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Finnish summary

Diss.

The dissertation introduces method and algorithm development for nonstation-

ary, nonlinear and dynamic signals. Furthermore, the dissertation concentrates

on applying neural networks for time series analysis. The presented methods are

especially applicable for heart rate time series analysis.

Some classical methods for time series analysis are introduced, including im-

provements and new aspects for existing data preprocessing and modeling pro-

cedures, e.g., time series segmentation, digital filtering, data-ranking, detrending,

time-frequency and time-scale distributions. A new approach for the creation of

hybrid models with a discrete decision plane and limited value range is illus-

trated. A time domain peak detection algorithm for signal decomposition, i.e.,

estimation of a signal’s instantaneous power and frequency, is presented.

A concept for constructing reliability measures, and the utilization of reli-

ability to improve model and signal quality with postprocessing are grounded.

Also a new method for estimating the reliability of instantaneous frequency for

time-frequency distributions is presented. Furthermore, error tolerant methods

are introduced to improve the signal-to-noise ratio in the time series.

Some new principles are grounded for the neural network theory. Opti-

mization of a time-frequency plane with a neural network as an adaptive filter

is introduced. The novelty of the method is the use of a neural network as an

inner function inside an instantaneous frequency estimation function. This is an

example of a new architecture called a transistor network that is introduced to-

gether with the general solution for its unknown parameters. Applicability of the

dynamic neural networks and model selection using physiological constraints is

demonstrated with a model estimating excess post-exercise oxygen consumption

based on heart rate time series. Yet another application demonstrates the correla-

tion between the training and testing error and usage of the neural network as a

memory to repeat the different RR interval patterns.

Keywords: heart rate time series, neural networks, preprocessing, postprocess-

ing, feature extraction, respiratory sinus arrhythmia, excessive post-

exercise oxygen consumption
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NOTATIONS AND ABBREVIATIONS

Matrix and vector operations

Real numbers are presented as a, b, c, . . . , w, x, y, z

Vectors a, b, c, . . . , w, x, y, z

Matrices A, B, C, . . . , W, X, Y, Z

Matrix vector multiplication

Y = Ax ⇔ yi =

m∑

j=1

aijxj ⇔





a11x1 + . . .+ a1mxm = y1

... + . . .+
... =

...

an1x1 + . . .+ anmxm = ym

,

A =




a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm


 ∈ Rn×m, x =




x1

...

xm


 ∈ Rm ≡ Rm×1, y =




y1

...

yn


 ∈ Rn

Matrix transpose B = AT ⇔ bij = aij

Element by element multiplication A · B = aijbij , A, B ∈ Rn×m

Hessian matrix contains second order derivatives of a function y respect to vari-

able xi. The element in the ith row and jth column of the matrix is

∂2y

∂xi∂xj

.

Euclidean norm

||x|| =

√√√√
N∑

k=1

x2
k, x ∈ RN .

Physiology, Heart rate variability

ULF Ultra-low-frequency band of the power spectrum.



The frequency range is 0.0001-0.001 Hz.

VLF Very low-frequency band of the power spectrum.

The frequency range is 0.003-0.03 Hz.

LF Low-frequency band of the power spectrum.

The frequency range is 0.04-0.15 Hz.

HF High-frequency band of the power spectrum.

The frequency range is 0.15-0.4 Hz or 0.15-0.5 Hz.

LF+HF Both low- and high-frequency bands of the power spectrum.

HR Heart rate.

HRV Heart rate variability.

RRI RR interval in milliseconds.

HR Heart rate in beats per minute.

IHR Instantaneous heart rate in beats per minute.

IBI Inter-beat interval in milliseconds.

HP Heart period in milliseconds.

NNI Normal-to-normal interval.

ECG Electrocardiogram.

RSA Respiratory sinus arrhythmia.

bpm Beats per minute.

ms Milliseconds.

EPOC Excess Post-exercise Oxygen Consumption.

HRmax Maximal heart rate.

VO2 Oxygen consumption.

VO2max Maximal oxygen consumption.

pVO2 VO2 proportional to VO2max, pV O2 = V O2
V O2max

.

pHR HR proportional to HRmax, pHR = HR
HRmax

.

EB Extra beat.

MB Missing beat.

Data preprocessing and modeling

FFT Fast-Fourier transformation.

STFT Short-time Fourier transformation.

SPWV Smoothed pseudo Wigner-Ville transformation.

TFRD Time-frequency distribution.

Hz Hertz, how many times per second, 1 Hz = 1
s

.

PSD Power spectral density.

SSE Sum of squared errors.

MSE Mean-squared error.

MRE Mean relative error.

NMSE Normalized mean-squared error.

RMSSD The square root of the mean of the sum of the squares of differences.

MUSIC MUltiple SIgnal Classification method.



AR Autoregressive.

MA Moving average.

ARIMA Autoregressive integrated moving average model.

Segmentation

CP Change point.

GLR Generalized likelihood ratio test.

LLR Log-likelihood ratio.

ISR Initial search region length.

MRL Minimum region length.

Neural networks

w
(l)
ij A weight connection from unit (neuron) i in layer l to unit j in layer l + 1.

s
(l)
j Excitation of unit j in layer l.

f(s
(l)
j ) Activation of unit j in layer l.

epoch One epoch means the training of the network with entire data once.

NN A neural network.

FFNN A feed-forward neural network.

HMM A hidden markov model.

MLP A multilayer perceptron.

FIR Finite impulse response.

TDNN A Time delayed neural network.

RBFN A radial basis function neural network.

GRNN A generalized regression neural network.

LRNN A family of neural networks called locally recurrent neural networks.

ORNN Output-recurrent neural network.

PCA Principal component analysis.

SOM Self-organized map (Kohonen network).

Hybrid model with discrete decision plane

CC Credibility coefficients.

#CC Number of credibility coefficients.

DC Discrete coordinates.

DDP Discrete decision plane.

HMDD Hybrid model with discrete decision plane.



1 INTRODUCTION

Physiological time series are challenging: they require methods which are toler-

ant for signal artifacts and methods providing temporal dynamics (nonstation-

arity) and nonlinearity. Examples of various physiological time series include a

heart rate time series, diastolic- and systolic blood pressure, skin conductance,

ventilation, oxygen consumption, electromyograph, electroencephalograph, elec-

trocardiograph, etc. In this dissertation, the focus will be on the heart rate time

series.

Korhonen [86, p. 14] lists alterations in heart rate variability to be linked to

the various physiological and medical provocations, including changes in pos-

ture, hypovolemic stress, isometric and dynamic exercise, mental stress, introduc-

tion of vasoactive drugs and pharmacological autonomic blocking. Furthermore,

a decrease in the heart rate variability has been linked to pathologies, e.g., sud-

den infant death syndrome, diabetes mellitus, myocardial infarction, myocardial

dysfunction, and reinnervation after cardiac transplantation. Alterations in the

heart rate variability has also been linked to different sleep stages, levels of work-

load, personal fitness and smoking. In the 1990s an increased interest in heart rate

variability studies has provided new insights into human physiology, but clinical

standards and applications are yet to be developed.

The emphasis of this dissertation is on neural networks. They are often

linked to artificial intelligence, but rather perhaps, should be treated as powerful

data-driven numerical methods applied to a variety of problems, e.g., to model

phenomena or time series, or to construct expert systems for classification, deci-

sion and detection. In classical artificial intelligence, expert knowledge is used to

construct inference rules with semantics similar to programming languages. With

neural networks, network training happens at the syntactic level and semantically

the network is tried to be proven reasonable only after training.

Nevertheless, the modeling of expert knowledge, extraction of signal char-

acteristics or pure time series modeling requires a variety of mathematical tools.

Figure 1 illustrates a set of numerical methods presented in this work applicable

for physiological modeling. Furthermore, the map illustrates different dimensions

and classes for the methods resulting in different applicability.

The x-coordinate of the map illustrates method applicability for real-time, or

on-line processing. Requirements for such methods include, e.g., optimized and

CPU-friendly complexity. If a method is to be applied for embedded systems the

CPU-requirements become even more important. It is notable that, in general, the

methods available for on-line processing are also capable for large dataset pro-

cessing.

The y-coordinate illustrates the method’s capability to tolerate temporal

variation in the system, i.e., how much the system parameters vary in time. This

is equivalent for examining stationarity assumptions of the model. The methods

high in the hierarchy also bear nonlinearity much better. Naturally, the classical



14

linear models localize low in temporal hierarchy.

It should be noted that the mind map is illustrative and should not be inter-

preted as absolute. For example, a neural network model called multi-layer per-

ceptron is a model that is both trained and used with the solved parameters, and

the calculation complexity for the usage and training are not similar. The train-

ing may consist of a complicated numerical optimization process requiring much

computational time and memory, e.g., calculation of Hessian-matrix in Newton’s

method. The training may also be implemented in an on-line manner resulting

in faster computation time for one iteration in the optimization algorithm. The

drawback, then, is that the optimization will require more iterations to find a lo-

cal minimum, compared to Newton’s method. The resulting network is just a

computational unit that is fast to execute. To be more precise, the network com-

plexity may affect the computational speed, and a large number of network pa-

rameters may result in slow computation. Hence, it is important not to take the

two-dimensional figure literally; the author acknowledges that it is not a mathe-

matically exact presentation and various definitions and concepts may be inter-

preted in different ways. For example, K-means clustering is usually considered

as a clustering algorithm, but in our context it is utilized to find network parame-

ters for the radial basis function network.

Integration of algorithms, methods and models

One possibility of describing the integration of different methods is a forward

flow, where signal preprocessing and signal decomposition provides character-

istics of a signal to be further analyzed or modeled by, for example, a neural

network. Different methods integrate as preprocessing techniques are used to

segment and decompose the signal, observations are drawn and a model is con-

structed and optimized with a proper strategy. The model may produce estimates

for another signal, classify states or perhaps predict future values in a time series.

However, artificial division of mathematical techniques, for example, to

modeling or preprocessing may be questioned. For example, a neural network

model may be used as a filter, such as a signal preprocessing technique, to elicit

desired signal characteristics. Furthermore, we described the process to be a flow

forward. This only describes the simple applications, since a complicated system

may include several steps with different preprocessing, postprocessing, linear and

nonlinear methods and parallel or recursive processes. Such an iterative and in-

cremental development also underlines the current state-of-the-art methodologies

for software development in general (e.g., [74]).

Signal preprocessing is often used to improve signal’s explanatory value or

signal-to-noise ratio. Preprocessing techniques may also be used for signal de-

composition, for example, to its frequency and power contents. Furthermore,

signal characterization (or feature extraction) may be used to build quantitative

measures of the signal. For example, with the heart rate time series, the low-
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and high-frequency bands of the power spectrum are construed to be noninva-

sive measures of autonomic control. Decomposition of the signal may include

several methods, e.g., Wavelet transform, peak detection, or short-time Fourier

transformation.

