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Prologue

Physical reality is consistent with universal laws. Where the laws do
not operate, there is no reality—we judge reality by the responses of our
senses. Once we are convinced of the reality of a given situation, we
abide by its rules.

Spock, stardate 4385.3 [1]

The story of modern science is rich and fascinating. The first big scientific
breakthrough in the history of physics dates back to the later half of the 17th century
when Sir Isaac Newton discovered his well-known theories of gravitation and clas-
sical mechanics. Newton’s achievements in the field of science are hard to compete
with. He discovered his theory of gravitation already in 1666, and over the centuries
that theory has turned out to be amazingly accurate in describing the effects of grav-
itation. It predicts, for instance, the orbits of the major planets with a precision of
a few seconds of arc over time intervals of several years. His theory of gravitation
was finally published in his famous treatise entitled Philosophiae Naturalis Prin-
cipia Mathematica in 1687. In this book he also introduced the three dynamical laws
of classical mechanics. In fact, since “Principia” was the first successful attempt to
formulate all known laws of physics in the ’language of mathematics’ in a coherent
manner, it may be regarded as the most important treatise in the history of modern
science.

By the end of the 19th century, all known physical phenomena could be ex-
plained by Newton’s mechanics, thermodynamics and electrodynamics. However, at
the beginning of the 20th century physicists were confronted with severe problems
in their scientific world view, and the solutions to these problems yielded two new
theories: general relativity and quantum theory. These theories have turned out to
be in beautiful harmony with the experiments and therefore, in our present stage of
research, all the observed physical phenomena can be explained by the three foun-
dational theories: quantum theory, thermodynamics and general relativity. Quantum
theory tells us how particles behave when they interact with each other. Thermody-
namics, in turn, describes how a large collection of particles behaves. The meaning
of general relativity, however, is somewhat more diverse. First of all, general relativ-
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ity is a theory of gravitation. On the other hand, it is also a theory of space and time.
This is due to the idea that in some sense spacetime may be identified as the gravita-
tional field itself. In the following pages we shall consider these three foundational
theories in more detail and see how they are connected with the main subjects of this
thesis.

General relativity, which was published by Albert Einstein in 1915 [2], was
almost as epochal as Newton’s theory. It is sometimes maintained that general rela-
tivity is difficult to understand. If so, the problem is not that the theory itself would be
conflicting or complicated. On the contrary, it may be considered as one of the most
beautiful theories ever developed. The problem is that general relativity forces us to
change our classical conceptions of time and space in a very radical manner. Never-
theless, these changes are necessary if we want to achieve a deeper comprehension
of Nature.

In general relativity space and time are no longer separated but together they
constitute a four-dimensional continuum called spacetime. Einstein’s ingenious idea
was that matter interacts with spacetime in such a way that spacetime becomes
curved. This interaction between matter and spacetime is described by Einstein’s
field equation. Furthermore, the paths of objects are determined by the geometry
of spacetime: Objects in a free fall move along geodesics, i.e., routes of station-
ary length between spacetime points. Hence matter tells spacetime how to curve,
whereas the geometry of spacetime tells matter how to move. In this sense, gravita-
tion may be considered as a manifestation of the curvature of spacetime.

Einstein’s field equation is a tensor equation, and therefore the mathematical
structure behind the theory is based on tensor algebra. The use of tensors in gen-
eral relativity is motivated by the principle of general coordinate invariance, which
states that all laws of physics must be invariant under general coordinate transfor-
mations. In particular, this means that Einstein’s field equation must be covariant
with respect general coordinate transformations, i.e., the form of Einstein’s equation
cannot depend on the choice of coordinates. Since tensor equations are by definition
covariant, it is natural that the physical quantities of general relativity are represented
by tensors.

Today our understanding of gravitation is based on general relativity, and we
have learnt that it describes gravitational effects with a very high accuracy. There are,
however, implications of certain limits in its domain of applicability. The first curved
solution to Einstein’s field equation was found by Karl Schwarzschild in 1916 [3].
This solution describes spacetime outside a spherically symmetric mass distribution.
Curiously, if the radius of the mass distribution is smaller than a certain value, known
as the Schwarzschild radius

RS =
2MG

c2
, (1)

where G ≈ 6.67 × 10−11 m3kg−1s−2 is Newton’s gravitational constant, c ≈
3.00 × 108 ms−1 is the speed of light and M is the mass of the body, spacetime
contains a region where gravitational effects are so strong that not even light can
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escape out of it. This region is known as a black hole. The boundary of this region,
a two-dimensional, spherical, spacelike hypersurface of spacetime with radius RS,
is called an event horizon. Inside the black hole all matter will be compressed into
a single point. This point, in turn, is known as the singularity. At the singularity the
mass density and the curvature of spacetime grow infinitely large, thus resulting in
the breakdown of general relativity. The existence of spacetime singularities there-
fore implies that our knowledge of gravitation is still incomplete. This is one of the
main reasons why physicists strive to find the quantum theory of gravitation or, in
short, quantum gravity. By this theory one usually means some kind of a synthesis of
quantum theory and general relativity. It is strongly believed that the quantum effects
of gravitation are somehow able to prevent the formation of singularities.

Thermodynamics describes the properties of macroscopic systems by means
of familiar macroscopic quantities such as pressure and temperature. In the first half
of the 19th century the laws of thermodynamics were known only as phenomenolog-
ical rules confirmed by experiments. However, through the visionary works of Boltz-
mann and Gibbs, the thermodynamical properties of macroscopic systems became
viewed as statistical averages over their microscopic degrees of freedom. Investiga-
tion of statistical effects in systems consisting a large number of particles is called
statistical mechanics.

The core of thermodynamics is given by the four laws of thermodynamics. The
zeroth law of thermodynamics tells us that the temperature of an object in thermal
equilibrium is constant. The first law of thermodynamics, in turn, is a manifestation
of the principle of the conservation of energy. The second law of thermodynamics
involves the concept of entropy. Entropy is a thermodynamical quantity which rep-
resents, in a sense, the disorder of a system: If the disorder of the system increases,
so does the entropy. In more precise terms, the entropy S of a system is defined as

S = kB lnΩ, (2)

where kB ≈ 1.38 × 10−23 JK−1 is Boltzmann’s constant and Ω is the number of
microstates comprising the macrostate of the system. Macroscopic systems tend to
end up in the state of maximum entropy. This property leads to the second law of
thermodynamics, which states that the entropy of a system cannot decrease in any
process. Putting differently, physical processes always proceed in the direction of
increasing disorder. The third and the last law of thermodynamics is also of a fun-
damental nature. In effect, it tells us that the temperature T = 0 cannot be reached
by means of a finite number of processes. Hence we can never halt the molecular
motions of a system.

Quantum mechanics was developed in the early 20th century as a response
to the need to understand the physical properties of atoms. The break impulse to
quantum mechanics was the quantum hypothesis made by Max Planck in 1900. He
proposed that electromagnetic radiation consists of certain discrete quanta whose
energies are proportional to the frequency of the radiation. This hypothesis was mo-
tivated by the problems concerning the blackbody radiation. A black body is an ideal
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object which emits and absorbs all electromagnetic radiation. The purely wave-like
behaviour of electromagnetic radiation could not explain the energy distribution of
the blackbody radiation. The quantum hypothesis was the remedy for that problem,
and the correct energy distribution was found by Planck in 1899. The properties of
the blackbody radiation reveal that in some situations electromagnetic radiation acts
like a flow of particles. The wave-like behaviour of light was, however, confirmed
earlier. This is an example of wave-particle dualism, which was explicitly stated by
Louis de Broglie in 1924: In some situations matter acts like particles and in some
others like waves.

In quantum mechanics familiar measurable quantities, e.g., position and mo-
mentum, are replaced by operators which operate on the state vector |Ψ〉 of a system.
An operator is an object which transforms state vectors to each other. The state vec-
tor, in turn, contains all available information of the system. A special example of an
operator equation is an eigenvalue equation

Â|Ψ〉a = a|Ψ〉a, (3)

where Â is an operator, |Ψ〉a is an eigenstate of the operator Â and a is an eigenvalue.
One of the postulates of quantum mechanics states that when a measurable quantity,
or observable, is replaced by its operator counterpart, then every eigenvalue of the
operator is a possible result of measurement of that quantity. Hence, equation (3)
represents a certain quantum-mechanical measurement process where a is identified
as the result of the measurement.

The transition from classical to quantum mechanics may be performed, for
instance, by means of a procedure called canonical quantization.1 Assume that the
classical theory to be quantized is first transformed into the Hamiltonian form. That
is, the equations of motion are written in terms of the phase space variables, i.e.,
the generalized coordinates and the corresponding generalized momenta. Canonical
quantization can be then performed in such a way that the phase space variables
of the theory are replaced by their operator counterparts which obey the famous
canonical commutation relations. In a simple one-particle problem, we can take the
position x and the momentum p as our phase space variables and set the canonical
commutation relation between their operator counterparts:

[x̂, p̂] = i~, (4)

[x̂, x̂] = [p̂, p̂] = 0̂. (5)

Here ~ ≈ 1.05 × 10−34 Js is the Planck constant and the commutator between
operators Â and B̂ is defined as

[Â, B̂] = ÂB̂ − B̂Â. (6)
1An option for the canonical quantization is the path-integral quantization formulated by Feynman

in 1948 [4].
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It is remarkable that the standard methods of quantization are quite universal. In fact,
similar procedure of quantization may be performed for various systems and, rather
surprisingly, for almost any classical field.

How, then, are the methods of quantization applied in the vast world of mod-
ern physics? According to the best of our knowledge there exist four fundamental
interactions: strong, weak, electromagnetic and gravitational interaction. The strong
interaction, for instance, binds quarks together to form neutrons and protons. The
weak interaction, in turn, is responsible for the beta-decay in atomic nucleus. The
electromagnetic interaction expresses itself in various forms: It causes all chemical
reactions, and it is responsible for almost all visible phenomena. Finally, the grav-
itational interaction makes apples fall from trees and determines the trajectories of
celestial objects. In general, these interactions can be described by using the concept
of field. Furthermore, fields—like particles—are governed by the laws of quantum
physics. In the strong, the weak and the electromagnetic interaction the ordinary
methods of quantization can be easily applied to the interacting fields, and as a result
one may interpret these fields as a collection of particles. More precisely, interac-
tions can be described as an exchange of certain mediating particles between the
interacting particles. Unfortunately, an analogous description is not possible for the
gravitational interaction: The resulting theory produces both mathematical and con-
ceptional inconsistencies. For this reason quantum theory and general relativity are,
in some sense, incompatible, and one is forced to seek for a different kind of way to
apply the principles of quantum theory to gravity.

There is, however, one known phenomenon which contains an interplay be-
tween quantum theory and general relativity. In 1975 Stephen Hawking showed that
black holes emit thermal radiation with the spectrum of that of a black body [5]. This
radiation results from purely quantum-mechanical effects which take place in the
immediate vicinity of the event horizon. An existence of such radiation implies that
black holes, like any other macroscopic objects, have thermodynamical properties—
including entropy. In fact, the existence of the black hole entropy was proposed even
before Hawking by Jacob Bekenstein [6]. He based his proposal on certain similar-
ities between the rules obeyed by the black hole horizons, and the second law of
thermodynamics. Hawking was therefore able to confirm Bekenstein’s conjecture,
and it follows from his analysis that the entropy of a black hole is given by

S =
1
4
kBc

3

~G
A, (7)

where A is the area of the event horizon of the hole. This result is known as the
Bekenstein-Hawking entropy law.

Maybe the most intriguing aspect of black hole radiation is that it contains
elements from quantum theory, thermodynamics and general relativity. Thus, one
may say that in black hole radiation all the three foundational theories of physics
meet for the first time. It is natural to expect that similar radiation processes would
take place in the vicinity of other spacetime horizons as well. In this thesis, these
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issues are investigated when we consider the radiation effects of the inner horizon of
a Reissner-Nordström black hole.

The concept of black hole entropy leaves us with a question about its micro-
scopic origin. Classically, black holes have only three degrees of freedom: mass
M , electric charge Q and angular momentum J . However, according to statisti-
cal mechanics, a black hole possessing the Bekenstein-Hawking entropy must have
exp

(
1
4

c3

~GA
)

microstates corresponding to the macrostate determined by M , Q, and
J . It is one of the greatest challenges of modern physics to identify these microstates.
In fact, it provides the main reason for the investigation of the properties of black
holes: One expects that the quantum theory of gravitation should be able to repro-
duce the Bekenstein-Hawking entropy law in some low-energy limit. This is almost
the only known clue in the search of quantum gravity.

There have been several attempts to explain the microscopic origin of the
black hole entropy, of which the most well-known have been developed by the spe-
cialists in the fields of string theory and canonical quantum gravity [7, 8]. In string
theory one is able to calculate the entropy of an extreme black hole2 by counting
the number of string states that have the same mass and charge at infinity as the
black hole. It is most satisfying that this calculation leads to the correct Bekenstein-
Hawking entropy law. However, there are no fully compelling derivations of black
hole entropy outside the extreme case. In canonical quantum gravity, in turn, the mi-
crostates are thought to live in the surface of the event horizon. More precisely, if
one performs a suitable canonical quantization to the classical spacetime outside the
black hole and treats the horizon as a boundary, one obtains a theory which yields
certain surface states. These states can be counted, and as a result one finds that
the entropy is proportional to the horizon area. Unfortunately, the constant of pro-
portionality depends on a free dimensionless parameter that cannot be determined
by the theory. Nevertheless, this derivation is valid for more “realistic” black holes,
such as Schwarzschild black holes.3

One may also try to explain the black hole entropy by investigating possible
structures of spacetime at the length scales of the order of one Planck length lPl =√
G~/c3 ∼ 10−35 m. The constant lPl denotes the unit of length that can be built

out of the fundamental constants G, c, and ~. It is generally believed that at those
scales of distances the continuum structure of spacetime breaks down, and the effects
of quantum gravity dominate. Consider, for instance, the possibility that spacetime
is made of tiny Planck-length-sized black holes. This view may be supported by
the fact that the energy needed to probe a spacetime region with a volume ∼ l3Pl is
enough to shrink this region into a Planck-sized black hole. From the given spacetime
structure it follows now that the event horizon of a macroscopic black hole consists
of microscopic black holes as well, in a somewhat similar way as the surface of a
macroscopic object consists of a layer of atoms. Assume then that each microscopic

2An extreme black hole is a special case of a Reissner-Nordström or a Kerr-Newman black hole, in
which the inner and the outer horizons coincide.

3From the point of view of astrophysics, it is highly improbable that extreme black holes would
exist in our universe.
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hole contributes to the macroscopic horizon an area which is proportional to the
area of its own horizon. If the microscopic holes have certain horizon area spectrum,
one may calculate the entropy associated with the event horizon of the macroscopic
black hole. One may identify this entropy as the entropy of the hole, and therefore
this model provides one possible explanation for the origin of the black hole entropy.
This idea will be discussed in more detail in this thesis.

There are also reasons to believe that some kind of a concept of entropy should
be assigned to any spacelike two-surface, no matter whether the two-surface is part
of a horizon or not.4 Indeed, if one assumes that the entropy of any horizon stems
from the microscopic structure of spacetime at the horizon, one may speculate on
the idea that any spacelike two-surface should be associated with a certain concept
of (statistical) entropy. This is because the microscopic structures of all spacelike
two-surfaces should be (about) the same, no matter whether those two-surfaces are
part of any horizon or not. Apart from these rather heuristic arguments, there are also
more concrete reasons to extend the concept of entropy from horizons to arbitrary
spacelike two-surfaces. Recently, it has been proposed that an accelerating two-plane
may be associated with an entropy which is twice as large as the entropy associated
with a horizon. This proposal was suggested by the results obtained in Ref. [9] by
considering the flow entropy through an accelerating two-plane in spacetime filled
with isotropic massless radiation in thermal equilibrium. In this thesis, we shall in-
vestigate the implications of this proposal. Our investigations are strongly motivated
by an important discovery made by Ted Jacobson. In 1995 he found that Einstein’s
field equation can be derived from the proportionality of entropy and horizon area,
together with the first law of thermodynamics [10]. This analysis suggests that Ein-
stein’s field equation may be nothing more than a thermodynamical equation of state
of spacetime and matter fields. In this thesis, we shall do something similar: We shall
consider the possibility that Einstein’s field equation can be derived from the entropy
associated with an accelerating two-plane and the first law of thermodynamics. This
result, if true, would support the view that the equivalence between entropy and area
is more general than one has previously expected.

This dissertation consists of three parts. Part I includes chapters 1 and 2, and it
contains some results of classical general relativity. In chapter 1, we introduce some
well-known results of black hole physics. Many of the issues discussed there are not
directly connected with the main subjects of this thesis, but their purpose is to offer
an extensive introduction to the properties of classical black holes—especially for
the readers who are not experts of general relativity. Chapter 2 deals with the ADM
formulation of general relativity. The ADM formulation gives the foundation for the
quantum-mechanical models of black holes which will be discussed later in part III.

Part II deals with the Hawking radiation, and it consists of three chapters.
First, in chapter 3, we shall briefly review some basic results of quantum field theory

4Here we use a somewhat unorthodox terminology where the entropy of a horizon is understood as
an intrinsic property of such spacelike two-surface which determines the area of the given horizon. For
instance, in the case of the Schwarzschild horizon, the entropy would be associated with the spacelike
two-sphere r = RS. This terminology, and reasons behind it, will be properly introduced in Sec. 7.4.
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in curved spacetime. These results are of vital importance when investigating the
radiation effects of black holes. Later on, in chapter 4, we shall give an introduction
to the Hawking effect and its consequences. Finally, in chapter 5, we shall study
the radiation effects of the Reissner-Nordström black hole—especially the radiation
effects of its inner horizon. As a result, we shall find that the inner horizon emits
radiation towards the singularity in a very similar way as the event horizon emits
radiation out from the hole. When the backscattering effects are ignored, the energy
distribution of the radiating particles obeys the normal blackbody spectrum.

Part III focuses on the gravitational entropy and it consists of three chapters.
Our discussion begins in chapter 6 with the quantum-mechanical models of black
holes. After that, in chapter 7, we shall introduce the spacetime foam model of the
Schwarzschild horizon, where the horizon is build out of microscopic black holes.
We shall show that it follows from the postulates of our model that the entropy as-
sociated with the horizon is proportional to its area. Moreover, we shall give certain
geometrical arguments, which suggest that the constant of proportionality is, in nat-
ural units, one-quarter. Finally, in chapter 8, we perform an analysis where Einstein’s
field equation with a vanishing cosmological constant is derived by means of very
simple thermodynamical arguments. Our derivation is based on a consideration of
the properties of a very small, spacelike two-plane in a uniformly accelerating mo-
tion.



Part I

Classical Results
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Chapter 1

Black Holes

Black holes are where God divided by zero.

Steven Wright [11]

Black holes are regions of space where the gravitational effects are so strong
that even light cannot escape from those regions. The existence of such regions was
proposed for the first time by Michell and Laplace already in the late 18th century
(and probably independently of each other) [12,13]. Their arguments, however, were
based on Newton’s theory of gravitation. General relativity also predicts the exis-
tence of black holes, and the first black hole solution to Einstein’s field equation was
found by Schwarzschild in 1916 [3]. At first, black holes were thought to be only
theoretical curiosities which would not exist in Nature. However, through the works
of Chandrasekhar, Oppenheimer, Volkoff, and Snyder we have learnt that black holes
are born, in some situations, as the final states of stars [14, 15]. Therefore, we may
indeed expect that there exist black holes in our universe.

In this chapter, we shall give a short review of black hole physics. After dis-
cussing the gravitational collapse of stars, we shall define the concept of a black hole
in more precise mathematical terms. Singularity theorems will also be presented. We
shall also briefly discuss the uniqueness theorems concerning black holes, as well as
the so-called black hole mechanics.

1.1 Formation of Black Holes

When a star has used all of its nuclear fuel, it begins to collapse due to its own mass.
At the first stage of the collapse, the star turns into a white dwarf. At the matter
densities characteristic of white dwarfs (ρ ≥ 105g/cm3), electrons are no longer
strictly bounded by the atomic nuclei, and they can be modelled by the Fermi gas of
electrons. Since electrons are fermions, they obey Pauli’s exclusion principle. This
creates a certain outward pressure which tries to halt the gravitational collapse. There

11
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is, however, an upper limit for the pressure originating from the electron gas. In fact,
if the mass of the collapsing star exceeds a certain critical value of mass, namely
1.44 solar masses, the outward pressure cannot halt the collapse [16]. This critical
mass is known as the Chandrasekhar limit.

A star with mass greater than the Chandrasekhar limit continues to collapse
until it reaches the densities of neutron stars (ρ ≥ 1013g/cm3). At these densities, an-
other outward pressure mechanism is provided by the Fermi gas of neutrons. Again,
it can be shown that this pressure has an upper limit. In 1939 Oppenheimer and
Volkoff showed that if the mass of a neutron star exceeds a certain critical mass
(∼ 0.7 solar masses), the collapse cannot be halted and the star collapses com-
pletely [17]. More accurate calculations have been performed later, and the recent
values of this critical mass are between 1.6 and 2 solar masses.

During the complete gravitational collapse, the star turns eventually into a
black hole. More precisely, it can be shown that the radius of the completely collaps-
ing star reaches the Schwarzschild radius

RS = 2M (1.1)

within a finite proper time.1 In this connection, the proper time means the time mea-
sured by an observer moving along with the surface of the star. After the Schwarz-
schild radius has been reached, the star continues its collapse but nothing can escape
from the region bounded by the event horizon. All matter inside the black hole col-
lapses finally into a singularity, that is, the star is ultimately compressed into a single
point in space. It should be noted, however, that from the point of view of an outside
observer, the process of a complete gravitational collapse appears somewhat differ-
ent: According to an observer situated outside the collapsing star, the radius of the
star approaches the Schwarzschild radius only asymptotically and never reaches it.
This means that, in the astrophysical sense, complete gravitational collapse does not
produce actual black holes. Nevertheless, there are good reasons to call such objects
as black holes—even from the astrophysical point of view. It can be shown that all
the measurable quantities of a completely collapsing star become indistinguishable
from the quantities of real black holes within a finite (and reasonably short) time
period. Therefore, even though a completely collapsing star never becomes an ac-
tual black hole from the point of view of an outside observer, it will collapse into
an object which resembles perfectly a real black hole. In this thesis, as well as in
astrophysics, these kinds of objects are always called ’black holes’. Usually, they
are found in contexts totally different from the actual black holes, and therefore the
chance for a confusion is minimal.

It is very difficult to understand the collapse of stars properly. In fact, the re-
sults introduced above rely heavily on the assumption of exact spherical symmetry,
and at the present time there exist no models for a more realistic gravitational col-

1Unless otherwise stated, in this thesis we shall always use the natural units where G = c = ~ =
kB = 1.
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lapse. However, as we shall see in the subsection 1.2.3, it is possible to predict the
formation of the black hole singularities even in the context of non-spherical grav-
itational collapse without any explicit model. Furthermore, besides the collapse of
stars, there are at least two other mechanisms for the formation of black holes. The
first one is the gravitational collapse of the center of a cluster of stars [18]. This
kind of collapse produces very massive black holes. The second one is a completely
different kind of process. It is believed that in the early universe, when the matter
density was extremely high, inhomogeneous regions of matter could have collapsed
into black holes, instead of expanding with the universe. These objects are called
primordial black holes. Even though their existence is still a controversial subject, it
is often useful to study primordial black holes because they provide the only known
mechanism for the birth of the actual black holes: For a primordial black hole all the
matter can be trapped inside the event horizon—even from the point of view of an
outside observer.

It is sometimes convenient to ignore the whole process of black hole forma-
tion, and simply assume that the black hole has existed eternally. These kinds of
objects are called eternal black holes. The main advantage of the eternal black holes
is their time symmetry. (The black holes formed by the gravitational collapse are not
time symmetric due to the disappearance of mass behind the horizon.) Eternal black
holes may be considered unphysical but in many situations they provide an excellent
approximation for the real black holes. In this thesis, we shall study the properties of
an eternal Reissner-Nordström black hole in chapter 5.

1.2 Black Holes and Singularities

It was mentioned in the previous section that, under certain conditions, a spherically
symmetric mass distribution collapses into a singularity. One may still ask, what
are the general conditions under which a spacetime singularity is formed. This kind
of reasoning has led to the set of the so-called singularity theorems. Most of these
theorems were found by Penrose and Hawking in the early 1970’s.

General relativity predicts several kinds of physical singularities: cosmologi-
cal, naked and black hole singularities.2 The cosmological singularities, i.e., the Big
Bang singularities, are predicted by the Friedmann models of cosmology where the
universe is assumed to be homogeneous and isotropic (see, for instance, Ref. [19]).
Surprisingly, it is possible to predict the existence of a cosmological singularity from
much more general assumptions. These assumptions are discussed in detail in the
subsection 1.2.3. Besides that, there exist several other statements concerning the
formation of spacetime singularities. However, we wish to note that in this thesis we
are not very interested in the naked singularities, that is, the singularities which are
not causally separated from the rest of the universe by a horizon. It is widely be-
lieved that in any physically reasonable spacetime a naked singularity cannot form.

2By physical singularities we mean the singularities which cannot be removed by a coordinate
transformation.
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This proposal, known as the Cosmic Censorship Conjecture, was stated by Penrose
already in 1969 but it still remains unproven [20].

In the following pages, we shall take a rather mathematical approach to the
black hole physics. Our main goal will be the singularity theorems but we are also
interested in other aspects of general relativity. For instance, up to this point the
definition of a black hole has been somewhat vague. We have used such notions as
’gravitational field’ and ’light’ in order to specify what is meant by the objects called
black holes. Interestingly, there is an alternative way to define a black hole. Before
we are ready to formulate that definition, we should, however, consider some global
properties of spacetime.

1.2.1 Spacetime—the Final Frontier

Usually, it is reasonable to study such spacetimes only for which the direction of
time is well-defined. We say that a metric spacetime (M, gµν) is time orientable if
at every point p ∈M it is possible to associate a light cone with the tangent space Tp

in such a way that the light cone changes smoothly when one goes from one point to
another.3,4 In a time orientable spacetime, a differentiable mapping γ : [0, 1] →M
is called a future directed timelike curve if at any point xµ(u) of γ(u), the tangent
vector

tµ(u) :=
d

du
xµ(u) (1.2)

is a future directed timelike vector.5 If tµ(u) is either a future directed timelike vector
or null vector at any point of the curve, then the mapping γ is called a future directed
causal curve. In a similar manner, one may define a past directed timelike curve and
causal curve.

Consider again a time orientable spacetime. The causal future J+(p) of a
point p ∈ M is a set of points q such that there exists a future directed causal curve
γ+ with properties γ+(0) = p and γ+(1) = q. The causal past J−(p) of a point
p ∈ M is defined in a similar way by using past directed causal curves. A closely
related concept is the chronological future (past) I+(p) (I−(p) ) which is defined as
a set of points q for which there exists a future (past) directed timelike curve γ in
such a way that γ(0) = p and γ(1) = q. These definitions allow us to define the
causal future/past of a set S ⊂M,

J±(S) =
⋃
p∈S

J±(p), (1.3)

and similarly the chronological future/past of a set S ⊂M,

I±(S) =
⋃
p∈S

I±(p). (1.4)

3In this definition, each light cone is assumed to possess the local notions of future and past.
4From this point on, we shall sometimes denote a metric spacetime simply byM.
5Note that the vectors at the point p ∈M “live” in the tangent space Tp.
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A subset S of a time orientable spacetime is called achronal if I+(S) ∩ S =
∅. For a closed achronal set S, the future (past) domain of dependence D+(S)
(D−(S) ) consists of points p ∈M for which every past (future) inextendible causal
curve through p intersects S. Here the future (past) inextendible curve refers to such
future (past) directed curve which has no future (past) endpoint. The point p ∈ M,
in turn, is said to be a future endpoint of a future directed curve γ(u) if for every
open neighbourhood U(p) there exists u0 such that γ(u) ∈ U for all u > u0. In a
similar manner, one may define the past endpoint of a past directed curve.6 By these
definitions, the domain of dependence of S is then written as

D(S) = D+(S) ∪D−(S). (1.5)

If a closed achronal set Σ has the propertyD(Σ) = M, the set Σ is called the Cauchy
surface of the spacetime M. Correspondingly, if spacetime contains a Cauchy sur-
face, that spacetime is called globally hyperbolic. Loosely speaking, global hyper-
bolicity means that spacetime is causally well-behaved, that is, one cannot change
one’s own past. In general relativity, the concept of time may be associated, in a
certain sense, with a Cauchy surface of spacetime.

Another important property of spacetime is asymptotical flatness. In itself,
this is a rather vast subject, and therefore the exact meaning of asymptotical flatness
will not be discussed here. Let us simply define an asymptotically flat spacetime as
a spacetime having the property

gµν
r→∞= ηµν +O(r−1), (1.6)

where ηµν is the metric tensor of the flat spacetime and r is the (pseudo)distance
measured from the origin of the chosen coordinate system. For a more detailed
discussion about asymptotically flat spacetimes, the reader is advised to see Refs.
[21, 22, 23]. When studying the asymptotic behaviour of spacetime, however, it is
often convenient to adopt the notation introduced by Penrose to distinguish differ-
ent kinds of spacetime infinities. At the heuristic level, one may use the following
definitions.

(i) Past null infinity =− = boundary where all past inextendible null geodesics
end.

(ii) Future null infinity=+ = boundary where all future inextendible null geodesics
end.

(iii) Past timelike infinity i− = boundary where all past inextendible timelike
geodesics end.

(iv) Future timelike infinity i+ = boundary where all future inextendible timelike
geodesics end.

6Note that an endpoint of a curve does not have to be contained in the curve.
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(v) Spatial infinity i0 = boundary where all the spacelike slices of spacetime end.

As an example, the infinities of Minkowski spacetime are illustrated in Fig.1.1. In a
spacetime containing a black hole, these infinities have similar meanings.

=+

=−

i+

i−

i0

ψ

ξ

Figure 1.1. The conformal diagram of Minkowski spacetime. The
dashed and the dotted line represent the worldlines of a null and a
timelike observer, respectively. The continuous line, in turn, represents
a spacelike surface. The asymptotically flat regions have been com-
pressed to finite size by a conformal coordinate transformation from
the spherical Minkowski coordinates t, r, θ, φ to the new spherical co-
ordinates ψ, ξ, θ, φ [24]. In the diagram, the coordinates θ and φ have
been suppressed.

Let U ⊂ M be open. A congruence in U is a family of curves such that for
every p ∈ U there is exactly one curve in this family going through p. We say that a
congruence is smooth if the tangent vectors of the curves constitute a smooth vector
field in U . Now, let us consider a smooth congruence of timelike geodesics. We may
normalize the tangent vector field ξµ of the geodesics to the unit length such that

ξµξ
µ = −1 (1.7)

without losing any generality. The expansion θ, the shear σµν , and the twist ωµν of
the congruence are then defined as

θ := qµνB
µν , (1.8)
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σµν :=
1
2
(
Bµν +Bνµ

)
− 1

3
θ qµν , (1.9)

ωµν :=
1
2
(
Bµν −Bνµ

)
, (1.10)

where
qµν := gµν + ξµξν , (1.11)

Bµν := ξµ;ν , (1.12)

and ’; ν’ stands for the covariant derivative with respect to xν . The tensor qµν can be
interpreted as the “spatial metric” which determines the scalar product on a hyper-
surface orthogonal to the geodesics of the congruence. Moreover, it can be shown
that the quantities θ, σµν , and ωµν satisfy the equation

dθ

dτ
= −1

3
θ2 − σµν σ

µν + ωµν ω
µν +Rµν ξ

µξν , (1.13)

where τ is the proper time along the timelike geodesics and Rµν is the Ricci tensor
of spacetime. This equation is known as the Raychaudhuri equation.

