=
Ze2/ 〈r〉
kT

≈ Ze2n
1/3
e

kT
, (19)
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where Z is the charge of the nuclei, e is the charge of an electron, k is
the Boltzmann constant, T is the temperature, 〈r〉 is the mean radius
and ne is the number density of electrons. [1] The ratio increases
with increasing ne. Approximation 〈r〉 ∼ n

−1/3
e corresponds to the

characteristic electron–ion separation. On the other hand, for a
degenerate gas

Ec
E′F

=
Ze2/ 〈r〉
p2
F /2me

, (20)

in contrast to (19). [1]

Using equation (2), we have

Ec
E′F

= 2
(

1
3π2

)2/3 Z

a0

1

n
1/3
e

=
(

ne
Z3 × 6× 1022 cm−3

)−1/3

, (21)

where a0 = ~/mee
2 is the Bohr radius. In most astrophysically

relevant degenerate gases Ec � E′F . This implies ne is to
first approximation uniform — now we can derive an approximate
expression for the electrostatic correction to the ideal degenerate Fermi
gas equation of state. [1]

As the temperature approaches zero, T → 0, the ions form a lattice,
that maximizes the separation of ions. In the Wigner-Seitz
approximation the gas is divided into neutral spheres of radius r0

about each nucleus containing the Z number of electrons closest to
the nucleus. A spherical shell lattice like this would have a volume of
4πr3

0/3 = 1/nN , where nN is the number density of the nuclei. The
Wigner–Seitz approximation is very suitable for white dwarfs, because
the number density ne is more uniform than in typical non-uniform
laboratory solids. [1]

Now, the let us calculate the energy of a uniform sphere of Z
electrons (summing the potential energies of each sphere due to the
electron–electron interactions)

Ee−e =
∫ r0

0

q

r
dq

= −
∫ r0

0

Zer2

r3
0

dq

=
3
5
Z2e2

r0
,

(22)

where the charge inside the radius r is q = −Zer3/r3
0. The total

electrostatic energy of the electrons and the nucleus of charge
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Ze is correspondingly (a sum of the potential energies of electron-ion
interactions)

Ee−i = Ze

∫ r0

0

1
r
dq

= −3
2
Z2e2

r0

. (23)

The total Coulomb energy of the spherical cell of the lattice is then

Ec = Ee−e + Ee−i = − 9
10
Z2e2

r0
. (24)

The cells are considered to be neutral in charge — the interactions
between electrons and the nuclei of different cells can therefore be
ignored. [1]

The electrostatic energy per electron is given by

Ec
Z

= − 9
10

(
4π
3

)1/3Z2/3e2n1/3
e , (25)

where
ne =

Z

4πr3
0/3

. (26)

The corresponding pressure is

Pc = n2
e

d(Ec/Z)
dne

= − 3
10

(
4π
3

)1/3

Z2/3e2n4/3
e ,

(27)

for which the ideal Chandrasekhar result is

P0 → ~c(3π2)1/3n
4/3
e

4
. (28)

In the extreme relativistic limit this leads to

P

P0
=
P0 + Pc
P0

= 1− 25/3

5

(
3
π

)1/3

αZ2/3,

(29)

where α = e2/~c = 1/137 is the fine structure constant. [1]

In the non-relativistic limit,

P0 → ~2(3π2)2/3n
5/3
e

5me
(30)
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and
P

P0
= 1− Z2/3

21/3πa0n
1/3
e

, (31)

which predicts that P = 0 when

ne =
Z2

2π3a3
0

, (32)

corresponding to density

ρ0 ≈ 0.4Z2 g cm−3 (33)

by equation (14) with A ≈ 2Z. [1]

Figure 3: Solutions of the Thomas–Fermi function φ(x) (40) with
BC’s (41) and (42). The upper line refers to the exact numerical
solution of equation (40), while the lower one corresponds to the parametric
approximated solution reported in [18]. (Figure taken from [18].)