Reliability of a given measure or model estimate may be exploited in various

ways. Reliability may guide to seek an estimate from an alternative model or it

may be used to improve the accuracy of the model in the time domain. Reliability

may also be exploited with hybrid models to decide the use of a proper method or

to focus data preprocessing and artifact detection or correction in invalid regions.

Segmentation may be used to guide different methods or models to process

different parts of the signal. Identification of a segment is based on signal charac-

teristics. The methods interact and, for example, decomposition information may

be used for both model construction and segmentation. The process may also

be recursive, in that the model outputs can be used to focus preprocessing and

segmentation. The system recursively improves until a steady state is achieved.

Author’s contributions

The author wishes to give new insights and perspective in the physiological time

series analysis and furthermore contributes the following:

1. An extensive methodological review.

2. An approach to creating hybrid models with discrete decision-plane and

limited value range. Examples and analysis of the new method are pro-

vided.

3. A new concept called a transistor network. The architecture is introduced

together with a general analytic solution for the network parameters.

4. Optimization of a three-dimensional discrete plane to provide optimal cen-

tre mass. Application for adaptive neural network filtering with efficient

use of neural network parameters. A neural network is used as an inner

function of objective function. The methodology may be applied in to the

detection of breathing frequency strictly from the heart rate time series.

5. The extension of a segmentation method called generalized likelihood ratio

test, to multivariate on-line applications with simple estimation and error

functions. General properties of the algorithm is investigated, including,

the algorithm’s sensitivity to its own parameters.

6. A geometric approach (a.k.a. ”peak detection”) for the estimation of a sig-

nal’s instantaneous power and frequency. The method may be utilized to

estimate respiration frequency from chest expansion data.
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7. Concepts for automated control of signal artifacts: error tolerant models and

improving signal-to-noise ratio with data preprocessing and postprocessing.

8. Construction of reliability measures on various models and exploiting the

estimates to form time domain corrections to the estimated time series.

9. Use of constraints in neural network model selection. An application to

model excess post-exercise oxygen consumption strictly from the heart rate

via oxygen consumption modeling with a temporal neural network.

Structure of the dissertation

The introduction is presented in the First Section. The 2nd Section outlines the

characteristics of the heart rate time series. Section three covers the concepts

which form the framework for model building of the physiological phenomena:

feature extraction, signal preprocessing and postprocessing.

In Section four a detailed description of the neural networks applied in this

dissertation is provided. Furthermore, the section illustrates the author’s per-

spective in neural network optimization, providing the founded decisions made

regarding the selection of the optimization methods that are later used in the ap-

plications section.

The fifth Section describes a new general concept for constructing hybrid

models with a discrete decision plane. In addition, examples are provided to

illustrate the justification of the method and failure of the divide and conquer

methodology.

Section six describes in a very detailed manner a generation of two physi-

ological neural network based models for to estimate the excessive post-exercise

oxygen consumption and the detection of respiratory frequency strictly from the

heart rate time series. In addition, a neural network training simulation is pro-

vided to illustrate the coupling of training and testing error with large datasets.

Finally, the conclusions of the work are presented in Section seven.
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Figure 1: Mind map of different methods and models of the dissertation. The x-

coordinate illustrates how well a method is applicable for real-time processing.

The strength of stationarity assumptions is described with the y-coordinate.



2 HEART RATE TIME SERIES

In this dissertation, the link between the methodology and the examined phe-

nomena is the human physiology. The autonomic nervous system has primary

control over the heart’s rate and rhythm. Heart rate variability has been sug-

gested as a noninvasive measure of autonomic control. A short introduction to

cardiovascular- and the autonomic nervous system is presented in Section 2.1, al-

though a thorough study of this topic is outside the scope of this dissertation. The

intention of this section is to provide sufficient background and characteristics of

the heart rate time series dynamics for the applications presented later in the dis-

sertation. The heart rate time series are complex, unpredictable, nonlinear and

nonstationary with temporal cyclic and asyclic components. They can be derived

from electrocardiograph and can contain electrocardiograph-specific and heart-

rate-monitor-related artifacts. Both resampling and nonlinear transformation of

RR intervals to heart rate will be demonstrated to distort the heart rate interpreta-

tion and statistics.

Heart rate has a connection to other physiological measures, such as oxygen

consumption, tidal volume, respiration frequency, ventilation and blood pressure.

To form the essence of the phenomena with mathematical modeling, all the in-

formation, such as multivariate signals, may be used to improve understanding.

Heart rate and blood pressure are influenced by the respiration cycle that is visible

in the time series. A preliminary example of respiration coupling with heart rate

and blood pressure is discussed in Section 2.5.

2.1 Autonomic nervous system and heart rate variability

The cardiovascular system consists of myocardium (the heart) (see Figure 2),

veins, arterias and capillaries. The main function of cardiovascular system is to

transmit oxygen to the muscles and remove carbon dioxide. Furthermore, it trans-

mits waste products to the kidneys and liver, white blood cells to tissues, and

controls the acid base balance of the body.

The autonomic nervous system (see Figure 3) has primary control of the

heart’s rate and rhythm. It also has control over the smooth muscle fibers, glands,

blood flow to the genitals during sexual acts, gastrointestinal tract, sweating and

the pupillary aperture. The autonomic nervous system consists of parasympathetic

and sympathetic parts. They have contrary effects on the human body, for example,

parasympathetic activation preserves the blood circulation in muscles, while sym-

pathetic activation accelerates it. The primary research topic in the field of heart

rate variability (HRV) research is to quantify and interpret the autonomic process

of the human body and the balance between parasympathetic and sympathetic

activation [46, 120].

The monitoring of the heart rate and, especially, its variability, is an attempt
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Figure 2: Interior view of the heart’s anatomy. Original figure from Enchant-

edLearning.com.

to apply an indirect measurement of autonomic control. Hence, HRV could be ap-

plied as a general health index, much like noninvasive diastolic and systolic blood

pressure. The (clinical) applications for such a system would include, for instance

the monitoring of hypovolemic or mental stress, preventing and predicting my-

ocardial infarction or dysfunction, the monitoring of isometric and dynamic exer-

cise, the prediction and diagnosis of overreaching, measuring vitality, the moni-

toring of recovery from exercise or injury, etc. However, the diagnostic products

are yet to come, since at the present no widely approved clinical system for the

monitoring of the autonomic nervous system via heart rate exists. Commercial

manufacturers using a variety of methods and HRV indices do exist, but the de-

velopment of such systems have not been guided in any way and has been left to

free market forces. As a result, no standardization has been established [61].

An example of HRV indices include spectral parameters derived from the

recording of the heart rate. However, several difficulties exist in interpreting HRV

in such a way. Especially the respiratory component in the high-frequency band

(HF) of the heart rate signal (0.15-0.4 Hz or 0.15-0.5 Hz) has a substantial impact
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Figure 3: Autonomic nervous system. Original figure from National Parkinson

Foundation, www.parkinson.org.

on HF independent of changes in parasympathetic activation. The respiratory

component of the heart rate signal may also overlap the low-frequency band (LF) of

the heart rate signal (0.04-0.15 Hz) resulting in a complicated power spectrum and

interpretation. The power spectrum provides the information of how the power

or energy distributes as a function of frequency. In HRV analysis the energy unit

is expressed in a ms2. Spectral analysis is further discussed in Section 3.1.1. LF

power has been linked to cardiac sympathetic activation but there are reports that

exist which have failed to find the link between them [6].

The invasive research of the autonomic nervous system is founded through

experiments on animals, and using drugs stimulating or blocking sympathetic

and parasympathetic activation in a direct or indirect manner on human subjects.

Drugs stimulating sympathetic activation, known as symphathomimetic drugs, in-

clude norepinephrine, epinephrine and methoxamine. Blocking may be achieved

with drugs such as reserpine, guanethidine, phenoxybenzamine or phentolamine.

The list of drugs is quite large and they may affect different points in the stimu-

latory process. For example, hexamethonium may be used to block the transmis-

sion of nerve impulses through the autonomic ganglia and hence the drug blocks

both sympathetic and parasympathetic transmissions [46, p. 696]. The blocking



21

of the vagal system and its effect on heart rate variability has been studied, e.g.,

in [97, 98, 132].

A variety of noninvasive research on HRV also exists. In Pitzalis et al. [133]

noninvasive methods, so called alpha-index and sequence analysis, are compared

to evaluate the correlation and agreement between the baroreflex sensitivity1 ob-

tained with invasive measures (drug stimulation).

2.2 Time series categories

”A time series is a set of observations generated sequentially in time”, [15, p. 21].

A time series model is a system of definitions, assumptions, and equations set up

to describe particular phenomena expressed in a time series. Time series modeling

describes the process in building the model.

According to Chatfield [24], a time series is said to be deterministic if its future

values are determined by some mathematical function of its past values. Statisti-

cal or stochastic time series can be described by some probability distribution. The

time series is said to be static or stationary if its statistics, usually mean and vari-

ance, do not change in time. On the other hand, nonstationary signals can contain

many characteristics: A time series has a trend if it has a long-term change in its

mean. In a time series having seasonal fluctuation, there is some annual, monthly,

or weekly variation in the series. An outlier means an observation which differs or

is unexpected compared to other values in the series.

A chaotic time series is generated by some dynamical nonlinear deterministic

process which is critically dependent on its initial conditions. A classic example is

the Henon map:

x(k) = 1 + w1x(k − 2) − w2x(k − 1)2, (1)

where w1 and w2 are free parameters. Lehtokangas has demonstrated [92, p. 5-7]

that if two implementations of the Henon map are written as Matlab2 programs,

then changing the order of the last two terms, i.e., x(k) = 1−w2x(k−1)2+w1x(k−

2), results in two different time series. The absolute error between the results

grows exponentially between the first and 90th iteration and then settles down.

The difference between the implementations is the result of rounding errors due

to changing the order of the terms.

The presented characteristics apply mostly to the classical time series anal-

ysis. In general, a heart rate time series does not purely belong to any of the

given classes. The category depends on the observed time series, the length of the

signal and the nature of the recording. For example, a heart rate time series pro-

duced by a metronome-spaced breathing test under steady conditions appears to

1Depressed baroreflex sensitivity plays a prognostic role in patients with a previous myocardial

infarction.
2Matlab is a language for technical computing. It integrates computation, visualization, and pro-

gramming in an environment where problems and solutions are expressed in mathematical nota-

tion [100].
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be stationary for individuals having a strong respiratory component in their HR.