Definition 1.2.1 Let (M, gµν) be an asymptotically flat spacetime.7 A black hole is
a closed set B ⊂M of the spacetime such that

B := M− J−(=+). (1.14)

The boundary of B in M,

H := J̇−(=+) ∩M, (1.15)

where J̇−(=+) denotes the boundary of J−(=+), is called the event horizon.

This is a natural definition for a black hole. The event horizon is an example of a
trapped surface of spacetime. At the trapped surface all ingoing and outgoing light
rays are trapped. More precisely, a compact, smooth, spacelike two-surface T of
spacetime is a trapped surface if the expansion θ ≤ 0 for both the ingoing and the
outgoing null geodesics orthogonal to T . Here the ingoing and the outgoing null
geodesics denote the two families of null geodesics orthogonal to the two-surface T
which intersect the surface from the opposite sides.

We are also interested in a more exact definition for a singular spacetime,
i.e., for a spacetime containing a singularity.8 Usually, the existence of a spacetime

7In fact, it is usually required that the spacetime containing a black hole is strongly asymptotically
predictable. In essence, this means that the Cosmic Censorship Conjecture holds (see Ref. [23] for
details). Either way, the definition of a black hole remains the same.

8Strictly speaking, singularities are not part of spacetime but in a singular spacetime the singular
point is removed. In this sense, a spacetime never “contains” a singularity.
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singularity is manifested by some kind of pathological behaviour in the spacetime
metric, which makes the curvature of spacetime to “blow up”. Unfortunately, there
seems to be an endless variety of possible pathological behavior, and therefore the
characterization of singularities by the behaviour of the curvature would be a hope-
less task. Even worse, sometimes spacetimes may be regarded as singular even when
their curvature does not really blow up. Nevertheless, for all spacetimes which may
be considered singular in a physically meaningful sense, there appears to be one
common property: There exist timelike or null inextendible geodesics which begin
or end at the singularities, that is, there exist timelike or null incomplete geodesics.
It is this feature which we adopt as the definition of a singularity.9

Definition 1.2.2 A spacetime (M, gµν) is said to be singular if there exist timelike
or null incomplete geodesics.

There are indeed some objections to this definition. If there is a physical singular-
ity in a spacetime, one would expect geodesic incompleteness for all the types of
geodesics. It is, however, possible to construct a spacetime which is, for instance,
spacelike and null geodesically complete but timelike geodesically incomplete. Even
more examples against this definition may be given (see, for instance, Ref. [23]).
Nevertheless, it is the most satisfactory proposal thus far and, in the end, it is clear
that something physically pathological does occur in the spacetimes which are time-
like or null geodesically incomplete.

In order to show that a spacetime contains incomplete geodesics, one must
find an inextendible geodesic with a finite length. The length of a timelike geodesic
is equal to the proper time of the observer moving along that geodesic. The situation
is, however, completely different for the null geodesics since the separation between
points in spacetime along any null geodesic is always zero. For this reason, a null
geodesic is usually parametrized by the so-called affine parameter λ such that the
tangent vector

kµ :=
∂xµ

∂λ
(1.16)

satisfies the equation
kµkν

;µ = 0. (1.17)

The affine length of a geodesic is then the difference between the values of the chosen
affine parameter at its endpoints. The motivation for Eq. (1.17) can be found from the
fact that when a timelike geodesic is parametrized by its length, the tangent vector
of the geodesic obeys a similar equation. However, it is important to understand that
affine parametrization is not unique: Every reparametrization λ → aλ + b, where a
and b are constants, is also affine.

9Since nothing moves along spacelike curves, the meaning of spacelike geodesic incompleteness is
not clear. Therefore the definition of a singularity concerns only timelike or null geodesic incomplete-
ness.
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1.2.2 Energy Conditions and Generic Conditions

When we seek certain general conditions for the formation of spacetime singular-
ities, we must also consider the properties of realistic matter. In general relativity,
matter is described by the energy-momentum tensor Tµν , and therefore we are led
to study the physical properties of this tensor. Although it is practically impossible
to describe the exact form of the energy-momentum tensor for the realistic matter
fields, it is possible to find certain inequalities which should be valid in any physi-
cally reasonable situation.

If the energy-momentum tensor satisfies the inequality

Tµνξ
µξν ≥ 0, (1.18)

where ξµ is an arbitrary future directed timelike vector, we say that matter satisfies
the weak energy condition. Since Tµνξ

µξν may be interpreted as the energy den-
sity of matter measured by an observer whose 4-momentum is ξµ, the weak energy
condition tells us that the energy density of matter can never be negative. This is a
reasonable assumption, and it is true for all known classical fields. A bit more strict
requirement is provided by the so-called strong energy condition, which is satisfied
when

Tµνξ
µξν ≥ 1

2
ξµξµT (1.19)

for every timelike future directed vector ξµ. Again, this assumption seems physically
justified, since it is generally believed that the stress components of Tµν will not be-
come so large and negative that Eq. (1.19) would be violated. Besides the above
inequalities, there is at least one more condition that seems to hold for realistic mat-
ter: If ξµ is an arbitrary future directed timelike vector, then−Tµ

νξν is either a future
directed timelike vector or a null vector. This requirement is known as the dominant
energy condition. The quantity −Tµ

νξν represents the energy-momentum 4-current
density of matter according to an observer whose 4-velocity is ξµ, and hence the
dominant energy condition states that the speed of the energy flow of matter can
never be greater than that of light.

The dominant energy condition implies the weak energy condition but other-
wise these three statements are independent of each other. In that sense, the words
’weak’ and ’strong’ may be somewhat misleading.10 Anyway, these conditions be-
come very useful when they are combined with the results of general relativity. For
instance, if we assume that the strong energy condition and Einstein’s field equation
are satisfied, it can be shown that for all timelike and null vectors vµ we have

Rµνv
µvν ≥ 0, (1.20)

where Rµν is again the Ricci tensor of the spacetime. It can also be shown that if
we assume the weak instead of the strong energy condition, Eq. (1.20) holds for all

10Some references use the definition Tµνkµkν ≥ 0, where kµ is arbitrary null vector, for the weak
energy condition. In this case, the strong energy condition does in fact imply the weak energy condition.
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null vµ. As we soon shall see, these inequalities play major roles in the theory of
singularities.

Besides the conditions mentioned above, there are also some other properties
of spacetime which will become important later. A spacetime (M, gµν) is said to
satisfy the timelike generic condition if for each timelike geodesic γ there exists at
least one point p ∈ γ at which

Rαβµνξ
αξν 6= 0, (1.21)

where ξµ is again a tangent vector of the geodesic and Rαβµν is the Riemann tensor
of the spacetime. Although this condition may not be valid in some idealized models,
it is generally believed that in any realistic spacetime the timelike generic condition
holds. Furthermore, we say that a spacetime satisfies the null generic condition if
each null geodesic γ possesses at least one point p ∈ γ where

k[δRα]βµ[νkρ]k
βkµ 6= 0. (1.22)

Here kµ is the tangent vector of the geodesic, and we have used a specific notation
for the antisymmetric parts of tensors where, for instance,

C[µν] =
1
2
(
Cµν − Cνµ

)
, (1.23)

where Cµν is an arbitrary tensor.

1.2.3 Singularity Theorems

The idea behind the singularity theorems is to find certain general conditions which
predict the existence of timelike or null incomplete geodesics. First, we shall state
two theorems relevant to cosmology and trapped surfaces. These theorems were his-
torically some of the first general statements concerning singularities. Later on, these
theorems were also proved under significantly weaker hypotheses. After stating these
theorems, we shall quote the Hawking-Penrose singularity theorem which contains
a summary of conditions needed for the formation of a singularity.

Theorem 1.2.1 Let (M, gµν) be a globally hyperbolic spacetime satisfying the con-
dition Rµνξ

µξν ≥ 0 for all timelike ξµ. Furthermore, let Σ be a smooth Cauchy
surface in M for which the expansion of the congruence of past directed timelike
geodesics has the property θ ≤ C < 0, where C is a constant. In that case, there is
no past directed timelike geodesic emanating from Σ with a geodesic length greater
than 3

|C| , i.e., all the past directed timelike geodesics are incomplete [25].

The theorem given above shows that, under certain conditions, a globally hy-
perbolic universe has begun from a singular state a finite time ago. Consider now, for
the sake of simplicity, the time orthogonal coordinates (see Sec. 2.2 for details). It is
well known that then the expansion of the future directed timelike geodesics may be
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written as
θ =

1
2
q̇abq

ab, (1.24)

where qab is the positive-definite metric on the Cauchy surface Σ, a, b = 1, 2, 3
and ’dot’ stands for the time derivative. Now, if θ < 0 for the past directed time-
like geodesics then we must have θ > 0 for the future directed timelike geodesics.
Hence, the assumption that θ ≤ C < 0 at the Cauchy surface Σ means that at “some
instant of time” the universe expands everywhere. As a result, the physical content
of the theorem 1.2.1 may be expressed as follows: If in a globally hyperbolic space-
time Einstein’s field equation is satisfied, the strong energy condition holds, and at
some instant of time the universe expands everywhere, then there must have been
the beginning of time.

As mentioned before, the assumptions used in theorem 1.2.1 can be weak-
ened. It has been shown by Hawking that the hypothesis of global hyperbolicity can
be replaced by an assumption that Σ is compact, i.e., the universe is closed [26].
There is, however, a price to pay: This assumption leads to the weakened conclu-
sion where only one past directed geodesic must be incomplete. The unwanted hy-
potheses of this theorem have been eliminated in the Hawking-Penrose singularity
theorem 1.2.3.

Theorem 1.2.2 Let (M, gµν) be a connected11, globally hyperbolic spacetime pos-
sessing a non-compact Cauchy surface Σ. Moreover, suppose that Rµνk

µkν ≥ 0
for all null kµ and that the spacetime M contains a trapped surface T . If θ0 < 0
denotes the maximum value of the expansion θ at the surface T for both ingoing
and outgoing null geodesics orthogonal to that surface, then there exists at least one
inextendible future directed null geodesic from T with affine length λ ≤ 2

|θ0| .

Historically, the theorem 1.2.2 was the first general statement concerning sin-
gularities, and it was proved by Penrose in 1965 [27]. In contrast to the theorem
1.2.1, which concerns singularities in the cosmological context, this theorem estab-
lishes geodesic incompleteness relevant to the gravitational collapse. In particular,
the theorem 1.2.2 is extremely helpful when one considers non-spherical gravita-
tional collapse: If the initial conditions of the gravitational collapse are sufficiently
close to the initial conditions of the spherical collapse, it can be shown that a trapped
surface must form. Therefore, non-spherical gravitational collapse may also develop
a singularity. This means that even though we have only spherically symmetric mod-
els for the complete gravitational collapse, the formation of singularities requires no
exact symmetry whatsoever. From the physical point of view, the content of the theo-
rem 1.2.2 may be expressed as follows: If spacetime possesses a spacelike, compact
two-surface such that future directed light rays cannot escape outside that surface,
then there is at least one null geodesic emanating from the surface which ends some-
where. For example, one may consider the trapped surfaces r = C < RS, where C

11A manifoldM is said to be connected, if the only subsets which are both open and closed are the
entire manifoldM and the empty set ∅.
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is a constant, in Schwarzschild spacetime. In that case, all null geodesics emanating
from the sphere r = C end at the black hole singularity.

The assumptions used in this theorem can also be weakened (mainly the as-
sumption concerning global hyperbolicity). However, this leads to a slightly weaker
conclusion in which we have no information which geodesic is incomplete. Most
of the unwanted assumptions of the theorem 1.2.2 have been eliminated in the next
theorem.

Theorem 1.2.3 Let us assume that a spacetime (M, gµν) has the following four
properties.

1. Rµνv
µvν ≥ 0 for all timelike or null vectors vµ.

2. The timelike and null generic conditions hold.

3. There exist no closed timelike curves.

4. At least one of the following three conditions is satisfied:

(a) (M, gµν) is a closed universe.

(b) (M, gµν) has a trapped surface.

(c) There exists a point p ∈M such that the expansion θ of a congruence of
either future or past directed null geodesics emanating from p becomes
negative for each geodesic in this congruence.

Then (M, gµν) contains at least one incomplete timelike or null geodesic [28].

It has been shown by Gannon that a fourth alternative for the condition 4 can
be added, namely that the spacetime (M, gµν) contains a closed, achronal, edgeless
set S which is non-simply connected12 and “regular near infinity”13 [29]. An asymp-
totically flat spacetime which initially has adequately non-trivial topology satisfies
this assumption and therefore, assuming that conditions 1 − 3 hold, it develops a
singularity. Further results can be found in Refs. [29, 30].

Theorem 1.2.3 is a strong argument supporting the view that our universe is
singular. In the present time, we have experimental evidence which suggests that
our universe can be described by the Robertson-Walker models of cosmology with
good accuracy—at least back until the decoupling epoch of matter and radiation
[31]. In these models, however, the expansion of the past directed null geodesics
emanating from the event representing us becomes negative much later than the time
of decoupling. Therefore, it is likely that the assumption 4.(c) holds in our universe.
Since it is reasonable to expect that the conditions 1− 3 are also satisfied, we have a
strong reason to believe that our universe has begun from a singular state.

12A connected manifoldM is said to be simply connected, if all closed curves inM can be contin-
uously deformed into the trivial curve, for which γ(u) = γ(0) for every u ∈ [0, 1].

13See Refs. [23, 29] for the exact meaning of regularity.
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1.3 Uniqueness Theorems and Black Hole Mechanics

Assuming that the Cosmic Censorship Conjecture holds, a black hole is expected to
reach an equilibrium with its surroundings in a finite time regardless of the details
of the gravitational collapse [32]. Therefore, the metric of the exterior spacetime
region becomes eventually stationary, i.e., the metric is, at least in some frame of
reference, independent of the time coordinate. A stationary black hole, moreover, can
be static, axially symmetric or both [22]. In static spacetime, the metric is assumed
to be stationary and symmetric under the time reversal t → −t. Thus, all static
spacetimes are stationary. Furthermore, it can be shown that the axial symmetry is a
necessary property of stationary black holes.

There are only three different stationary black hole solutions in addition to
the Schwarzschild black hole: Reissner-Nordström [33, 34], Kerr [35], and Kerr-
Newman solutions [36]. A Reissner-Nordström black hole represents a static, spher-
ically symmetric and electrically charged black hole. Both the Kerr and the Kerr-
Newman solutions represent rotating black holes. The only difference between them
is that the Kerr-Newman black hole is electrically charged. Clearly, the rotating black
holes are not spherically symmetric, but it turns out that they are axially symmetric.
There are many excellent books discussing the properties of these black hole solu-
tions, so we shall not go into the details here. An introduction to the subjects like
these can be found, for instance, in Ref. [19]. However, it should be noted that at this
moment there is no precise mathematical description of any mechanism that would
produce an electrically charged or a rotating black hole [37].

The most general black hole solution is the Kerr-Newman black hole. All other
solutions can be regarded as its special cases. There are certain theorems, namely the
so-called uniqueness theorems, which guarantee that the properties of a stationary
black hole can be uniquely described by the three parameters of the Kerr-Newman
solution: mass M , electric charge Q, and angular momentum J [38]. This statement
was first proposed by Wheeler when he humorously stated that “black holes have
no hair” [39]. The proof of the uniqueness of the Kerr-Newman solution has been
put forward in a long chain of theorems by many authors. Logically, the first step
is due to Hawking, when he showed that any stationary black hole is topologically
spherical [22]. This theorem applies to both the electrically neutral and the charged
black holes. Now, as we stated before, stationary black holes are either static or
axisymmetric. We consider both of these cases separately.

The static solutions have been analyzed by Israel. In short, he showed that
any static, topologically spherical vacuum solution must represent a Schwarzschild
black hole [40]. This result has been generalized to the electrovacuum case as well
[41]. Therefore, the only possible static electrovacuum black holes are Reissner-
Nordström black holes.

According to the Carter-Robinson theorem, all stationary, axisymmetric topo-
logically spherical vacuum solutions can be characterized by two parameters M and
J [42, 43]. Therefore, they belong to the Kerr family of solutions. A similar result
holds also for the Kerr-Newman black holes [44]. Therefore, since no other classical
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field can form around a black hole [45,46,47], all the properties of a stationary black
hole are described by the mass M , the charge Q, and the angular momentum J .

It is an intriguing fact that in gravitational collapse, black holes “forget” all
other properties of matter except mass, electric charge, and angular momentum.
However, a somehow analogous phenomenon can be found in the thermodynamics
of ordinary matter: When a thermodynamical system reaches an equilibrium with
its surroundings, its properties can be described by few macroscopic quantities only.
Since the thermodynamical properties of a system can be derived from the four laws
of thermodynamics, one might suspect that there may be similar laws for stationary
black holes as well. These theorems are known as the four laws of black hole me-
chanics, and they were formulated by Hawking, Bardeen and Carter in the beginning
of the 70’s [48, 49].

The laws of black hole mechanics involve the quantity known as a surface
gravity

κ :=

√
M2 − a2 −Q2

2M(M +
√
M2 − a2 −Q2 )−Q2

, (1.25)

whereM is the mass, a = J
M is the angular momentum per mass andQ is the electric

charge of the black hole.14 For a static black hole, it describes the limiting value of
the force exerted from the asymptotic infinity in order to hold a unit test mass in
place at the horizon. However, for a rotating black hole such an interpretation cannot
be given since in that case the horizon “spins” with respect to the infinity. By using
this concept, the laws of black hole mechanics are now expressed as follows.

Theorem 1.3.1 (The Zeroth Law) The surface gravity κ is constant over the hori-
zon of a stationary black hole.

Since this theorem resembles the zeroth law of thermodynamics, it gives us a reason
to expect that the temperature of a stationary black hole is proportional to κ. Thus,
the surface gravity seems to play, in a certain sense, the role of the temperature of
the black hole.

Theorem 1.3.2 (The First Law) Black holes satisfy the equation

δM =
1
8π
κ δA+ ΩBH δJBH + ΦBH δQ, (1.26)

where M is the black hole mass, A is the area of the event horizon, ΩBH is the
angular velocity of the event horizon, JBH is the angular momentum, and ΦBH is the
electric potential at the horizon.

In essence, the first law of black hole mechanics simply states that the mass-energy is
conserved. When one compares this theorem with the first law of thermodynamics,
one finds that the horizon area A has a similar role as entropy S in thermodynamics.
This similarity can be seen even more clearly in the following theorem.

14For a general definition of the surface gravity, see Ref. [50].
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Theorem 1.3.3 (The Second Law) If the Cosmic Censorship Conjecture holds and
Rµνk

µkν ≥ 0 for all null kµ, then

δA ≥ 0 (1.27)

in any (classical) process.

This theorem is often called Hawking’s area law of black holes. The horizon area A
can be expressed in terms of the so-called irreducible mass Mir:

A = 16πM2
ir . (1.28)

The irreducible mass, in turn, has the form

Mir =
1
2

√(
M +

√
M2 − a2 −Q2

)2 + a2. (1.29)

Therefore, theorem 1.3.3 may be written alternatively as

δMir ≥ 0. (1.30)

This equation sets, for instance, an upper limit for the energy extraction from a rotat-
ing black hole.15 Besides that, theorem 1.3.3 has at least two other important conse-
quences. Firstly, it restricts the amount of energy that can radiate away in black hole
collisions: It can be shown that about 29% of the total mass can be radiated. Sec-
ondly, it forbids the bifurcation of a black hole. Bifurcation of a black hole would
lead to a contradiction between the area law and the energy conservation.

Theorem 1.3.4 (The Third Law) It is impossible to reach κ = 0 by physical pro-
cesses.

Again, one can see that there is an obvious connection to thermodynamics: The
above theorem is strikingly similar to the third law of thermodynamics which tells
us that T = 0 cannot be reached. Since the surface gravity is zero for the extreme
black holes only, theorem 1.3.4 states that a non-extreme black hole cannot transform
into an extreme black hole.

At first, the four laws of black hole mechanics were thought to be just anal-
ogous to the four laws of thermodynamics without any deeper physical meaning.
However, when Hawking showed that a black hole has an entropy proportional to
the area of its event horizon, he turned this analogy into an identity. Thus, the laws
of black hole mechanics are not merely analogous to the laws of thermodynamics
but they in fact describe the thermodynamics of black holes.

15Energy extraction from a rotating black hole is possible by means of the so-called Penrose process.
For further information see, for example, Ref. [19].
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Chapter 2

Hamiltonian Formulation of
General Relativity

2.1 Introduction: Hamiltonian Formulation of Classical Me-
chanics

Beauty of a scientific theory is a concept which is not always easy to define. This
property, however, is often regarded as a hallmark of a viable and profound theory.
Although beauty manifests itself in various forms, the common feature seems to
be an admirable, sometimes even astonishing simplicity of the theory. Even when
the mathematical framework becomes complicated, the guiding principles always
remain simple and unchanged.

Few scientific principles may be regarded as beautiful as Hamilton’s varia-
tional principle. It dates back to the eighteenth and the nineteenth century when the
concept of action was introduced into physics. The action is a certain real number
S associated with the history of a physical system within some time interval [ti, tf].
The variational principle states that the only allowed histories of a (classical1) sys-
tem are those for which the action is extremized, i.e., the action is stationary. As
it is well known, the variational principle provides an elegant method for solving
the problems of classical mechanics. Its beauty, however, goes beyond this feature.
First of all, the Hamiltonian formulation of classical mechanics resulting from the
variational principle can be deemed as the starting point of quantum mechanics. Sec-
ondly, the guiding principles of the variational methods can be utilized in many other
branches of physics, including general relativity. In fact, even though the physical in-
terpretations may vary greatly between different physical systems, the mathematical
formalism stays the same in every case.

Before we proceed to discuss a certain Hamiltonian formulation of general
relativity, namely the so-called Arnowitt-Deser-Misner (ADM) formulation, let us
first recall the ideas of the action principle in classical mechanics. After all, the
mathematical structure of the Hamiltonian mechanics is very similar to that of the

1Here the word ’classical’ is used as a synonym for non-quantum.
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ADM formulation.
A physical system in classical mechanics consists of mass points moving in

three-dimensional Euclidean space. These mass points, in turn, interact with each
other in a certain way. When a system is composed of n mass points with no con-
straints between them, one may introduce 3n generalized coordinates qi, which are
somehow related to the positions of the mass points (i = 1, . . . , 3n). The complete
knowledge about the history of the system requires complete knowledge about the
values of every coordinate qi at each instant of time t ∈ [ti, tf]. The action of the
system is then defined as

S =

tf∫
ti

L
(
qi(t), q̇i(t); t

)
dt, (2.1)

where the function L is known as the Lagrangian of the system and the time deriva-
tives q̇i(t) := d

dtqi(t) are called generalized velocities. In classical mechanics, the
Lagrangian is written as

L = T − U, (2.2)

where T is the kinetic andU is the potential energy of the system. When one requires
that the action (2.1) is stationary, one arrives at the Lagrangian equations of motion

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, (2.3)

which must be satisfied by every qi. When U does not depend on the velocities, these
equations are equivalent to the Newtonian equations of motion.

Equation (2.3) constitutes the Lagrangian formulation of classical mechanics.
For a system with s degrees of freedom it gives a set of s second-order differen-
tial equations written for the generalized coordinates qi. However, in Hamiltonian
formulation of classical mechanics or, in short, in the Hamiltonian mechanics, one
can express the equations of motion as first-order differential equations. Of course,
there is a price to pay for this simplification: The number of independent differential
equations increases from s to 2s.

The starting point of Hamiltonian mechanics is to define the canonical mo-
mentum

pi :=
∂L

∂q̇i
. (2.4)

Formally, the generalized coordinates and the canonical momenta are treated as in-
dependent variables, and together they span a 2s-dimensional space known as the
phase space. The quantities qi and pi, in turn, are usually referred as the canoni-
cal variables. In Hamiltonian mechanics, each state of the system corresponds to
a certain point of the phase space. Spaces spanned individually by the generalized
coordinates and the canonical momenta are called the configuration space and the
momentum space, respectively.

If one is able to express the generalized velocities q̇i in terms of the canonical
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momenta pi, one may perform a change of variables from the set (qi, q̇i; t) to the set
(qi, pi; t) .2 Then the Hamiltonian of the system is

H(qi, pi; t) :=
s∑

i=1

piq̇i − L(qi, q̇i; t). (2.5)

This definition stresses the fact that the Hamiltonian is always a function of qi, pi, and
t, whereas the Lagrangian is considered as a function of qi, q̇i, and t. This definition
together with Eqs. (2.3) and (2.4), leads directly to the Hamiltonian equations of
motion:

q̇i =
∂H

∂pi
, (2.6a)

ṗi = −∂H
∂qi

, (2.6b)

where i = 1, . . . , s. Under certain conditions, namely, when the kinetic energy can
be written in the form

T =
s∑

i,j=1

fij q̇iq̇j , (2.7)

where the function fij depends only on qi, and the potential energy U is independent
of both the generalized velocities q̇i and the time t, the Hamiltonian H equals to the
energy of the system.

There is no unique way to choose the phase space coordinates of a mechan-
ical system, and therefore the choice of the coordinates is usually performed in
such a way that the mechanical problem becomes as simple as possible. Since in
the Hamiltonian mechanics the generalized coordinates and the canonical momenta
are considered as independent variables, the coordinate transformations in the phase
space must include simultaneous transformations of both the coordinates and the
momenta. The transformation from the “old” phase space coordinates (qi, pi) to the
“new” phase space coordinates (Qi, Pi) may be written in the form

Qi = Qi(qi, pi; t), (2.8a)

Pi = Pi(qi, pi; t), (2.8b)

such that these equations are invertible. However, if we want to maintain the math-
ematical structure of the Hamiltonian mechanics, we are interested in those trans-
formations only where the Hamiltonian equations of motion remain invariant. More
precisely, we shall consider the transformations from the canonical variables (qi, pi)

2This kind of transformation is an example of the so-called Legendre transformations.
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to the new variables (Qi, Pi) such that the equations

Q̇i =
∂K

∂Pi
, (2.9a)

Ṗi = − ∂K
∂Qi

, (2.9b)

are valid for some function K = K(Qi, Pi; t). The function K takes the role of the
Hamiltonian in the new set of coordinates.

It is easy to find a sufficient condition for the invariance of the Hamiltonian
equations of motion. From Eq. (2.5) we see that the action may be written as

S =

tf∫
ti

( s∑
i=1

piq̇i −H
)
dt. (2.10)

If this action is varied with respect to the (independent) variables qi and pi, Eqs.
(2.6) are reproduced. Similarly, if the equations of motion are expected to remain
invariant, then the variation of the action

S′ =

tf∫
ti

( s∑
i=1

PiQ̇i −K
)
dt (2.11)

with respect to Qi and Pi should lead to Eqs. (2.9). One therefore sees that the
Hamiltonian equations remain invariant under the transformation (2.8) if

s∑
i=1

piq̇i −H =
s∑

i=1

PiQ̇i −K +
dF

dt
, (2.12)

where F is any function of the phase space coordinates and of time twith continuous
second derivatives. Coordinate transformations which follow Eq. (2.12) are called
canonical transformations and the function F , in turn, is known as the generating
function.

It turns out that the question whether the proposed coordinate transformation
is canonical or not may be answered with the help of the so-called Poisson brackets.
In general, the Poisson bracket between arbitrary functions u(qi, pi) and v(qi, pi) is
written as

{u, v}(q,p) :=
s∑

i=1

(
∂u

∂qi

∂v

∂pi
− ∂v

∂qi

∂u

∂pi

)
. (2.13)

The Poisson brackets of the canonical variables qi and pi itself—the so-called fun-
damental Poisson brackets—are then

{qi, qj}(q,p) = {pi, pj}(q,p) = 0, (2.14a)

{qi, pj}(q,p) = δij . (2.14b)
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It can be shown that a coordinate transformation from the set (qi, pi) to the set
(Qi, Pi) is canonical if and only if the fundamental Poisson brackets remain in-
variant under that transformation. Putting differently, a coordinate transformation is
canonical if and only if

{qi, qj}(q,p) = {qi, qj}(Q,P ), (2.15a)

{pi, pj}(q,p) = {pi, pj}(Q,P ), (2.15b)

{qi, pj}(q,p) = {qi, pj}(Q,P ), (2.15c)

for every i, j = 1, . . . , s. In fact, it can also be shown that all Poisson brackets
remain invariant under canonical transformations. Therefore it is not necessary to
include the references to the phase space coordinates.

2.2 ADM Formulation in Brief

We are now ready to transfer the ideas and concepts of the Hamiltonian mechanics to
general relativity. First, it should be noted that there exist many different but equiva-
lent Hamiltonian formulations of general relativity. This is a consequence of the fact
that the generalized coordinates used in the gravitational action can be chosen freely.
In this thesis, however, we shall concentrate on the ADM formulation of general
relativity which was discovered by Arnowitt, Deser, and Misner in 1962 [51].

In general relativity, the concept of a system involves both the spacetime and
the existing matter fields. In other words, it is a theory of fields, and the number of
the degrees of freedom is therefore non-countable. In particular, the Lagrangian L
is now replaced by the Lagrangian density L such that the gravitational action is
written as

S =
∫
M

L d4x, (2.16)

where the integration is performed over the whole spacetime M. In general, the
Lagrangian density of general relativity is considered to be a function of the compo-
nents of the metric tensor gµν and its derivatives ∂αgµν and ∂α∂βgµν , and, of course,
of the field variables of the matter. It is well known that Einstein’s field equation in
vacuum can be derived from the Einstein-Hilbert action

S =
1

16πG

∫
M

R
√
−g d4x (2.17)

by varying it with respect to gµν .3 Here R is the Riemannian curvature scalar and g
denotes the determinant of the metric tensor gµν .

Equation (2.17) constitutes the Lagrangian formulation of general relativity.

3Note that Einstein’s field equation cannot be obtained directly from an equation similar to that of
Eq. (2.3). This is because the Lagrangian density of general relativity depends also on the second-order
derivatives of gµν .
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Hamiltonian formulation of a field theory, in turn, requires some sort of a slicing of
spacetime into space and time. In general relativity there is an infinite number of
ways to measure time, and none of them can be considered preferable to the others.
However, when spacetime is globally hyperbolic, all the different notions of time
are given by a certain function t = t(xa) of the spatial coordinates xa (a = 1, 2, 3)
which, for given value of t, corresponds to exactly one Cauchy surface Σt. Therefore,
the concept of time in general relativity can be associated with a certain hypersurface
of spacetime. Furthermore, when the matter fields are ignored, the history of the
system corresponds to the four-geometry of the subset of the spacetime which is
bounded by two spacelike hypersurfaces Σti and Σtf (see Fig. 2.1). For the sake of
simplicity, we shall first assume that all matter fields are absent, and construct the
ADM formulation for the vacuum solutions only. Then, at the end of this section, we
shall briefly comment on some modifications caused by matter fields.

qab(f)

qab(i)

tf

ti

Σti

Σtf

gµν

Figure 2.1. A three-dimensional analogue of spacetime. Within the
time interval [ti, tf ] the history of the spacetime corresponds to the
geometry of such subset of the spacetime which is bounded by the
hypersurfaces Σti

and Σtf
.