Let us now use the Thomas–Fermi method for the statistical
treatment of the atomic structure. Assuming that electrons move in
a slowly varying, approximately constant, spherically symmetric
potential V (r) and using free particle Fermi-Dirac statistics taking
the interaction energy to be much less than the kinetic or
potential energies of the individual electrons, all states up to E = EF
are occupied and the energy is

EF = −eV (r) +
p2
F (r)
2me

= constant, (34)
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where pF is the maximum momentum of electrons at r. Fermi energy,
EF , is independent of r because of the electron occupation. [1]
Now, as in equation (2)

ne =
8π
3h3

p3
F (r) =

8π
3h3
{2me [EF + eV (r)]}3/2 . (35)

Combining this with the Poisson’s equation for the potential,

∇2V = 4πene + nuclear contribution, (36)

we have
1
r

d2

dr2
(rV ) =

32π2e

3h3
[2me(EF + eV )]3/2 . (37)

Equation (37) is to be solved with two boundary conditions: since
the nuclear contribution is a delta function about the origin,

lim
r→0

rV (r) = Ze, (38)

for r > 0, and
dV

dr

∣∣∣∣
r0

= 0, (39)

since the electric field must vanish at the cell boundary r0. [1]

Through simplifications, [1] equation (37) becomes the Thomas–
Fermi equation: [1], [18]

d2φ

dx2
=
φ3/2

x1/2
(40)

with boundary conditions

φ(0) = 1, (41)

φ′(x0) =
φ(x0)
x0

. (42)

For the special case φ′(0) = −1.58897100, when x → ∞ then
φ′(x0) → 0 and φ(x0) → 0. This zero pressure case corresponds to
zero density and infinite radius — free atoms have infinite radius
(Fig. 3). For φ′(0) = −1.58897100, φ diverges as x→∞. [1], [18]

The pressure at the boundary of the cell can now be computed
using the free particle expression as:

P =
2
~3

1
3

∫ pF

0

p2

me
4πp2 dp

=
8π

15h3me
p5
F (r0).

(43)
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Writing second equality in (35) as

pF = {2me [EF + eV (r0)]}1/2

=
{

2me

[
Ze2φ(x0)
x0µ

]}1/2 , (44)

where r = xµ and

µ =
(

9π2

128Z

)1/3

a0, (45)

equation (43) becomes

P =
8π

15h3me

{
2me

[
Ze2φ(x0)
x0µ

]}5/2

=
1

10π
Z2e2

µ4

[
φ(x0)
x0

]5/2
(46)

and the density is thus given by the total rest mass of the cell,

ρ0 =
AmB

4πµ3x3
0/3

. (47)

Now the electrostatic interactions have been taken into account.
Equations (46) and (47) give the equation of state with the Coulomb
correction.

2.3 Correction to the ES due to Inverse β–
decay

Next we will provide an overview of the effects of inverse β–decay to
the equation of state. Let us consider the ideal, cold gas consisting
of free neutrons, protons and electrons. At high densities, examining
such n − p − e gas requires a correction to the equation of state due
to inverse β–decay: [1]

e− + p→ n+ ν, (48)

also known as electron capture [19]. Now, let us assume that the
neutrinos generated in the reaction escape from the system and ignore
them. Reaction (48) can proceed when the electrons acquire enough
energy to balance the mass difference between protons and neutrons,

(mn −mp)c2 = 1.29 MeV, (49)
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and is effective process for transforming protons into neutrons
if β–decay (also known as β−- and neutron β-decay [19], [20]),

n→ p+ e− + ν̄, (50)

does not significantly occur. Reaction (50) is blocked if the density is
high enough — if all the electron energy levels in the Fermi sea are
occupied, there is no available position for the emitted electron to fill.
[1], [21] This implies that there is a critical density for the reaction
(48), as well.

Let us now examine the properties of n−p−e mixture by assuming
that they all are in equilibrium. Let us express reaction (48) by means
of chemical potentials:

µe + µp = µn + µν = µn, (51)

where we have set the chemical potential and thus, the number density
of neutrinos to zero. Now, defining

xi =
piF
mic

, i = e, p, n (52)

as in (3), and since

µe =
[
(peF c)

2 +m2
ec

4
]1/2

, (53)

equation (51) becomes [1]

me

(
1 + x2

e

)1/2 +mp

(
1 + x2

p

)1/2 = mn

(
1 + x2

n

)1/2
. (54)

The equal amount of protons and electrons implies charge neutrality,
which leads to [1]

1
3π2λ3

e

x3
e =

1
3π2λ3

p

x3
p and thereby to

mexe = mpxp.