The short-term oscillations corresponding to the stationary breathing frequency

results in a well-behaved signal. In an ambulatory recording, the outcome is quite

different: all the major frequency and power components in the signal have a

considerable temporal variation. Ambulatory recording is performed outside the

controlled laboratory environment or laboratory protocols, so that the nonstation-

ary changes in the signal are rather a rule than an exception in such free mea-

surement. Movements, postural change, etc. will result in the adjusting of blood

pressure and muscular blood circulation. Hence, the actions cause alterations to

HR. If only the HR time series is observed, then the changes appear nonstationary

and unpredictable in nature.

2.3 From continuous electrocardiogram recording to heart rate

time series
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Figure 4: Different signals derived from electrocardiograph and an example ECG

time series.

Abbreviations, synonyms and expressions used for signals derived from

electrocardiogram (ECG) recording are presented in Table 1. Electrocardiogram rep-

resent the recording of the electrical potential of the heart, carried out using sen-

sors positioned on the surface of the body. RR interval (RRI), inter-beat interval

and cycle interval are synonyms representing different names for the same non-
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Abbreviation Explanation Unit

NNI normal-to-normal interval ms

RRI RR interval ms

cyclic interval ms

IBI inter-beat interval ms

HP heart period ms

beat-to-beat time series ms

HR heart rate bpm

IHR instantaneous heart rate bpm

Table 1: Abbreviations and synonyms used in the dissertation for signals derived

from electrocardiograph recording.

equidistantly sampled signal. RR interval is expressed as a time between consec-

utive QRS-waves of the electrocardiogram (see Figure 4). Instantaneous heart rate

is a nonlinear transformation of RRI and has beats per minute (bpm) as its unit.

A heart rate time series is resampled from RRI to have equidistant sampling and

transformed to bpm unit. In this dissertation a heart period and beat-to-beat time

series are regularly sampled counterparts of RRI. A normal-to-normal interval is

defined as the interval between two successive normal, non-artifactual, complexes

in ECG [120].

ECG may be recorded with a variety of commercial equipment. For clinical

use the Holter ECG is most frequently used [167]. There exists mobile and event

monitors, able to record ECG for various time periods. Heart rate monitors do not

store ECG but rather the RRI or average HR, for example, average of the HR for

the last 15 seconds.

Scientifically used ECG recorders, like the Holter ECG, do not have memory

limitations, and such devices use a high sampling rate to increase the precision of

the signal representation. Sampling rates between 125 to 4096 Hz are used by the

commercial manufacturers. There also exists ECG recorders sampling at a variable

rate [1, 2, 18]. Furthermore, there exists a number of methods for the QRS-wave

recognition in ECG [42, 109, 135, 167].

RR intervals and heart period are commonly expressed in milliseconds (ms),

and (instantaneous) heart rate as beats per minute (bpm). The nonlinear trans-

formation, bpm = 60000/ms, between the signals is presented in Figure 5. The

conversion from RRI to IHR, or HP to HR, may distort statistics and influence

the physiological interpretation in experimental design and tests. For example,

in Quigley and Berntson [142] the differences in the interpretation of autonomic

control with heart period versus heart rate is studied.

Time series analysis, e.g., calculation of the power spectrum, is based on

equidistantly sampled signals. Two main approaches are used to transform a

sequence of RR intervals into equidistantly sampled heart period time series:
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Figure 5: The nonlinear relationship between instantaneous heart rate and RRI.

the interpolation- and window-average-resampling methods. The interpolation3

methods may be carried out in a step-wise manner, linearly or by spline func-

tion [86, p. 23]. The step-wise linear interpolation resampling method is described

in Algorithm 2.1 and illustrated in Figure 6. A sampling frequency of 5 Hz (200

ms) is used in this dissertation.

The resampled signal may also be desampled back to a RR interval sequence

without information loss as illustrated in Algorithm 2.2. This property allows us

to store only one of the signals, equidistant or a non-equidistant signal, as the

transformation between the signals is enabled. Notice that the window average

resampling does not contain this property.

Resampling changes the statistics of the ECG derived signals. Even if the

sampling accuracy is perfect and no information is lost, the procedure will affect

the basic statistics such as mean and variation. This is illustrated in Figure 7.

To demonstrate this let us consider two beats lasting 500 and 300 milliseconds,

respectively. When sampled with Algorithm 2.1 and 5 Hz sampling frequency,

the time series results into 500, 500, 400, 300 milliseconds. The mean values of the

two RR intervals and resulting resampled heart period time series are 400 and 425

milliseconds, respectively.

Algorithm 2.1 Resampling with step-wise linear interpolation.

0. Let x present the sequence of RR intervals and y the resampled output vector. Set

the remainders to zero:

r1 = r2 = 0.

Then set input and output vector indices to one

i = j = 1.

3The dictionary of mathematics [31] defines interpolation as follows: ”For known values

y(1), y(2), . . . , y(n) of a function f(x) corresponding to values x(1), x(2), . . . , x(n) of the indepen-

dent variable, interpolation is the process of estimating any value y′ of the function for a value x′

lying between two of the values of x, e.g., x(1) and x(2). Linear interpolation assumes that (x(1), y(1)),

(x′, y′), and (x(2), y(2)) all lie on a straight-line segment”.
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Figure 6: Resampling with step-wise linear interpolation. RR intervals stored in

a vector are transformed to equidistantly sampled heart period signal, where the

time difference between each vector position is 200 milliseconds long (5 Hz sam-

pling). The time vector for RRI in milliseconds is a cumulative sum of the RRI.

Notice that the sampling interval 4T should not exceed the minimum value of the

RR intervals.

Length of the input vector is n. Then the maximum length of the output vector is

1

4T

n∑

k=1

x(k).

In computer implementation the output length may be truncated after the algorithm

execution.

1. Calculate the full times the sampling interval 4T goes to difference of the current

beat and the time r2 reserved in the previous iteration:

c = b
xi − r2

4T
c,

where b·c is an operator for rounding down a real number to an integer value.

2. Set

yj...j+c−1 = xi

and

j = j + c.
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Figure 7: Histograms presenting an eight minute RRI recording refined to three

different signals. The nonlinear transformation and resampling both affect the

statistics (mean µ and variation σ2) of the series.

3. If i is less than n, then calculate the beats left over:

r1 = xi − r2 −4T · c.

Then reserve the beats from xi+1 to fill in one full interval:

r2 = 4T − r1.

Finally, calculate the transition beat yj between the two beats xi and xi+1:

yj =
xi · r1 + xi+1 · r2

4T
.

4. If i equals n, then the calculation is ready. Else increase the indices i and j

i = i + 1, j = j + 1

and return to step 1.
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Algorithm 2.2 Desampling of the time series.

0. Let x present equidistantly sampled time series input vector, y the output vector of

RR intervals and 4T the sampling interval of the time series. Set remainder to zero

r = 0.

Then set input and output vector indices to one

i = j = 1.

The maximum length of the output vector and length of the input vector are n.

1. Set current output value to current input

yj = xi.

Calculate

c =
xi − r

4T
.

If the beat is evenly divisible, i.e., c has no remainder, then set

i = i + c, r = 0.

Else set

r = 4T − (xi − r − bcc) · 4T )

and

i = i + bcc) + 1,

to reserve time from the next beat.

2. If i is greater than n, then all the beats are processed and the calculation is ready.

Else increase the index j

j = j + 1

and repeat from the first step.

The terminology is sometimes used loosely in HRV-related publications. For

example, heart rate variability is often used to also express RR variability and

instantaneous heart rate variability [120]. This may become problematic, as will

be demonstrated with the following example: A statistic that is greatly affected by

the used signal is the square root of the mean of the sum of the squares of differences4

(RMSSD) expressed with the following formula:

RMSSD =
1

N − 1

√√√√
N−1∑

k=1

(x(k) − x(k + 1))2, (2)

4In heart rate variability analysis, RMSSD is a time domain estimate of the short-term components

of HRV [120].
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where x(k) is an N -length time series. Basically, RMSSD may be calculated for

both heart period time series or RR intervals, but the interpretation is not the same.

If, for example, Algorithm 2.1 is used in resampling, then the scale of the result

is diminished in long RR intervals because of the zero differences, while short RR

intervals are less affected. The number of zero differences increases as a function

of the sampling frequency. Thus, in such a case the RMSSD of a heart period time

series results in an index that has little value for the analysis.

2.4 Heart rate time series artifacts

Heart rate time series artifacts are caused by several sources. They are common,

and often characteristic, for healthy and clinical subjects, in both laboratory and

field monitoring, from sleep to sports. In the measurement environment, mag-

netic, electric, and RF noise may disturb the device, especially heart rate monitors.

Furthermore, the contact difficulties of electroids, such as the lack of moisture, a

problem in the measurement equipment, or spikes produced by body movements

may trigger errors.

Also internal ”artifacts” exist that are initiated by the body. These arrhyth-

mias are not actual artifacts in the technical sense but look peculiar, alter compu-

tations, and are thus treated as artifacts. Different instantaneous arrhythmias are

normal also for healthy subjects and could be considered characteristic for ECG

and the heart rate time series. Arrhythmias like tachycardia and bradycardia are

pathological and may cause extra (EB) or missing beats (MB) in the corresponding

RR intervals [113]. Missing beats originate from unrecognized QRS-waves in the

ECG, while extra beats originate from false detection of QRS-waves resulting in

the splitting of the corresponding RRI into several. Measurement and triggering

errors may originate from false detection of QRS-waves caused by a concurrence

of amplitude modulation and respiratory movement, large T-wave related to QRS-

wave, bad electrode contact, or spikes produced by body movements [136].

Computer automated correction of the heart rate signal artifacts are discour-

aged, and manual editing should be performed instead [120]. However, the com-

bination of manual editing and computer aided detection may be feasible with

large datasets [113].

Artifact detection procedures are often based on thresholds, such as beats

exceeding or falling below twice the mean RRI in a predefined window. Also

thresholds based on windowed standard deviation or the difference between suc-

cessive RR intervals are used. Another perspective is to use a model to fit the time

series and predict the following beats. Yet another threshold is utilized to define

appropriate differences between the estimates and target values.

The seriousness and amount of corrupted data must be considered when

editing the data, and the number of corrected beats is advised to report in connec-

tion with the analysis. The correction procedures and rules are combinations of

adding the extra beat to neighbouring beats or splitting the artifact beats. Miss-
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Figure 8: Upper figure presents a sequence of RR intervals recorded with a heart

rate monitor containing measurement errors. The lower figure presents part of

the series with missing- and extra beats marked.

ing beats are evenly split, meaning if the mean level of the RRI sequence is 2000

milliseconds, a 6000 ms artifact is split three times. Also noise may be added to

create artificial variation in the corrected sequence. However, the total time of the

series should stay unchanged. If the beat is not integer divisible, then it may have

adjacent artifact beats and they have to be added before division. The beat may

also be caused by a transient arrhythmia such as bradycardia.