In short, the basic idea of the ADM formulation is to decompose spacetime
into space and time, and take the coordinates of the configuration space to be the
components of the metric tensor qab of the Cauchy surface t = constant. For a glob-
ally hyperbolic spacetime, this kind of decomposition is always possible. Moreover,
this choice is practical because the complete knowledge of the spatial metric qab, to-
gether with the information about the choice of the time coordinate, provides all the
information about the geometry of spacetime. The coordinates of spacetime, in turn,
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are chosen such that the metric of spacetime takes the form of the so-called ADM
metric:

ds2 = −N2dt2 + qab(dxa +Nadt)(dxb +N bdt)

= −(N2 −NaNa)dt2 + 2qabN
adxbdt+ qab dx

adxb. (2.18)

Here the (smooth) functions N = N(t, x1, x2, x3) and Na = Na(t, x1, x2, x3)
(a = 1, 2, 3) are called the lapse function and the shift vector, respectively. The lapse
function measures the rate of flow of the proper time with respect to the time co-
ordinate t when one moves orthogonally to Σt, whereas the shift vector measures
the tangential “shift” of the spacelike coordinates xa during the proper time interval
Ndt (see Fig. 2.2). It should be noted that one may, at first glance, conclude that the
Hamiltonian formalism loses its generality due to the certain choice of coordinates.
After all, the diffeomorphism invariance is one of the cornerstones of general relativ-
ity. However, since N and Na are arbitrary functions of the spacetime coordinates,
their role can be interpreted as providing the general coordinate transformations in
the spacetime. Thus, in the ADM formulation, the diffeomorphism invariance is em-
bedded within the functions N and Na.

Nd
t

Σt

Σt+dt

Ndt

(x
1 , x

2 , x
3 )

(x1, x2, x3) (x
1 +N

1 dt,
x
2 +N

2 dt,
x
3 +N

3 dt)

(x1 −N 1dt, x2 −N 2dt, x3 −N 3dt)

Figure 2.2. The geometrical interpretation of the ADM metric. When
an observer moves orthogonally to Σt, the infinitesimal change of his
proper time, dτ , equals to Ndt. Moreover, on the hypersurface Σt+dt

the point (x1 − N1dt, x2 − N2dt, x3 − N3dt) instead of the point
(x1, x2, x3) lies on the line which is orthogonal to the hypersurface Σt

at the point (x1, x2, x3). For the sake of clarity, the orthogonality is
depicted as in positive-definite spacetime.

It can be shown that when all the boundary terms are neglected, the gravita-
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tional action (2.17) can be written in terms of qab, N , and Na such that

S =
1

16πG

∫
M

N
√
q (KabK

ab −K2 +R) dt d3x, (2.19)

where q is the determinant of the metric tensor qab, R is the Riemannian curvature
scalar on the hypersurface Σt, Kab is the so-called exterior curvature tensor and
K = qabKab (see, for instance, Ref. [19]).4 We denote the Lagrangian in Eq. (2.19)
by

Leff :=
1

16πG
N
√
q (KabK

ab −K2 +R) (2.20)

in order to make a distinction to the Lagrangian in Eq. (2.17) which differs from
Leff by some boundary terms. The exterior curvature tensor Kab measures how the
hypersurfaces Σt are embedded in spacetime. This concept is useful since the com-
ponents qab describe the intrinsic geometry of the hypersurface only, and they tell
nothing about the exterior curvature of the surface. In general, the exterior curvature
tensor of a spacelike hypersurface may be obtained from the equation

Kab = −nµ;b b
µ
(a), (2.21)

where bµ(a) is the tangent vector of the coordinate curve related to xa and nµ is the
unit normal of the hypersurface satisfying the relations

gµνn
µbν(a) = 0, (2.22a)

gµνn
µnν = −1, (2.22b)

for all a = 1, 2, 3.5 In the case of the hypersurfaces Σt, for which the time coordinate
t is constant, the exterior curvature tensor takes a very simple form:

Kab = −|g00|−1/2Γ0
ab. (2.23)

Furthermore, in the so-called time orthogonal coordinates, that is, when N = 1 and
Na = 0, one finds that

Kab = −1
2
q̇ab. (2.24)

If one now performs a coordinate transformation such that dt→ Ndt, one finds that
∂
∂t →

1
N

∂
∂t . Moreover, it may be easily shown that in the infinitesimal coordinate

transformation where xa → xa + Nadt, the metric tensor transforms as qab →
qab − Na|bdt − Nb|adt, where the symbol ’|’ means the covariant derivative on the

4In this section, we shall adopt an approach to the ADM formulation, where we first assume that
the variations of the field variables and their derivatives always vanish on the boundaries of a given
spacetime. Since this is not always true, we shall later, if needed, complement the action by the required
boundary terms.

5Some references use the different sign convention in the definition of the exterior curvature tensor.
Here we have adopted the convention which agrees, for example, with Arnowitt, Deser, and Misner
[51], and with Misner, Thorne, and Wheeler [19].
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hypersurface Σt. It is therefore easy to convince oneself that in the presence of a
non-zero shift and when the lapse function differs from unity, we must have

Kab =
1

2N
(−q̇ab +Na|b +Nb|a). (2.25)

This result, of course, can be obtained in a more precise fashion from Eq. (2.21) also.

In the ADM formalism, one chooses the spatial metric qab, the lapse function
N , and the shift vector Na as the field variables. However, as it can be seen from
Eqs. (2.19) and (2.25), there are no time derivatives corresponding to the variables
N or Na in the action. Therefore, the lapse function and the shift vector are not dy-
namical variables of the theory but their role is somewhat similar to Lagrange’s un-
determined multipliers in classical mechanics. The dynamical variables of the ADM
formulation are the components of the spatial metric qab, and one easily sees that the
corresponding canonical momenta may be written in the form

pab :=
∂Leff

∂q̇ab
=

1
16πG

√
q (Kab − qabK). (2.26)

The Hamiltonian density is then defined as

Heff := pabq̇ab − Leff, (2.27)

and when the boundary terms are again neglected, one finds that

Heff = NH+NaHa, (2.28)

where we have defined

H :=
1
2
(16πG)Gabcd p

abpcd −
√
q

16πG
R, (2.29)

Ha := −2pab
|b. (2.30)

The functions H and Ha are often called the super-Hamiltonian and the supermo-
mentum, respectively. The function Gabcd in Eq. (2.29), in turn, is given by the defi-
nition

Gabcd :=
1
√
q
(qabqcd − qacqbd − qadqbc), (2.31)

and it is known as the Wheeler-DeWitt metric. These definitions lead to the action

S =
∫
M

(
pabq̇ab −NH−NaHa

)
dt d3x, (2.32)

which is called the Hamiltonian, or the canonical, form of the ADM action.

One is now able to write down the Hamiltonian equations of motion of general
relativity. It can be shown that the dynamical equations for the phase space variables
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qab and pab are of the form

q̇ab =
∂Heff

∂pab
, (2.33a)

ṗab = −∂Heff

∂qab
+ ∂c

[ ∂H
∂(∂cqab)

]
− ∂c∂d

[ ∂H
∂(∂c∂dqab)

]
. (2.33b)

These equations resemble greatly Eqs. (2.6) found in the previous section. The only
difference is that there are two extra terms on the right hand side of Eq. (2.33b).
These terms are due to the fact that the Lagrangian density of general relativity de-
pends, in addition to qab and ∂µqab, also on the second-order derivatives of qab. The
most important thing, however, is that Eqs. (2.33) are equivalent to those Einstein’s
field equations which are obtained by varying the action (2.17) with respect to the
spacelike components gab of the metric tensor. Furthermore, the variations of the
ADM action with respect toN andNa are also required to vanish, and, as one easily
sees from Eq. (2.28), these variations yield

H = 0, (2.34a)

Ha = 0. (2.34b)

These equations are known as the Hamiltonian constraint and the diffeomorphism
constraints, respectively. As expected, Eq. (2.34a) is equivalent to Einstein’s field
equation which is obtained by varying the Einstein-Hilbert action with respect to
g00, whereas Eq. (2.34b) may be obtained by varying the Einstein-Hilbert action
with respect to ga0. The importance of Eqs. (2.34) lies in the fact that they ensure
that the ADM action is independent of N and Na. In other words, they imply that
the ADM formulation does not depend on the decomposition of spacetime. Since qab

has 6 independent components, the four constraints in Eqs. (2.34) also imply that the
real number of the degrees of freedom per spacetime point is not 6 but 6− 4 = 2.

What, then, does the ADM formalism tell us? In the Hamiltonian mechanics
we defined the Hamiltonian function which, under certain conditions, equals to the
energy of a given system. Can we use familiar concepts, such as energy, in the ADM
formulation as well? Although the concept of energy is pretty complicated in general
relativity, there are indeed some special cases, where the answer to this question is
affirmative. The Hamiltonian of pure gravity can be written as

H :=
∫
Σt

Heff d
3x, (2.35)

In the presence of matter, in turn, the Hamiltonian densityHeff must be supplemented
by two new terms Hmatter and Ha

matter. These are known as the Hamiltonian and the
momentum density of matter, respectively. Therefore, if matter fields are present, we
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take the Hamiltonian of spacetime to be

H :=
∫
Σt

[N(H+Hmatter)−Na(Ha +Ha
matter)] d

3x, (2.36)

and, as a consequence, the constraint equations take the form

H+Hmatter = 0, (2.37a)

Ha +Ha
matter = 0. (2.37b)

Up to this point, we have paid no attention to the possible non-vanishing
boundary terms of the action. Indeed, when spacetime is spatially compact, no such
terms emerge, and therefore, according to the constraint equations, the Hamiltonian
vanishes:

H = 0. (2.38)

This result may be understood such that the total energy of a compact universe is
zero. However, if spacetime is asymptotically flat, it can be shown that the ADM
action must be supplemented by certain boundary terms. One of these terms reads

SADM
∂Σ = −

tf∫
ti

N+(t)EADM dt, (2.39)

where N+(t) is the lapse function as r approaches infinity and

EADM := lim
r→∞

1
16πG

∮
∂Σt

(∂mqmn − ∂nqmm) dSn (2.40)

is the so-called ADM energy (see, for instance, Ref. [23]). The symbol ’limr→∞’
is used here to denote a process where the two-dimensional spatial boundary of Σt

is transferred to the spatial infinity. If the coordinates xa on the hypersurfaces Σt

are chosen such that they coincide with the Minkowski system of coordinates at
the spatial infinity, the boundary term (2.39) is the only non-vanishing boundary
contribution of an asymptotically flat spacetime. In that case, the Hamiltonian is
written as

H =
∫
Σt

Heff d
3x+N+(t)EADM, (2.41)

and when the constraint equations are satisfied,

H = N+(t)EADM. (2.42)

Furthermore, if the foliation Σt of spacetime is chosen such that the time coordinate
t becomes the Minkowski time coordinate at the spatial infinity, the Hamiltonian
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equals the ADM energy. For example, in Schwarzschild spacetime, one simply has

EADM = M, (2.43)

implying, as expected, that the energy of Schwarzschild spacetime equals to the
Schwarzschild mass M .

Maybe the most surprising feature of the ADM energy is that it does not de-
pend on the internal structure of spacetime but on the properties of the spacetime
boundaries only. In fact, this is a manifestation of a general principle: In asymptoti-
cally flat spacetimes, the total energy, momentum and angular momentum of space-
time can be read off from the boundaries of spacelike hypersurfaces. In essence,
the boundary terms corresponding to the momentum and the angular momentum
of spacetime result from a non-vanishing shift vector Na at the asymptotic infin-
ity. Therefore, in many cases these boundary terms may vanish if one chooses the
coordinates xa in a convenient way. (Note that the boundary term (2.39) cannot be
removed by a choice of coordinates. This is because this boundary term originates
from the behaviour of the lapse function N(t) at the spatial infinity. The lapse func-
tion, in turn, cannot vanish at the infinity since that would completely freeze the
time evolution of the hypersurfaces Σt at the infinity. For the more detailed investi-
gation on the boundary terms, see Ref. [52].) In general, one can show that the total
flat-space boundary contribution of pure gravity may be written as

Stot
∂Σ = −

tf∫
ti

(
N+(t)EADM +Na

+(t)PADM
a + ωbLADM

b

)
dt, (2.44)

where Na
+(t) is the shift vector as r goes to infinity,

PADM
a := −2 lim

r→∞

∮
∂Σt

p b
a dSb (2.45)

is known as the ADM momentum of spacetime, the quantity ωb is the angular veloc-
ity of the spacetime coordinates xa around the Cartesian coordinate system at the
asymptotic infinity, and

LADM
b := 2εabc lim

r→∞

∮
∂Σt

xcpai dSi, (2.46)

where εabc is the antisymmetric Levi-Civita symbol, is called the ADM angular mo-
mentum of spacetime.6 Hence the gravitational action of an asymptotically flat space-

6Here the coordinates xa are chosen to rotate (with extremely small angular velocity) around the
z-axis of the Cartesian coordinate system at the asymptotic infinity.
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time with appropriate boundary terms finally takes the form

S =

tf∫
ti

∫
Σt

(
pab ˙qab −Heff

)
d3x dt

−

tf∫
ti

(
N+(t)EADM +Na

+(t)PADM
a + ωbLADM

b

)
dt. (2.47)
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Chapter 3

Quantum Fields in Curved
Spacetime

In this part of the thesis, we shall consider the radiation effects of spacetime hori-
zons. The basic ingredient of our analysis will be quantum field theory in curved
spacetime. It is a rather vast and complicated subject to discuss exhaustively. Fortu-
nately, there is no need to dwell on the details of the formalism of the theory: It turns
out that only few basic results are necessary in our analysis. We shall therefore give
only a brief review of these results. Readers interested in a more detailed discussion
should peruse, for instance, Refs. [50, 53] and references therein.

In principle, the ideas of ordinary (flat spacetime) quantum field theory may be
generalized to curved spacetime in a straightforward manner. In curved spacetime,
the ordinary derivatives are simply replaced by the covariant ones, and the concept
of time is replaced by a Cauchy surface of spacetime. The physical interpretation of
the theory, however, is not so readily accomplished. For instance, it turns out that
some familiar concepts, such as the concepts of particle and vacuum, are not always
well defined. In fact, there may be many different vacuum states. The reason for this
is the absence of global symmetries in curved spacetime. In flat spacetime, the iner-
tial observers are related to each other by the Poincaré transformations. This makes
possible to define a unique vacuum state for the inertial observers which is invariant
under the action of the Poincaré group. In general, there are no global symmetries
in curved spacetime, and therefore the vacuum depends on the observer and the ge-
ometry of spacetime. In some special case—for instance, in static spacetimes—it is
possible to define a natural vacuum state, whereas in more complicated (and real-
istic) spacetimes the physical meaning of a particle vacuum becomes more or less
obscure. In this thesis, however, we shall not discuss these conceptual problems of
the theory any further. Rather, we shall concentrate on its mathematical formulation
to the extent that is necessary in this work.

For the sake of simplicity, consider a Klein-Gordon field, or a scalar field
φ(xµ) in curved spacetime. The Lagrangian density of the field φ may be written as

LKG = −1
2
√
−g
[
gµν(∂µφ)(∂νφ) +m2φ2

]
, (3.1)
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where g denotes the determinant of the metric tensor gµν and m is the mass of the
field quanta. When the action

S =
∫
LKG d

4x (3.2)

is varied with respect to the field variable φ, one arrives at the Klein-Gordon equation

(gµνDµDν −m2)φ = 0, (3.3)

where Dµ denotes the covariant derivative. When spacetime is globally hyperbolic,
we define the inner product between two solutions φ1 and φ2 of Eq. (3.3) as

〈φ1|φ2〉 = −i
∫

Σ

[
φ1(∂µφ

∗
2)− (∂µφ1)φ∗2

]
dΣµ, (3.4)

where ∗ stands for the complex conjugate, Σ is a Cauchy surface of spacetime and
dΣµ := nµdΣ such that dΣ is the volume element on the Cauchy surface and nµ

is the future directed timelike unit vector orthogonal to Σ. The inner product (3.4)
remains invariant under diffeomorphic coordinate transformations and its value is
independent of the choice of the Cauchy surface.

Consider then a complete set of solutions ui to Eq. (3.3). We take these solu-
tions to be orthogonal, i.e., satisfying the conditions

〈ui|uj〉 = δij , (3.5a)

〈u∗i |u∗j 〉 = −δij , (3.5b)

〈ui|u∗j 〉 = 0. (3.5c)

The general solution φ to Eq. (3.3) may then be expanded as

φ =
∑

i

(aiui + a†iu
∗
i ), (3.6)

where the coefficients ai, a
†
i ∈ C.

The canonical quantization of the theory may be performed as follows. Define
the canonical momentum conjugate p to φ as

p :=
∂L

∂(nµ∂µφ)
. (3.7)

The classical variables φ and p are then replaced by the operators φ̂ and p̂ which
satisfy the canonical commutation relations

[φ̂(Σ, P ), p̂(Σ, P ′)] = i δ3(P, P ′), (3.8a)

[φ̂(Σ, P ), φ̂(Σ, P ′)] = 0, (3.8b)

[p̂(Σ, P ), p̂(Σ, P ′)] = 0, (3.8c)
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for all P, P ′ ∈ Σ. From the operator counterpart of Eq. (3.6),

φ̂ =
∑

i

(âiui + â†iu
∗
i ), (3.9)

it follows that the operators âi and â†i obey the commutation relations

[âi, â
†
j ] = δij (3.10a)

[âi, âj ] = 0, (3.10b)

[â†i , â
†
j ] = 0. (3.10c)

In these equations, † stands for the Hermitian conjugate of an operator.

The operators âi and â†i can be interpreted as operators which annihilate and
create quantum states. However, because of the obscure notions of particle and vac-
uum, these states do not necessarily represent particles. To further specify the mean-
ing of particle vacuum, consider two complete sets of orthogonal solutions to the
Klein-Gordon equation: {ui : i ∈ I} and {u′i : i ∈ I}, where I is an index set.
Because both of the sets are complete, the modes u′i can be written in terms of the
modes ui such that

u′i =
∑

j

(
Aijuj +Biju

∗
j

)
, (3.11)

where Aij , Bij ∈ C. Conversely, it turns out that

ui =
∑

j

(
A∗jiu

′
j −Bjiu

′∗
j

)
. (3.12)

These relations are known as the Bogolubov transformations and the numbers Aij

and Bij are called the Bogolubov coefficients [54]. One can easily show that∑
k

(
AikA

∗
jk −BikB

∗
jk

)
= δij (3.13a)∑

k

(
AikBjk −BikA

∗
jk

)
= 0. (3.13b)

The Bogolubov transformations impose the following relations between the
annihilation and the creation operators:

âi =
∑

j

(
Ajiâ

′
j +B∗jiâ

′†
j

)
, (3.14a)

â′i =
∑

j

(
A∗ij âj −B∗ij â

†
j

)
. (3.14b)

Clearly, the vacuum associated with the modes ui is different from the vacuum as-
sociated with the modes u′i if Bij 6= 0. To see that this is the case, we denote the
vacuum annihilated by the operator âi by |0〉 and, correspondingly, the vacuum an-
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nihilated by the operator â′i by |0′〉. It follows now from Eq. (3.14a) that

âi|0′〉 =
∑

j

B∗ji|1′j〉 6= 0. (3.15)

Moreover, the expectation value for the number of ui-mode particles in the vacuum
|0′〉 is

ni = 〈0′|â†i âi|0′〉 =
∑

j

|Bji|2. (3.16)

This means that when Bij 6= 0, the modes ui and u′i do not share a common vacuum
state but the vacuum |0′〉 contains

∑
j |Bji|2 particles in the mode ui.



Chapter 4

An Introduction to the Hawking
Effect

4.1 Black Hole Radiation

After Hawking had published his area theorem, Bekenstein proposed that the area of
the event horizon of a black hole is in fact a measure of its entropy. More precisely,
Bekenstein suggested that the entropy of a black hole is, in SI units,

S = γ
kBc

3

~G
A, (4.1)

where γ is a constant of the order of unity [6]. By information theoretic arguments,
he was even able to conjecture a certain value for the constant γ, namely ln 2

8π , which
later turned out to be wrong. However, inspired by Bekenstein’s ideas, Hawking was
able to show that the correct value of this constant is one-quarter [5]. Therefore, in
SI units, the black hole entropy may be written as

S =
1
4
kBc

3

~G
A. (4.2)

This result is known as the Bekenstein-Hawking entropy law for black holes.
The entropy of a black hole is manifested by the radiation process which takes

place at the event horizon of the hole. Hawking’s original analysis was based on
the properties of quantum field theory in curved spacetime. In short, he consid-
ered the behaviour of the vacuum states of the massless Klein-Gordon field when
the field was transported from =− to =+ near the event horizon of a (collapsing)
Schwarzschild black hole (see Fig. 4.1). Quite surprisingly, it turns out that the vac-
uum states at =− are different from the vacuum states at =+. As a result, an observer
at the future null infinity observes a flux of particles coming from the immediate
vicinity of the event horizon. (Note that since Schwarzschild spacetime is asymptot-
ically flat and stationary, one has well-defined concepts of energy and particles at the
regions very far away from the black hole.) The expectation value for the number
of particles coming out of the hole with angular frequency ω agrees with the Planck
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distribution for blackbody radiation at the Hawking temperature

TH =
1

8πM
SI=

~c3

8πGkBM
, (4.3)

which, in terms of the surface gravity κ, may be written as

TH
SI=

~κ
2πckB

. (4.4)

This temperature leads directly to the Bekenstein-Hawking entropy introduced in Eq.
(4.2). It turns out that these results are independent of the details of the gravitational
collapse and, as one might therefore expect, they hold for eternal black holes as well.
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Figure 4.1. The conformal diagram of an infinitely collapsing spher-
ical mass distribution. The massless Klein-Gordon particles are trans-
ported from =− to =+ along the dashed line. The exterior region I is
causally separated from the black hole region II by the event horizon.
The shaded region represents the collapsing mass distribution.

The black hole radiation is a somewhat confusing subject since black holes
are by definition “regions of no escape”. For this reason, some heuristic explanations
for the origin of the radiation have been put forward. Maybe the most famous one
is due to Hawking. He proposed that the spontaneous pair production process near
the event horizon provides a mechanism for the radiation. In normal conditions, a
virtual particle-antiparticle pair annihilates itself very rapidly after its emergence.
In the vicinity of the event horizon, however, it is possible that the member of the
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pair with negative energy is swallowed by the black hole before the annihilation, and
so the the other member with positive energy is free to escape away from the hole.
This process is discussed in more detail in chapter 5, where similar ideas are used
as a motivation to study the radiation effects associated with the inner horizon of a
Reissner-Nordström black hole.

Another possible explanation for the Hawking radiation is provided by the
tunneling effect through the event horizon. This effect follows from the assumption
that the correct outgoing wave function should be a specific superposition of the
outgoing waves both inside and outside the black hole. It can be shown that the
outgoing positive energy waves inside the hole correspond to the ingoing negative
energy waves, and therefore the black hole radiation may be viewed as a tunneling
effect of particles out of the hole [55]. Nevertheless, as useful as these explanations
may be, one should not forget that they are only heuristic pictures of the Hawking
effect.

4.2 Physical Aspects of Black Hole Radiation

The Hawking radiation has various physical consequences. First of all, as one can
see from Eq. (4.3), the temperature of the hole increases when its mass decreases,
i.e., small holes are hotter than large ones. Thus, if a hole is so large that its Hawk-
ing temperature becomes smaller than the cosmic background temperature, then, in
effect, the black hole only absorbs radiation. For this reason, it is impossible, even in
principle, to detect large holes by the radiation they emit. Leaving that aside, when a
black hole radiates, it loses its mass and becomes hotter and hotter. In other words,
the specific heat of a black hole is negative. Since the hole loses mass during the
radiation, the hole eventually evaporates. The final stages of this evaporation process
are still unknown, because the current theories probably break down when the mass
of the hole is of the order of the Planck mass mPl =

√
~c/G ∼ 10−8 kg. However,

a rough estimate for the lifetime of a macroscopic Schwarzschild black hole can be
calculated from the Stefan-Boltzmann law

dE

dt
= −σT 4

HA, (4.5)

where σ = π2k4
B/(60~3c2) is the Stefan-Boltzmann constant and A = 4πR2

S is the
event horizon area. By using E = Mc2 we find that

dM

dt
= − ~c4

15360πG2M2
, (4.6)

which leads to the evaporation time

tev =
5120πG2

~c4
M3 ≈ 8 · 10−17 s/kg3 ×M3. (4.7)
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For a black hole with one solar mass M� ≈ 2× 1030 kg, the lifetime is of the order
1067 a, which is much greater than the age of our universe.

The temperature in Eq. (4.3) is not completely realistic. In a more precise
analysis, one should take into account the backscattering of the radiation from the
“gravitational potential” of the black hole. These effects have been studied care-
fully, and it has turned out that the radiation spectrum is not purely Planckian (see,
for instance, Ref. [53]). However, if the hole is in a heat bath, then the fraction of
backscattered ingoing particles will be the same as is the fraction of outgoing parti-
cles removed by the backscattering. Therefore, the ratio of emission and absorption
does not depend on the details of the backscattering but it remains identical to that of
a black body. In this sense, the radiation distribution can be considered as “thermal”.

Since Hawking’s original analysis was based on the quantization of the Klein-
Gordon field, it neglected the possible effects resulting from the spins of the radiating
particles. This might seem a severe problem since the radiation consists mostly of
neutrinos and photons.1,2 Nevertheless, the results remain essentially the same even
if we take into account the spins of the particles. In fact, for photon, neutrino and
linearized graviton fields the temperature of the radiation is exactly the Hawking
temperature. The greatest difference lies in the backscattering which depends on the
spins of the particles of the field. More precisely, backscattering is more efficient for
particles with greater mass and angular momentum.

The Hawking effect has been studied also for the event horizons appearing in
other black hole solutions, as well as for some other horizons of spacetime. A short
introduction to these matters can be found in Ref. [53]. For a charged black hole,
Eq. (4.4) still holds, but the presence of a background electric field gives rise to the
spontaneous creation of charged particle-antiparticle pairs. The hole prefers to emit
particles with the charge of the same sign as the hole has, and therefore the hole has
a tendency to discharge itself. As it comes to the rotating black holes, the situation
is far more complicated. In particular, due to the axisymmetric metric of spacetime,
the emission of particles will be asymmetric around the hole. However, the fact that
makes the Reissner-Nordström and Kerr-Newman holes totally different from the
Schwarzschild black hole is an existence of inner horizons. The possible radiation
effects of the inner horizons are the main subjects of the chapter 5.

The Hawking radiation is a semiclassical result. This means that matter fields
are assumed to follow the laws of quantum physics while spacetime is considered as
a non-dynamical background. However, in a more realistic situation we expect the
gravitational field to have quantum effects as well. It is not known very well what
is the region of validity of the semiclassical approximation. Generally, it is believed
that the quantum effects of gravity become significant at the Planck length scale
where distances are of the order lPl =

√
G~/c3 ∼ 10−35 m. One also expects that

1In fact, the only spinless particle predicted by the standard model of particle physics is the Higgs
particle. However, at the present time there is no indisputable experimental evidence of the existence
of such particle.

2It has been estimated that for the Schwarzschild black hole the radiation consists about 81% neu-
trinos, 17% photons and 2% gravitons [56].
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the effects of quantum gravity take place when the gravitational field goes through
a rapid time-dependent change within about one Planck time. Therefore, the semi-
classical gravity should be valid unless we consider microscopic black holes, the
gravitational effects near the spacetime singularities, or the very early epoch of the
universe.

In addition to Hawking’s original work, there are other approaches to the prob-
lem of the black hole radiation. Maybe the most famous one is the path-integral ap-
proach initiated by Gibbons and Hawking [57, 58]. The path-integral quantization
in non-relativistic quantum mechanics was developed by Feynman as an alternative
to the canonical quantization [4]. The generalization of this method may be used
as a tool to quantize (or perhaps try to quantize) gravitational field. Unfortunately,
the path integrals concerning gravity are extremely hard to evaluate. However, if
one confines himself to the semiclassical approximation, where spacetime is consid-
ered as a rigid background, one finds that the first-order approximation reproduces
the Bekenstein-Hawking entropy law. An obvious advantage of the path-integral ap-
proach is that the thermal properties of black holes are no more due to the behaviour
of quantized matter at the event horizon but they are of purely geometrical origin.
This suggests that entropy and temperature may be seen as intrinsic properties of
gravitation. Besides the path-integral approach, there are numerous other derivations
of the Hawking effect based on substantially different physical assumptions. A re-
view of different approaches to the black hole radiation can be found in Ref. [59].
The variety of different viewpoints on the Hawking radiation manifests the fact that
the origin of the radiation cannot be wholly understood by our current theories.

4.3 Black Hole Entropy

The Bekenstein-Hawking entropy law has several important consequences. First of
all, since in natural units

δS =
1
4
δA, (4.8)

the first law of black hole mechanics, theorem 1.3.2, can be written as

δM = TH δSBH + ΩBH δJBH + ΦBH δQ. (4.9)

The dramatic change caused by this substitution is that this equation describes now
thermodynamics rather than mechanics of the black hole. For this reason, this equa-
tion is usually called the first law of black hole thermodynamics.

Secondly, as the black hole radiates, its mass, and therefore the area of its event
horizon, decreases. This contradicts the second law of black hole mechanics and,
more importantly, the second law of thermodynamics. A remedy for this problem
was proposed by Bekenstein. He suggested that although the entropy of the black
hole decreases, the total entropy Stot = Sext + SBH, where Sext is the entropy of the
exterior spacetime region, is a non-decreasing function of time in any process [60].
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Putting differently,
δStot ≥ 0 in any process. (4.10)

This statement is known as the generalized second law of thermodynamics.
However, the most important consequence of the black hole entropy is, at

least from the point of view of quantum gravity, its statistical interpretation: Since a
black hole has an entropy S = 1

4
kBc3

~G A, we expect that the hole has exp
(

1
4

c3

~GA
)

mi-
crostates corresponding to its macrostate. Thus, a macroscopic hole has an enormous
amount of quantum-mechanical degrees of freedom compared to the three classical
ones predicted by the no-hair theorems. The existence of these microstates raises
many intriguing questions. Do these microstates correspond to the quantum states
of the collapsing matter inside the black hole, or are these degrees of freedom con-
nected with the quantized matter fields on a background geometry. Or could it be
possible that the notion of black hole entropy stems from the microscopic structure
of spacetime itself? In the spirit of the last question, we shall introduce a spacetime
foam model of the Schwarzschild horizon in chapter 7.



Chapter 5

Radiation of the Inner Horizon of
the Reissner-Nordström Black
Hole

5.1 Introduction

Hawking’s celebrated paper on black hole radiation came as a great surprise to al-
most everyone working in the field of general relativity. Till then it was strongly be-
lieved that black holes are totally black, i.e., neither matter nor radiation can be emit-
ted by black holes. Indeed, this is what one would expect on purely classical grounds.
However, now we know that when one takes into account quantum-mechanical ef-
fects near the event horizon of a hole, one finds that the black hole does radiate
thermal radiation with a spectrum similar to that of a black body.

As mentioned in the previous chapter, one way to understand the origin of this
radiation is to consider spontaneous particle-antiparticle pair production near the
event horizon of a black hole. Normally, such a pair annihilates itself very rapidly. In
the vicinity of the event horizon, however, it is possible that the members of a virtual
pair become separated by the horizon such that the annihilation is prevented. One
member of the pair escapes away from the hole with positive energy to contribute to
the Hawking radiation, while the other one with negative energy is swallowed by the
black hole. Therefore, an observer outside the hole, that is, at the region I of the Fig.
5.1.(a), observes a flux of quanta with positive energy which seems to come out of
the black hole. This event is illustrated in Fig. 5.1.(a) in the case of a Schwarzschild
black hole.