(55)

The equation of state including inverse β–decay correction is then
given by three equations — by the electron gas pressure

P =
mec

2

λ3
e

φ(xe) +
mpc

2

λ3
p

φ(xp) +
mnc

2

λ3
n

φ(xn), (56)

the energy density

ε =
mec

2

λ3
e

χ(xe) +
mpc

2

λ3
p

χ(xp) +
mnc

2

λ3
n

χ(xn), (57)

15



and the number density

n =
1

3π2λ3
p

x3
p +

1
3π2λ3

n

x3
n, (58)

where χ is defined in equation (9). [1]

The escaping neutrinos cause an energy loss and affect the
equation of state as well. Nevertheless, the neutrinos have been
ignored in deriving these equations. So, actually these results
describe an equilibrium system of zero charge, fixed baryon and
lepton numbers — the lepton number is chosen to have its minimum
possible value in the limit nν → 0. Thermodynamical equilibrium is
not reached in an open system and the composition of neutrons,
protons and electrons should be determined by rate equations
for the reactions.

2.4 Hydrostatic Equilibrium and Gravitational
Potential Energy

In this section, let us take the gravitational forces of white dwarfs
under consideration. If the star is in a steady state, the gravitational
force balances the pressure force of the white dwarf matter at every
point and vice versa (Fig. 4). Let us consider an infinitesimal fluid
element of white dwarf matter between radius r and r + dr and an
infinitesimal area dA perpendicular to the radial direction. To main-
tain the steady state, the gravitational force exerted on the mass dm
of the fluid must be equal in magnitude and opposite in direction to
the force that the pressure of the fluid exerts on the area dA.

For a spherically symmetric distribution of matter

m(r) =
∫ r

0
ρ4πr2 dr, (59)

in other words,
dm(r)
dr

= 4πr2ρ, (60)

where m(r) is the mass interior to a radius r and ρ ≈ ρ0 is the rest-
mass density in consideration of non-relativistic matter. [1] Now,
the net outward pressure force on mass dm = ρ dA dr is
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Figure 4: Hydrostatic equilibrium. The internal pressure outward balances
the force of gravity inward. (Figure taken from [22].)

Fp = −dP dA = −[P (r+dr)−P (r)]dA and therefore in equilibrium,
∇P = −ρ∇Φ, as

−dP
dr
drdA =

Gm(r)
r2

dm

dP

dr
= −Gm(r)ρ

r2
,

(61)

where G is the gravitational constant and Φ is the gravitational
potential. [1] Consequently, this leads to the virial theorem.
Integrating by parts, the gravitational potential energy of white dwarf
is

W = −
∫ R

0

Gm(r)
r

ρ4πr2 dr

=
∫ R

0

dP

dr
4πr3 dr

= −3
∫ R

0
P4πr2 dr.

(62)

As a simple example, consider characterizing the fluid by an
adiabatic equation of state

P = KρΓ
0 , (63)

where K and Γ are constants. Note, that ideal Fermi gas equation
of state (18) has this form in extreme relativistic, Γ = 4/3, and non-
relativistic, Γ = 5/3, limits. With this form, the energy density of the
fluid becomes

ε′ =
P

Γ− 1
(64)
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and with the first law of thermodynamics this results in

d
ε

ρ0
= −Pd 1

ρ0
, (65)

since the changes are adiabatic. [1] Integration gives

ε = ρ0c
2 +

P

Γ− 1
, (66)

which leads to ε′ ≡ ε− ρ0c
2. Now equation (62) can be rewritten as

W = −3(Γ− 1)U, (67)

where
U =

∫ r

0
ε′4πr2 dr, (68)

is the total internal energy of the white dwarf. [1]

3 Conclusion

In previous chapters, we derived the equation of state for white dwarfs
below the regime of neutron drip — first by treating the white dwarf
matter as ideal Fermi gas, then taking electrostatic forces into account
and finally including also the effects of inverse β–decay into the
consideration. We concluded with an overview of the gravitational
potential energy of the star.

Equation (5) and (16) give the equation of state for white dwarfs
ignoring electrostatic forces and treating the electron gas as ideal.
Equation (18) combines equations (5) and (16). This cold, ideal Fermi
gas pressure–density relation is the simplest case of equation of state
for a single species of noninteracting fermions.

The equation of state including the electrostatic correction is given
by equations (46) and (47). The principal electrostatic correction
arises from the non–uniformly distributed, nuclei–centered positive
charges and decreases the pressure and energy of electrons in the gas.
The Coulomb correction is relatively small, but nevertheless important
for high-density white dwarfs. At low densities it is no longer a good
approximation to consider the electron gas uniform — for instance,
the laboratory value for iron is ρ0 = 7.86 g cm−3 and equation (33)
gives ρ0 = 250 g cm−3. Electron shell effects mask the statistical effects
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at laboratory densities, but as the densities increase — say, to a few
times laboratory densities and higher — statistical approach works
fine for the equation of state.