It should be noted that missing beats may never be accurately corrected,

since the exact time instant is lost forever. However, when the extra beats are

added to the neighbouring beat, it results in a correct reparation if and only if the

neighbour is chosen properly and the neighbor is not an artifact itself.

The impact of artifacts on heart rate variability estimates is severe for both

frequency and time domain analysis [8, 113]. The correction procedures are not

able to restore the true beat-to-beat variation but the influence on variability

estimates is less dramatic when considering occasional corrected artifact beats.

Highly corrupted sections of data are advised to be left out of the analysis.

Heart rate monitors may produce a large number of artifacts during exercise

because, for example, of body movements. This is illustrated in Figure 8. Some

monitors record RR intervals up to 30000 beats and construct heart rate variability

measures to estimate maximal oxygen uptake or relaxation [172]. However, a
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more common measure is the heart rate level used to produce estimates such as

energy usage or to guide exercise intensity. Hence, the correction error does not

cause a significant problem in these applications, since it mainly affects the beat-

to-beat variation.

In this dissertation the heart rate time series are corrected by an expert phys-

iologist. Different detection and correction heuristics and rules, as well as types of

artifacts and the influence of artifacts on heart rate variability estimates, are con-

sidered by several authors, e.g., Berntson, Quigley, Jang, and Boysen [7], Berntson

and Stonewell [8], Mulder [113], Porges and Byrne [136].

2.5 Respiratory sinus arrhythmia

The human body contains multiple cyclic processes such as the monthly men-

strual cycle caused by a females sex hormones; daily cycles including body tem-

perature, hormonal cycles (cortisol, testosterone), sleeping rhythm, hemoglobin

quantity, acid base balance of blood and urine; and weekly cycles, like the fluid

balance. Even ones’s height has a daily variation caused by compression of the

intervertebral disks.

In the cardiovascular system, the short-time fluctuation of blood pressure

and heart rate are connected to respiratory sinus arrhythmia (RSA). In normal,

healthy subjects, inhalation increases the heart rate and decreases blood pressure.

In expiration, the heart rate decreases and blood pressure increases.

The sinusoidal breathing oscillations in heart rate are apparent in Figure 9,

illustrating a metronome-spaced breathing test. The test starts with one minute

of spaced breathing at a frequency of 0.5 Hz. Then the breathing rate is stepped

down by 0.1 Hz every minute until it reaches 0.1 Hz. After this, the procedure is

reversed to the starting frequency. The total test time is nine minutes. Each new

step is indicated by a computer-generated sound.

Eight distinct measures were recorded during the test: skin conductivity,

RR intervals, systolic and diastolic blood pressure, electromyogram presenting

muscle activity from both the biceps and the triceps, respiration using a spirom-

eter and respiration from the chest expansion. The systolic- and diastolic blood

pressure time series are presented in Figure 10 where both the low- and high-

frequency breathing patterns are distinctive. Blood pressure is usually recorded

in three different beat-to-beat series: systolic- and diastolic blood pressure (the

maximum and minimum blood pressure during each beat). Also the mean arte-

rial pressure (true mean pressure between two successive diastolic time instants)

may be stored.

Respiration rate and volume is known to influence RSA regardless of

parasympathetic activation [6, 146]. Furthermore, Kollai and Mizsei conclude

that the amplitude of RSA does not necessarily reflect the proportional changes in
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Figure 9: Figure a) presents a spaced breathing test heart rate time series. Figures

b) and c) are snapshots of the test in 0.2 and 0.5 Hz breathing rhythm, respectively.

Notice the decrease of heart rate amplitude as a function of breathing frequency

especially in figures b) and c) while the mean level of the heart rate between the

oscillation remains rather stable.

parasympathetic control5 [84].

Figure 9 proposes that the heart rate amplitude decreases as a function of

the breathing frequency. In addition, inter-individual clinical studies has demon-

strated reduced RSA with cardiac disease, hypertension, anxiety and depression.

Intra-individual research have demonstrated reduced RSA in physiological stress

and physical exercise and increased RSA with psychological relaxation [59].

Similar experiments as the breathing test have been studied, e.g., to under-

stand the influence of respiration on heart rate and blood pressure [117] and to

examine the effects of paced respiration on the heart rate and heart rate variability

[164].

5Historical remark: Katona and Jih claimed respiratory sinus arrhythmia as a noninvasive measure

of parasympathetic cardiac control. The conclusions were based on a study of anaesthetized dogs [72].

The generalization to human subjects was later questioned by Kollai and Mizsei [84].
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Interpretive caveats of the RSA

As demonstrated, the respiratory component of the RSA is visible in steady con-

ditions, e.g., during metronome-spaced breathing. However, the relationship

between the RSA frequency and respiratory period may be inflated by several

known and unknown sources of naturally occurring nonstationarities and incon-

sistencies in the cardiac activity and respiratory patterns. In patent by Kettunen

and Saalasti [77], a list of challenges in the interpretation is given as follows:

Even the breathing oscillation may stay at relatively fixed levels during sta-

ble conditions, such as rest or different phases of sleep, fast changes are typ-

ical in the rate of respiration rate and may unfold, within a single breathing

cycle, a substantial change in the adjacent periods. Thus, the respiratory

period may show a three-fold increase from 3 seconds to 9 seconds within

single respiratory cycle.

It is generally known that several incidents that evoke naturally during non-

controlled measurement, such as movement and postural change, speech,

physical exercise, stress and sleep apnea may produce significant alterations

in the respiratory patterns.

The respiratory pattern of HRV may be overshadowed by phasic accelera-

tive and decelerative heart period responses to both physical and mental in-

cidents, such as postural change, motor control, cognitive stimulation, and

emotional arousal. These incidents are frequent, unpredictable from a phys-

iological point of view, may have great amplitude and are often located in

the frequency bandwidth of respiratory control.

low-frequency component of the HR, reflecting the HR and blood pressure

rhythms is often dominant in the HR. This pattern is most visible in the cen-

tre frequency of about 0.1 Hz, but is often considerably broader from 0.04

to 0.15 Hz. The broader bandwidth allows the 0.1 hertz rhythm to over-

lap with the RSA component, when respiration rate is lower than about 10

breaths per minute.

The amplitude of both the RSA and 0.1 hertz rhythms are sensitive to

changes in overall physiological state. For example, when compared to rest-

ing conditions, the RSA amplitude may show almost complete disappear-

ance during maximal exercise and certain clinical conditions.

The amplitude of the respiratory period coupled heart period oscillations is

modulated by the respiratory period. Accordingly, the amplitude of the RSA

increases towards lower frequencies (< 0.20 Hz). Furthermore, the respira-

tory coupled rhythm is not often exactly sinusoidal but may be composed of

several periodic components at different phases of the respiratory cycle.

These characteristics of the HR impose several difficulties in the interpretation of

the HR and HRV data. The detailed description of these difficulties forms the basis
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and motivation for the application presented in Section 6.3. In the application,

the detection of respiratory frequency strictly from the heart rate time series is

demonstrated. In addition, the discussion is important to emphasize the affect of

the oscillatory components characteristic on the heart rate.
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Figure 10: Figures a) and d) presents systolic and diastolic blood pressure time

series of a metronome-spaced breathing test. Figures b) and e) present the systolic

and diastolic blood pressure time series with spaced breathing of 0.2 Hz and c)

and f) 0.5 Hz breathing rhythm.
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2.6 Heart rate dynamics

Heart rate is a complex product of several physiological mechanisms. That poses

a challenge to a valid interpretation of the HR. This is especially the case within

the ambulatory measurement.

Effect of an extreme mental response and stress to the heart rate
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Figure 11: An abrupt heart rate level increase due to anxiety and excitement in a

stressful performance. The upper figure presents the entire time series and lower

figure the time series during the speech. The beginning of the speech is pointed

with a vertical solid line and the end with a dashed line.

In Figure 11, a heart rate time series of an individual performing to an audi-

ence is presented. The sudden burst in the heart rate level occurs within seconds

after the subject stands up to move in front of the audience. During the presenta-

tion, the heart rate starts to decrease as the excitement moderates. The nervous-

ness before the speech is shown in an increased resting heart rate, as the normal

mean resting heart rate of the subject is around fifty beats per minute. The fig-

ure suggests that, after the presentation, the heart rate level continues to decrease

until a relaxed state is achieved.

The example illustrates how emotions and stress may have an instant effect

on the heart rate. The recovery from stress may be moderately rapid, but con-
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tinuous stress may also appear as a long time alteration to heart rate level and

variability.

Effect of the exercise to the heart rate
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Figure 12: Heart rate time series with a base line, sixty minute roller skating ex-

ercise and recovery. The upper figure presents the entire exercise and the lower

figure closer inspection at the end of exercise. The time moment indicating the

end of the exercise is indicated with a vertical solid line.

The characteristics and properties of the heart rate change considerably if the

heart rates of a resting or exercising individual are compared. This appears in the

temporal dynamics and characteristics of the signal. For example, an acceleration

of the heart rate from a resting level to an individual’s maximal heart rate may be

relatively rapid as a maximal exercise response. However, the recovery from the

maximum heart rate level back to the resting level is not as instantaneous and may

take hours, or even days after heavy exercise, e.g., a marathon race. After intense

exercise, the body remains in a metabolic state to remove carbon dioxide and body

lactates; this process accelerates the cardiovascular system. Furthermore, the body

has to recovery from the oxygen deficit induced by the exercise.

Figure 12 illustrates a 60-minute roller skating exercise with the immediate

recovery presented in a separate graph. The figure demonstrates how the resting

level is not achieved during the recorded recovery time. The illustrated exercise is
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an example of fitness training with a relatively steady exercise intensity. A more

rapid increase in the heart rate may be achieved with more intense sports, e.g.,

400 meter running.

Inter- and intra-individual variation of the heart rate

Characteristics of heart rate time series are heavily influenced by inter- and intra-

individual variation. Macro-level intra-individual heart rate characteristic fluctu-

ation is illustrated in Figure 13. The scatter plot of a 28-hour heart rate recording

shows the variation of the two measures during different activities. The difference

between two successive RR intervals decreases as the heart rate increases. During

sleep the difference is at its highest. In a micro-level, heart rate fluctuations ap-

pear, for instance, by body movements, position changes, temperature alterations

(vasodilator theory, see [45, p. 232]), pain or mental responses (as shown in Fig-

ure 11).
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Figure 13: Variation of two variables expressed as a scatter plot between instan-

taneous heart rate and RRI difference. The dataset is based on a 28-hour RRI

recording of an individual. The plot has three dimensions, as occurrence of the

observations in predefined accuracy is visualized with the marker size. The x-

and y-axis resolutions are five beats per minute and fifty milliseconds.