It is well known that the outer horizon of a Reissner-Nordström black hole
radiates in a similar way as the event horizon of a Schwarzschild black hole. How-
ever, it is interesting to see what kind of phenomenon is predicted by the virtual pair
production mechanism if one looks at the inner horizon of the Reissner-Nordström
black hole. Consider a maximally extended Reissner-Nordström spacetime (see Fig.
5.1.(b)). It is easy to see that the causal relationship between the regions V’ and IV’
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is similar to that between the regions I and II, respectively. Therefore, as shown in
the Fig. 5.1.(b), a virtual particle-antiparticle pair which emerges very close to the
inner horizon r = r− in the region V’ can avoid annihilation if either the particle
or the antiparticle falls into the region IV’ and the other one remains in V’. There-
fore the pair production mechanism implies that the inner horizon does radiate and,
moreover, that the radiation is directed inwards, towards the singularity. This line of
reasoning, however, provides no information about the radiation itself. Especially, it
remains unclear what is the energy distribution of the radiating quanta.

After Hawking’s original work, there have been various derivations of the
Hawking effect with different physical assumptions. Curiously, very little is known
about the radiation of the inner horizons of the Reissner-Nordström and the Kerr-
Newman black holes. This feature can, at least to some extent, be regarded as a
consequence of the fact that inside the inner horizon there are no spacetime regions
analogous to the regions =+ or =−. After all, Hawking’s original work was based
on the analysis of the properties of the Klein-Gordon field at =+ and =−. To the
best of our knowledge, the only explicit calculation considering the radiation of the
inner horizons was performed by Wu and Cai by means of the analytic continuation
of the Klein-Gordon field [61]. However, as a result of their analysis they found
that the temperature of the inner horizon is negative and this seems to contradict
the general attitude towards the black hole thermodynamics [62], as well as the very
foundations of thermodynamics themselves. Thus, the true nature of the radiation of
the inner horizon is still somewhat unclear.

The aim of this chapter is to perform a detailed analysis of the radiation of
the inner horizon of the Reissner-Nordström black hole. We would like to point out,
however, that our analysis predicts very few astrophysical consequences because
no mechanism for the formation of Reissner-Nordström black holes is known. One
of the main reasons why the full Reissner-Nordström spacetime is not considered
astrophysically real is a phenomenon called mass inflation near the inner horizon
of the Reissner-Nordström black hole. It is known from the works of Poisson and
Israel that when one considers the spherical collapse of a charged star then, at least
in a somewhat idealized situation, the flux of particles emitted by the collapsing star
and its backscattered counterpart near the inner horizon of the Reissner-Nordström
spacetime provoke an enormous inflation of the internal mass parameter of the black
hole [63]. Eventually the mass parameter becomes large enough to form a singularity
at the inner horizon and in effect to freeze the evolution of spacetime. The inflation
of the mass parameter at the inner horizon does not have any implications in the
region outside the black hole since these regions are causally separated.

In this chapter, we take the maximally extended Reissner-Nordström space-
time as the starting point of our analysis. We would like to emphasize that here the
Reissner-Nordström spacetime is only considered as a mathematical solution to the
combined Maxwell-Einstein field equations, and the whole problem concerning the
formation of such spacetime is completely ignored. One could ask, of course, why
are we interested in the properties of the full Reissner-Nordström spacetime if it
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Figure 5.1. (a) Conformal diagram of the maximally extended
Schwarzschild spacetime. In this diagram, the regions I and III repre-
sent spacetime surrounding the regions II (black hole) and IV (white
hole). However, the regions I and III are causally separated. If a
particle-antiparticle pair is spontaneously created near the event hori-
zon of the hole in region I, it is possible that either a particle or an an-
tiparticle is swallowed by the hole such that the other one is free to es-
cape to the infinity at=+. (b) Maximally extended Reissner-Nordström
spacetime. Similarly as in the Schwarzschild spacetime, a virtual pair
created near the inner horizon r = r− may avoid annihilation if the
particle and the antiparticle are separated by the horizon.

is not considered astrophysically relevant. The answer to this question lies in the
fact that Reissner-Nordström spacetime provides an explicit example of a spacetime
geometry which contains two horizons, of which one is hidden from the outside
observer. The problem we are interested in is the following: Does only one of the
horizons emit Hawking radiation, as it is generally believed, or do both of the hori-
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zons radiate? This is an intriguing question, and if one is able to show that both of
the horizons radiate, then this result may be seen to support the idea that all horizons
of spacetime emit radiation. The main object of interest in this chapter is therefore
not the Reissner-Nordström black hole itself, but the general semiclassical properties
of gravity. One may also hope that our results are qualitatively the same for the more
realistic Kerr black hole solution. Indeed, this might be the case because the causal
structures of the Reissner-Nordström and the Kerr spacetimes are very similar. In
that case the radiation of the inner horizon may even have astrophysical relevance
since there is not necessarily mass inflation in the Kerr spacetime.

If the inner horizon of the Reissner-Nordström black hole really radiates, it is
expected that this effect takes place during a very short time only. To see that this is
the case, suppose that we begin with the purely classical Reissner-Nordström solu-
tion with two horizons, and apply the results of quantum field theory in the Reissner-
Nordström spacetime. If, in the semiclassical limit, we find that the inner horizon
radiates, then the backscattered part of that radiation is enough to trigger the mass
inflation, and eventually the inner horizon disappears. In other words, if one is able
to show that the inner horizon of the Reissner-Nordström black hole radiates, then it
turns out that semiclassically the full Reissner-Nordström spacetime, even as a math-
ematical solution, is unstable. The radiation process of the inner horizon, however,
should last as long as the inner horizon exists. We shall not discuss the backscatter-
ing effect and its consequences in more detail but we shall confine ourselves merely
to the qualitative aspects discussed above. This approach is justified because we are
interested in the radiation effects of the inner horizon of the Reissner-Nordström
spacetime when the effects of mass inflation are still negligible.

In brief, the key points of our discussion can be expressed as follows. When
the ideas of Hawking’s original work are utilized in Rindler spacetime, one recalls
that the so-called Unruh effect, which is closely related to the Hawking effect, can be
obtained by simply comparing the solutions to the Klein-Gordon equation for mass-
less particles from the points of view of inertial and uniformly accelerated observers.
As a preliminary we show this in Sec. 5.2. In curved spacetime, however, the concept
of inertial observer is replaced by the concept of freely falling observer. Inspired by
this analogy we proceed to calculate the effective temperature of black hole horizons
by comparing the solutions to the massless Klein-Gordon equation from the points
of view of an observer in a radial free fall and an observer at rest with respect to the
horizon. First, in Sec. 5.3 we perform, as an example, an analysis of the radiation of
the outer horizon of a Reissner-Nordström black hole. After reproducing the well-
known results, we proceed, in Sec. 5.4, to calculate the temperature of the radiation
emitted by the inner horizon. In contrast to Wu and Cai, we find that the effective
temperature for particles radiating from the inner horizon towards the singularity is
not negative but positive: The inner horizon emits particles with positive energy and
temperature. This radiation process is a local phenomena which takes place in the
vicinity of the inner horizon, and it seems impossible to observe the effects of the ra-
diation from outside of the Reissner-Nordström black hole. We close our discussion
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in Sec. 5.5 with some concluding remarks.

5.2 Preliminaries: The Unruh Effect

As a starting point of our analysis, let us consider the thermal radiation of the
Rindler horizon found by Unruh in 1976 [64]. Rindler horizons are such horizons
of spacetime that appear in the rest frame of a uniformly accelerated observer. In
general, the equation of the world line of a uniformly accelerated observer in flat
two-dimensional Minkowski spacetime is (unless otherwise stated we shall always
have c = G = ~ = kB = 1)

X2 − T 2 =
1
a2
, (5.1)

where a is the proper acceleration of the observer, andX and T , respectively, are the
Minkowskian space and time coordinates [53]. The worldline of the observer may
be written in the parametrized form:

T (η) =
1
a

sinh(aη), (5.2a)

X(η) =
1
a

cosh(aη). (5.2b)

In this expression, η is the proper time of the observer. The worldline of a uniformly
accelerated observer has been drawn in Fig. 5.2, asymptotically approaching the
Rindler horizon of the accelerated observer. From the figure, we can also see the
four regions of Rindler spacetime, labelled as I, II, III and IV. Since this diagram
is very similar to the Kruskal diagram of Schwarzschild spacetime, one would ex-
pect Rindler spacetime to have physical properties similar to those of Schwarzschild
spacetime. In fact, it is easy to see that the causal features of the regions II and IV
are, respectively, similar to those of a black and a white hole.

The simplest way to obtain the Unruh effect is probably the following. Define
the Rindler coordinates t and x such that

x :=
1
a
, (5.3a)

t := aη. (5.3b)

In these coordinates, a uniformly accelerated observer remains at rest with respect to
the x-coordinate and the metric of two-dimensional Minkowski spacetime is written
as

ds2 = −x2dt2 + dx2. (5.4)

Consider then Klein-Gordon equation of massless particles in the rest frame of an
accelerated observer. In general, that equation may be written as

gµνDµDνφ = 0, (5.5)

whereDµ denotes covariant derivative, and when spacetime metric is that of Eq. (5.4),
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III

IV

II

X
I

T Rindler horizon

C

Figure 5.2. Rindler spacetime. The curve C represents the worldline
of a uniformly accelerated observer.

Eq. (5.5) takes the form(
− 1
x2

∂2

∂t2
+

∂2

∂x2
+

1
x

∂

∂x

)
φ = 0. (5.6)

If one defines
x∗ := lnx, (5.7)

Eq. (5.6) becomes (
− ∂2

∂t2
+

∂2

∂x∗2

)
φ = 0. (5.8)

Orthonormal solutions to this equation are of the form

uω = Nωe
−iωU , (5.9)

where Nω is an appropriate normalization constant, ω is taken to be positive, and we
denote

U := t− x∗. (5.10)

These solutions represent, from the point of view of an accelerated observer in the
region I, particles with energy ω > 0 propagating to the positive X-direction. In
contrast, the corresponding solutions to the massless Klein-Gordon equation(

− ∂2

∂T 2
+

∂2

∂X2

)
φ = 0, (5.11)

written from the point of view of an inertial observer at rest with respect to the
Minkowski coordinates T and X , are of the form

u′ω = Nωe
−iωeu, (5.12)
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where
ũ := T −X. (5.13)

Again, for ω > 0, these solutions represent particles with positive energy ω propa-
gating to the positive X-direction.

The relationship between the solutions uω and u′ω is given by the Bogolubov
transformation

uω =
∑
ω′

(
A′ωω′u′ω′ +B′ωω′u′∗ω′

)
(5.14)

(see chapter 3 for details). It is easy to see from Eqs. (5.2) and (5.10) that

U = − ln(−ũ), (5.15)

and therefore Eq. (5.14) may be written as

eiω ln(−eu) =
∑
ω′

(
A′ωω′e−iω′eu +B′ωω′eiω

′eu), (5.16)

where the Bogolubov coefficientsA′ωω′ andB′ωω′ are expressible as Fourier integrals:

A′ωω′ =
1
2π

0∫
−∞

dũ eiω ln(−eu)eiω
′eu, (5.17a)

B′ωω′ =
1
2π

0∫
−∞

dũ eiω ln(−eu)e−iω′eu. (5.17b)

The integration is performed from the negative infinity to zero because we are con-
sidering particles in the region I, and in that region ũ < 0. It is straightforward to
show by performing the integration in the complex plane that∣∣A′ωω′

∣∣ = eπω
∣∣B′ωω′

∣∣ (5.18)

(see Fig. 5.3). It follows from Eq. (3.13a) that between the Bogolubov coefficients
there is a relationship: ∑

ω′

(∣∣A′ωω′
∣∣2 − ∣∣B′ωω′

∣∣2) = 1. (5.19)

One therefore finds that when the field is in vacuum from the point of view of an
inertial observer, the number of particles with energy ω is, from the point of view of
an accelerated observer,

nω =
∑
ω′

∣∣B′ωω′
∣∣2 =

1
e2πω − 1

. (5.20)
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This is the Planck spectrum at the temperature T0 = 1
2π , which is related to the

temperature experienced by an observer situated at a given point in space by the
Tolman relation [65]:

T = (g00)−
1
2 T0. (5.21)

Hence, it follows that a uniformly accelerated observer observes particles coming out
from the Rindler horizon with the blackbody spectrum corresponding to the charac-
teristic temperature

TU :=
1

2πx
=

a

2π
, (5.22)

even when, from the point of view of an inertial observer, the field is in vacuum. This
result is known as the Unruh effect, and it is one of the most remarkable outcomes
of quantum field theory.
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Figure 5.3. Integration contours in the complex plane. In this figure,
γ+ and γ− are closed contours circulating the shaded regions in the
upper and the lower half of the complex plane, respectively. When the
integral in Eq. (5.17a) is calculated along the contour γ+, one easily
sees that, in the limit where R→∞ and r → 0, the integrals along the
arcs of the circles vanish. The analyticity of the functions under consid-
eration in the shaded regions implies that the contour integral around
γ+ vanishes, and therefore the integral from negative infinity to zero
along the real axis may be transformed into an integral from positive
infinity to zero along the imaginary axis. Similar result holds for the
integral in Eq. (5.17b) along the path γ−, except that now the integral
from negative infinity to zero along the real axis may be transformed to
an integral from negative infinity to zero along the imaginary axis. The
integrals along the imaginary axis lead directly to Eq. (5.18).



61

5.3 Reconsideration of the Hawking Effect for the Outer
Horizon of a Reissner-Nordström Black Hole

The ideas inspired by the properties of Rindler spacetime can be easily utilized when
one investigates the thermal properties of Reissner-Nordström horizons in the fol-
lowing manner. At first, one constructs a certain geodesic system of coordinates for
the neighborhood of the horizon under scrutiny. The geodesic coordinates are con-
structed such that an observer in a radial free fall remains at rest with respect to
those coordinates. Such an observer does not observe the horizon, and therefore one
expects that no radiation effects should be experienced by him. Because of that one
may view the particle vacuum of the freely falling observer as the vacuum that would
exist in spacetime if there were no horizon at all. In this sense, the observer in a ra-
dial free fall is analogous to the inertial observer in flat spacetime, and we take this
similarity as a starting point of our analysis.

To calculate the particle flux emitted by the horizon, one compares the solu-
tions to the massless Klein-Gordon equation very close to the horizon in two differ-
ent coordinate systems. One of these systems is the geodesic system of coordinates
and the other one is a coordinate system at rest with respect to the horizon. The
analysis of the Klein-Gordon modes must be performed infinitesimally close to the
horizon for the very reason that only in that case one is able to solve the Klein-
Gordon equation analytically (excluding, of course, the solutions at the asymptotic
infinities). Then one can obtain the Bogolubov transformations between these solu-
tions and infer the effective temperature of the radiation flux from the point of view
of an observer at rest with respect to the horizon.

To see what all this really means consider, as an example, the outer horizon of
a Reissner-Nordström black hole. The Reissner-Nordström metric can be written as

ds2 = −
(
1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1
dr2

+ r2(dθ2 + sin2 θ dϕ2), (5.23)

where M is the mass and Q is the electric charge of the hole. In addition to the
physical singularity at r = 0, this metric has two coordinate singularities when

r = r± := M ±
√
M2 −Q2. (5.24)

The two-surfaces where r = r+ and r = r− are called, respectively, the outer and
the inner horizons of the Reissner-Nordström black hole. It is well known that when
r > r+, and the backscattering effects are neglected, an observer at rest with respect
to the coordinates r, θ, and ϕ observes thermal radiation emitted by the hole with a
characteristic temperature

T+ :=
κ+

2π
√

1− 2M
r + Q2

r2

=

√
M2 −Q2

2π
(
M2 +

√
M2 −Q2

)2√1− 2M
r + Q2

r2

, (5.25)
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where
κ+ :=

r+ − r−
2r2+

(5.26)

is the surface gravity of the outer horizon. The factor (1− 2M
r + Q2

r2 )−1/2 is due to the
“redshift” of the radiation. At asymptotic infinity the redshift factor is equal to one,
but at the horizon r = r+ it becomes infinitely large. In other words, an observer at
rest very close to the horizon may measure an infinite temperature for the black hole
radiation.

We shall now show how Eq. (5.25) may be obtained by means of the method
we explained at the beginning of this section. As the first step, we separate the Klein-
Gordon field φ of massless particles such that

φ(t, r, θ, ϕ) =
1
r
f(t, r)Ylm(θ, ϕ), (5.27)

where Ylm is the spherical harmonic satisfying the differential equation[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

]
Ylm = −l(l + 1)Ylm, (5.28)

where, as usual, the allowed values of l are 0, 1, 2, . . . , and those of m are 0,±1,
±2, . . . ,±l. In that case the massless Klein-Gordon equation, when written in terms
of the coordinates t, r, θ, and ϕ, implies that[

− ∂2

∂t2
+

∂2

∂r2∗
− V (r)

]
f = 0, (5.29)

where we have defined the “tortoise coordinate” r∗ such that

r∗ :=
∫

dr

1− 2M
r + Q2

r2

= r−
r2−

r+ − r−
ln |r− r−|+

r2+
r+ − r−

ln |r− r+|, (5.30)

and the “potential term”

V (r) :=
(

1− 2M
r

+
Q2

r2

)[
l(l + 1)
r2

+
(

2M
r3

− 2Q2

r4

)]
. (5.31)

Very close to the horizon, where

∆ :=

√
1− 2M

r
+
Q2

r2
(5.32)

is infinitesimally small, the potential V (r) vanishes, and the solutions to Eq. (5.29)
corresponding to the particles with energy ω moving towards the horizon are of the
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form1

f(t, r) ∼ e−iωV , (5.33)

and for the solutions coming outwards from the horizon we have

f(t, r) ∼ e−iωU , (5.34)

where the coordinates V andU are the advanced and the retarded coordinates defined
as

V := t+ r∗, (5.35a)

U := t− r∗. (5.35b)

Therefore, from the point of view of the observer at rest very close to the horizon,
the ingoing and the outcoming solutions to the massless Klein-Gordon equation are,
respectively,

φin ≈ NωlmYlm
1
r
e−iωV , (5.36a)

φout ≈ NωlmYlm
1
r
e−iωU , (5.36b)

where Nωlm is an appropriate normalization constant. Throughout this chapter, we
shall always consider positive energy solutions only, and therefore the costant ω is
taken to be positive.

II

P1
IIII

IV

=+=+

=−=−

i0i0

Figure 5.4. Part of Reissner-Nordström spacetime. The bifurcation
point P1 is situated at the intersection of the lines that separate the
regions I, II, III and IV.

Consider now an observer in a radial free fall in the region I of the Reissner-
Nordström spacetime, infinitesimally close to the point P1 in Fig. 5.4. In other words,
the observer is in a radial free fall just outside the outer horizon. First, let us intro-

1Note, though, that here the energy of the particles has not been “redshifted”. Nevertheless, we shall
continue to refer ω simply as ’energy’. The effects of the redshift are taken into account after we have
obtained the effective temperature of the radiation.
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duce in the Reissner-Nordström spacetime the coordinates (u, v) which are similar
to the Kruskal coordinates in Schwarzschild spacetime. In general, these “Kruskal-
type coordinates” may be defined in the different regions of the Reissner-Nordström
spacetime such that{

u = 1
2

(
eαV + e−αU

)
,

v = 1
2

(
eαV − e−αU

)
,

(Region I, I’, . . . ) (5.37a){
u = 1

2

(
eαV − e−αU

)
,

v = 1
2

(
eαV + e−αU

)
,

(Region II, II’, . . . ) (5.37b){
u = −1

2

(
eαV + e−αU

)
,

v = −1
2

(
eαV − e−αU

)
,

(Region III, III’, . . . ) (5.37c){
u = −1

2

(
eαV − e−αU

)
,

v = −1
2

(
eαV + e−αU

)
,

(Region IV, IV’, . . . ) (5.37d)

where α is an appropriate constant. When we study the physical properties of the
outer horizon, the constant α must be chosen such that the metric on the two-surface
r = r+ is regular. The most natural choice is

α = κ+, (5.38)

and this choice leads to the non-singular metric

ds2 =
1

κ2
+r

2
e−2κ+r(r − r−)

r2
−

r2
+

+1
(−dv2 + du2) + r2(dθ2 + sin2 θ dϕ2). (5.39)

It is now easy to construct a geodesic coordinate system for an infinitesimal
neighborhood U(P1) of the point P1. By infinitesimal geodesic coordinate system
we mean coordinates XI (I = 0, 1, 2, 3) in U(P1) such that, at the point P1, the
metric takes the form of that of flat spacetime, i.e.,

ds2 = ηIJ dX
IdXJ , (5.40)

where ηIJ = diag(−1, 1, 1, 1) is the flat Minkowski metric, and the derivatives of
the metric vanish. Let us define the coordinates

X0 := l+v, (5.41a)

X1 := l+u, (5.41b)

where

l+ :=
1

κ+r+
e−κ+r+(r+ − r−)

1
2

(
r2
−

r2
+

+1
)
. (5.42)
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By using these definitions one finds that at the point P1 the metric can be written as

ds2 = −
(
dX0

)2 +
(
dX1

)2 + r2(dθ2 + sin2 θ dϕ2), (5.43)

and the derivatives of the metric with respect to X0 and X1 vanish (for details, see
Appendix A). Therefore, the geodesic coordinates of the freely falling observer can
be chosen to beX0 andX1. (Note that even though the above metric is not strictly of
the form of Eq. (5.40), for the observer in a radial free fall these coordinates provide
a geodesic coordinate system since in that case θ and ϕ are constants.)

If the massless Klein-Gordon field is now separated such that

φ(X0, X1, θ, ϕ) =
1
r
f̃(X0, X1)Ylm(θ, ϕ), (5.44)

the Klein-Gordon equation, when written in terms of the coordinates X0, X1, θ, and
ϕ, implies[
− ∂2

∂(X0)2
+

∂2

∂(X1)2
+

1
r

(
∂2r

∂(X0)2
− ∂2r

∂(X1)2

)
− l(l + 1)

r2
F+(r)

]
f̃(X0, X1) = 0,

(5.45)
where we have denoted

F+(r) :=
1

κ2
+l

2
+

1
r2
e−2κ+r(r − r−)

r2
−

r2
+

+1
. (5.46)

It follows from Eqs. (5.41), (A.5) and (A.6) that

∂r

∂X0
= −κ+F+(r)X0, (5.47a)

∂r

∂X1
= κ+F+(r)X0, (5.47b)

and therefore

∂2r

∂(X0)2
− ∂2r

∂(X1)2
= κ+F+(r)

{
κ+F

′
+(r)

[(
X0
)2 − (X1

)2]− 2
}
, (5.48)

where the prime means derivative with respect to r. Using Eqs. (A.4)–(A.6) and
(5.30), one finds

F ′+(r)
[(
X0
)2 − (X1

)2] =
2
κ+

+
1
κ2

+

(
2M
r2

− 2Q2

r3

)
, (5.49)

and therefore Eq. (5.45) takes the form[
− ∂2

∂(X0)2
+

∂2

∂(X1)2
− Ṽ (r)

]
f̃(X0, X1) = 0, (5.50)
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where the “potential term” is

Ṽ (r) :=
[
− 2M

r3
+

2Q2

r4
+
l(l + 1)
r2

]
F+(r). (5.51)

The function F+(r) has the property

F+(r+) = 1, (5.52)

and therefore Eq. (5.50) takes, at the outer horizon of the Reissner-Nordström black
hole, the form[

− ∂2

∂(X0)2
+

∂2

∂(X1)2
+

2M
r3+

− 2Q2

r4+
− l(l + 1)

r2+

]
f̃(X0, X1) = 0. (5.53)

So we see that, in contrast to Eq. (5.29), the “potential term” does not vanish at the
horizon. For a macroscopic hole, however, the “potential term” may be neglected:
For Reissner-Nordström black holes r+ ≥ M and 0 ≤ |Q| ≤ M , and so it follows
that ∣∣∣∣∣2Mr3+ − 2Q2

r4+

∣∣∣∣∣ ≤ 2
M2

, (5.54)

which means that when, in Planck units, M � 1, the terms involving M and Q will
vanish. Moreover, if the orbital angular momentum l of the Klein-Gordon particle
is sufficiently small, we may neglect the term l(l + 1)/r2+. In other words, we may
write Eq. (5.53), in effect, as[

− ∂2

∂(X0)2
+

∂2

∂(X1)2

]
f̃(X0, X1) = 0. (5.55)

For very small l, the ingoing and the outcoming positive energy solutions to
the massless Klein-Gordon equation very close to the horizon r = r+ are

φ′in ≈ NωlmYlm
1
r
e−iωev, (5.56a)

φ′out ≈ NωlmYlm
1
r
e−iωeu, (5.56b)

where

ṽ = X0 +X1, (5.57a)

ũ = X0 −X1, (5.57b)

and Nωlm is the normalization constant corresponding to the fixed values of l, m,
and ω > 0. These solutions represent, from the point of view of the freely falling
observer, particles with positive energy ω moving towards and out of the horizon, re-
spectively. From Eqs. (5.35b), (5.41), and (5.57b), one easily finds that in the space-
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time region I
U = −κ−1

+ ln(−ũ) + κ−1
+ ln l+. (5.58)

Thus, in the spherically symmetric case, the Bogolubov transformation between the
outcoming modes in Eqs. (5.36b) and (5.56b) can be written in the form

eiωκ−1
+ ln(−eu) e−iωκ−1

+ ln l+ =
∑
ω′

(
A′ωω′e−iω′eu +B′ωω′eiω

′eu), (5.59)

and, moreover, we can express the Bogolubov coefficients A′ωω′ and B′ωω′ as Fourier
integrals such that

A′ωω′ =
1
2π
e−iωκ−1

+ ln l+

0∫
−∞

dũ eiωκ−1
+ ln(−eu)eiω

′eu, (5.60a)

B′ωω′ =
1
2π
e−iωκ−1

+ ln l+

0∫
−∞

dũ eiωκ−1
+ ln(−eu)e−iω′eu. (5.60b)

As in the previous section, the integration is performed from the negative infinity to
zero because we are considering particles in the region I, and in that region ũ < 0.

The integrals in Eqs. (5.60) are similar to those found in Eqs. (5.17), and the
integration in the complex plane gives∣∣A′ωω′

∣∣ = eπκ−1
+ ω
∣∣B′ωω′

∣∣. (5.61)

Therefore, by using Eq. (5.19), we find that when the field is in vacuum from the
point of view of a freely falling observer, the number of the particles with energy ω
observed by an observer at rest very close to the horizon is

nω =
∑
ω′

∣∣B′ωω′
∣∣2 =

1

e2πκ−1
+ ω − 1

. (5.62)

This is the Planck spectrum at the temperature

T =
κ+

2π
, (5.63)

which represents the temperature of the outer horizon experienced by an observer at
rest with respect to the horizon when the redshift effects of the radiation are ignored.
The redshift factor can be recovered by the Tolman relation (5.21), and as a result we
find that, from the point of view of an observer at rest very close to the outer horizon,
the Reissner-Nordström black hole emits radiation with a characteristic temperature

T+ = (g00)−
1
2
κ+

2π
=

κ+

2π∆
=

√
M2 −Q2

2πr2+
√

1− 2M
r + Q2

r2

, (5.64)

which is Eq. (5.25). In other words, we have shown that our method, which relies
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on the comparison of the solutions to the Klein-Gordon equation from the points of
views of two observers close to the horizons, reproduces the familiar result which is
usually obtained by means of the comparison of the solutions to the Klein-Gordon
equation at =+ and =−. Encouraged by this welcome outcome of our analysis, we
now proceed to apply our method for an analysis of the properties of the inner hori-
zon of the Reissner-Nordström black hole.

5.4 Hawking Effect for the Inner Horizon of the Reissner-
Nordström Black Hole

An analysis of the radiation emitted by the inner horizon of a Reissner-Nordström
black hole can now be performed in a very similar way as that of the outer horizon.
In essence, the ingoing and the outcoming solutions to the Klein-Gordon equation,
when written in terms of the coordinates t, r, θ, and ϕ, can be obtained directly from
Eqs. (5.36). However, since the radiation is now directed towards the singularity
r = 0, the observer at rest with respect to the inner horizon must be situated inside
the two-sphere r = r−. Therefore, the roles of the ingoing and the outcoming modes
interchange. More precisely, the solutions representing particles with positive energy
ω are, from the point of view of the observer at rest very close to the inner horizon,

φin ≈ NωlmYlm
1
r
e−iωU , (5.65a)

φout ≈ NωlmYlm
1
r
e−iωV . (5.65b)

The solution φin represents a particle which moves towards the horizon, and therefore
away from the singularity. The solution φout, in turn, represents a particle which
moves out of the horizon, and therefore towards the singularity.

As it comes to the freely falling observer near the inner horizon, we cannot
use the same geodesic coordinate system as we did in the previous section. This is
a consequence of the fact that the Kruskal-type coordinates u and v of Eqs. (5.37)
with the choice α = κ+ lead to the metric which is not regular at r = r−. A remedy
to this problem can be obtained by choosing

α = κ− := −r+ − r−
2r2−

(5.66)

and defining a new geodesic system of coordinates based on this choice. Consider
now an observer in a radial free fall in the region VI’ of Reissner-Nordström space-
time infinitesimally close to the point P2 (see Fig. 5.5). When written in terms of the
coordinates u and v, the spacetime metric takes the form

ds2 =
1

κ2
−r

2
e−2κ−r(r+ − r)

r2
+

r2
−

+1
(−dv2 + du2) + r2(dθ2 + sin2 θ dϕ2). (5.67)
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In this expression, the coordinates u and v have been defined in such a way that in
the regions V’, IV’, VI’ and II of Fig. 5.1.(b), respectively, the coordinates u and v
are given in terms of U and V by Eqs. (5.37a), (5.37b), (5.37c), and (5.37d). One
may also easily check that in the region VI’ the coordinates u and v are increasing
functions of r and t, respectively. More precisely, when u is taken to be a constant,
the coordinate v increases as a function of t, whereas the coordinate u increases as a
function of r, when v is constant.

P2

VI’ V’

II

IV’

Figure 5.5. Part of Reissner-Nordström spacetime. The point P2 is
situated at the intersection of the lines that separate the regions V’,
IV’, VI’ and II.