The equation of state of the ideal, cold n− p− e gas including the
effects of inverse β–decay is given by equations (56), (57) and (58). It
was concluded that high densities require a correction to the equation
of state due to inverse β–decay. The equilibrium nuclide become more
neutron rich with increasing densities. There is a critical density limit
for the inverse β–decay, reaction (48)— the nuclei of the white dwarf
matter are stabilized against the β–decay, reaction (50), by the filled
Fermi sea of electrons.

In the end, the gravitational forces of white dwarfs were taken
under consideration. If the star is in a steady state, the gravitational
force balances the pressure force of the white dwarf matter at every
point and vice versa — this lead us to the hydrostatic equilibrium
equation (61). The gravitational potential energy of the star is given
by equations (62) and (67) and the internal energy by (68).

The escaping neutrinos cause an energy loss and affect
the equation of state, as well. Nevertheless, the neutrinos have
been ignored in deriving these equations. So, actually these results
describe an equilibrium system of zero charge, fixed baryon and lepton
numbers — the lepton number is chosen to have its minimum
possible value in the limit nν → 0. Thermodynamical equilibrium
is not reached in an open system and the composition of neutrons,
protons and electrons should be determined by rate equations for the
reactions.

More complete equation of state would take the effects
of escaping neutrinos into account, determine the proportions of
the mixture of the nuclei, free electrons and neutrons, include effects
arising from the nuclear interactions and reactions and so on. More
accurate white dwarf models including such and even more corrections
do exist, developed for instance by Salpeter, Salpeter and Zapolsky,
Feynmann and Metropolis and Teller, Harrison and Wheeler, Baym
and Pethick and Sutherland, just to mention the most famous ones
(Appendix A, Table 1 and Fig. 5). [1], [23]

The accuracy of the equation of state was concluded to depend on
the assumptions and approximations made during the derivation —
the precision of the equation of state describing white dwarfs highly
depends on the chooses of which interactions and phenomena
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are included into the considerations. On the other hand, choosing
the white dwarf model for an application depends significantly on
the density of the matter, as well. At the low–density regime, up to
104 g cm−3 [1], the Feynmann–Metropolis–Teller and the Thomas–
Fermi–Dirac models are considered relevant. In the high–density
limit, the Thomas–Fermi result (46) reduces to (31). However, for
higher densities, Chandrasekhar ideal gas result with the Coulomb
correction in equations (27) and (29) is adequate. The equations
of state of ideal Fermi gas, with Coulomb correction and the inverse
β–decay correction were concluded to be accurate enough to describe
phenomenon in general, over the whole density range considered here.

References

[1] S. Shapiro and S. Teukolsky. Black Holes, White Dwarfs and
Neutron Stars — The Physics of Compact Objects. Wiley, USA,
1983.

[2] G. McCook and E. Sion. Spectroscopically Identified White
Dwarfs. Astrophysical Journal, 121(683):253–257, 6 2008. 1991.

[3] K. Lang. Astrophysical Formulae. Springer Verlag, Germany,
2nd edition, 1980.

[4] In (Ed.) A. Cameron. Astrophysics Today. American Institute of
Physics, New York, 1984.

[5] I. Appenzeller, J. Lequeux, and J. Silk. Star Formation —
10th Advanced Course of Swiss Society of Astronomy and As-
trophysics. Geneva Observatory, Sauverny, 1980.

[6] D. Yakolev and C. Pethick. Neutron Star Cooling. Annual Review
of Astronomy and Astrophysics, 2004.

[7] L. Pierre. Observational Astrophysics. Springer-Verlag, Germany,
2nd edition, 1988.

[8] NASA, ESA, H. Bond, (STScI), and M. Barstow.
Hubble Space Telescope image of Sirius. Jan 2009.
http://en.wikipedia.org/wiki/Image:Sirius A and B Hubble -
photo.jpg.

[9] R. Baker and L. Fredrick. Astronomy. Litton Educational Pub-
lishing, USA, 9th edition, 1971.
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A Representative Equations of State

Figure 5: Equations of states for white dwarfs. Chandrasekhar (Ch) equa-
tion of state is based on the ideal degenerate electron gas model. Harrison–
Wheeler (HW) equation of state is based on the liquid drop model of the
nucleus. The Baym–Pethick–Sutherland (BPS) uses Coulomb interaction
energy of all the nuclei and the electrons in addition to HW. (Figure taken
from [1].)
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