Inter-individual variation in a heart rate time series is illustrated in Figure 14.

The time series presents four sitting-to-standing tests of different individuals after

morning awakening. The heart rate, its variation, recovery from position change

and standing responses differ among the individuals. In Section 2.5, several al-

terations to the heart rate RSA component were discussed. Furthermore, the in-

dividual’s age, gender, mental stress, vitality and fitness are reported to affect the

heart rate variability.
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Figure 14: Sitting-to-standing tests of four individuals after morning awakening.

The dashed line indicates the moment when the alarm signal requests stand up.



3 TIME SERIES ANALYSIS

This dissertation concentrates on applying neural networks for physiological sig-

nals and, especially, for heart rate time series analysis. Although applications vary,

the general modeling process for physiological signals is illustrated in Figure 15.

Data sampling


Preprocessing

Feature


extraction


Modeling


Postprocessing


Figure 15: A common physiological time series modeling process.

Four steps are presented in the figure: data sampling, preprocessing, feature

extraction and modeling. Sampling is executed by a device recording the phys-

iological time series; we may only obtain a discrete presentation of the human

physiology with predefined sampling accuracy. To choose an appropriate sam-

pling the Shannon sampling theorem has to be taken into account [23]. It states that

the sampling rate has to be at least twice the frequency of the highest frequency

component in the signal, if we wish to recover the signal exactly. The Nyquist fre-

quency fN is the highest frequency of which we can get meaningful information

from the data:

fN =
1

24t
,

where 4t is the equal interval between the observations in seconds. If the sam-

pling frequency is not high enough, then the frequencies above the Nyquist fre-

quency will be reflected and added to the frequency band between 0 and fN hertz.

This phenomena is known as aliasing or folding [23, 159, 165].

The data may be used directly to construct a model of it. However, in more

complicated applications the data is preprocessed with methods capable of, for

instance, denoising, detrending, filtering or segmenting the signal. The process

may also include feature extraction, creating, for example, a new set of time series

including the signal characteristics in separate signals. The modeling step may

include linear or nonlinear models or hybrid models, the combination of several

models. Furthermore, various postprocessing steps may be executed on the model

estimate, e.g., time domain corrections through smoothing or interpolation (miss-

ing data).
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These are the basic steps in a methodological point of view. In addition,

the expert knowledge of both psychophysiology and mathematical expertise are

required for the model generation. One possibility for the model generation and,

finally, validation of the model results is to visualize the outcome with several

perspectives and various empirical data. The visual inspection will also ease the

communication between the experts in different fields.

Neural networks are not isolated from classical linear and nonlinear meth-

ods. In this section, some classical methods for time series analysis are intro-

duced, including improvements and new aspects for existing data preprocessing

and modeling procedures, e.g., time series segmentation, data-ranking, detrend-

ing, time-frequency and time-scale distributions, and geometric modeling. Some

linear and nonlinear techniques for time series analysis and numerical methods,

including standard digital signal processing procedures, are also reviewed.

3.1 Linear and nonlinear time series analysis

This section briefly reviews the classical linear models and their dual counterparts

in the frequency domain, i.e., autocorrelation, autoregressive and moving average

models versus spectral density estimation. The underlying dependency (or con-

nection) between the models is called time-frequency dualism.

The weakness of classic linear models lies in their restrictive assumptions,

especially the stationarity assumptions of the signal. The strength is the compre-

hensive theoretical understanding of linear systems. Regardless of the restrictions,

linear time series analysis is widely used even in complex model reconstruction.

Furthermore, linear models may be applied and modified to describe nonlinearity

and unstationarity, e.g., piecewise linear models in the time domain or short-time

Fourier transformation in the frequency domain. The latter is an example of a

time-frequency distribution that will be introduced in Section 3.1.2.

Time-frequency distributions may be utilized for the decomposition of a sig-

nal to its temporal frequency and power contents. Also time-scale presentations,

e.g., Wavelet-transformation, can be used to exclude temporal frequency contents

of a signal. A time domain algorithm is illustrated in Section 3.1.9 for the estima-

tion of frequency and power moments.

System or signal modeling is generally performed by means of some quan-

titative measure. We wish to estimate the goodness of fit for the given empirical

model. Thus, different error functions are reviewed in Section 3.1.4.

3.1.1 Spectral analysis

Spectral analysis is used to explore the periodic nature of a signal. In classic

spectral analysis the signal is supposed to be stationary. Furthermore, parametric

spectral methods assume that the signal is produced by some predefined model.

Examples of parametric methods are the Yule-Walker method [174, 186] and the
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MUSIC, or MUltiple SIgnal Classification method [10, 158] (cited in [165]). The

Yule-Walker method assumes that the time series can be described by an autore-

gressive process (see Section 3.1.7). The MUSIC method assumes that the signal is

a composition of a complex sinusoidal model.

Most commonly used nonparametric spectral methods are based on the

discrete-time Fourier transformation of the signal x(k), defined as

X(f) =

∞∑

k=−∞

x(k)e−ifk,

where f denotes the frequency of interest and e−ifk is a complex term defined as

e−ifk = cos(fk) + i sin(fk).

Power spectral density (PSD) of infinite signal x(k) is defined as

S(f) = lim
N→∞

E


 1

N

∣∣∣∣∣
N∑

k=1

x(k)e−ifk

∣∣∣∣∣

2

 ,

where E is the expectation operator. PSD describes how power distributes as a func-

tion of frequency f for the given signal x(k). Independent of the method used,

only an estimate of the true PSD of the signal can be obtained from a discrete

signal.

An example of a finite time PSD estimate of the signal, called a periodogram,

is given by the following formula:

P (f) =
1

N

∣∣∣∣∣
N∑

k=1

x(k)e−ifk

∣∣∣∣∣

2

.

A periodogram can be enhanced by using various kinds of windowing which

leads to different methods, for example the Blackman-Tukey, Bartlett, Welch and

Daniell methods. In addition, the definition of PSD may also be based on dis-

crete time Fourier transformation of the covariance sequence of the signal. The

corresponding finite time PSD estimate is called a correlogram [23, 159, 165].

When periodic components of the signal are found, they can be useful in

constructing a model of the signal. With neural networks, they can be used in a

similar manner as the autocorrelation function to determine the number of effec-

tive inputs required for the network. However, real life signals, such as heart rate

time series, are often nonstationary and are compositions of periodic and non-

periodic components.

Power and frequency moments

Characterization, quantification or feature extraction of power spectrum may be

executed in several ways depending on the application. Instead of using the
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whole spectrum we may compose one or more features to define its frequency

and power contents.

A basic PSD feature is the mode frequency, the frequency of maximum power,

in other words, the frequency where the highest power peak of PSD is:

fMOD = argmaxS(f)
f

. (3)

Another commonly used feature is the mean frequency, the centre of gravity

of the spectrum defined as

fMEAN =

∫∞

f=0 fS(f)df
∫∞

f=0
S(f)df

. (4)

In time-frequency distributions, the mean frequency is also known as instanta-

neous frequency or centre frequency.

The median frequency divides the PSD into two equal-sized power regions:

∫ fMED

f=0

S(f)df =

∫ ∞

fMED

S(f)df. (5)

Mode, mean and median powers may also be defined in a similar manner to

characterize the PSD:

pMOD = max
f

S(f), (6)

pMEAN = lim
N−→∞

∑N

f=0 S(f)

N
, (7)

pMED =

∫ fMED

f=0

S(f)df. (8)

We have defined the power spectrum features for the full power spectrum

but naturally the inspection may also be applied to a partial area, or band, of the

spectrum. For example, in a heart rate variability analysis we may also wish to

define the mean frequency and power for both low- and high-frequency bands

separately.

The mean and median frequency has shown to have a high correlation with

empirical data, such as a myoelectric signal, and there is only little reason to select

one over another [56]. Perhaps, since the median frequency is more complex to

calculate compared to the mean frequency, and as they both give similar empirical

results, the latter is more commonly used. However, the median frequency has

claimed to be least sensitive to noise [166] (cited in [86, p. 34]). As discussed in

Section 2.4, the heart rate time series artifacts affect both the time and frequency

domain features considerably. Hence, the proper correction procedures should be

applied before utilizing the spectral analysis.
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3.1.2 Time-frequency distributions

A straightforward idea to localize the spectral information in time is to use only

a windowed part of the data to present the local spectral contents and move this

window through the data. As a result we get a time-frequency distribution (TFRD),

where for each time instant we have a local spectrum [28]. Due to the local nature

of the spectrum it will no longer be so affected by the nonstationarities of the

signal.

With time-frequency distributions we can follow how the frequency and am-

plitude contents of the signal change through time (or remain the same for a sta-

tionary signal). An easy implementation of this idea is the short-time Fourier trans-

formation (STFT) (a.k.a. Gabor transformation), defined in the infinite discrete case

as

STFT (f, k) =

∞∑

n=−∞

x(k + n)hN (n)e−ifn,

where hN (n) is a symmetric, data window with N nonzero samples. The corre-

sponding periodogram reads as

P (f, k) =
1

N
|STFT (f, k)|

2
.

Another popular TFRD is the Smoothed Pseudo Wigner transformation (SPWV),

defined as

SPWV (f, k) =

∞∑

m=−∞

gM (m)

∞∑

n=−∞

hN (n)x(k + n + m)x∗(k − n + m)e−i2fn.

The summation with the window gM (m) is used to smooth the estimate over time.

This is to reduce the cross-terms often appearing in the middle of two periodic

components, which makes the interpretation difficult. The enhancement of the

time resolution, however, leads to the reduction of the frequency resolution and

vise versa: A short data window will result in a time-sensitive model but it will

also cut off periodic components below the Nyquist frequency.

With a SPWV, the digital filtering, for example FIR filtering introduced in Sec-

tion 3.2.3, may help to reduce the cross-terms. Digital filtering is used to remove

frequency components not of interest from the time series. Especially with the

heart rate data, where there are two clear high and low-frequency components,

such as the RSA- and 0.1 hertz components, digital filtering may alter the quality

of the presentation. When the signal is reduced to only one component, the cross-

terms are not likely to have as great an effect on the TFRD as when there are more

periodic components in the signal.