Similarly as in the case of the outer horizon, we define a geodesic system of
coordinates for an infinitesimal neighborhood of the point P2 such that

X0 := l−v, (5.68a)

X1 := l−u, (5.68b)

where

l− :=
1

|κ−|r−
e−κ−r−(r+ − r−)

1
2

(
r2
+

r2
−

+1
)
. (5.69)

When the remaining coordinates are chosen to be the spherical coordinates θ and
ϕ, the metric is given by Eq. (5.43), and the derivatives of the metric vanish when
r = r− (see Appendix A). Therefore, the coordinatesX0 andX1 provide a geodesic
system of coordinates. Furthermore, when the massless Klein-Gordon field is sep-
arated as in Eq. (5.44), one finds that the massless Klein-Gordon equation implies

[
− ∂2

∂(X0)2
+

∂2

∂(X1)2
+
(

2M
r3
− 2Q2

r4
− l(l + 1)

r2

)
F−(r)

]
f̃(X0, X1) = 0, (5.70)

where we have defined

F−(r) :=
1

κ2
−l

2
−

1
r2
e−2κ−r(r+ − r)

r2
+

r2
−

+1
. (5.71)
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Again, one finds that
F−(r−) = 1, (5.72)

and therefore Eq. (5.70) takes, at the point P2, the form[
− ∂2

∂(X0)2
+

∂2

∂(X1)2
+

2M
r3−

− 2Q2

r4−
− l(l + 1)

r2−

]
f̃(X0, X1) = 0. (5.73)

The question about whether the terms involving r− are negligibly small or not,
is a very delicate one, and when the absolute value of the electric charge Q is very
small, those terms will certainly not vanish. We may, however, consider a special
case where |Q| is “reasonably big”. More precisely, we shall assume that there is a
fixed positive number γ ≤ 1 such that between |Q| and M there is, in Planck units,
the relationship:

|Q| = γM. (5.74)

In that case
r− = (1−

√
1− γ2)M, (5.75)

and because √
1− γ2 = 1− 1

2
γ2 − 1

8
γ4 − 1

16
γ6 − · · · < 1− 1

2
γ2, (5.76)

we find that ∣∣∣∣∣2Mr3− − 2Q2

r4−

∣∣∣∣∣ ≤ 2M
r3−

+
2Q2

r4−
<

48
γ6

1
M2

. (5.77)

Hence, it follows that if γ is “reasonably big”, and M � 1 in Planck units, the
terms involving M and Q are negligible. The same line of reasoning implies that for
“sufficiently small” l the term l(l + 1)/r2− may be neglected, and Eq. (5.73) may be
written, in effect, in the form[

− ∂2

∂(X0)2
+

∂2

∂(X1)2

]
f̃(X0, X1) = 0. (5.78)

One easily sees that in the region VI’, the solutions corresponding to the particles
with positive energy ω going in and out of the horizon are

φ′in ≈ NωlmYlm
1
r
e−iωeu, (5.79a)

φ′out ≈ NωlmYlm
1
r
e−iωev, (5.79b)

where ṽ and ũ are defined as in Eqs. (5.57).
It is now possible to write the Bogolubov transformation between the outcom-

ing solutions (5.65b) and (5.79b) in the spherically symmetric case. One easily finds
that in the region VI’,

V = κ−1
− ln(−ṽ)− κ−1

− ln l−. (5.80)
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Moreover, the Bogolubov transformation takes the form

e−iωκ−1
− ln(−ev) eiωκ−1

− ln l− =
∑
ω′

(
A′ωω′e−iω′ev +B′ωω′eiω

′ev), (5.81)

and the Bogolubov coefficients can be expressed as

A′ωω′ =
1
2π
eiωκ−1

− ln l−

0∫
−∞

dṽ e−iωκ−1
− ln(−ev)eiω

′ev, (5.82a)

B′ωω′ =
1
2π
eiωκ−1

− ln l−

0∫
−∞

dṽ e−iωκ−1
− ln(−ev)e−iω′ev. (5.82b)

It should be clearly noted, however, that so far our considerations have been based
on the assumption that in the local neighborhood of the inner horizon one has a phys-
ically meaningful concept of particle. In other words, in our considerations we have
interpreted the solutions (5.65) and (5.79) of the Klein-Gordon field as particle states
which can be detected by certain observers located near the inner horizon, and be-
tween these solutions we have then written the Bogolubov transformation. Although
such interpretation is indeed very natural, the situation may become problematic,
since the time evolution of those particle states eventually forces us to deal with the
singularity. In the Reissner-Nordström spacetime this issue is especially challeng-
ing, because in that case the boundary conditions of the Klein-Gordon field cannot
be uniquely defined at the singularity [66]. This induces some loss of predictabil-
ity in the evolution of our quantum states, because it is not clear how the solutions
representing particles at the horizon evolve at “later times”. Despite these ambigu-
ities in the dynamics of the Klein-Gordon field, we shall not discuss these issues
here in more detail. After all, in our analysis we are interested in the behaviour of
the Klein-Gordon field at the inner horizon only, in which case it should be reason-
able to interpret the field as particles propagating in spacetime—even if the ultimate
fate of these quantum states remains unspecified. By accepting these assumptions,
we proceed to calculate the effective temperature of the particle flux emitted by the
inner horizon. As before, the Bogolubov coefficients yield the result∣∣A′ωω′

∣∣ = e−πκ−1
− ω
∣∣B′ωω′

∣∣. (5.83)

Therefore, by using Eq. (5.19), we see that the number of particles with energy ω
is, from the point of view of the observer at rest very close to the horizon r = r−,
when, from the point of view of the freely falling observer, the field is in vacuum,

nω =
∑
ω′

∣∣B′ωω′
∣∣2 =

1

e−2πκ−1
− ω − 1

. (5.84)

From this distribution, one may infer that the temperature concerning the particle



72

radiation emitted by the inner horizon is, when the redshift effects are ignored,

T = −κ−
2π
, (5.85)

which is positive.
The result in Eq. (5.85) is in agreement with the findings of Ref. [62]. Since

the temperature is positive, there are no interpretative problems concerning the ther-
modynamical properties of the radiation of the inner horizon. Again, the redshift
factor can be recovered by using Eq. (5.21), and as the result one finds that the tem-
perature, from the point of view of an observer at rest very close to the inner horizon,
is

T− := − κ−
2π∆

=

√
M2 −Q2

2πr2−
√

1− 2M
r + Q2

r2

. (5.86)

As we can see, our expression for the temperature of the particles emitted
by the inner horizon inside the inner horizon is very similar to Eq. (5.64), which
gives the temperature of the particles emitted by the outer horizon outside the outer
horizon. The only difference is that r+ has been replaced by r−. Furthermore, our
result that the inner horizon emits particles inside the inner horizon with a positive
temperature given by Eq. (5.86) has also a very interesting consequence: To maintain
a local energy balance it is necessary that when particles with positive energy ω are
emitted towards the singularity from the inner horizon, particles with energy −ω are
emitted away from the singularity through the inner horizon.2 The process is similar
to the one which, according to the Hawking effect, takes place at the outer horizon
of the Reissner-Nordström black hole: At the outer horizon negative energy particles
go in and positive energy particles come out, and now we found that this is true at the
inner horizon as well. According to our best knowledge this phenomenon, despite of
its apparent triviality, has not been noticed before.

An intriguing question now arises: What happens to the negative energy par-
ticles which are emitted away from the singularity through the inner horizon?3 An
answer to this question appears to be rather difficult. Consider the conformal diagram
of the maximally extended Reissner-Nordström spacetime of Fig. 5.6, where we have
drawn the worldlines of the members of a virtual pair created at the inner horizon.
The particle with positive energy, as we found in our analysis, remains inside the in-
ner horizon, and finally meets with the black hole singularity (whatever that means).
The particle with negative energy, in turn, enters the intermediate region between
the horizons and one could—if the backscattering effects are neglected—speculate
on the possibility that it travels across the intermediate region and finally comes out
from the white hole horizon. A closer look, however, casts much doubt whether this

2Note that for the Klein-Gordon field, particles are their own antipartices.
3For the sake of simplicity, at this point the word ’particle’ shall be used to describe certain solutions

to the Klein-Gordon equation also in the region IV’. More precisely, by ’particle’ we mean here such a
solution to the Klein-Gordon equation, which propagates along a null geodesic in the region IV’, and
which may be interpreted as an actual particle at the local neighborhood of the inner horizon, from the
point of view of an observer at rest with respect to the horizon.
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Figure 5.6. Worldlines of the members of a virtual pair created at the
inner horizon. The particle with positive energy meets with the black
hole singularity, whereas the particle with negative enters the interme-
diate region between the horizons.

could ever happen in the Reissner-Nordström spacetime. The heart of the problem
lies at the ambiguity of the vacuum states in the Reissner-Nordström spacetime: It
seems impossible to define a vacuum state that would give a finite energy-momentum
tensor both at the inner horizon and at the outer horizon [67]. Indeed, this appears to
be the case also in our analysis. To consider the radiation effects of the inner hori-
zon, we introduced a vacuum state which was regular at the inner horizon but not at
the outer horizon. As a consequence, the energy density of any matter or radiation
travelling from the region VI’ into the region IV’ probably blows up as it approaches
the outer horizon. This should prevent particles ever passing through the white hole
horizon. Therefore, the conclusion seems to be that the radiation effects of the in-
ner horizon cannot be observed from outside of the Reissner-Nordström black hole
because the negative energy particles emitted by the inner horizon probably pile up
along the white hole horizon without limit. It should be noted, however, that the sit-
uation may be different if we consider a Reissner-Nordström black hole which is not
asymptotically flat but asymptotically de Sitter. It was proposed in Ref. [67] that for
such black holes it may be possible to overcome the problems related to the vacuum
states so that matter could actually travel through the interior regions of the black
hole and finally come out of the corresponding white hole. Hence one may speculate
on the possibility that in the asymptotically de Sitter Reissner-Nordström spacetime
an observer situated outside of the black hole may observe a certain type of radiation
coming out of the white hole which is due to the Hawking effect at the inner horizon
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of the black hole. However, because the vacuum states of the observers located at
the neighbourhoods of the inner and the outer horizon would be completely differ-
ent, it is not certain whether that radiation could be interpreted as a flux of (actual)
particles.

5.5 Concluding Remarks

In this chapter, we have found that in maximally extended Reissner-Nordström space-
time both the inner and the outer horizons emit thermal radiation, which, when
the possible backscattering effects are neglected, obeys the normal blackbody spec-
trum. We obtained our results by means of an analysis which was similar to the
normal derivation of the Unruh effect. More precisely, we considered the quantum-
mechanical properties of the massless Klein-Gordon field in the vicinity of the hori-
zons from the points of views of two different observers. One of these observers
was at rest with respect to the Reissner-Nordström coordinates either just outside
the outer horizon or inside the inner horizon, whereas another observer was in a free
fall through the horizon. We found that an observer at rest observes particles even
though, from the point of view of an observer in a free fall, the field is in vacuum.
The observer at rest just outside the outer horizon observes outcoming particles with
positive energy. Similarly, an observer at rest just inside the inner horizon observes
particles with positive energy propagating towards the singularity.

The most remarkable result of our analysis is that, in contrast to common
beliefs, the inner horizon is not a passive spectator but an active participant in the
radiation processes of the Reissner-Nordström black hole [68]. Although this result
is based on an almost trivial observation that both of the horizons of the Reissner-
Nordström black hole emit particles, there may also be some element of surprise in it,
and therefore the first question concerns the physical and the mathematical validity
of our analysis. After all, we did not follow the usual route with an analysis based
on a comparison of the solutions to the Klein-Gordon equation in the past and in
the future null infinities. Since this kind of an analysis would have been impossible
to perform when considering the radiation emitted by the inner horizon, we instead
compared the solutions in the rest frames of two observers. Is this kind of approach
valid?

The physical validity of this kind of approach has been considered, in the
case of the Schwarzschild black hole, by Unruh, and similar arguments also apply
here [64]. The best argument in favor of the validity of our analysis is probably given
by the fact that exactly the same methods which were used in an analysis of the radi-
ation of the inner horizon produced the well-known results for the radiation emitted
by the outer horizon. Another problem is that we have simply ignored all possi-
ble backscattering effects. To consider such effects, one should perform a numerical
analysis of the solutions to the Klein-Gordon equation. However, as mentioned in
Sec. 5.1, it is expected that the backscattered particles will trigger the mass inflation,
and therefore the radiation effects of the inner horizon of the Reissner-Nordström
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black hole are of very brief duration. As a consequence, the full Reissner-Nordström
spacetime, even as a mathematical solution, is unstable at the semiclassical limit.
Since the Reissner-Nordström spacetime is not considered astrophysically relevant,
we do not expect our analysis to have direct astrophysical consequences. If, how-
ever, our results are qualitatively the same for more realistic Kerr black holes, the
phenomena discussed in this chapter might possess some astrophysical significance.
Nevertheless, the radiation effects of the inner horizon have much importance in their
own right since they support the idea that all horizons of spacetime emit radiation.
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Chapter 6

Interlude: Quantum-Mechanical
Models of Black Holes

In this chapter, we shall deviate slightly from the main subjects of this thesis and
discuss quantum-mechanical models of black holes. These models will be needed
in the analysis of the chapter 7, where microscopic black holes will be taken as
the building blocks of spacetime. Our main interest lies in the model developed by
Louko and Mäkelä [69] for the Schwarzschild black hole. After introducing this
model, we shall return back to the thermodynamics of black holes.

6.1 Hamiltonian Dynamics of the Schwarzschild Black Hole

When constructing quantum-mechanical models of black holes, the first task is to
consider the Hamiltonian dynamics of spacetimes containing a black hole. The space-
times containing a Schwarzschild black hole have been analyzed by Kuchař [70], and
in what follows, we shall give a brief review of his results.

The starting point in Kuchař’s work was the ADM formulation of general
relativity, which was briefly discussed in Sec. 2.2. The general spherically symmetric
ADM line element can be written as

ds2 = −N2(r, t)dt2 + Λ2(r, t)
(
dr +N r(r, t) dt

)2 +R2(r, t)dΩ2, (6.1)

where dΩ2 is the metric on the unit two-sphere and Λ2 and R2 denote two inde-
pendent components of the spatial metric qab. On each spacelike hypersurface of
constant t, denoted by Σt, the metric is therefore given by the functions Λ and R,
which we take to be the configuration variables of the theory. Both of these variables
are chosen to remain positive, and therefore R is the radius of curvature of the two-
sphere r = constant. For the Schwarzschild solution, R simply represents the radial
Schwarzschild coordinate. The function N is clearly the lapse function, and due to
the spherical symmetry only the radial component N r of the shift vector survives.
In general, Eq. (6.1) describes the metric of any (globally hyperbolic) spherically
symmetric spacetime, including, of course, the Schwarzschild spacetime. However,
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one should note that an eternal black hole has two spatial infinities rather than just
one, corresponding to both the left and the right infinities of the conformal diagram.
Hence, the coordinate r ranges from −∞ to ∞.

From the metric (6.1), one can calculate the exterior curvature Kab and the
curvature scalar R of the hypersurface Σt. When these quantities are substituted
into Eq. (2.19), one obtains the ADM action of spherically symmetric spacetimes.
Obviously, the Hamiltonian form of this action reads

S =
∫
dt

∞∫
−∞

dr
(
pΛΛ̇ + pRṘ−NH−N rHr

)
, (6.2)

where pΛ and pR are the canonical momenta of the variables Λ andR, andH andHr

are the super-Hamiltonian and the supermomentum, respectively. The limits where
r → −∞ and r → ∞ correspond, respectively, to the left and the right spatial in-
finities of the conformal diagram. For the explicit form of the canonical momenta
and the constraint functions, the reader is encouraged to peruse Ref. [70]. This ac-
tion, however, must be supplemented with the appropriate ADM boundary terms.
In Ref. [70] Kuchař adopts certain falloff conditions which determine the asymp-
totic behaviour of the metric and the field variables. These conditions ensure that
the spacetime is asymptotically flat, and that the radial coordinate coincides with the
Minkowski radial coordinate at the both infinities. It follows from the theorem due
to Birkhoff [71] that the only asymptotically flat spherically symmetric vacuum so-
lution of Einstein’s field equation is the Schwarzschild solution. Hence, if the falloff
conditions are employed, the action (6.2) describes a Schwarzschild black hole, and
it should be supplemented with the boundary terms appearing in the maximally ex-
tended Schwarzschild spacetime. That is, the boundary contributions are written as

S∂Σ = −
∫
dt
(
N+M+ +N−M−

)
, (6.3)

where N−(t) and N+(t) are the asymptotic values of the lapse function at the left
and at the right hand side spacelike infinities of the Kruskal manifold, respectively. It
is required that N± are some prescribed functions of t which cannot be varied. The
quantities M±(t), in turn, are both equal to the Schwarzschild mass.

The highlight of this story is that the Hamiltonian theory given above can be
reduced to its true degrees of freedom. It was shown by Kuchař that by cleverly cho-
sen canonical transformation, followed by the reduction by solving the constraints
and substituting the solutions back into the action, one is left with the reduced action

S =
∫
dt
(
pṁ− (N+ +N−)m

)
, (6.4)

where the new canonical variables (m,p) depend on t only. This means that the
Schwarzschild black hole has, as expected, only one degree of freedom, m, which is
the mass of the black hole. Thus, the reduced theory is no more a theory of fields but
it is a theory of finite number of degrees of freedom. The variable m is obviously
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a positive quantity, but the corresponding canonical momentum p takes the values
within the interval (−∞,∞).

The dynamical content of the theory is expressed by the Hamiltonian equa-
tions of motion:

ṁ = 0, (6.5a)

ṗ = −N+ −N−. (6.5b)

It follows from the no-hair theorems that all the information about the spacetime
geometry is carried by the variable m. However, it can be easily seen from Eq.
(6.5b) that

p = −
(
T+ − T−

)
, (6.6)

where T+ and T− are, respectively, the asymptotic Minkowski time coordinates on
a hypersurface Σt at the right and at the left hand side infinities (here we use the
typical convention, where the Minkowski time at the right (left) hand side increases
(decreases) towards the future). Therefore, although the variable p does not contain
any information about the local spacetime geometry, it does contain information of
how the spacelike hypersurfaces Σt are “anchored” at the two infinities.

6.2 Hamiltonian Throat Theory

As we proceed towards the quantum theory of the Schwarzschild black hole, we im-
pose certain restrictions on the reduced action (6.4). To begin with, we shall confine
ourselves to a special case, whereN+ = 1 andN− = 0. In other words, we make the
parameter time t to coincide, up to some additive constant, with the Minkowski time
at the right hand side asymptotic infinity and freeze the time evolution of the hy-
persurfaces Σt at the left hand side asymptotic infinity. The latter restriction follows
from the requirement that our theory should describe physics accessible to observers
at one infinity only. It follows now that

S =
∫
dt (pṁ−m). (6.7)

Besides the restrictions mentioned above, we shall also require that |p| < πm. As a
corollary, the asymptotic Minkowski time, as well as the parameter time t, take their
values within an interval of length 2πm at the right hand side infinity. In the case
of the parameter time t, these values are centered around a certain instant of time,
which we shall denote here by t0. Therefore, the condition |p| < πm confines the
values of t between the interval −πm < t − t0 < πm.1 Although at this point this
restriction may seem completely arbitrary, we shall soon see how it follows naturally
from the geometrical interpretation of the forthcoming theory.

1Note that the time instances t = t0−πm and t = t0+πm correspond now to the values p = πm
and p = −πm, respectively.
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Let us now perform a transformation from the canonical variables (m,p) to a
new pair of variables (a, pa) such that

|p| =

2m∫
a

dx√
2mx−1 − 1

=
√

2ma− a2 + m arcsin(1− a/m) +
1
2
πm, (6.8a)

pa = sgn(p)
√

2ma− a2. (6.8b)

One can show that this transformation is canonical, and the action becomes

S =
∫
dt (paȧ−H), (6.9)

where the Hamiltonian is

H =
1
2

( p2
a

a
+ a
)
. (6.10)

One easily sees that this Hamiltonian equals m. Moreover, from Eq. (2.6a) one finds
that the equation of motion for a takes the form

ȧ =
pa

a
= sgn(p)

√
2ma−1 − 1 (6.11)

In other words, when p > 0, the variable a increases with time, and when p < 0, a
decreases with time. It is also obvious from the transformations (6.8) that

a
p→±πM−−−−−−→ 0, (6.12a)

a
p→0−−−→ 2M. (6.12b)

Hence we conclude that a begins from zero at t = t0 − πm, and increases until it
reaches its maximum value 2m at t = t0. After that a begins to decrease and finally
vanishes at t = t0 + πm.

We are now prepared to seek a geometrical interpretation of the variables a
and pa. First we note that the Kuchař’s analysis was based on the properties of the
spacelike hypersurfaces Σt at the asymptotic infinities only, leaving the hypersur-
faces in other ways arbitrary. Therefore, we are allowed to interpret our configura-
tion variables according to a suitable foliation Σt. Our choice of the foliation is now
motivated by the following observation. We write the equation of motion for the
variable a in the form

ȧ2 =
2m
a
− 1. (6.13)

This equation is similar to the equation of a radial timelike geodesic going through
the bifurcation two-sphere2 in Kruskal spacetime, assuming that a is the curvature
radius along the geodesic and the dot denotes the proper time derivative. This is

2The bifurcation two-sphere is located at the intersection of the past and the future horizons of the
Kruskal diagram.
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easily seen from the Schwarzschild metric. Inside the black hole, the metric of the
radial timelike geodesic is

ds2 = −dτ2 =
dr2

1− 2M
r

, (6.14)

and this equation leads directly to(dr
dτ

)2
=

2M
r
− 1. (6.15)

Thus, if we can find a certain foliation Σt such that the proper time on the radial time-
like geodesic inside the black hole equals the value of t at the infinity, the variable a
becomes the radius of curvature along this geodesic. An interesting fact is that these
kinds of foliations do exist (see Ref. [69] for details). It is even possible to make a
choice such that the radius of curvature on the hypersurface Σt reaches its minimum
value when it intersects the radial geodesic inside the hole. In this particular case the
quantity a can be identified as the throat radius of the Einstein-Rosen wormhole3.
From this point on, we shall therefore refer to a as the radius of the wormhole throat
and to the corresponding theory as the Hamiltonian throat theory. The geometrical
interpretations are illustrated in Fig. 6.1.

r = 0

r = 0

Radial timelike geodesic

ℑ
+

ℑ
+

ℑ
−

ℑ
−

i
0

Σt

i
0

P

Figure 6.1. Geometrical interpretation of the configuration variable a.
In this picture, the vertical line represents the radial timelike geodesic
through the bifurcation two-sphere. If the curvature radius on Σt attains
its minimum value at the intersection point P , then the variable a may
be interpreted as the throat radius of the Einstein-Rosen wormhole Σt.
The time interval t− t0 equals the proper time τ elapsed on the radial
geodesic assuming that τ = 0 at the bifurcation two-sphere.

3A three-dimensional spacelike hypersurface in Kruskal spacetime which does not meet the singu-
larities is called the Einstein-Rosen wormhole, or the Einstein-Rosen bridge. The minimum value of
the curvature radius on this hypersurface is known as its throat radius.
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The geometrical interpretation of the variable a gives now a natural explana-
tion why the values of p were initially restricted between −πm and πm: The radial
timelike geodesic begins its life at the past singularity, goes through the bifurcation
two-sphere, and finally ends its life at the future singularity such that the elapsed
proper time along the geodesic equals 2πm. Therefore, the configuration variable a
lives, in a certain sense, inside the hole only. That is to say, in the Hamiltonian throat
theory, the spacetime dynamics is bounded inside the spacetime region containing
the black hole (and the white hole). This feature is in harmony with the fact that the
spacetime metric is static outside and non-stationary inside the Schwarzschild black
hole.

6.3 Quantization

In the previous section, we stated that the Hamiltonian (6.10) equals the Schwarz-
schild mass. Therefore, the Hamiltonian may be seen as the energy of the spacetime
from the point of view of an inertial observer at the asymptotic infinity. This gives
us a reason to conclude that the corresponding Hamiltonian operator is indeed an
energy operator (with respect to the asymptotic Minkowski frame). We now proceed
to the quantization of the classical Hamiltonian throat theory.

Let the state vectors ψ of the quantum theory depend on the configuration
variable a. These state vectors live in the Hilbert space H := L2(R+;µda), where
the inner product is defined as

〈ψ1, ψ2〉 :=

∞∫
0

ψ∗1ψ2 µda, (6.16)

and µ(a) is a smooth positive weight function. We obtain the Hamiltonian operator
Ĥ by substituting pa → −i d

da in Eq. (6.10) such that the ordering of the factors
yields a hermitian operator with respect to the inner product (6.16). We get:

Ĥ =
1
2

[
− 1
µ

d

da

( µ
a

d

da

)]
. (6.17)

Naturally, the energy spectrum of Ĥ depends on the weight function µ(a). The
general power law weight function has been studied in Ref. [69]. In that case, the re-
sults show that the energy spectrum is discrete and bounded from below. Hence there
exists a certain ground state in energy. In physical sense, this indicates that one can-
not extract an infinite amount of energy from the quantum black holes. In many cases
the ground state is positive but in some situations the possibility of negative ground
states cannot be excluded. However, in every case one can choose the self-adjoint
extension4 of Ĥ such that the ground state becomes positive. For large eigenvalues,

4A hermitian operator Â is said to be self-adjoint if its domain D(Â) ∈ H is equal to the domain
of its hermitian conjugate, D(Â†) ∈ H. If there is a way to extend a hermitian operator Â into a
self-adjoint operator Â′, we say that Â′ is the self-adjoint extension of Â. If the extension is unique,
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the WKB analysis5 yields the asymptotic estimate

EWKB ∼
√

2n, (6.18)

where n is an integer. The resulting area spectrum of the event horizon,

A ∼ 32πn, (6.19)

is proportional to the quantum number n. This kind of discrete area spectrum agrees
with that proposed by Bekenstein in 1974. In brief, he proposed that the eigenvalues
of the area of the event horizon of a black hole are of the form

An = nγ l2Pl, (6.20)

where n is an integer and γ is a pure number of order 1 [74]. In other words, Beken-
stein’s proposal states that the event horizon area of a black hole has an equal spacing
in its spectrum.

Analogous results for the energy spectrum hold also in the presence of a nega-
tive cosmological constant, electric charge and angular momentum. The spacetimes
with a negative cosmological constant are not asymptotically flat but the asymptoti-
cally flat infinities are replaced by asymptotically anti-de Sitter infinities [75, 76]. It
turns out that the results are qualitatively independent of the existence of the negative
cosmological constant. The Reissner-Nordström black holes have been analyzed in
Refs. [69,77], and the Kerr-Newman black holes in Ref. [78]. Again, the energy spec-
tra are discrete but, in contrast to the Schwarzschild black hole, the large eigenvalues
of the area of the outer horizon do not follow the Bekenstein’s proposal. However,
if one considers the sum of the areas of the inner and the outer horizon, one con-
cludes that this “total area” of the black hole is quantized in the manner proposed by
Bekenstein.

the operator Â is called essentially self-adjoint. For further information see, for instance, Ref. [72].
5The WKB approximation provides a method to find approximative solutions to differential equa-

tions [73].
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Chapter 7

Spacetime Foam Model of the
Schwarzschild Horizon

In this house, we OBEY the laws of thermodynamics!

Homer Simpson [79]

In the inspired final chapter of their classic book, Misner, Thorne, and Wheeler
state that there are three levels of gravitational collapse [19]. The first two of them
are the gravitational collapse of the whole universe during the final stages of its re-
contraction, and the gravitational collapse of a star when a black hole is formed. The
third level of gravitational collapse is the quantum fluctuation of spacetime geometry
at the Planck scale of distances. To rephrase Misner, Thorne, and Wheeler, “collapse
at the Planck scale of distances is taking place everywhere and all the time in quan-
tum fluctuations in the geometry and, one believes, the topology of space. In this
sense, collapse is continually being done and undone,. . . ”

The picture given by Misner, Thorne, and Wheeler of the Planck scale physics
in these sentences is very charming. It immediately brings into one’s mind mental
images of tiny wormholes and black holes furiously bubbling as a sort of spacetime
foam. This is indeed a wonderful picture but unfortunately the ideas it suggests have
never been taken very far. Instead of developing models of spacetime where space-
time consists of tiny wormholes and black holes, researchers in the field of quantum
gravity have gone in another direction and developed, among other things, a very
successful theory of loop quantum gravity which treats spacetime as a spin network
constituted of tiny loops.

The purpose of this chapter is, in a certain sense, to revive some aspects of
the old picture of spacetime as a foam of tiny wormholes and black holes. Actually,
there are reasons to believe that at the Planck length scale microscopic black holes
might indeed play a role in the structure of spacetime. For instance, suppose that we
want to localize a particle within a cube with an edge length equal to one Planck
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length

lPl :=

√
~G
c3

≈ 1.6× 10−35 m. (7.1)

It follows from Heisenberg’s uncertainty principle that in this case the momentum
of the particle has an uncertainty ∆p ∼ ~/lPl. In the ultrarelativistic limit the un-
certainty in the energy of the particle is ∆E ∼ c∆p, which is around one Planck
energy,

EPl :=

√
~c5
G

≈ 2.0× 109 J. (7.2)

In other words, we have enclosed one Planck energy inside a cube whose diameter
is one Planck length. That amount of energy, however, is enough to shrink the space-
time region bounded by the cube into a black hole with a Schwarzschild radius equal
to around one Planck length. So it seems possible that when probing the structure of
spacetime at the Planck length scale one encounters Planck size black holes.

At the present stage of research, a construction of a precise mathematical
model of spacetime as a whole made of tiny black holes is out of reach. However,
it is possible to test the idea of spacetime as a foam of microscopic black holes
in the context of an important specific problem of quantum gravity. The problem
in question is the microscopic origin of black hole entropy. There is general agree-
ment between the researchers working in the field of quantum gravity that black hole
has an entropy which is, in natural units, one-quarter of its event horizon area. This
result, sometimes known as the Bekenstein-Hawking entropy law, was introduced
in Sec. 4.1. In addition to black holes, it is valid for cosmological, de Sitter, and
Rindler horizons as well, and it seems to imply that in addition to the three classical
ones, there is an enormous number of quantum-mechanical degrees of freedom in
black holes. It is reasonable to expect that these additional degrees of freedom lie
at the horizon of the black hole. During the recent ten years or so, several attempts
have been made by experts in string theory and loop quantum gravity to identify the
quantum-mechanical degrees of freedom of black holes and to provide a microscopic
explanation for the black hole entropy [7].

To test the viability of the idea of spacetime as a foam of Planck size black
holes we postulate, in this chapter, a specific spacetime foam model of the event
horizon of a Schwarzschild black hole [80]. It follows from our model that the en-
tropy of the Schwarzschild black hole is proportional to its horizon area, and we also
present arguments suggesting that the constant of proportionality must be, in natural
units, equal to one-quarter. In other words, it seems possible to obtain Eq. (4.2) from
our model.

This chapter is organized as follows. In Sec. 7.1, we introduce our model,
especially the postulates on which it is based. In short, the event horizon of a macro-
scopic Schwarzschild black hole is assumed to consist of Planck size, independent
black holes. Each of the microscopic holes on the horizon is assumed to obey a sort
of “Schrödinger equation” of black holes, which was published in Ref. [69]. The
postulates of our model connect the quantum states of individual microscopic holes
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on the horizon with the area eigenvalues of the event horizon of the macroscopic
Schwarzschild black hole.

In Sec. 7.2, we proceed to calculate the entropy of the Schwarzschild black
hole from the postulates of our model. An essential ingredient of our calculation of
black hole entropy is our decision to apply classical statistics to our model. This
decision of ours is motivated by Hawking’s result that, at least in the semiclassical
limit, black hole radiation spectrum is the continuous blackbody spectrum. If one
attempted to apply any sort of quantum statistics to our model, a discrete radiation
spectrum radically different from the one predicted by Hawking would follow even
for macroscopic black holes. The continuous spectrum, however, is regained if clas-
sical, instead of quantum, statistics is applied to our model. We find that our model
supplemented with classical statistics implies that at a very low temperature the en-
tropy of the Schwarzschild black hole is, up to an additive constant, proportional
to its horizon area. In Sec. 7.3 it is claimed, on the grounds of certain geometri-
cal arguments, that it is natural to take the constant of proportionality to be equal
to one-quarter. This result reproduces the Bekenstein-Hawking entropy law of Eq.
(4.2).