The advantage of the SPWV over the STFT is that it is two-dimensional,

leading to an excellent time resolution. STFT, on the other hand, is a more robust

estimate of the local spectra [134, p. 49, 57 ].

The power and frequency moments for time-frequency distributions are de-

fined for each time instant and, for example, the mean frequency results in an
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instantaneous frequency time series. For nonstationary and multi-cyclic compo-

nent signals, such as heart rate, the mode frequency may become very unstable

and oscillate when observed over time (see Korhonen 1997 [86, p. 34]). The in-

stantaneous frequency is often more stable and appears continuous. However, in

the presence of multiple cyclic components, it describes the signal frequency con-

tents poorly. One alternative is to use preliminary information of the signal, if any,

and build the frequency and power features based on separate frequency bands.

Other time-frequency distributions exist as well, for example the Wavelet

transforms (see Section 3.1.3) and parametric methods like the AR block model

algorithm. A comprehensive theoretical and historical review of time-frequency

distributions is given by Cohen [28].

3.1.3 Time-scale distributions

A different perspective to signal decomposition is given by the wavelet transforma-

tion [26, 44, 96]. Instead of power, the wavelet transformation is based on coeffi-

cients, which describe the correlation between the wavelet and the signal at any

given time instant. The frequency is replaced with a concept of scale. The scales

may be conversed to analogous frequencies.

The basic principle of the wavelet transformation is illustrated in Figure 16.

A mother wavelet is moved across the signal with different scales to measure the

correlation between the wavelet and the signal at each time instant. Different

shapes of the wavelet may be used, enabling other than sinusoidal composition

of the signal. For each wavelet scale we produce a wavelet coefficient time series
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Figure 16: The concept of time-scale representation of a signal: wavelet shapes

with different scales are moved across the signal to calculate wavelet coefficients,

the correlation between the signal and wavelet shape at a given time instant.
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and all together they produce the time-scale distribution of the signal.

The wavelet transformation gives a time-scale distribution of the signal in

continuous or discrete form. In time-scale representations the concept of contin-

uous and discrete differ from standard or intuition. The discrete wavelet transfor-

mation is used for analysis where the wavelet scale is restricted to powers of two.

Continuous wavelet transformation is applied to a discrete time series but the scale

of the wavelet is ”continuous”, i.e., the accuracy of the scale is unlimited.

In short-time Fourier transformation the time- and frequency resolution are

dominated by the window size used. In continuous wavelet transformation both

may be set arbitrary. Another important strength is the abandonment of sinu-

soidal presumption of the signal content. The mother wavelet may have different

shapes, improving the power estimation properties in some applications. For ex-

ample, Pichot et al. [131] claim wavelet transformation to be superior to short-time

Fourier transformation in quantitative and statistical separation of the heart rate

time series during atropine blocking. The base level before the atropine is com-

pared to progressive atropine doses over time. The STFT power is unable to give

statistical difference between the base level and atropine doses. The wavelet coef-

ficients produce notable and quantitative change in heart rate variability.

The family of mother wavelets is already wide and more may be defined.

The wavelet shape should contain certain properties to be invertible [104]. One

modification to the wavelet transformation would be to use different wavelet

shapes for different scales [131].

The use of wavelet transformation to measure power contents and abrupt

changes in the system seems promising [131]. However, the scale presentation is

more difficult to interpret since the correlation between the wavelet and the signal

oscillates. This deficiency is visualized with a simple sine function in Figure 17.

The correlation between the wavelet and the signal is close to one in the time in-

stants the two signals cross. In the middle, between the transition from positive

to negative correlation of one, the wavelet coefficients go to zero. This oscilla-

tion results in a difficult interpretation of the frequency contents of the signal. In

particular, the use of mean, mode and median frequencies become unstable.

Other wavelet applications include ECG artifact detection [27, p. 894-904];

detection of discontinuities, breakdown points and long-term evolution (trends);

signal or image denoising; image compression; and fast multiplication of large

matrices [104].

3.1.4 Error functions

Error functions are used to measure the difference between true and model-

generated data. Various error functions are used, depending on the purpose of

the analysis. In time series modeling, the error function is often the objective func-

tion, the function we wish to minimize. Hence, the modeling is based on empirical

input data fed into the model and the target data. The model-produced output is

compared to the target values and a measure of distance is calculated. This mea-
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Figure 17: Discrete wavelet transformation of a sine function. The wavelet coeffi-

cients oscillate with the signal’s sine rhythm.

sure, or error, is used to guide the optimization process to find an optimal set of

parameters for the model.

Let T be a set of N indices for which we want to compare the predicted val-

ues x̂(k) and the real observed values x(k). Let σ2
T be the variance of the observed

set {x(k) : k ∈ T }. The sum of squared errors of the predictors x̂(k) is defined as

SSE =
1

2

∑

k∈T

(x(k) − x̂(k))2. (9)

The SSE measure can be derived from the principle of maximum likelihood on

the assumption of a Gaussian distribution of target data (see [13, p. 195-198]). The

mean-squared error, MSE, is defined as 2SSE/N .

Normalized mean-squared error is

NMSE =
1

σ2
T N

∑

k∈T

(x(k) − x̂(k))2. (10)
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If the NMSE equals one, the error corresponds to predicting the average value of

the set.

If the targets are genuinely positive, we may also define mean relative error,

MRE =
1

N

∑

k∈T

|x(k) − x̂(k)|

x(k)
. (11)

Notice that optimization methods based on derivative information of the objec-

tive function require continuous and differentiable functions [116]. Thus, MRE is

not suitable in these applications. However, optimization methods do exist, like

genetic algorithms, that do not contain these restrictions [94, 107, 124, 173].

MRE results in a different distribution of residuals than, say MSE, as MRE

gives a relative error between the target and the estimate rather than absolute

error. This may be illustrative when the error of the model in different target space

regions is observed. In general, the various functions reveal different aspects of

the model error.

If some of the samples should have more weight in the optimization process,

a weighted squared error may be constructed [13, 87]:

WSE =
∑

k∈T

w(k) · (x(k) − x̂(k))
2
, (12)

where w(k) is the positive weighting. Weighting may also be chosen in such a

way that the total sum of the weights equals one.

3.1.5 Correlation functions

Some authors also prefer to use correlation between the estimate and target data

to illustrate model fitness. However, one difference to error functions is that cor-

relation is not used in optimization steps.

Pearson’s correlation coefficient is defined as follows:

CP =

∑
k∈T (x(k) − µx) (x̂(k) − µx̂)√∑

k∈T (x(k) − µx)2 ·
∑

k∈T (x̂(k) − µx̂)2
, (13)

where µx and µx̂ are the respective sample means for estimate x and target x̂ in

the defined set k ∈ T .

Spearman’s rank correlation coefficient is defined as

CS = 1 −
12 · SSE

N3 − N
, (14)

where the sum of squared errors is calculated for ranked counterparts of x(k) and

x̂(k). Ranked data is ordinal data. Real valued data is arranged and labeled, for

instance, to integer numbers, depending on their order in the sequence. Data

ranking may improve the correlation estimation in the presence of outliers and

artifacts. Furthermore, data ranking may elicit a minor variability of the signal in
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the presence of greater values. There is also Kendall’s rank and biserial correlation

coefficients [25, 31].

Notice that the use of a correlation alone to describe model fitness is somewhat

questionable since, e.g., Pearson correlation between the time series [1 2 3 4 5] and

[22 23 24 25 26] results in one. The analysis of equation (13) also reveals that out-

liers will mislead the correlation estimation considerably: consider two random

signals drawn from uniformly distributed interval [0 1] having Pearson correla-

tion close to zero. If some time instance for both signals is replaced with a number

large enough, similarly to missing- and extra beats in sequence of RR intervals,

the Pearson correlation will go to one.

Since correlation estimates assume stationarity of the time series, a nonsta-

tionary signal with varying variance will diminish the correlation effect for time

instances having a decreased variance. Thus, the instances in the signal having

greater variance will dominate the results, even if they constitute a shorter period

of time in the whole signal.

In statistical sciences, a Pearson correlation assumes a normally distributed

and large dataset. The significance of the correlation is tested via t-test or

ANOVA [185]. If the assumptions are not valid, nonparametric methods, like

Spearman’s correlation, are evaluated. In this dissertation, the precise statistical

analysis is avoided and the statistical indices are merely descriptive. The station-

ary assumption, especially, is invalid for the presented applications and, thus,

statistical indices have to be treated with caution.

3.1.6 Autocorrelation function

Autocorrelation is used to estimate periodic behavior of the time series in the time

domain. An alternative and perhaps more illustrative device is the spectral anal-

ysis, presented in Section 3.1.1.

By calculating the correlation between the signal and its delayed version, we

can study the periodic nature of the signal. For example, an autocorrelation of one

at defined delay, or time lag, suggests that the signal includes similar oscillations

after the defined time lag.

The autocovariance at lag m = 0, 1, . . . of x(k) versus x(k − m) is defined as

cov(x(k), x(k − m)) = E [(x(k) − µ)(x(k − m) − µ)]. (15)

The corresponding autocorrelation at lag m is given by

ρm =
cov(x(k), x(k − m))√

E [(x(k) − µ)2]E [(x(k − m) − µ)2]
. (16)

If the process is stationary, the variances do not depend on time. This means

that the correlation between x(k) and x(k − m) reduces to

ρm =
cov(x(k), x(k − m))

σ2
,
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where σ is the standard deviation and σ2 the variance.

A sample estimation of the autocorrelation function for stationary processes

suggested in Box, Jenkins and Reinsel [15, p. 31] is

ρ̂m =

∑N−m
k=1 (x(k) − µ̂)(x(k + m) − µ̂)

∑N

k=1(x(k) − µ̂)2
.

Autocorrelation relies on the stationarity of the time series. For a nonstation-

ary signal, autocorrelation may be comprehended as a measure of average lag (in

a cycle or period), main or most distinctive lag, in the signal.

One use for the autocorrelation function is to estimate the number of ef-

fective inputs for a neural network. Eric Wan [178, p. 209] used this approach

together with single step residuals of the linear autoregressive models (see Sec-

tion 3.1.7) to estimate the number of inputs of a laser data set for a FIR network,

presented in Section 4.2.2.

Notice that autocorrelation may be constructed in a similar manner for the

correlation estimates introduced in Section 3.1.5: Spearman’s rank, Kendall’s rank

and biserial correlation coefficients. In addition, the deficiencies discussed in the

section are also valid with the autocorrelation estimation.

3.1.7 Linear models

Linear models assume that the time series can be reproduced from a linear re-

lationship between the model parameters. Although linear models are not very

powerful, and often not even suitable when forecasting complex time series, they

still have some desirable features. Their theory is well investigated and can be

understood in great detail. Also implementation of the model is straightforward.

This is not the case with more complex models, like neural networks. Linear mod-

els can also be used to offer a point of comparison against more sophisticated mod-

els. Linear models for time series analysis have been considered, for example, by

Box, Jenkins and Reinsel [15] or Chatfield [24].

Autoregressive models

In an autoregressive model of order p, or AR(p) model, it is assumed that the future

values of the time series are a weighted sum of the past values of the series:

x(k) = w1x(k − 1) + w2x(k − 2) + · · · + wpx(k − p) + ε(k), (17)

where ε(k) is an error term assumed to be a white noise process or some controlled

input.

One important theoretical result for the AR(p) model is the stationarity condi-

tion: an AR(p) model is stationary if and only if the roots of the equation

1 − w1z − w2z
2 − · · · − wpz

p = 0 (18)
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lie outside the unit circle in the complex plane [15, p. 55]. Moreover, if the error

term vanishes, the output of the model can only go to zero, diverge or oscillate

periodically. Take for example an AR(1) model

x(k) = wx(k − 1).

If |w| < 1, then x(k) decays to zero. For |w| > 1 the value of x(k) grows exponen-

tially without limit.

For autoregressive models the autocorrelations ρm can be represented as [15,

p. 57]

ρm =

p∑

i=1

wiρm−i, m = 1, . . . , p, (19)

in terms of the parameters wi. This formula is known as the Yule-Walker equation.

If the autocorrelations are estimated from the data, the Yule-Walker equations can

be used to approximate the unknown parameters wi.

Moving average models

A moving average model of order q, MA(q) model, presupposes that the time series

is produced by some external input e(k):

x(k) = e(k) + ŵ1e(k − 1) + · · · + ŵqe(k − q). (20)

The name of the model can be misleading, since the sum of the weight parame-

ters ŵi is not restricted to unity. If the external inputs are uncorrelated and time

independent, the MA(q) models are always stationary [15, p. 70].

Mixed autoregressive-moving average models

A natural step to gain more model flexibility is to join the AR(p) and the

MA(q) models together. The result is the mixed autoregressive-moving average,

or ARMA(p,q) model:

x(k) = w1x(k − 1) + w2x(k − 2) + · · · + wpx(k − p) + e(k)+

+ ŵ1e(k − 1) + · · · + ŵqe(k − q).
(21)

Autoregressive integrated moving average models

The autoregressive integrated moving average models, ARIMA(p,d,q) models, are an

attempt to linearly control nonstationary signals. The model has slightly weaker

assumption than the AR(p) model: the dth difference of the model, ∇dx(k) =

x(k) − x(k − d), is stationary. This leads to a model of the form

∇dx(k) = w1∇
dx(k − 1) + w2∇

dx(k − 2) + · · · + wp∇
dx(k − p) + e(k)+

+ ŵ1e(k − 1) + · · · + ŵqe(k − q).
(22)
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Figure 18: First twenty points of ARIMA(1,2,2) model given by equation (23).

For an example we generated an ARIMA(1,2,2) model with random white

noise as an external input e(k). The formula of the model was

x(k) = x(k − 2) + 0.1(x(k − 1) − x(k − 3))+

+ e(k) − 0.5e(k − 1) + 0.2e(k − 2).
(23)

The result is shown in Figure 18. Random noise was drawn from the uniform

interval [−0.5, 0.5].

Discussion

One question not answered was how to select the order of the model when we

are presented with some data. Some heuristics have been developed but they

usually rely heavily on the linearity of the model and on assumptions of the white

noise distribution [178, p. 15]. Many of the techniques are variations of the idea

that part of the data is retained from the modeling and then used to compare the

efficiency of the model by comparing model output and retained data. In such a

manner several models with a different number of parameters may be evaluated

and compared.

We did not give any procedure to find coefficients for MA(q), ARMA(p,q) or

ARIMA(p,d,q) models. There are some standard techniques [15, section 6.3]. Ba-

sically these techniques reduce to the solving of a suitable system of linear equa-

tions.

Linear models have a good theoretical background and they have been

widely used for almost half a century. However, it turns out that if the system

from which the data is drawn has a complicated power spectrum, the linear mod-

els will fail [178]. A power spectrum contains same information as the ARMA(p,q)

model. Thus, if and only if the time series is well characterized by its power spec-

trum it can be approximated with ARMA(p,q) model. One example of such a
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system is the logistic map, which is a simple parabola

x(k) = wx(k − 1)(1 − x(k − 1)). (24)

This system is known to describe many laboratory systems such as hydrodynamic

flows and chemical reactions. It is not possible to give any suitable linear fit to a

system of this kind [178, p. 16-17].

3.1.8 Nonlinear models

Nonlinear models became recognized and used in practice by the scientific com-

munity in the early 1980s. Models like the Volterra series, threshold AR models

(TAR) and exponential AR models are restricted to present some particular model

structure. This explains why there are so many different nonlinear models in the

literature.

If the phenomenon we are observing has a structure that is a special case of

the nonlinear model, the model estimates can be very accurate. Lehtokangas [92,

p. 58-63] used different kinds of models including the radial basis function net-

work, autoregressive models, threshold AR models and Volterra series, for the es-

timation of logistic and Henon maps defined in (1) and (24). It appeared, that the

Volterra series outperformed other methods. Both maps were possible to be mod-

eled without error, since both maps are special cases of the Volterra series. Notice,

however, that in this situation the optimal solution also includes the model struc-

ture, i.e., the number of model parameters. Due to the universal approximation

theory presented in Section 4.1.1 we may always construct a large two-layered

neural network that can repeat the data without an error.

There are some theoretical benefits if we restrict the class of nonlinearity.

Often, for example, the model parameters can be optimized with efficient algo-

rithms. However, there are many different kinds of nonlinearity in the world.

A neural network can often offer a more flexible and powerful tool for function

approximation. Yet, neural networks often require a lot of computer time for de-

termining the unknown parameters. Another deficiency is that the local training

algorithms do not always find the optimal solution. In addition, their extensive

theory is still to be constructed. Nevertheless, neural networks are interesting and

in many cases may provide a suitable model for the observed system.

Nonlinear heart rate models include models for oxygen consumption esti-

mation. The oxygen consumption estimation based on the heart rate level will

be presented in Section 6.2. In addition, HRV analysis and research has utilized

some nonlinear quantitative measures. The methods include approximate en-

tropy, detrended fluctuation analysis, power-law relationship analysis, the Lya-

punov exponent, Haussdorff correlation dimension D and Kolmogorov entropy

K, see e.g. [108, p. 20-24]. The development of these methods has its origin in the

chaos theory.



53

3.1.9 Geometric approach in the time domain to estimate

frequency and power contents of a signal

An alternative for time-frequency and time-scale distributions to detect the main

frequency components in a signal is presented next. The algorithm is based on

peak detection in the time domain. The method results in perfect time and fre-

quency resolution. Furthermore, it allows the measurement of reliability of the

frequency and power estimates, as will be demonstrated later in Section 3.3. The

algorithm is efficient, taking less CPU-time than, for instance, any time-frequency

distribution. It may also be applied to on-line applications and embedded sys-

tems. A deficiency of the method is that it may not work well with natural signals

with multiple cyclic components. The principles of the algorithm are first pre-

sented in 3.1 and then further analysis and examples are provided.

Algorithm 3.1 Down peak detection algorithm.

1. Calculate a moving average of the signal, e.g., with a Hanning window.

2. Define a maximal frequency (MF) allowed by the algorithm. This specifies a local

minimum range.

3. Choose all local minimums in the signal which are below the moving average of the

signal. These anchor points are called peaks of the signal.

4. If there exists two or more anchor points inside a local minimum range, only one is

chosen.

5. Two adjacent anchor points define one instantaneous frequency of the signal as in-

verse of the time difference in seconds between the peaks.

Algorithm 3.1 seeks local minimums, called down peaks, of the sinusoid

signal. Detection of local maxima is executed in a similar manner.

When the peaks are detected the instantaneous frequency is formed by cal-

culating the time in seconds between two successive peaks. The frequency be-

tween the peaks is the inverse of the time distance in seconds between the peaks.

The mean power of a complex time series is defined with the following formula:

F (t) =
1

N

N∑

k=1

|f(k)|2. (25)

Thus, the instantaneous power is calculated by applying the equation (25) for each

peak interval.

Figure 19 demonstrates the applicability of the algorithm for simulated data.

Data has a trend component, a single dynamic sinusoidal component and random

noise. The model behind the data is given by:

f(t) = 100 + 70 sin
t

20
+ (100 − t)

(
e(t) + sin

πt2

500

)
, (26)
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where e(t) is random noise drawn from the uniform distribution on [0, 1].

The algorithm relies heavily on the gradient information of the signal. The

signal noise or more frequent sinusoidal components with small amplitude may

generate adjacent peaks within the main component we wish to observe. This is

controlled by limiting the frequency range, by choosing only one local minimum

inside the defined region. This procedure, combined with prior knowledge of the

signal, may be applied to filter out some of the periodicity introduced by other

oscillations or to filter out noise.

The basic algorithm does not give an exact time location, since the frequency

is estimated between two adjacent local minimums, thus leading to quarter dis-

placement of instantaneous frequency compared to analytic sinuisoid from zero

to 2π. This may be corrected by applying the anchor points between two adja-

cent up and down peaks. It is also possible to assess the amplitude of a sinus

component as the difference between the adjacent local minimum and the local

maximum divided by two.

For some signals, a less complicated approach may be applied. Instead of

detecting up or down peaks, an intersection between the window-averaged mean

and the signal may be used to define anchor points. In this procedure only every

second anchor point is labeled and the time difference between adjacent points

declare the instantaneous frequency between them. In addition to simplicity, the

algorithm estimates the exact time location.

This section outlined the subject of the geometrical approach for estimat-

ing instantaneous frequency, amplitude and power. In the application presented

in 6.3, the algorithm is utilized to estimate the respiration frequency from chest

expansion data.

The algorithm can be further developed by utilizing hybrid models. For

example, the wavelet transformation could be applied to peak detection. Fur-

thermore, time-frequency distributions provide average frequency contents in a

predefined time range, which could be applied to the selection of the peaks. A

selective search among different instantaneous frequencies and their probabilities

could be used.
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Figure 19: A signal decomposed to its frequency and power components with the

peak detection algorithm. The upper figure is the original signal with asterisks

in detected lower peaks (anchor points). The middle figure illustrates the instan-

taneous frequency through time and bottom figure is the corresponding power

for each frequency cycle. In this example maximal frequency was set to Nyquist

frequency: MF=2.5 Hz.
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3.2 Basic preprocessing methods

Neural networks are famous for their fault-tolerance, which means that the phe-

nomenon to be captured is not needed to be described precisely and completely

by the measured data. However, better data results in better distribution and im-

proved models.