Section 7.4 contains a critical analysis of our model. We list the reasonable
objections against our model we have managed to find, and our answers to these
objections.

7.1 The Model

The starting point of our model is Bekenstein’s proposal of the year 1974, which
states that the eigenvalues of the area of the event horizon of a black hole are of the
form of Eq. (6.20). Bekenstein’s proposal has been revived by several authors on
various grounds [81]. One way to obtain Eq. (6.20) for Schwarzschild black holes is
to consider the following eigenvalue equation for the Schwarzschild mass M of the
Schwarzschild black hole (unless otherwise stated, we shall always use the natural
units where ~ = c = G = kB = 1):[

− 1
2
a−s d

da

(
as−1 d

da

)
+

1
2
a

]
ψ(a) = Mψ(a). (7.3)

This equation which, in a certain very restricted sense, may be viewed as a sort of
“Schrödinger equation” of the black hole from the point of view of a distant observer
at rest with respect to the hole, follows from the Hamiltonian (6.17) when we take
µ = as. As before, a is the throat radius of the Einstein-Rosen wormhole in a folia-
tion where the time coordinate at the throat is the proper time of an observer in a free
fall through the bifurcation two-sphere. Moreover, ψ(a) is the wave function of the
hole, and the inner product (6.16) between the black hole states is now determined
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by the real number s such that

〈ψ1|ψ2〉 =

∞∫
0

ψ∗1(a)ψ2(a)asda. (7.4)

In other words, the Hilbert space is chosen to be the space L2(R+, asda).
In Sec. 6.3 we stated that the spectrum of M given by Eq. (7.3) is always

discrete, bounded from below, and can be made positive by means of an appropriate
choice of the self-adjoint extension. Moreover, it was shown in Ref. [69] that if
s = 2, then for large n the WKB eigenvalues of the mass M are of the form

MWKB
n =

√
2n+ 1. (7.5)

Surprisingly, this WKB approximation for large n provides an excellent approxima-
tion for the mass eigenvalues even when n is small (i.e., of order 1). In the ground
state where n = 0, the result given by Eq. (7.5) differs by around 1% from the real
ground state mass eigenvalue, and the difference very rapidly goes to zero when n
increases (see Appendix B). So we see that, because the event horizon area of a
Schwarzschild black hole with mass M is

A = 16πM2, (7.6)

Eq. (7.3) implies, as an excellent approximation, the following spectrum for the hori-
zon area:

An = 32π
(
n+

1
2

)
. (7.7)

In other words, we recover Bekenstein’s proposal of Eq. (6.20) with γ = 32π as the
constant of proportionality.

We are now prepared to state the postulates, or assumptions, of our model.

1. The event horizon of a macroscopic Schwarzschild black hole consists of in-
dependent, Planck size Schwarzschild black holes.

2. Each hole on the horizon obeys Eq. (7.3) with s = 2.

3. Holes in the ground state where n = 0 do not contribute to the horizon area.

4. When the hole is in the nth excited state, it contributes to the horizon an area
which is proportional to n.

5. The total area of the horizon is proportional to the sum of the areas contributed
by the holes on the horizon.

No doubt, it is rather daring to assume that the microscopic holes on the hori-
zon are independent of each other. However, at this stage of research that assumption
is necessary if we want to make progress. Moreover, one may speculate on the pos-
sibility that, when the density of black holes on the horizon is constant, the effects of
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all the rest of the holes on an individual hole on the horizon may cancel each other.
Another bold assumption is contained in postulate 3. As such, postulate 3 views ob-
servable black holes as excitations of black holes in a ground state. When compared
to postulates 1 and 3, postulates 2, 4, and 5 appear as rather natural. Postulates 4 and
5 imply that the horizon area is of the form

A = α(n1 + n2 + · · ·+ nN ), (7.8)

where n1, n2, . . . , nN are the quantum numbers associated with the area eigenstates
of the holes on the horizon, and α is an unknown constant of proportionality. We
shall consider the postulates of our model in more details in Sec. 7.4.

7.2 Entropy

When the concept of entropy of a black hole was introduced by Bekenstein and
Hawking 30 years ago, all the derivations of the expression (4.2) for black hole en-
tropy were performed by means of semiclassical arguments. When Hawking ob-
tained an expression T = 1

8πM for black hole temperature yielding the expres-
sion (4.2) for black hole entropy, he treated spacetime classically and matter fields
quantum-mechanically [5]. Later, in 1977, when Gibbons and Hawking calculated
the black hole entropy by means of Euclidean path-integral methods [57], they sim-
ply used a semiclassical approximation to the path integral. In other words, the ex-
pression (4.2) for the black hole entropy is, to the greatest possible extent, a “semi-
classical entropy” which we should obtain from a microscopic model of spacetime.

At this point, it is useful to recall what we actually mean by the very concept
of entropy in quantum and classical physics. In quantum statistics, the entropy of a
system in a given macrostate is the natural logarithm of the number of microstates
corresponding to that macrostate, whereas in classical statistics entropy is the natural
logarithm of the phase space volume corresponding to the given macrostate [82].
It may be shown that the entropy of quantum statistics reduces to the entropy of
classical statistics when the spectra of observables are not assumed to be discrete but
continuous. Which statistics—classical or quantum—should we use for spacetime
itself?

The answer to this question depends on whether we consider the radiation
spectrum of a black hole continuous or discrete. If the radiation spectrum is discrete,
then the horizon area spectrum of the macroscopic hole, as well as the spectra of
the microscopic holes on the horizon, is discrete, and we must use quantum statis-
tics. Consequently, if the radiation spectrum is continuous, the area spectrum is also
continuous and we must use classical statistics. According to Hawking, the radia-
tion spectrum is the purely thermal, continuous blackbody spectrum. Therefore, the
answer to our question is obvious: If we want to obtain for the black hole entropy
an expression that is in agreement with Hawking’s radiation law we must, of course,
use classical statistics for the black hole itself.
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This conclusion has nothing to do with the question about whether we really
believe the black hole radiation spectrum to be continuous, as in Hawking’s theory,
or discrete as it is, for instance, according to Bekenstein’s proposal. Curiously, it is
possible to express an argument, based on Heisenberg’s uncertainty principle, that
when the effects of matter fields are so strong that they overshadow the quantum
effects of spacetime, then the discrete spectrum predicted by Bekenstein’s proposal
reduces to Hawking’s blackbody spectrum [83]. Actually, this is what we assume
here. More precisely, we assume that when the effects of matter fields are absent,
the black hole area spectrum is discrete and follows Bekenstein’s proposal, but when
the effects of matter fields are strong enough, the spectrum becomes continuous, and
classical statistics may be applied to the black hole itself.

So let us calculate the classical entropy, or the natural logarithm of the clas-
sical phase space volume, of our model. Equation (7.3) may be deduced from the
classical Hamiltonian (6.10),

H =
1
2a
(
p2 + a2

)
, (7.9)

of the Schwarzschild black hole. We know that in this equation p is the canonical
momentum conjugate to a, and that the numerical value of H is the Schwarzschild
mass M of the hole. Therefore we find, using Eq. (7.5), that for a single black hole
with “mass” M1 and canonical coordinates a1 and p1 on the horizon,

1
4a2

1

(
p2
1 + a2

1

)2 = M2
1 = 2n1 + 1. (7.10)

However, since we are now considering classical statistics, n1 is no longer an integer
but may be any non-negative real number. Moreover, it is no longer possible to asso-
ciate with M1 any sensible physical meaning as the “mass” of a hole on the horizon.
(A more detailed investigation of this issue is performed in Sec. 7.4.) M1 is simply
a parameter with the property that M2

1 is proportional to the area contributed by a
single microscopic hole to the total horizon area.

Equation (7.10) now implies that

1
8a2

1

(
p2
1 + a2

1

)2 + · · ·+ 1
8a2

N

(
p2

N + a2
N

)2 =
N

2
+
A

α
. (7.11)

It can be shown (see Appendix C) that for fixedA andN this is a compact (2N−1)-
dimensional hypersurface in a 2N -dimensional phase space. When the metric of the
phase space is defined as

ds2 =
N∑

i=1

(
dp2

i + da2
i

)
, (7.12)
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its (2N − 1)-volume, in units of (2π~)N−1/2, is of the form

Ω = C(N)
(
N +

2A
α

)N−1/2
, (7.13)

where C(N) is a function that depends on N only. For fixed N , C(N) is finite.

At this point, we should pause for a moment. In Sec. 7.1, we threw away with
great pomp and ceremony the vacuum contribution to the black hole horizon area by
stating that holes in the ground state do not contribute to the horizon area. Equation
(7.11), however, involves the term N

2 , which is equal to the vacuum contribution to
the horizon area. Are we now quietly returning the vacuum contribution into our
calculations?

The answer to this question is emphatically no. The reason why the term N
2

suddenly appears in Eq. (7.11) is that in Eq. (7.11) we calculate the phase space
volume of our model, and the role of the term N

2 is to take into account the vacuum
contribution to the phase space volume. In other words, although we assume that
ground states do not contribute to the horizon area, they nevertheless contribute to the
phase space volume. Actually, as we shall see in a moment, in very low temperatures
most of the phase space volume is really occupied by the unobservable vacuum, or
black holes in the ground state.

The entropy of the Schwarzschild black hole is the natural logarithm of the
phase space volume Ω corresponding to a fixed horizon area A:

S = ln Ω = lnC(N) +
(
N − 1

2

)
ln
(
N +

2A
α

)
. (7.14)

Using Eq. (7.6) and keeping N as a constant, we may obtain the temperature T of
the Schwarzschild black hole:

1
T

=
( ∂S
∂E

)
N,V

=
N − 1

2

N

64πM
α+ 32πM2

N

(7.15)

or, since N is assumed to be very large,

T =
α

64πM
+

1
2N

M. (7.16)

It is interesting that if N , the number of microscopic holes on the horizon, is suf-
ficiently small when compared to the mass M of the macroscopic hole then the
temperature increases, instead of decreasing as in Hawking’s theory of black hole
radiation, as a function of M .

At this point, we introduce a new assumption to our theory. We assume that
most microscopic holes on the horizon are in the ground state, where n = 0. More
precisely, we assume that the average

n̄ :=
n1 + · · ·+ nN

N
=

A

Nα
(7.17)
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of the quantum numbers n1, . . . , nN has the property

n̄� 1. (7.18)

Since A is proportional to M2, we find that this condition may be written as

M

N
� 1

M
. (7.19)

When the assumption (7.18) is employed, the second term on the right hand side of
Eq. (7.16) vanishes, and the temperature becomes

T =
α

64πM
. (7.20)

The assumption (7.18) is sensible when we consider the thermodynamics of a macro-
scopic black hole at a very low temperature: At a very low temperature the con-
stituents of any system tend to be as close to the ground state as possible. The same
is true also for our model: We see that the minimum temperature is achieved when
the second term on the right hand side of Eq. (7.16), and therefore n̄, becomes as
small as possible.

From Eq. (7.20) it now follows that, up to an additive constant which depends
only on the number N of the microscopic holes on the horizon, the entropy of the
Schwarzschild black hole is, at a very low temperature,

S =
2A
α
. (7.21)

In other words, we have obtained, up to an undetermined constant of proportion-
ality, the Bekenstein-Hawking entropy law of Eq. (4.2). Here we have considered
the Schwarzschild horizon only but our consideration may easily be generalized for
other horizons as well.

7.3 Constant of Proportionality

It only remains to fix the constant α in Eq. (7.21). The constant α was defined in
Eq. (7.8). From that definition it follows that, if we know how the total area of the
horizon depends on the areas of the holes on the horizon, we may calculate α. A
comparison of Eqs. (4.2) and (7.21) yields the result that, in natural units, we should
have α = 8, and our task is to obtain this value by means of geometrical arguments.
Of course, nobody really knows what the “spacetime geometry” at the Planck length
scale looks like, and therefore one should take such arguments with a pinch of salt.
However, it is possible to express arguments which, when not understood as a real
description of spacetime structure at the Planck length scale but rather as a sort of
statistical average of the behavior of the microscopic holes on the horizon, may at
least provide a heuristic aid to thought.

To begin with, consider Fig. 7.1. In that figure, we have drawn microscopic
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black holes on the horizon such that, at this stage, they do not overlap each other.
A distant observer does not see a hole on the horizon as a sphere but as a circle
with radius equal to its Schwarzschild radius RS. The area of this circle is πR2

S,
which is one-quarter of the horizon area of the corresponding microscopic hole.
Equation (7.7), together with postulate 3, therefore implies that the area covered by
a microscopic hole in the nth excited state is 8πn.

RS

Figure 7.1. In our model, spacetime is constructed from Planck size
black holes. A faraway observer sees each particular hole as a circle
with a Schwarzschild radius RS. When a hole on the horizon exactly
fits inside a square, the area of the square is 4

π times the area of the
corresponding circle.

When considering Fig. 7.1, however, one finds that the holes on the horizon
do not cover the whole horizon but certain voids remain. A better way to cover the
horizon is to use squares drawn around the holes such that each hole exactly fits
inside the corresponding square. In that case, the area of each square is 4

π times the
area of the corresponding circle. Summing the areas of the squares, we find that the
horizon area is

A = 32(n1 + n2 + · · ·+ nN ), (7.22)

from which it follows that α = 32. In other words, α is too large by a factor of 4.
A remedy for this problem may be found if we assume that the holes on the

horizon overlap each other. Recall that we are obtaining an expression for the max-
imum entropy of a macroscopic Schwarzschild black hole. The maximum entropy
may be gained if there is a maximum amount of microscopic holes on the horizon.
That is because, if two black holes on the horizon come together to form a single
black hole, the area of the resulting black hole is larger than is the sum of the areas
of the original black holes. In other words, a larger amount of the horizon is covered
by a smaller number of degrees of freedom. Since the maximum entropy is achieved
when the number of degrees of freedom is as large as possible, it follows that when
two black holes on the horizon overlap in the state of maximum entropy, they still
must not form a single black hole.
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The maximum overlap between two holes with equal sizes is achieved when
the center points of the holes lie on each other’s event horizons (see Fig. 7.2). In
that case, the holes are not yet “swallowed” by each other, and the distance between
the center points of the holes is their common Schwarzschild radius RS. As one can
see from Fig. 7.2, however, covering the horizon with black holes overlapping each
other in this manner is equivalent to covering the horizon with holes with radius 1

2RS

and not overlapping each other. Therefore one finds that the horizon area now takes
the form

A = 8(n1 + n2 + · · ·+ nN ), (7.23)

which implies the desired result
α = 8. (7.24)

When this result is substituted in Eq. (7.21), we get

S =
1
4
A, (7.25)

or, in SI units,

S =
1
4
kBc

3

~G
A. (7.26)

In other words, we have exactly recovered the Bekenstein-Hawking entropy of Eq.
(4.2).

Figure 7.2. Two identical black holes on the horizon overlapping
each other such that the center points of the holes lie on each other’s
event horizons. Covering the horizon with black holes overlapping each
other in this manner is equivalent to covering the horizon with non-
overlapping holes having radii that are one-half of the radii of the orig-
inal holes.

However, it must again be strongly emphasized that the geometrical arguments
given here should not be considered as a real description of the structure of spacetime
at the Planck length scale. Rather, they should be viewed as mere heuristic aids to
thought. The microscopic structure of spacetime is certainly very much more com-
plicated than is the simple picture given in this section. Our geometrical arguments,
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however, have a certain statistical content which may be expressed as follows: The
average number density of the microscopic black holes on the horizon is such that,
if the holes were understood as classical objects, their center points would lie, in
average, on each other’s event horizons. Whether one accepts this argument or not
is, at the present stage of research, a matter of taste but nevertheless it produces the
desired value for the constant α.

7.4 Some Objections

As may have become clear to the reader, our model and the postulates on which it
is based contain several ideas that are physically new. Always when expressing a
new physical idea it is of vital importance to try to prove oneself wrong, and this is
what we shall attempt to do in this section. More precisely, we list all the reasonable
objections against our model we have managed to find, and our answers to these
objections. Our objections are as follows.

1. It is very strange to think of a black hole horizon as being made of Planck size
black holes. If black holes are made of Planck size black holes, then what are
the Planck size black holes made of?

Answer. In our model, we have assumed the Planck size black holes described
by Eq. (7.3) to be fundamental constituents, or building blocks, of spacetime.
So they are assumed to have no intrinsic structure. The idea that spacetime
might be made of Planck size black holes in one way or another is supported,
among other things, by the arguments based on Heisenberg’s uncertainty prin-
ciple. So far we have no precise model of the whole spacetime being made of
Planck size black holes, and a construction of such a model should be viewed
as a challenge for the future. We have only a model of a Schwarzschild horizon
and, as one can see, our model reproduces the Bekenstein-Hawking entropy
law.

2. Although this work intends to provide a model of a Schwarzschild horizon,
the assumption that a horizon of spacetime is considered is nowhere explicitly
used in the derivation of the Bekenstein-Hawking entropy law. Actually, it
seems that arguments similar to those employed in this chapter may be used
to imply that every spacelike two-surface of spacetime has an entropy that is
proportional to its area, no matter whether that two-surface is part of a horizon
or not. Is this not in contradiction with the known properties of gravitational
entropy?

Answer: It is true that an assumption that a horizon of spacetime is under
scrutiny is nowhere used in our analysis. The primary reason for our choice
to construct a model of a Schwarzschild horizon is that with a Schwarzschild
horizon one may associate a well-defined concept of energy which, in turn,
may be used when calculating the temperature of the horizon. It is also true
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that one could argue by means of reasoning similar to that used in this chap-
ter that entropy is associated not only with spacetime horizons but with ev-
ery spacelike two-surface of spacetime. To make this statement more precise,
however, we should first clarify our terminology. Indeed, it may not be quite
clear to the reader what we mean by the ’entropy of spacelike two-surface’,
and therefore it is probably worth clarifying this issue.

Our model is an example of a theory where the statistical origin of black hole
entropy is assumed to stem from the microscopic structure of spacetime at
the black hole horizon. A specific feature of this kind of approach is that the
entropy may be understood to reside on the spacelike two-surface which de-
termines the area of a given horizon. For instance, in our model the entropy of
the Schwarzschild black hole was derived from the statistics of the spacelike
two-sphere r = 2M . Hence one may, with a minor abuse of terminology, talk
about the entropy of the spacelike two-sphere r = 2M instead of the entropy
of the Schwarzschild horizon. At this point, as well as later in this thesis, we
shall frequently use this kind of terminology, mostly because it makes the ex-
pression of our ideas considerably easier. Obviously, one may now construct
an arbitrary spacelike two-surface out of microscopic black holes in a similar
way as in the case of a Schwarzschild horizon. Again, statistical arguments
will suggest that the concept entropy should be attributed also to that two-
surface. So we have arrived at the conclusion that in our model every finite
spacelike two-surface, no matter whether that two-surface is a part of a hori-
zon or not, possesses an entropy proportional to its area.

Although astonishing, this conclusion, however, does not contradict with the
known physics. Actually, there seems to be very good grounds to believe that
every piecewise smooth, spacelike two-surface of spacetime indeed carries a
certain amount of entropy although that entropy seems to produce observ-
able physical effects only for the observers having that two-surface as a part
of a horizon. Provided that one accepts the view held, at least implicitly, by
many authors that horizon entropy is indeed due to the microscopic struc-
ture of spacetime at the horizon, this result is a direct consequence of the
well-established result that any finite part of a Rindler horizon has an entropy
which, in natural units, is one-quarter of the area of that part. The line of rea-
soning producing this conclusion may be expressed as follows:

(a) Each finite part of a Rindler horizon possesses an entropy which is one-
quarter of its area.

(b) Each finite spacelike two-plane is, from the point of view of an appro-
priate observer, a part of a Rindler horizon.

(c) Therefore, each finite spacelike two-plane possesses an entropy which is
one-quarter of its area.

(d) Each piecewise smooth spacelike two-surface is a union of infinitesimal
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spacelike two-planes, each having an entropy equal to one-quarter of its
area.

(e) Therefore, each piecewise smooth spacelike two-surface possesses an
entropy which is one-quarter of its area.

In other words, an explicit assumption that one looks at the horizon is not
needed when one attempts to obtain the Bekenstein-Hawking entropy law:
There are good grounds to believe that the Bekenstein-Hawking entropy law
holds, in a certain sense, for any piecewise smooth, spacelike two-surface.
The possible connection between the area and entropy is further discussed in
chapter 8.

3. How can the Planck size black holes on the horizon be independent of each
other? Certainly there should be an extremely strong correlation between them.

Answer. This is indeed what one might expect on classical grounds. However,
we are now considering spacetime at very small length scales where quantum
gravity reigns, and all bets are on. It is possible that the interactions between
black holes effectively cancel each other in a somewhat similar way to the
gravitational effects canceling each other from the point of view of an observer
at the center of the Earth. This is an open question.

In addition to these rather general remarks, it is possible to express a much
more serious argument supporting the claim that the microscopic black holes
might indeed be independent of each other. This argument is based on Jacob-
son’s extremely important discovery that Einstein’s equation may be viewed
as a thermodynamical equation of state [10]. More precisely, Jacobson showed
that, if one assumes that a local Rindler horizon always possesses an entropy
which is one-quarter of its area, then Einstein’s equation follows from the first
law of thermodynamics. So one is inclined to think that Einstein’s equation,
with its prediction that macroscopic black holes attract each other, is probably
not very fundamental at all but is merely a consequence of the statistics of the
fundamental constituents of spacetime. There is not necessarily any interac-
tion between these fundamental constituents at the microscopic level, but their
statistical properties imply at the macroscopic level properties which might
lead one to conclude the existence of a sort of effective interaction. As a fa-
miliar example, one may think of a classical ideal gas. The classical ideal gas
has a certain pressure which might lead one to conclude (incorrectly) that be-
tween the particles of the gas there is a repulsive interaction which prevents
one from compressing the gas. However, no such repulsive interaction really
exists, and the pressure is simply a consequence of the statistical mechanics
of the gas. Perhaps something similar happens with microscopic black holes.
At the microscopic level, there is no interaction between the holes but their
statistical properties imply, in a certain limit, Einstein’s equation with all its
predictions. Actually, this may well be the case, because it seems to us that our
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analysis could be generalized to show that not only black holes but also a local
Rindler horizon possesses an entropy which is one-quarter of its area, and, as
Jacobson has shown, a generalization of the Bekenstein-Hawking entropy law
for local Rindler horizons implies Einstein’s equation. So it is possible that
the gravitational interaction between macroscopic black holes may be a direct
consequence of the independence of microscopic black holes.

4. Is it not absurd that black holes in the ground state where n = 0 do not con-
tribute to the horizon area?

Answer. This is probably the most serious objection against our model. How-
ever, the idea that vacuum states do not produce measurable effects (except in
very special circumstances) is not very unfamiliar in physics. In quantum field
theories in flat spacetime, the field is decomposed into its Fourier components,
and the possible energies of each component are of the form

E~k,n
=
(
n+

1
2

)
~ω~k

, (7.27)

where n = 0, 1, 2, . . . and ω~k
is the angular frequency of the component cor-

responding to the wave vector ~k. The vacuum energy where n = 0 is never
observed, but only the energies that are above the vacuum energy may be mea-
sured. In other words, everything one can observe is an excitation of the vac-
uum but the vacuum itself cannot be observed (except by means of the Casimir
effect). It is not entirely impossible that this feature of nature might pertain
also to quantum gravity. In quantum gravity, however, energy is replaced by
area: As one can see from Eq. (7.7), the possible areas of the microscopic
holes on the horizon are exactly of the same form as are the energies of the
Fourier components of a quantized field. One is therefore tempted to draw an
analogy between the quantization of energy in ordinary quantum field theo-
ries, and the quantization of area in our model: In the same way as everything
one observes in ordinary quantum field theories is an excitation of the vacuum
state of energy, in our model everything one observes is an excitation of the
vacuum state of area. This analogy may be viewed as the main justification for
postulate 3.

5. It follows from postulate 5 that the squares M2
i of the masses of the individual

holes on the horizon sum up, essentially, to the square M2 of the total mass
of the hole. Is this not wrong because certainly the masses themselves should
sum up to the total mass of the hole?

Answer. The concept of mass is very problematic already in classical general
relativity. Actually, the concept of mass may be properly defined only when
spacetime is asymptotically flat, and in that case the relevant mass concept is
the ADM mass, which measures the mass-energy included by the whole space-
time. When we try to define the mass-energy included by a specific part of
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curved spacetime, however, we run into grave difficulties because the energy-
momentum tensor of the gravitational field, in general, is not well defined. So
it is not clear what we are talking about when we say that the mass of a certain
object in curved spacetime is such and such, unless that is the only object in
an asymptotically flat spacetime and we may define its ADM mass.

In particular, the concept of the mass of an object at the event horizon of a
black hole is very problematic. To see how problematic it really is, consider
the four-momentum of a particle having a mass m in flat spacetime:

pµ = mẋµ, (7.28)

where the overdot means the proper time derivative. When spacetime is static,
i.e., the metric tensor does not depend on the time parameter x0, the quantity

p0 = mg0µẋ
µ (7.29)

is conserved along geodesics and also along curves having timelike Killing
vectors as their tangents, and it offers the best attainable definition for the
concept of energy of a particle in curved spacetime. Since the Schwarzschild
metric may be written as

ds2 =
(
1− 2M

r

)
dt2 − dr2

1− 2M
r

− r2dθ2 − r2 sin2 θ dφ2, (7.30)

we find that
p0 = m

(
1− 2M

r

)
ṫ. (7.31)

For a particle at rest with respect to the Schwarzschild coordinates we have

ṫ =
dt

dτ
=
(
1− 2M

r

)−1/2
, (7.32)

and therefore

p0 = m
(
1− 2M

r

)1/2
. (7.33)

Hence we see that, when an object lies at the horizon where r = 2M , its
energy, according to the above mentioned definition, is zero. Of course, it is
impossible to keep a particle still at the horizon, but nevertheless our consid-
erations provide an example of the problems of the mass-energy concept at
the event horizon of a black hole, even at the classical level. At the quantum
level, one may expect even deeper problems. Therefore, if we consider the
event horizon of a black hole as a system made of tiny black holes, the mass
parameters Mi of the holes do not represent mass in any ordinary sense. Con-
sequently, the sum of the parameters Mi is not the Schwarzschild mass M
of the macroscopic hole either. However, each hole on the horizon covers a
region with an area proportional to M2

i on the horizon. Therefore, it is natu-
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ral to postulate that the sum of the quantities M2
i equals, up to a constant of

proportionality, the square M2 of the Schwarzschild mass of the hole.

6. The entropy of the hole has been calculated by using classical statistics right
from the beginning. Would it not have been more appropriate to perform the
calculations by using quantum statistics first and then take the classical limit?

Answer. This question has been considered in detail already in Sec. 7.2. Still,
it is appropriate to repeat here the essential points. It follows from Eq. (7.8),
which, in turn, is a direct consequence of our postulates, that the radiation
spectrum of a black hole is discrete. However, according to Hawking’s radia-
tion law the black hole radiation spectrum is a continuous blackbody spec-
trum. It is impossible to obtain Hawking’s continuous spectrum from our
model unless one assumes right from the beginning that the quantum num-
bers n1, n2, . . . , nN may take any values, and classical statistics applies. It
follows from Eq. (7.8) that the possible frequencies of the quanta of radiation
are, for α = 8, integer multiples of the fundamental frequency

v0 :=
c3

8π2G

1
M
. (7.34)

Even for macroscopic black holes (i.e., when M is of the order of ten solar
masses) this quantity is fairly big: It is of the order of 0.3 kHz which is about
the same as is the resolving power of an ordinary portable radio receiver. So if
one wants Hawking’s continuous spectrum out from the discrete spectrum pre-
dicted by Eq. (7.8), the stationary quantum states of the black holes must be-
come very much mixed with each other such that classical statistics, in effect,
may be applied. A mechanism for this kind of mixing through the interaction
between the hole and matter fields was proposed in Ref. [83].

7. The expression of Eq. (7.14) for the black hole entropy is not exactly one-
quarter of the horizon area, even for bigN , but it contains an additive constant
which depends only on N . The presence of that term should produce physical
effects different from those obtainable from the Bekenstein-Hawking entropy
law.

Answer. Actually, the quantityN represents the particle number in our model,
the “particles” being now the microscopic black holes on the horizon. In all
thermodynamical systems the physically observable thermodynamical quanti-
ties are related to those partial derivatives of entropy where the particle number
N is kept constant during the differentiation. For instance, the temperature T
of a system is the inverse of the partial derivative of entropy S with respect to
energy E such that the particle number N and the volume V of that system
are kept constant:

1
T

:=
( ∂S
∂E

)
V,N

. (7.35)

Moreover, the pressure p of a system is its temperature times the partial deriva-
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tive of entropy with respect to the volume V such that energy E and particle
number N are kept constant:

p := T
( ∂S
∂V

)
E,N

. (7.36)

The only quantity that in any thermodynamical system is related to the partial
derivative of entropy with respect to the particle number N is the chemical
potential

µ := −T
( ∂S
∂N

)
E,V

(7.37)

of the system. As long as one is not interested in the chemical potential of
the Schwarzschild black hole, the physical predictions obtainable from our
expression for black hole entropy are identical to those obtainable from the
Bekenstein-Hawking entropy law. When we come to the chemical potential
of the Schwarzschild black hole, in turn, nobody has the slightest idea about
what that might be for the very simple reason that nobody knows what the
“particles” constituting a black hole would be. So we see that our expres-
sion for the black hole entropy does not contradict the existing knowledge of
black hole thermodynamics. In general, it seems possible, at least in principle,
to use different chemical potentials to distinguish different derivations of the
Bekenstein-Hawking entropy law. More precisely, even if a certain derivation
of the Bekenstein-Hawking entropy law yielded an expression for the temper-
ature of the horizon consistent with that law, the number of degenerate states
corresponding to the same horizon area A is not necessarily e

1
4
A but an ex-

pression for the number of degenerate states may contain a model-dependent
prefactor, which is a function of the chemical potential of the system.

7.5 Concluding Remarks

In this chapter, we have considered a spacetime foam model of the Schwarzschild
horizon where the horizon of a macroscopic Schwarzschild black hole consists of
Planck size Schwarzschild black holes. Using this model, we found that the entropy
of a macroscopic Schwarzschild black hole is, up to an additive constant, propor-
tional to its horizon area. It seems that our derivation of this result is valid for any
horizon but here we have restricted our consideration to Schwarzschild horizons
only. Certain heuristic arguments may be employed to imply that the constant of
proportionality is, in natural units, equal to one-quarter.

The key points in our derivation were an assumption that when a microscopic
black hole on the horizon is in a ground state, it does not contribute to the horizon
area, and our decision to apply classical statistics to our spacetime foam model.
An assumption that a hole in a ground state, even if its Schwarzschild mass were
non-zero, does not contribute to the horizon area, may be motivated by an analogy
with ordinary quantum field theories: In ordinary quantum field theories the vacuum
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state of energy is not observed, whereas in our model the vacuum state of energy is
replaced by the vacuum state of area. As it comes to our decision to apply classical,
instead of quantum statistics to our model, that decision may be considered justified
on the grounds that according to Hawking the radiation spectrum of a black hole is a
continuous blackbody spectrum. If we want to obtain a continuous spectrum for that
radiation, we must assume that the spectra of observables of a macroscopic black
hole are continuous, and therefore we must use classical statistics for the black hole
itself.

In our model, we assumed at first that the tiny holes on the horizon obey
Bekenstein’s proposal. In other words, we assumed that when the effects of matter
fields are neglected, the horizon area spectra of the holes on the horizon have an
equal spacing. That spacing was obtained from Eq. (7.3), the “Schrödinger equation”
of the Schwarzschild black hole. When the effects of matter fields are assumed to be
strong enough, however, the discrete area spectrum washes out into the continuum,
and Hawking’s continuous blackbody spectrum is recovered. In other words, we
considered the implications of Eq. (7.3) in a limit where the uncertainties in the area
eigenvalues are of the same order of magnitude as is the spacing between the area
eigenvalues of nearby states. The fact that we used Eq. (7.3) in our derivation of
an expression for the black hole entropy may be viewed as an argument supporting
the physical validity of that equation as well as of Bekenstein’s proposal. In this
chapter, we do not express opinions about whether the radiation spectrum really is
continuous or discrete. We only showed that if the radiation spectrum is assumed to
be continuous, then the Bekenstein-Hawking entropy law follows from our model.

Taken as a whole, our model may be viewed as an attempt to understand the
microscopic structure of spacetime. No doubt, the picture provided by our model is
very different from those provided by, for instance, string theory and loop quantum
gravity. An advantage of our model, however, is that it takes seriously the possibility
suggested, among other things, by Heisenberg’s uncertainty principle that spacetime
at the Planck length scale might consist of Planck size black holes. So far we have
no precise model of spacetime itself but only of its Schwarzschild horizon. However,
our results with the derivation of the Bekenstein-Hawking entropy law are encourag-
ing, and it will be very interesting to see whether the ideas presented in this chapter
may be worked out into a precise mathematical and physical model of the micro-
scopic structure of spacetime.



Chapter 8

Gravitation and
Thermodynamics: The Einstein
Equation of State Revisited

8.1 Introduction

Ever since the discovery of the Bekenstein-Hawking entropy law, it has become
increasingly clear that there is a deep connection between gravitation and thermo-
dynamics. However, even today it is not properly understood what exactly this con-
nection may be. The most surprising point of view on these matters was probably
provided by Jacobson in 1995, when he discovered that Einstein’s field equation is
actually a thermodynamical equation of state of spacetime and matter fields [10].
As it was briefly mentioned in the previous chapter, the key point in his analysis
was to require that the first law of thermodynamics, which implies the fundamental
thermodynamical relation

δQ = T dS, (8.1)

holds for all local Rindler horizons, and that the entropy S of a finite part of the
Rindler horizon is one-quarter of its area. Jacobson considered an observer very
close to his local Rindler horizon (which means that the proper acceleration a of the
observer is extremely large). For the temperature T in Eq. (8.1), Jacobson took the
Unruh temperature

TU =
a

2π
(8.2)

experienced by the observer, and the heat flow δQ through the past Rindler horizon
was defined to be the boost-energy current carried by matter. Jacobson was able to
show that, under the assumptions mentioned above, the heat flow through the horizon
causes a change in the horizon area in such a way that Einstein’s field equation is
satisfied. In other words, he was able to derive Einstein’s field equation by assuming
the first law of thermodynamics and the proportionality of entropy to the area of
the horizon. Viewed in this way, Einstein’s field equation is nothing more than a
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thermodynamical equation of a state [84, 85].

The purpose of this chapter is to investigate whether there are some other (pos-
sibly more general) principles of nature that would imply Einstein’s field equation.
In Sec. 7.4 we have seen that there are reasons to believe that the concept of gravita-
tional entropy should be extended from horizons to arbitrary spacelike two-surfaces
with finite areas (a more detailed analysis can be found in Ref. [86]). This conclusion
was motivated by the view that the gravitational entropy associated with a horizon
stems from the microscopic degrees of freedom of spacetime at the horizon: One
expects that similar microscopic degrees of freedom of spacetime are present at any
spacelike two-surface, no matter whether that two-surface is part of a horizon or not,
and therefore every spacelike two-surface should possess certain (statistical) notion
of entropy. Apart from this rather heuristic argumentation, there are also more se-
rious reasons supporting this claim. In Ref. [9] it was proposed that an accelerated
two-plane may be associated with an entropy which is, in natural units, one-half of
the area of that plane. This proposal is, in some sense, related to the well-known
result that the entropy associated with a spacetime horizon is one-quarter of the area
of the horizon. The reason for the difference in the constant of proportionality is
still unclear, but it may result from the fact that a spacetime horizon is, according
to observers having that surface as a horizon, only a one-sided surface, whereas an
accelerated spacelike two-surface has two sides [87].

In this chapter we shall find that Einstein’s field equation can be derived from
a hypothesis which is closely related to this proposal. Our derivation will be based
on a consideration of a very small, spacelike two-plane in a uniformly accelerating
motion in the direction perpendicular to the plane. When the plane moves in space-
time, matter will flow through the plane. Since the matter has, from the point of view
of an observer at rest with respect to the plane, a certain non-zero temperature, it also
has a certain entropy content. In other words, entropy flows through the plane. Since
the plane is in an accelerating motion, the entropy flow through the plane (amount
of entropy flown through the plane in unit time) is not constant, but it will change as
a function of the proper time of an observer moving along with the plane.

The change in the entropy flow through the plane has two parts. One of these
parts is due to the simple fact that the plane moves from one point to another in
spacetime, and the entropy densities in the different points of spacetime may be
different. This part has nothing to do with the acceleration of the plane. Another part
in the change of the entropy flow, however, is caused by the change in the velocity
of the plane with respect to the matter fields: When the velocity of the plane with
respect to the matter fields changes, so does the entropy flow through the plane. This
part in the entropy flow is caused by the acceleration of the plane, and it is this part
in the change of the entropy flow, where we shall focus our attention. For the sake
of brevity and simplicity we shall call that part as the change in the acceleration
entropy flow.

When the accelerating plane moves in curved spacetime, its area will change.
The area change may be calculated by following the world lines of the points of the
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plane and parametrizing those worldlines by means of the proper time τ measured
along them. To consider the behaviour of those worldlines, we must first choose
appropriate initial conditions for their congruence. When the plane lies at a certain
point P of spacetime, we take the proper time τ = 0 at each worldline, and assume
that in the local neighbourhood of the point P the future pointing tangent vectors
of the worldlines of the points of the plane are parallel to each other. This implies
that at P the rate of change of the area A of the plane is zero, i.e., dA

dτ |τ=0 = 0. If
spacetime is curved, however, dA

dτ will become non-zero when we move away from
the point P . We shall call the quantity −dA

dτ as the shrinking speed of the area of the
plane.

Under the assumptions that the tangent vectors of the worldlines of the points
of the plane are initially parallel to each other, which implies dA

dτ |τ=0 = 0, and
that the boost energy flow through the plane is exactly the heat flow, we express
the following hypothesis concerning the rates of changes in the acceleration entropy
flow through an accelerating plane, and in the shrinking speed of the area of the
plane:

If the temperature of the matter flowing through an accelerating, spacelike
two-plane is equal to the Unruh temperature measured by an observer at rest with
respect to the plane, then the rate of change in the acceleration entropy flow through
the plane is, in natural units, exactly one-half of the rate of change in the shrinking
speed of the area of the plane.

Using this hypothesis, and this hypothesis only, together with Eq. (8.1), we
shall obtain Einstein’s field equation with a vanishing cosmological constant. Our
hypothesis may be expressed by means of a formula

d2Sa

dτ2

∣∣∣
τ=0

= −1
2
d2A

dτ2

∣∣∣
τ=0

, (8.3)

where dSa
dτ denotes the acceleration entropy flow, and −dA

dτ the shrinking speed of
the area. Because the Unruh temperature TU of Eq. (8.2) represents, in some sense,
the temperature of spacetime from the point of view of an observer moving with a
constant proper acceleration a, we may view Eq. (8.3) as an equation which holds,
when matter and spacetime are, from the point of view of an accelerating observer,
in a thermal equilibrium with each other. When we calculate the rate of change in the
acceleration entropy flow through the plane, we must use Eq. (8.1). More precisely,
we first calculate the rate of change in the flow of heat through the plane and then,
using Eq. (8.1) and identifying T as the Unruh temperature TU of Eq. (8.2), we
calculate the rate of change in the acceleration entropy flow. We have assumed that
the boost energy flow through our accelerating plane is exactly the heat flow for the
simple reason that it makes the calculation of the flow of entropy very easy: We just
calculate the boost energy flow, and then use Eq. (8.1). If there were other forms of
energy, except heat, flowing through our plane, it would not be quite clear what we
actually mean by the concept of entropy flow, and our analysis would become much
more complicated. It is most gratifying that Einstein’s field equation follows from
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our hypothesis even with this rather restrictive assumption, regardless of what kind
of matter we happen to have.

We begin our investigations in Sec. 8.2 by considering the trajectory of our
plane. We shall assume that at a certain point P of spacetime we have an orthonor-
mal geodesic frame of reference, where all components of the energy-momentum
tensor Tµν of matter are fixed and finite. We shall then assume that in this frame of
reference we have a very small spacelike two-plane, which moves, at the point P ,
with a velocity very close to the speed of light to the direction of its normal and, at the
same time, is in a uniformly accelerating motion to the opposite direction. In order to
make our analysis sufficiently local, the proper acceleration of the plane is taken to
be very large. For sufficiently large values of the proper acceleration, one may view
the local neighbourhood of the point P as a region of spacetime which possesses the
ordinary properties of the Rindler spacetime, including the Unruh temperature TU of
Eq. (8.2).

The motivation for our decision to consider a plane moving with a very high
speed in a chosen frame of reference becomes obvious in Sec. 8.3, where we consider
the flow of heat through our accelerating plane. It is fairly easy to show that if matter
consists of a gas of non-interacting massless particles, i.e., of massless radiation, then
the flow of boost energy through the plane is exactly the heat flow through the plane.
Unfortunately, if the particles of the matter fields are massive, the situation becomes
more complicated, because in that case other forms of energy, except heat, (mass-
energy, for instance) are carried through the plane. However, if the plane moves with
an enormous velocity with respect to the matter fields, then the kinetic energies of the
particles of the fields vastly exceed, in the rest frame of the plane, all the other forms
of energy. In this limit we may consider matter, in effect, as a gas of non-interacting
massless particles, and the boost energy flow is exactly the heat flow. We identify
that part in the rate of change in the heat flow, which is due to mere acceleration
of the plane, and using Eq. (8.1) we calculate the rate of change in the acceleration
entropy flow.

In Sec. 8.4 we shall focus our attention to the change in the area of our accel-
erating two-plane. As the final result of Sec. 8.4 we shall get the rate of change in
the shrinking speed of the plane.

After obtaining an expression for the rate of change in the acceleration en-
tropy flow in Sec. 8.3, and for the rate of change in the shrinking speed in Sec. 8.4,
we are finally able to obtain, in Sec. 8.5, Einstein’s field equation by means of our
hypothesis. We fix the proper acceleration a of the plane in such a way that the Un-
ruh temperature TU of Eq. (8.2) measured by an observer at rest with respect to the
accelerating plane is the same as the temperature of the matter flowing through the
plane. Einstein’s field equation is a straightforward consequence of our hypothesis
in the limit, where the plane moves with a velocity very close to the speed of light
with respect to the matter fields. The field equation, which will be obtained in Sec.
8.5, however, will still contain an unspecified cosmological constant.

To fix the cosmological constant we consider, in Sec. 8.6, the special case,
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where spacetime is filled with isotropic electromagnetic (or any massless) radiation
in thermal equilibrium, and our accelerating plane is, at a certain point P of space-
time, at rest with respect to that radiation. Since the particles of the radiation field
are massless and non-interacting, the heat flow is exactly the boost energy flow, and
there is no need to assume that the plane would move with an enormous speed with
respect to the matter fields. Nevertheless, our hypothesis again implies Einstein’s
field equation in a form valid in the special case under consideration. That equation,
however, does not include the cosmological constant, and therefore we may draw an
important conclusion that the cosmological constant must vanish.

We close our discussion in Sec. 8.7 with some concluding remarks.

8.2 Trajectory of the Plane

It is now time to specify our thermodynamical system in detail. Take a spacetime
point P and define an orthonormal geodesic system of coordinates t, x, y, z at the
local neighbourhood of that point. The origin of the coordinates is taken to lie at P .
Consider then a uniformly accelerated observer with a proper acceleration a trav-
elling through P in the direction of the positive z-axis. We denote the velocity of
that observer at P by v > 0. Furthermore, we assume that the acceleration of that
observer is directed (in space) towards the negative z-axis. With the accelerating ob-
server we shall now associate a small accelerated two-plane in the following way. In
the local neighbourhood surrounding the observer, it is possible to define the con-
cept of a two-plane. We consider a small two-plane which always remains at rest
with respect to the observer. This means that at every point of the world line of the
observer, we visualize a certain spacelike two-plane, constantly moving along with
the observer. We assume that this two-plane is perpendicular to the z-axis, which
means that the acceleration is directed perpendicular to the plane.

There are obvious physical reasons to require that the proper acceleration of
the plane must be very large. When spacetime is curved, one may associate the or-
dinary Rindler wedge of the accelerating observer with the local neighbourhood of
the point P only. Hence, if we want to employ the properties of Rindler spacetime
in our calculations, we must analyze the thermodynamics of the plane in the limit
where the proper acceleration a becomes very large. However, we shall not specify
the actual magnitude of the proper acceleration in more detail. When the curvature
of spacetime is reasonable large, one may always make the analysis sufficiently local
by increasing the value of a. Only in very special circumstances, that is, when the
effects of the curvature on the metric of spacetime become significant at the Planck
scale of distances, our arguments probably fail to hold. In all what follows, we shall
therefore always assume that the proper acceleration a is sufficiently large.

The equation for the worldline of our plane may be now written as

(
z − z0

)2 − (t− t0
)2 =

1
a2
, (8.4)



110

where z0 and t0 are constants depending on the values of a and v at the point P .
In the (flat) tangent space of the point P , these constants have solid geometrical
interpretations (see Fig. 8.1). Equation (8.4) gives the equation of the worldline of
the plane in an immediate vicinity of the point P with respect to the orthonormal
geodesic coordinates t, x, y, and z. If we solve z from Eq. (8.4) and differentiate z
with respect to the time coordinate t, we find that the velocity of the plane is, as a
function of the time t,

dz

dt
=

a (t0 − t)√
1 + a2(t0 − t)2

. (8.5)

Hence, at the point P , the velocity of the plane is

v =
at0√

1 + a2t20
. (8.6)

It is convenient to write the velocity v by means of a new parameter ε ∈ (0, 1) such
that

v =
1− ε

1 + ε
, (8.7)

and it follows from Eq. (8.6) that the constant t0 may be expressed in terms of ε and
a as

t0 =
1− ε

a
√

2ε
. (8.8)

As one may observe, for fixed a the quantity t0 goes to infinity when ε goes to zero.

Now, what shall be the role of the parameter ε in our analysis? We see from Eq.
(8.7) that ε describes the velocity of our plane at P with respect to the given system
of coordinates. In the limit, where ε = 1, the plane is at rest at the point P . On the
other hand, when ε takes its values within the interval (0, 1), the plane has initially
a certain velocity relative to the positive z-axis such that in the limit where ε → 0,
the velocity becomes close to 1, the speed of light in the natural units. Obviously,
for sufficiently small ε, the plane moves with relativistic speeds with respect to all
matter fields, regardless of the properties of matter at P . Similar results hold also
vice versa: As ε approaches zero, the velocity of the flow of the matter fields across
the plane approaches the speed of light. We have previously argued that under these
circumstances the flow of heat vastly dominates other forms of energy transfer (the
demonstration of this claim will be given in Sec. 8.3). Therefore, we shall henceforth
always assume that the parameter ε becomes very small. Only in this limit, we may
always interpret the energy flow through the plane as heat. As we shall soon see, in
this limit the calculations also turn out relatively simple.

So far we have managed to find an appropriate parameter which determines
the velocity of the matter flux across the accelerating two-plane. It is now time to
formulate our ideas by using this parameter. We denote the future pointing unit tan-
gent vector of the observer’s worldline by ξµ and a spacelike unit normal vector of
the plane by ηµ. Because the observer, together with the plane, is assumed to move
in the direction perpendicular to the plane, the vectors ξµ and ηµ are orthogonal.
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t

z

P
t0

z0

P0

Figure 8.1. Geometrical interpretations of the constants t0 and z0. In
this figure, the worldline of the accelerated two-plane (or, equivalently,
the worldline of the accelerated observer) going through P is drawn in
the frame of reference equipped with the geodesic coordinates t and
z. The origin of the coordinates t and z should lie at the point P . The
past and the future Rindler horizons of the plane are the thick lines
which intersect at the point P0. The constant t0 is then the value of the
coordinate t at the point P0, whereas the constant z0 is the value of the
coordinate z at P0.

Moreover, we choose ηµ in such a way that the observer is accelerated in the direc-
tion of the vector −ηµ. Since the observer is assumed to move, at the point P , with
the velocity v to the direction of the positive z-axis, the non-zero components of the
vectors ξµ and ηµ are

ξ0 = coshφ, (8.9a)

ξ3 = sinhφ, (8.9b)

η0 = sinhφ, (8.9c)

η3 = coshφ, (8.9d)

where
φ := arsinh

( v√
1− v2

)
(8.10)
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is the boost angle. Using Eq. (8.7) we find:

ξµ =
1
2

(
kµ

√
ε

+
√
ε lµ
)
, (8.11a)

ηµ =
1
2

(
kµ

√
ε
−
√
ε lµ
)
, (8.11b)

where kµ := (1, 0, 0, 1) and lµ := (1, 0, 0,−1) are null vectors. This means that
when the parameter ε becomes small, the world line of the observer seems to lie very
close to the null geodesic generated by the null vector kµ. In the limit, where the
proper acceleration a goes to infinity, the null vector kµ becomes a generator of the
past Rindler horizon of the observer moving with the plane, whereas the null vector
lµ becomes a generator of the future Rindler horizon (see Fig. 8.2).

H−

kµ

H+

lµ

ξµ

P ηµ

δQ

Figure 8.2. The worldline of the accelerated spacelike two-plane. ξµ

is the future pointing unit tangent vector of the worldline, and ηµ is
the spacelike unit normal vector of the plane. As one may observe, the
worldline of the plane lies close to its past Rindler horizon H−, which
is generated by the null vector kµ, whereas its future Rindler horizon
H+ is generated by the null vector lµ. The large arrow represents the
heat that flows through the past horizon.

8.3 Flow of Heat

Consider now the boost energy flow through our accelerating two-plane. At the point
P the amount of boost energy flown through the plane during an infinitesimal proper
time interval dτ to the direction of the spacelike unit normal vector ηµ of the plane
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is
δQ(P) = A(P)Tµν(P) ξµ(P) ην(P) dτ. (8.12)

In this equation, A(P) and Tµν(P), respectively, are the area of the plane and the
energy-momentum tensor of matter at the point P . The boost energy flow through
the plane (boost energy transferred through the plane in unit time) is therefore, at the
point P:

δQ(P)
dτ

= A(P)Tµν(P) ξµ(P) ην(P). (8.13)

We have denoted the boost energy flow by δQ
dτ for a very good reason: We shall see

in a moment that when the plane moves with respect to the matter fields with a very
great velocity, the boost energy flow is, in effect, the heat energy flow. Because of
that we shall henceforth always talk about the heat flow, instead of the boost energy
flow.

After a very short elapsed proper time interval τ , the plane has been moved
from the point P to the point P ′. At the point P ′ the heat flow is

δQ(P ′)
dτ

= A(P ′)Tµν(P ′) ξµ(P ′) ην(P ′). (8.14)

Since τ is assumed to be very small, we may write the energy-momentum tensor of
matter at the point P ′ as a very good approximation:

Tµν(P ′) = Tµν(P) +
dTµν(P)
dτ

τ = Tµν(P) + Tµν,α(P) ξα(P) τ, (8.15)

where we have neglected the terms non-linear in τ . In the same way we may write
the vector fields ξµ and ηµ at the point P ′:

ξµ(P ′) = ξµ(P) + aτ ην(P), (8.16a)

ηµ(P ′) = aτ ξµ(P) + ηµ(P), (8.16b)

where we have, again, neglected the terms non-linear in τ . In our hypothesis we have
chosen the initial conditions for the plane such that

dA(P)
dτ

= 0, (8.17)

and so we find that the change in the flow of heat through the plane during the proper
time interval τ is

δQ(P ′)
dτ

− δQ(P)
dτ

= A(P)Tµν,α(P) ξµ(P) ην(P) ξα(P) τ

+aτ A(P)Tµν(P)
[
ξµ(P) ξν(P) + ηµ(P) ην(P)

]
. (8.18)

Hence the rate of change in the heat flow at the point P may be written in the form

δ2Q

dτ2
=
δ2Qt

dτ2
+
δ2Qa

dτ2
, (8.19)
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where we have defined:

δ2Qt

dτ2
:= ATµν,α ξ

µηνξα, (8.20a)

δ2Qa

dτ2
:= aATµν(ξµξν + ηµην). (8.20b)

To simplify the notations we have dropped references to the point P . All quantities
have been calculated at that point.

The first term on the right hand side of Eq. (8.19) is now due to the simple fact
that the tensor Tµν is different in different points of spacetime. That term has nothing
to do with the acceleration of the plane. The second term, in turn, is a consequence
of the change in the velocity of the plane with respect to the matter fields. In other
words, it is due to the acceleration of the plane. We shall therefore call that term
as the rate of change in the acceleration heat flow. If the components of the tensor
Tµν are assumed to be fixed and finite at the point P in a frame of reference, where
the plane moves with a velocity very close to the speed of light, we find, using Eqs.
(8.11), that the rate of change in the acceleration heat flow is

δ2Qa

dτ2
=

a

2ε
ATµνk

µkν +O(ε), (8.21)

where O(ε) denotes the terms, which are of the order ε, or higher.

At this point we should check, whether Eq. (8.21) really gives the rate of
change in the flow of heat through our two-plane, regardless of what kind of matter
we have. At the point P we have defined an orthonormal geodesic frame of reference
such that the plane moves to the direction of the positive z-axis with a velocity v very
close to that of light. This means that the matter fields move, in the rest frame of the
plane, with enormous speeds through the plane. In this limit the kinetic energies of
the particles of the matter fields vastly exceed the other forms of energy, and we may
consider matter, in effect, as a gas of non-interacting massless particles. The energy
density of such a gas is

ρ = Tµνξ
µξν , (8.22)

and its pressure is1

p = Tµνη
µην . (8.23)

According to the first law of thermodynamics the entropy S of a system depends on
the energy E, pressure p, and the volume V of the system such that

T dS = dE + p dV. (8.24)

1To be quite precise, Eq. (8.23) gives the pressure in a direction perpendicular to our plane. In that
direction the momenta of the particles of the field vastly exceed the momenta in the other directions. So
our system may, in effect, be considered as a one-dimensional gas of non-interacting massless particles,
where there exists pressure in just one spatial direction. Nevertheless, we may apply Eq.(8.24), the first
law of thermodynamics even for this kind of gas.
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Since the energy density ρ of our gas does not depend on the volume V , we have

T dS = (ρ+ p) dV, (8.25)

and using Eqs. (8.22) and (8.23) we find that the entropy density (entropy per unit
volume) of the gas is:

s =
1
T

(Tµν ξ
µξν + Tµν η

µην). (8.26)

Eq. (8.26) gives the entropy density of the gas at the spacetime point P , in the rest
frame of the plane. Since the proper acceleration of the plane is a we find, using Eq.
(8.1), that the the change in the flow of heat caused by the mere acceleration of the
plane during a very short proper time interval τ is

δQa(P ′)
dτ

− δQa(P)
dτ

= aτATs, (8.27)

where all quantities on the right hand side have been calculated at the point P . Using
Eqs. (8.11) and (8.26) we therefore observe that the rate of change in the acceleration
heat flow is

δ2Qa

dτ2
=

a

2ε
ATµν k

µkν +O(ε), (8.28)

which is exactly Eq. (8.21).
By means of the rate of change in the acceleration heat flow we define the rate

of change in the acceleration entropy flow as:

d2Sa

dτ2
:=

1
T

δ2Qa

dτ2
. (8.29)

The rate of change in the acceleration entropy flow is that part of the rate of change
in the entropy flow through the plane, which caused by the mere acceleration of the
plane, i.e., the change in the velocity of the plane with respect to the matter fields.
If the absolute temperature T of the matter flowing through the plane is, from the
point of view of an observer at rest with respect to the plane, the same as the Unruh
temperature TU we find, using Eqs. (8.2), (8.21) and (8.29), that

d2Sa

dτ2
=
π

ε
ATµν k

µkν +O(ε). (8.30)

8.4 Change of Area

The next task is to determine the rate of change in the shrinking speed of the area A.
To this end, consider the congruence of the timelike world lines of the points of our
plane. We follow these worldlines, and we consider how the area of the spacelike
two-surface, where the proper time τ measured along these worldlines is constant,
will change as a function of τ . When the plane is at the point P of spacetime, τ = 0
and the rate of change in the area, dA

dτ , is assumed to vanish. Unfortunately, the proper
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time τ is not the best possible parameter for those world lines. Because of that we
shall construct another parametrization for the elements of our congruence.

The starting point of our construction is that we pick up a time orthogonal,
or Gaussian normal system of coordinates for spacetime such that, at the spacetime
point P considered above, our coordinates coincide with the orthonormal geodesic
coordinates t, x, y, and z defined in the local neighbourhood of that point. In these
coordinates the line element of spacetime takes everywhere the form

ds2 = −dt2 + qmndx
mdxn, (8.31)

wherem,n = 1, 2, 3, and qmn is the metric on the spacelike hypersurface where t =
constant such that at the point P qmn takes its flat space value δmn. When we move
away from the point P , however, qmn will deviate very slightly from its flat space
value.

The idea of our parametrization is now to use the time coordinate t of Eq.
(8.31), instead of the proper time τ measured along the worldlines, as the parameter
of the elements of our congruence. More precisely, for every worldline of the con-
gruence we find in which way the coordinates xµ (µ = 0, 1, 2, 3) of the points of
that worldline depend on t. After finding this dependence of the coordinates xµ on
the parameter t, we define the future pointing tangent vector field

wµ :=
dxµ

dt
(8.32)

for the elements of our congruence. It follows from the chain rule that between the
vector field wµ and the future pointing unit tangent vector field ξµ of the congruence
there is the relationship:

wµ = ξµdτ

dt
. (8.33)

Because
wαwµ;ν;α = wαwµ;α;ν − wα(wµ;α;ν − wµ;ν;α), (8.34)

we get, using the product rule of covariant differentiation, and the basic properties
of the Riemann tensor Rα

βµν :

wαwµ;ν;α = (wαwµ;α);ν − wα
;νwµ;α +Rβµναw

αwβ. (8.35)

If we contract the indices µ and ν, use the symmetry properties of the Riemann
tensor, and rename the indices, we finally get:

dθ

dt
= Cµ

;µ − wµ
;νw

ν
;µ +Rµνw

µwν , (8.36)

where Rµν is the Ricci tensor of spacetime. In Eq. (8.36) we have defined:

θ := wµ
;µ, (8.37a)

Cµ := wαwµ
;α. (8.37b)
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Equation (8.36) is the key equation in our derivation of Einstein’s field equation from
thermodynamical considerations.

To see what all this means consider, as an example, the special case where
spacetime is everywhere flat, and all points of all elements of the congruence are
accelerated with a constant proper acceleration a to the direction of the negative z-
axis. In that case it follows from Eq. (8.4) that the only coordinates of the points of
the elements of the congruence having explicit dependence on t are the coordinates
x0 and x3 such that

x0 = t, (8.38a)

x3 = z = −
√

1
a2

+ (t− t0)2 + z0, (8.38b)

and therefore the only non-zero components of the vector field wµ are

w0 = 1, (8.39a)

w3 =
a(t0 − t)√

1 + a2(t− t0)2
, (8.39b)

and the only non-zero component to the vector field Cµ is

C3 = − 2a3(t− t0)2 + a[
1 + a2(t− t0)2

]3/2
. (8.40)

One easily finds that the quantity θ vanishes identically, as well as do the first two
terms on the right hand side of Eq. (8.36). Moreover, since Rµν ≡ 0 in flat space-
time, we find that Eq. (8.36) is indeed satisfied by the tangent vector field wµ of our
congruence.

When spacetime is flat, there is no change in the area of our accelerated plane
during the course of time. However, when spacetime is curved, the area will change.
It follows from the considerations made above that when spacetime is curved, Eq.
(8.36) is written, at the point P where τ = t = 0, in the form

dθ

dt
= Rµν w

µwν (8.41)

or, if we use Eq. (8.33) and the chain rule,

dθ

dτ
= Rµν ξ

µξν dτ

dt
. (8.42)

Since θ vanishes at the point P , we therefore find that after a very short elapsed
proper time τ we have:

θ = Rµν ξ
µξν dτ

dt
τ, (8.43)
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where we have neglected the terms non-linear in τ .

The change in the area of the plane may be calculated by means of θ. It follows
from the definition of wµ that w0 ≡ 1, and therefore w0

;0 vanishes identically in the
Gaussian normal system of coordinates of Eq. (8.31). So we have

θ = w1
;1 + w2

;2 + w3
;3. (8.44)

In the immediate vicinity of the point P , where we have an orthonormal geodesic
system of coordinates, the change in the area A of our plane during an infinitesimal
time interval dt is

dA = (w1
;1 + w2

;2)Adt, (8.45)

and hence it follows that
dA = θAdt, (8.46)

provided that we are able to show that w3
;3 vanishes when ε becomes small, i.e., that

lim
ε→0

|w3
;3| = 0. (8.47)

We shall now demonstrate Eq. (8.47).

Assume that every point of the worldline of the plane has a neighbourhood
in the rest frame of the plane, where the vector field wµ is smooth and timelike for
every ε > 0, and that the functions obtained as the limits ofwµ andwµ

;α, when ε goes
to zero, are continuous. At the point P the covariant derivative w3

;3 vanishes. On the
other hand, in the region near to that point, the metric of spacetime differs slightly
from the metric of flat spacetime, and w3

;3 becomes non-zero. Therefore, consider
a situation where the plane has been accelerated during a very short time interval
t < t0. If we neglect the terms non-linear in t, the z-coordinate along the plane is vt.
It follows from our assumptions that there exists a fixed number L > 0 such that the
vector field wµ is smooth and timelike within the interval, where vt− γ−1L ≤ z ≤
vt+ γ−1L. The factor

γ−1 :=
[
1− a2(t0 − t)2

1 + a2(t0 − t)2

]1/2

(8.48)

is due to the Lorentz contraction. Furthermore, for small L we may write as a very
good approximation:

w3
− = w3 − w3

;3 γ
−1L, (8.49a)

w3
+ = w3 + w3

;3 γ
−1L, (8.49b)

In these equations w3 and w3
;3 have been calculated at the point, where z = vt.

Moreover, w3
− and w3

+ are, respectively, the values of the z-component of the vector
wµ at the points, where z = vt − γ−1L and z = vt + γ−1L, in a basis which
has been parallel transported from the point, where z = vt, to the points, where
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z = vt ± γ−1L. Because w0 ≡ 1, and the vector wµ is timelike, we must have
|w3
±| < 1. Hence, by using Eq. (8.49a) for negative values of w3

;3 and Eq. (8.49b)
for positive values of w3

;3, one concludes, by means of Eq. (8.39b), that

|w3
;3| <

γ

L

[
1− a(t0 − t)√

1 + a2(t− t0)2

]
. (8.50)

It follows easily from Eq. (8.8) that when ε approaches to zero, the right hand side of
this equation falls to zero as

√
ε/2. This proves Eq. (8.47), and therefore Eq. (8.46)

holds. Using Eq. (8.43), the chain rule and Eq. (8.11) we find that the change in the
area of the accelerated plane during an infinitesimal proper time interval dτ is

dA = ARµν ξ
µξν τ dτ = ARµν

(
kµkν

4ε
+O(1)

)
τ dτ, (8.51)

whereO(1) denotes the terms of the order ε0 or higher. Clearly, this equation implies
dA
dτ |τ=0 = 0 as required by our hypothesis. Hence we find that at the point P:

d2A

dτ2
=

1
4ε
ARµν k

µkν +O(1). (8.52)

It is obvious that since ε is assumed to be very small, the leading term is the one
which is proportional to 1/ε. We shall see in the next section that when matter flows
through our accelerating plane, the plane will shrink. The negative of the right hand
side of Eq. (8.52) therefore gives the rate of change in the shrinking speed of the
plane.

8.5 Einstein’s Field Equation

We are now prepared to obtain Einstein’s field equation by means of thermodynam-
ical arguments. We shall assume that the temperature of the matter flowing through
our accelerating plane is, from the point of view of an observer at rest with respect
to the plane, exactly the Unruh temperature TU measured by that observer. Our hy-
pothesis (8.3), together with Eqs. (8.30) and (8.52) then implies, at the point P:

π

ε
ATµν k

µkν +O(ε) = − 1
8ε
ARµν k

µkν +O(1). (8.53)

In the limit, where ε → 0, i.e., when the velocity of the plane becomes close to the
speed of light one finds that, in the leading order for small ε,

Rµν k
µkν = −8π Tµν k

µkν . (8.54)

Because kµ may be chosen to an arbitrary null vector, we must have

Rµν + f gµν = −8π Tµν , (8.55)
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where f is some function of the spacetime coordinates. It follows from the Bianchi
identity (

Rµ
ν −

1
2
Rδµ

ν

)
;µ

= 0 (8.56)

that f = −1
2R+ Λ for some constant Λ, and hence we arrive at the equation

Rµν −
1
2
Rgµν + Λ gµν = −8π Tµν , (8.57)

which is Einstein’s field equation with the cosmological constant Λ.

8.6 Cosmological Constant

It is a common feature of all attempts made so far to obtain Einstein’s field equation
by means of thermodynamical considerations that they leave completely unspeci-
fied the cosmological constant Λ [88]. This is a pity, because cosmological constant
presents one of the most intriguing problems of modern physics: Why is the cosmo-
logical constant so close to zero? Indeed, according to the astronomical observations
the absolute value of Λ is, in SI units, certainly less than 10−351/s2, which corre-
sponds to the vacuum energy density

ρvac ∼
Λc2

G
∼ 10−8J/m3. (8.58)

This energy density, in turn, corresponds to the mass density, where we have 1 kilo-
gram of matter inside a cube whose edge length is about the same as is the distance
between the Earth and the Moon. Is there some perennial physical principle, which
constrains the cosmological constant to be so incredibly small?

It is interesting that this question may be addressed by means of our hypothesis
contained in Eq. (8.3). At the same time, our investigations will act as a consistency
check of our analysis.

Consider a spacetime filled with isotropic electromagnetic radiation in thermal
equilibrium and at rest with respect to our plane at the point P . In other words, we
shall assume that at the point P the boost energy flow of the radiation through the
plane is zero. The energy density ρ of the radiation is given by Eq. (8.22), and the
pressure p is given by Eq. (8.23). It is a specific property of this kind of radiation that
between the energy density and the pressure of the radiation there is the relationship:

p =
1
3
ρ, (8.59)

and that the tensor Tµν is traceless, i.e.,

Tα
α = 0. (8.60)

Using Eqs. (8.20b), (8.22) and (8.23), together with Eq. (8.59) we find that the rate
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of change in the acceleration heat flow through the plane is

δ2Qa

dτ2
=

4
3
aAρ =

4
3
aATµν ξ

µξν . (8.61)

The same result may also be obtained by means of the well-known fact that the
entropy density of electromagnetic radiation in thermal equilibrium is [89]

s =
4

3T
ρ. (8.62)

Eq. (8.61) follows straightforwardly from Eq. (8.62) and the relation δQ = T dS.
So we see that Eq. (8.61) indeed gives the rate of change in the flow of heat through
our accelerating plane. According to the definition (8.29), the rate of change in the
acceleration entropy flow corresponding to the acceleration heat flow of Eq. (8.61)
is

d2Sa

dτ2
=

8π
3
ATµν ξ

µξν , (8.63)

where we have, again, identified the absolute temperature T as the Unruh tempera-
ture TU of Eq. (8.2).

Consider now the change in the area A of the spacelike two-plane. Since
spacetime is assumed to be filled with isotropic, massless radiation in thermal equi-
librium, and to be at rest with respect to the plane at the point P , spacetime may be
assumed to be isotropic in the neighborhood of the point P . In other words, space-
time expands and contracts in the same ways in all spatial directions. In that case
w3

;3 no more vanishes, but w1
;1, w2

;2 and w3
;3 are equals. So it follows from Eqs.

(8.43), (8.44) and (8.45) that

d2A

dτ2
=

2
3
ARµνξ

µξν . (8.64)

Using Eqs. (8.3), (8.63) and (8.64) we therefore find:

Rµν ξ
νξν = −8π Tµν ξ

µξν . (8.65)

Since ξµ is an arbitrary, future directed timelike unit vector field, we must have

Rµν = −8πTµν , (8.66)

which is exactly Einstein’s field equation

Rµν = −8π(Tµν −
1
2
gµνT

α
α), (8.67)

or
Rµν −

1
2
gµνR = −8πTµν (8.68)

in the special case, where the tensor Tµν is traceless, i.e., Eq. (8.60) holds. So we
have obtained Einstein’s field equation from our hypothesis in the special case, where
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matter consists of electromagnetic (or any massless) radiation in thermal equilib-
rium. In doing so, we have not assumed that the plane would move with a speed
close to that of light with respect to the matter fields. Instead, the plane was assumed
to be, at the point P , at rest with respect to the radiation.

When we compare Eqs. (8.57) and (8.68), we find that, in contrast to Eq.
(8.57), Eq. (8.68) does not involve the cosmological constant Λ. In other words, the
cosmological constant must vanish:

Λ = 0 (8.69)

Our thermodynamical approach to gravity therefore makes a precise prediction, which
is consistent with the present observations, which imply that the cosmological con-
stant, although not necessarily exactly zero, must nevertheless be extremely small
[90]. This result may be viewed as an argument supporting the idea of a thermody-
namical origin of gravitation.

When compared to the earlier thermodynamical approaches to gravity, where
the value of the cosmological constant has been left unspecified, it may be surprising
that in our approach the cosmological constant becomes fixed. There is, however, a
natural explanation for this difference. The primary reason why we were able to fix
the cosmological constant was our choice to investigate the thermodynamical prop-
erties of an accelerating two-plane, instead of the thermodynamical properties of a
null surface. Indeed, in Secs. 8.2-8.5 we first considered the two-plane in the case
where it moved, in the coordinate system under investigation, very close to a cer-
tain null surface, with a very great speed with respect to the matter fields, and this
consideration brought along an arbitrary cosmological constant. However, because
the object under investigation was an accelerating two-plane, instead of a null sur-
face, we were also able to consider an entirely different physical situation, where
the two-plane no longer moved close to any null surface, but instead it was assumed
to be at rest with respect to a specific matter field. Considering this specific case
we found that the cosmological constant must vanish. In the other thermodynamical
approaches to gravity made so far, in turn, one has always considered a null sur-
face of spacetime, and therefore the cosmological constant cannot be fixed by means
of arguments similar to those used in this section. Actually, it is interesting that in
our approach an arbitrary cosmological constant appears in the very situation where
the two-plane moves very close to a certain null surface. This suggests that the ap-
pearance of an unspecified cosmological constant is a characteristic feature of the
thermodynamical theories of null surfaces.

8.7 Concluding Remarks

In this chapter we have obtained Einstein’s field equation with a vanishing cosmolog-
ical constant by means of very simple thermodynamical arguments concerning the
properties of a very small spacelike two-plane in a uniformly accelerating motion.
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Our derivation was based on a hypothesis that when matter flows through the plane,
and the temperature of the matter is the same as the Unruh temperature measured
by an observer at rest with respect to the plane, then the rate of change in the flow
of entropy caused by the mere acceleration of the plane is, in natural units, exactly
one-half of the rate of change in the shrinking speed of the area of the plane. From
this hypothesis we obtained, by means of the fundamental thermodynamical relation
δQ = T dS, Einstein’s field equation with a vanishing cosmological constant.

When spacetime is filled with isotropic, massless, non-self-interacting radia-
tion field (electromagnetic field, for instance) in thermal equilibrium, it is very easy
to obtain Einstein’s field equation by means of thermodynamical arguments, because
it turns out that in this case the boost energy flow through the plane is exactly the
heat flow of the radiation. However, if the fields are massive, or self-interacting, the
situation becomes more complicated because the boost energy flow involves other
forms of energy, except heat, as well (mass-energy, for instance). In that case we
may consider the situation, where the plane moves with respect to the matter fields
with a velocity very close to that of light. When the plane moves with respect to the
matter fields with an enormous velocity, it turns out that the amount of heat vastly
exceeds the amounts of other forms of energy carried by matter through the plane.
Our derivation of Einstein’s field equation for general matter fields brought along an
unspecified cosmological constant.

To fix the cosmological constant we then derived Einstein’s field equation in
the special case where matter consists of massless radiation in thermal equilibrium
and at rest with respect to our plane. The resulting equation, however, did not in-
volve the cosmological constant, and therefore we concluded that the cosmological
constant must vanish.

Our derivation of Einstein’s field equation by means of purely thermodynam-
ical arguments provides support for the idea, earlier expressed by Jacobson, that
Einstein’s field equation may actually be understood as a thermodynamical equa-
tion of state of spacetime and matter fields. Indeed, our thermodynamical approach
to gravitation even seems to explain the incredible smallness of the cosmological
constant.

Although our thermodynamical derivation of Einstein’s field equation bears
a lot of similarities with Jacobson’s derivation, it should be strongly emphasized
the radical difference between these two derivations: Jacobson considered the boost
energy flow through a horizon of spacetime, whereas we considered the boost en-
ergy flow through an accelerating, spacelike two-plane. Horizons of spacetime are
null hypersurfaces of spacetime, and therefore they are created, when all points of
a spacelike two-surface move along certain null curves of spacetime. In contrast,
our spacelike two-plane was assumed to move in spacetime with a speed less than
that of light, and therefore all of its points move along timelike curves of spacetime.
Because of that our two-plane should not be considered as a part of any horizon of
spacetime. Nevertheless, we found that if the entropy carried by matter through the
plane is connected with the change in its area in a certain manner, then Einstein’s
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field equation follows. The fact that an assumption of a simple proportionality be-
tween the rates of changes in the entropy flow and in the shrinking speed of the plane
yields Einstein’s field equation even when that two-plane is not a part of any horizon
of spacetime strongly suggests that one may associate meaningfully the concept of
gravitational entropy not only with horizons, but also with arbitrary spacelike two-
surfaces of spacetime. It is still uncertain what the consequences of such a possibility
may be, but they will most likely have some influence on our views of the nature of
gravitational entropy.



Epiloque

The time has come to make some final comments on the issues discussed in this the-
sis. It seems that today the research on quantum gravity focuses heavily on the string
theory and few other approaches. Most of these approaches are based, in one way or
another, on a quantization of some classical field. The old quantization methods have
certainly given useful insight into many issues, but whether they are able to yield a
completely satisfactory theory of quantum gravity, only time will tell. Personally, I
find myself more attracted to new and fresh ideas.

In this work, we have learned that the connection between gravitation and
thermodynamics may be much deeper than previously expected. The Hawking effect
seems to be present at the inner horizons of charged black holes, and this supports the
idea that all spacetime horizons emit radiation. Moreover, we have seen that it is pos-
sible to construct a microscopic model of a Schwarzschild horizon, where spacetime
is made of microscopically small black holes. From this model one can obtain the
Bekenstein-Hawking entropy law. The most surprising finding in this work, however,
is probably the possibility that with any spacelike two-surface one may associate a
certain statistical entropy. Although these issues surely need more investigation, we
were able to show that in certain circumstances such entropy, together with the first
law of thermodynamics, implies Einstein’s field equation. This result supports the
view that Einstein’s field equation is actually a thermodynamical equation of state.
Consequently, it may not be appropriate to quantize general relativity as if it were an
ordinary field theory. Rather, this view suggests to seek (still unknown) microscopic
entities whose statistical properties would imply Einstein’s equations.

In this thesis, the picture given about the possible structure of spacetime is
very different than, for instance, in loop quantum gravity and string theory. How-
ever, in the light of this work, I feel that it is at least worth of an effort to see where
these kinds of ideas will lead us. No doubt, it requires a great deal of foolhardiness to
step outside the familiar paradigms and try to develop an entirely novel approach to
the problem of quantum gravity. In the end, however, it may well be that a sounder
comprehension of gravitation and spacetime requires completely revised physical
principles. It is tempting to follow the well-established enterprises of quantum grav-
ity. Yet, it is my humble wish that the scientists of tomorrow would find courage to
follow their own ideas and boldly go where no man has gone before.
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Appendix A

Infinitesimal Geodesic
Coordinates Near the Horizons of
the Reissner-Nordström
Spacetime

Consider geodesic coordinates near the outer horizon of a Reissner-Nordström black
hole. More precisely, consider a geodesic coordinate system in the region I infinites-
imally close to the point P1 of Fig. 5.4. By using the definitions (5.41) such that
α = κ+ in Eqs. (5.37), the metric in the region I of Reissner-Nordström spacetime
can be written as

ds2 =
1
l2+

1
κ2

+r
2
e−2κ+r(r − r−)

r2
−

r2
+

+1(
−
(
dX0

)2 +
(
dX1

)2)
+ r2(dθ2 + sin2 θ dϕ2). (A.1)

Especially, on the two-surface r = r+ the metric takes a very simple form

ds2 = −
(
dX0

)2 +
(
dX1

)2 + r2(dθ2 + sin2 θ dϕ2), (A.2)

Thus, the coordinates X0 and X1 provide an infinitesimal geodesic coordinate sys-
tem for the freely falling observer if only the derivatives of the metric with respect
to X0 and X1 vanish at the point P1. According to Eq. (A.1) the components of the
metric depend merely on r. Moreover, in order to show that the derivatives of the
metric vanish, it is sufficient to show that

∂r

∂u
=
∂r

∂v
= 0 (A.3)

at the point P1.

Let us first note that the relationship between the coordinates u, v, and r can
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be expressed in an implicit form such that

u2 − v2 = e2κ+r∗ . (A.4)

By differentiating both sides with respect to u, one gets

2u = 2κ+ e
2κ+r∗ dr∗

dr

∂r

∂u
, (A.5)

and similarly, differentiation with respect to v gives

−2v = 2κ+ e
2κ+r∗ dr∗

dr

∂r

∂v
. (A.6)

Since all equations (5.37) must be satisfied at P1, one finds that u = v = 0 at P1.
However, it is easy to see that when r = r+,

2κ+ e
2κ+r∗ dr∗

dr
= 2κ+r

2
+ e

2κ+r+(r+ − r−)
−
(

r2
−

r2
+

+1
)
6= 0. (A.7)

Hence, Eq. (A.3) is satisfied at the point P1.
Next, let us concentrate on the geodesic coordinates near the inner horizon.

Consider a geodesic coordinate system in the region VI’, infinitesimally close to the
point P2 of Fig. 5.5. In this case, we choose α = κ− for the Kruskal-type coordi-
nates. By using the definitions (5.68) and (5.69) the metric in the region VI’ can be
written as

ds2 =
1
l2−

1
κ2
−r

2
e−2κ−r(r+ − r)

r2
+

r2
−

+1(
−
(
dX0

)2 +
(
dX1

)2)
+ r2(dθ2 + sin2 θ dϕ2). (A.8)

When r = r−, the metric has the form of that of Eq. (A.2), and, therefore, the
coordinates X0 and X1 provide an infinitesimal geodesic coordinate system if the
derivatives of the metric vanish at the point P2. Again, one easily sees that it is
sufficient to show that Eq. (A.3) holds also at P2.

To show this, we proceed as before. The relationship between the coordinates
u, v, and r can now be expressed as

u2 − v2 = e2κ−r∗ . (A.9)

Differentiating both sides with respect to u and v gives, respectively,

2u = 2κ− e2κ−r∗ dr∗
dr

∂r

∂u
, (A.10)

−2v = 2κ− e2κ−r∗ dr∗
dr

∂r

∂v
. (A.11)

Similarly as before, we have u = v = 0 at P2. Furthermore, one easily finds that,
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when r = r−,

2κ− e2κ−r∗ dr∗
dr

= 2κ−r2− e
2κ−r−(r+ − r−)

−
(

r2
+

r2
−

+1
)
6= 0. (A.12)

Hence, Eq. (A.3) is satisfied also at the point P2.
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Appendix B

Mass Eigenvalues

During the preparation of the paper I, we studied the mass eigenvalues of Eq. (7.3),
when s = 2, for small n in two different ways. The first method we used is pertur-
bation theory. The second method is to solve Eq. (7.3) numerically. Both of these
methods, of which the second one is more reliable, seem to imply that Eq. (7.5)
provides an excellent approximation for the mass eigenvalues even for small n.

B.1 Perturbation Theoretic Approach

As a starting point we consider Eq. (7.3) when s = 2:[
− 1

2a

(
d2

da2
+

1
a

d

da

)
+

1
2
a

]
ψ(a) = Mψ(a). (B.1)

We write the Hamiltonian of Eq. (B.1) in the form

Ĥ = − 1
2a

d2

da2
− 1

2a2

d

da
+

1
2
a =: Ĥ0 + Ĥ ′, (B.2)

where

Ĥ0 := − 1
2a

d2

da2
+

1
2
a (B.3)

and
Ĥ ′ := − 1

2a2

d

da
. (B.4)

If we neglect the term Ĥ ′ in Eq. (B.1) and denote

u := a−M, (B.5)

we see that the resulting differential equation takes the form(
− 1

2
d2

du2
+

1
2
u2
)
ψ(u) =

1
2
M2ψ(u). (B.6)
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This equation is similar to that of a one-dimensional harmonic oscillator, and there-
fore members of one set of solutions to Eq. (B.6) are of the form

ψ(0)
n (a) = NnHn(a−M (0)

n )e−
1
2
(a−M

(0)
n )2 , (B.7)

where Hn denotes the Hermite polynomial of order n, Nn is a normalization con-
stant, and the eigenvalues M (0)

n are

M (0)
n =

√
2n+ 1. (B.8)

One can see that the eigenvalues of Eq. (B.8) are the same as the WKB eigenvalues
in Eq. (7.5).

Now we consider the term Ĥ ′ as a small perturbation of the unperturbed
Hamiltonian Ĥ0. Here we must use somewhat “non-standard” methods for calcu-
lating the first-order perturbation because the Hamiltonian Ĥ0 is not a Hermitian
operator with respect to the inner product (7.4). Usually, when using perturbation
theory, one writes the Hamiltonian in the form Ĥ = Ĥ0 + λĤ ′, where the pertur-
bation parameter λ ∈ [0, 1]. During the calculation of first-order perturbation one
must operate with Ĥ0 on the bra-vectors 〈ψ(0)

n |. The problem is that if Ĥ0 is not
a Hermitian operator, it cannot be transported from the right to the left hand side
inside the Dirac brackets, and the first-order perturbation cannot be calculated in a
standard way. However, if we assume that our perturbation expansion is viable when
λ = 1, we can set right from the beginning that λ = 1. In this case the operator
Ĥ0 + λĤ is indeed a Hermitian operator and one can operate with this operator on
the bra-vectors in the usual manner. Using this trick, one can calculate the first-order
perturbation. Let us begin with the perturbation expansions

|Φn〉 = |ψ(0)
n 〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ · · · , (B.9)

Mn = M (0)
n + λM (1)

n + λ2M (2)
n + · · · , (B.10)

where the vectors |Φn〉 are eigenstates of the Hamiltonian Ĥ and the numbers Mn

are the corresponding eigenvalues. The symbols |ψ(k)
n 〉 and M (k)

n denote corrections
of order k to the unperturbed eigenstate |ψ(0)

n 〉 and to the eigenvalue M (0)
n . When

these expansions are inserted into the equation 〈ψ(0)
n |Ĥ|Φn〉 = 〈ψ(0)

n |Mn|Φn〉, we
get

〈ψ(0)
n |(Ĥ0 + λĤ ′)|ψ(0)

n 〉+ λ〈ψ(0)
n |(Ĥ0 + λĤ ′)|ψ(1)

n 〉+

λ2〈ψ(0)
n |(Ĥ0 + λĤ ′)|ψ(2)

n 〉+ · · ·

=
(
M (0)

n + λM (1)
n + λ2M (2)

n + · · ·
)
×(

〈ψ(0)
n |ψ(0)

n 〉+ λ〈ψ(0)
n |ψ(1)

n 〉+ λ2〈ψ(0)
n |ψ(2)

n 〉+ · · ·
)
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⇔ 〈(Ĥ0 + λĤ ′)ψ(0)
n |ψ(0)

n 〉+ λ〈(Ĥ0 + λĤ ′)ψ(0)
n |ψ(1)

n 〉+

λ2〈(Ĥ0 + λĤ ′)ψ(0)
n |ψ(2)

n 〉+ · · ·

=
(
M (0)

n + λM (1)
n + λ2M (2)

n + · · ·
)
×(

1 + λ〈ψ(0)
n |ψ(1)

n 〉+ λ2〈ψ(0)
n |ψ(2)

n 〉+ · · ·
)

⇔ λ
(
〈ψ(0)

n |Ĥ ′|ψ(0)
n 〉 −M (1)

n

)
+

λ2
(
〈Ĥ ′ψ(0)

n |ψ(1)
n 〉 −M (1)

n 〈ψ(0)
n |ψ(1)

n 〉 −M (2)
n

)
+ · · · = 0. (B.11)

Hence the first-order perturbation is of the standard form

M (1)
n = 〈ψ(0)

n |Ĥ ′|ψ(0)
n 〉. (B.12)

Let us now calculate the first-order perturbation explicitly by using the defini-
tion (7.4) of the inner product. We get

M (1)
n = 〈ψ(0)

n |Ĥ ′|ψ(0)
n 〉 =

∫ ∞

0
ψ(0)

n

∗
(a)
(
− 1

2a2

d

da
ψ(0)

n (a)
)
a2 da

= −1
2
N2

n

∫ ∞

0
Hn

(
a−M (0)

n

)
e−(a−M

(0)
n )2

[
H ′

n

(
a−M (0)

n

)
+(

M (0)
n − a

)
·Hn

(
a−M (0)

n

)]
da, (B.13)

where H ′
n

(
a−M

(0)
n

)
= d

daHn

(
a−M

(0)
n

)
, and the coefficients Nn are determined

by the requirement ∫ ∞

0
ψ(0)

n

∗
(a)ψ(0)

n (a)a2 da = 1. (B.14)

It turns out that the integral in Eq. (B.13) can be written in a very simple form:

M (1)
n =

1
4
N2

nH
2
n

(
M (0)

n

)
e−M

(0)
n

2

. (B.15)

Integrals in Eq. (B.14) can be solved analytically by means of the error function
erf(x), but unfortunately a simple general formula for the coefficient Nn seems to
be out of reach. However, one easily finds that

N2
0 =

[
1
2
e−1 +

3
4
√
π
[
1 + erf(1)

]]−1

, (B.16)

and therefore, according to Eq. (B.15), we have

M
(1)
0 =

1
4

[
1
2

+
3
4
e
√
π
[
1 + erf(1)

]]−1

≈ 0.0349228. (B.17)
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First-order perturbations in the cases where n = 1, 2, 3, . . . can also be evalu-
ated analytically but the integration in Eq. (B.14) becomes more complicated when
n increases. Therefore, one might find some mathematical programs (like MATH-
EMATICA) to be very useful tools when one tries to calculate the coefficients Nn

analytically. In Table B.1 we give the numerical values of first-order perturbations in
the cases where n = 0, 1, . . . , 10.

However, the perturbation method has two weak points. First, we cannot be
sure that our perturbation expansion converges. We can only hope that first-order
perturbations provide a good approximation to the difference between the real and
the WKB eigenvalues of the Schwarzschild mass M . Second, it is hard to discover
to what self-adjoint extension our perturbation approach is connected (for details see
Ref. [69]). For these reasons our results for first-order perturbations can be thought
of only as suggestive and we need a more reliable method for the study of the eigen-
values of M . This method will be discussed in the next section.

n M
(1)
n Mn MWKB

n

0 0.0349228 1.01 1
1 0.0093795 1.74 1.7320 . . .
2 0.00513602 2.24 2.2360 . . .
3 0.00346 2.65 2.6457 . . .
4 0.00257746 3.01 3
5 0.00203793 3.32 3.3166 . . .
6 0.00167622 3.61 3.6055 . . .
7 0.001418 3.88 3.8729 . . .
8 0.00122503 4.13 4.1231 . . .
9 0.00107574 4.36 4.3588 . . .
10 0.000957045 4.59 4.5825 . . .

Table B.1. Numerical values of M (1)
n , Mn, and MWKB

n . The results
are given with the best possible precision our numerical analysis can
offer. One may observe that WKB eigenvalues for the mass M provide
an excellent approximation to the exact mass eigenvalues even when n
is small.

B.2 Numerical Analysis

The numerical analysis of the mass eigenvalues was performed with FEMLAB, and
the results can be found in Table B.1. In our numerical analysis we solve eigenvalues
for the differential equation(

− 9
8
d2

dx2
− 9

32
1
x2

+
1
2
x2/3

)
ψ(x) = Mψ(x) (B.18)

with the boundary conditions ψ(0) = ψ(∞) = 0 (of course, the boundary condition
ψ(∞) = 0 must be put in as ψ(a) = 0, where a is a “sufficiently” large number).
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It may be shown that the mass spectrum given by this equation is identical to the
mass spectrum given by Eq. (B.1) [69]. One can also study which self-adjoint exten-
sion the numerical routine has chosen when calculating the mass eigenvalues: The
eigenfunctions corresponding to Mn in Table B.1 seem to behave, within the limits
of the precision of the numerical computing, like ψ(x) ∼

√
x when x → 0. This

observation fixes the self-adjoint extension for our eigenvalues.
Finally, it should also be noted that, due to a limited accuracy of numerical

computing, some of the eigenvaluesMn might be around 1% smaller than the values
in Table B.1. This does not cause any problems and actually the mass eigenvalues
are brought even closer to the WKB estimate of Eq. (7.5).
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Appendix C

Phase Space Volume

In chapter 7 we have introduced a microscopic model of the Schwarzschild hori-
zon such that the phase space volume corresponding to a fixed horizon area A is
determined by the condition (7.11):

1
8a2

1

(
p2
1 + a2

1

)2 + . . .+
1

8a2
N

(
p2

N + a2
N

)2 =
N

2
+
A

α
. (C.1)

This equation describes a closed, compact (2N − 1)-dimensional hypersurface Σ
in the 2N -dimensional phase space spanned by the canonical coordinates ai and
pi. To calculate its volume we choose coordinates λ1, λ2, . . . , λN−1 ∈ [0, 1] and
ϕ1, ϕ2, . . . , ϕN ∈ [0, 2π] on the hypersurface Σ such that

a1 = L(λ1 + λ1 cosϕ1), (C.2a)

p1 = Lλ1 sinϕ1, (C.2b)

a2 = L (λ2 + λ2 cosϕ2), (C.2c)

p2 = Lλ2 sinϕ2, (C.2d)
...

aN = L (λN + λN cosϕN ), (C.2e)

pN = LλN sinϕN . (C.2f)

Here L =
√
N + 2A

α , and λN = λN (λ1, λ2, . . . , λN−1) can be calculated from Eq.
(C.1). If one substitutes the coordinates ai and pi in terms of λ1, λ2, . . . , λN and
ϕ1, ϕ2, . . . , ϕN into Eq. (C.1), one gets

λN =
√

1− λ2
1 − λ2

2 − · · · − λ2
N−1. (C.3)

Equation (C.3) represents a hypersphere in the N -space spanned by the coordinates
λi. So it is natural to perform another coordinate transformation from the coordinates
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λi to the generalized spherical coordinates θ1, . . . , θN−2 ∈ [0, π
2 ] and φ ∈ [0, π

2 ]:

λ1 = cosφ
N−2∏
i=1

sin θi, (C.4a)

λ2 = sinφ
N−2∏
i=1

sin θi, (C.4b)

λ3 = cos θ1
N−3∏
i=1

sin θi, (C.4c)

λ4 = cos θ2
N−4∏
i=1

sin θi, (C.4d)

...

λN = cos θN−2. (C.4e)

Generally, the volume of the any (smooth)N -dimensional hypersurface S can
be evaluated from the integral ∫

S

√
g dNx, (C.5)

where g is the determinant of the metric. We now define the metric of the phase
space as

ds2 =
N∑

i=0

(
dp2

i + da2
i

)
. (C.6)

Then the position vector of a given point on the hypersurface Σ can formally be
written as

~r = a1(ϕ1, . . . , ϕN , θ1, . . . , θN−2, φ) ê1 +

p1(ϕ1, . . . , ϕN , θ1, . . . , θN−2, φ) ê2 +
...

aN (ϕ1, . . . , ϕN , θ1, . . . , θN−2, φ) ê2N−1 +

pN (ϕ1, . . . , ϕN , θ1, . . . , θN−2, φ) ê2N , (C.7)

where the êi’s (i = 1, . . . , 2N) are orthogonal unit vectors in our 2N -dimensional
phase space. From Eqs. (C.2) it follows that all non-vanishing components of the
metric on the hypersurface, defined by the relation

gij = ~bi ·~bj , (C.8)

where ~bi = ∂~r
∂xi (i = 1, . . . , 2N − 1) is the tangent vector of the coordinate curve

corresponding to the coordinate xi, are proportional to L2, and otherwise contain
only products of the sines and the cosines of the angles φ, θi, and ϕi. Therefore the
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phase space volume Ω corresponding to the fixed areaA has, in units of (2π~)N−1/2,
the form

Ω =
L2N−1

(2π)N−1/2

π/2∫
0

dφ

π/2∫
0

dθ1 · · ·
π/2∫
0

dθN−2

2π∫
0

dϕ1 · · ·
2π∫
0

dϕN

√
g̃, (C.9)

where g̃ is the determinant of the metric whose components g̃ij are obtained from
the components gij such that we simply divide each gij by L2.

The (2N − 1)-dimensional integral in Eq. (C.9) is, unfortunately, very hard to
calculate. However, one can easily see that this integral converges. From Eqs. (C.2)
and (C.4) it follows that g̃ is everywhere finite (it contains only products of the sines
and the cosines of the angles φ, θi, and ϕi). Furthermore, the integration is performed
over a bounded region because ϕi ∈ [0, 2π] and θ1, φ ∈ [0, π

2 ]. Therefore, the (2N−
1)-dimensional integral in Eq. (C.9) converges. Its value, however, depends only on
N and we can denote

1
(2π)N−1/2

π/2∫
0

dφ

π/2∫
0

dθ1 · · ·
π/2∫
0

dθN−2

2π∫
0

dϕ1 · · ·
2π∫
0

dϕN

√
g̃ =: C(N). (C.10)

So we can write the phase space volume Ω as

Ω = C(N)

(
N +

2A
α

)N−1/2

, (C.11)

which is Eq. (7.13).
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