With neural networks, preprocessing may have great impact on network

performance. The simplest case of preprocessing could be a reduction of data

if there is redundant information. Also smoothing, e.g., with a moving Hanning

window, may improve the signal-to-noise ratio of the data. In general, the use

of data preprocessing techniques is application dependent and different methods

should be empirically experimented and validated.

3.2.1 Moving averaging of the signal

Smoothing corresponds to moving averaging of the signal with a predefined win-

dow shape. Naturally, the optimal window length and shape has to be explored

through experimentation. A general smoothing procedure of a discrete time series

x(t) for a single time instant t is expressed with the following formula:

x̂(t) =

k∑
n=−k

x(t)h2k+1(n + k)

k∑
n=−k

h2k+1(n + k)

, (27)

where h(·) is the window, such as a Hanning window, of odd length 2k + 1. The

window is usually chosen in such a way that the current time instant has a rel-

ative weighting of one and the time instants before and after are symmetric and

have decreasing weighting as a function of distance to the centre. Typical moving

average windows are presented in Figure 20 [99, 165]. For example, an N -point

Hanning window is constructed with the following equation:

hN (t) = 0.5

(
1 − cos

(
2πt

t + 1

))
, t ∈ {1, . . . , N}. (28)

In Kettunen and Keltinkanas-Järvinen [75] smoothing is shown to improve

the signal-to-noise ratio of physiological data. This information is suggested to

be exploited to enhance the quality of the input signals for the given time series

model.

3.2.2 Linear and nonlinear trends and detrending

A loose definition of a trend was given by Chatfield [24]: a trend is a long-term

change in the mean level of the time series. When creating a synthetic model

of the empirical time series, we may presume the model consists of components
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Figure 20: Examples of different moving average windows each having a total

length of 31. Different averaging windows are presented, e.g., in [99, 165].

such as cyclic components, level, trend or noise terms. Thus, the trend estimation

may be part of the model construction. A trend may also be considered a cyclic

component with long cyclic length.

The process of removing trend components not of interest from a time series

is called detrending. The procedure basically simplifies the signal by removing one

or more linear components. Detrending may also improve the time series station-

arity conditions, leading to enhanced estimation properties. This also applies to a

frequency domain analysis, where detrending may improve the PSD estimate.

Linear detrending may be performed in its simplest form by subtracting a

fitted line from the time series. To expand this idea to nonlinear trends, we may

use any curve-fitting approach for the trend removal. However, these approaches

are not yet practical for a natural time series with many visible trends, such as

the time series having several local trends instead of one global trend. For exam-

ple, in Figure 12 there exists first an increasing nonlinear trend in the heart rate

during exercise (first phase) and decreasing nonlinear trend when the subject is

recovering from the exercise (second phase).

A linear estimate is too simple, and for the nonlinear models we should

know the number of local trends in advance to choose the appropriate model or-

der. A more automated process is to remove local trends with digital filtering, in-

troduced in the next section, which may be used to remove desired low-frequency
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components from the time series (so called high-pass filtering).

There are also other alternatives to trend removal. A neural network

may be constructed for filtering and trend removal with autoassociative learn-

ing [173, p. 42-44]. Also a Wavelet transformation may be applied to the trend

removal [104]. Smoothing, or moving average methods as well as convolution,

for filtering and trend removal, are described by Chatfield [24].

3.2.3 Digital filtering
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Figure 21: First figure presents the outcome of a 500th order FIR digital band-pass

filter for frequencies 0.04 − 0.5 Hz (LF+HF). The second and third figures present

the band-pass filters for frequencies 0.04 − 0.15 Hz (LF) and 0.15 − 0.5 Hz (HF),

respectively.

Digital filtering is a normal data preprocessing technique used to reject the

periodic components not of interest. Examples of digital filtering procedures are

infinite impulse response (IIR), and finite impulse response (FIR) filters. They are

standard signal processing techniques and are well described, e.g., in [121, 103,

159, 161].

Figure 21 presents the outcome of different filtering procedures applied to

the orthostatic test data presented in Figure 14 in the second row left. In the ex-

periment, the five hertz sampled heart period time series was filtered with a 500th

order FIR digital band-pass filter to extract the frequency bands between 0.04−0.5

Hz (both low- and high-frequency components), 0.15 − 0.5 Hz (high-frequency



59

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15
x 10

5

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15
x 10

5

Frequency (hertz)

P
ow

er
 (

m
s2 )

Figure 22: The first figure illustrates the power spectrum of a breathing test data

introduced in Section 2.5 lasting a total of 9 minutes. The second figure is the

power spectrum of the same data but the data is filtered to a high-frequency band

between 0.15 − 0.5 Hz.

component), and 0.04 − 0.15 Hz (the low-frequency band). As proposed in Sec-

tion 3.2.2, digital filtering can be applied for long-term and also short-term trend

removal as can be verified from the figures. The passband refers to those frequen-

cies that are passed, while the stopband contains those frequencies that are blocked.

The transition band is between them. Furthermore, the cut-off frequency is the one

dividing the passband and transition band [161].

An important feature of FIR digital filtering is that it may be constructed in a

way that it does not change the phase of the signal. It also offers a reliable cut-off

between frequencies, as can be seen in Figure 22; the spectral contents within the

frequency band seem to remain unchanged compared to the unfiltered data. The

accuracy of the frequency cut-off depends on the filter order. With a small number

of filter coefficients, the band-pass filtering results in a wide transition band.

To achieve a clear frequency cut-off a high filter order is required, but also

enough data points. This is a deficiency in digital filtering if applied to on-line

applications. To declare a zero phase filter, three times the filter order of data

points is required. Such filter calculus for time t also requires future points, which

effects on-line applicability [103].
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In practice, the digital filter coefficients are resolved in advance to define

proper frequency and power modulation. Thus, only a weighted average through

the filter coefficients and the signal is calculated for each time instant.

An alternative for digital filtering is a direct power weighting in the fre-

quency domain. The weighting may be used to elicit certain frequency compo-

nents by using proportional weighting of the power spectrum. Simple filtering is

conducted just to ignore or cut off the power spectrum frequencies not of inter-

est. Furthermore, to bring forth some power components, a pre-knowledge of the

signal may be used to construct adaptive filters where the filtering (or direct power

spectrum weighting) is dynamic and controlled by an algorithm using, perhaps,

multi-signal and signal noise information [27, 53]. An application for direct power

weighting is later presented in Section 6.3, where a neural network adaptive filter

is constructed for breathing frequency detection strictly from the heart rate time

series.

3.2.4 Data normalization

If a time series with different statistical properties, such as mean and variance, are

analyzed or modeled, the interpretation may be distorted. For example, simul-

taneous visual interpretation of the signals is difficult if a signal exists that has a

considerably higher range than the other signals.

The rescaling can be done with the following formula for each data point:

x̃(k) =
x(k) − µ

σ
=

1

σ
· x(k) −

µ

σ
= α · x(k) + β, (29)

where µ is the sample mean and σ2 the variance. The latter equality emphasizes

the fact that the normalization is only a scaling procedure, meaning it does not

differ from transforming the signal to a certain interval. For example, forcing a

time series to an interval from zero to one is obtained by choosing

α =
1

maxk {x(k)} − mink {x(k)}
,

β = −
mink {x(k)}

maxk {x(k)} − mink {x(k)}
.

Normalization, or scaling, may become problematic with on-line applications and

chaotic signals, since the signal characteristics change over time. With signals

like a heart rate time series, prior knowledge of the signal may be exploited, for

example the minimum and maximum values, to transform the input and output

space instead of using only the available data.

3.2.5 Data ranking

A signal-to-noise ratio may be improved for certain applications by ranking the

signal, e.g., by sorting the observations to positive integer numbers, allowing the
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Figure 23: The upper figure presents two normalized power spectrums of a heart

period time series with spectrum calculated from original data (dashed) and

ranked data (solid line). The bottom figure illustrates power spectrums produced

in a similar way but now ten missing beat artifacts are assigned to the time series.

The heart period time series is presented in the bottom left of Figure 14.

same occurrences. Algorithm 3.2 presents an example implementation of this ap-

proach. Data ranking preserves the signal rhythm and oscillations but it deletes

the acceleration of the signal.

Algorithm 3.2 Data ranking.

0. Let x present a vector, e.g., a time series, containing n observations x(k), k =

1, . . . , n. Vector y will present the output of the algorithm.

1. Sort the vector x to increasing order and store the position of each element in the

original vector to z. The resulting sorted time series is presented by vector x. Hence,

the following equality will hold:

x(k) = x(z(k))

for all k.

2. Set the indices to one,

i = 1, j = 1.
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3. Set

y(z(i)) = j.

4.1 If i equals n, then the calculation is ready.

4.2 Else if x(i) equals x(i + 1) then set

i = i + 1

and return to step 3.

4.3 Else set

i = i + 1, j = j + 1

and return to step 3.

The upper graph in Figure 23 illustrates a normalized power spectrum of

original and data-ranked signals. The difference between the signals is insignifi-

cant. The interesting result is achieved when ten missing beats are introduced to

the heart period time series. As demonstrated by the power spectrums, the data-

ranked signal better preserves the original frequency and power contents and is

less sensitive to the artifacts.

Data ranking has a great impact in correlation coefficient calculations in pres-

ence of artifacts and may be used to improve the estimation. Naturally this ap-

plies to the variance and standard deviation of the signal. Modifications based on

rank and sign are applied to the correlation coefficients estimation by Möttönen

et al. [112, 111]. They also applied the method to the MUSIC algorithm, briefly

introduced in Section 3.1.1. However, it seems that the implementation is very

expensive to calculate and not practical for larger data processing or embedded

systems with inefficient CPU.

3.2.6 Remarks

Artifact correction, digital filtering, detrending, power spectrum weighting, data

normalization, as well as other data preprocessing techniques, often improve the

data quality in statistical significance tests or other direct quantitative analysis,

such as model building and direct error measurement between the model and tar-

get output. This may be a result of improved signal-to-noise ratio of the signal.

However, they may have a side effect to simplify the signal and observed phe-

nomenon, especially with certain statistical tests, the assumptions of linearity and

stationarity may have a great impact in the selection of data preprocessing tech-

niques. After all the data manipulation it is necessary to ask whether the prepro-

cessing is executed only to improve applicability of a mathematical or statistical

model rather than understanding the underlying phenomena that the signal rep-

resents. The presumptions of the signal nature should drive the analysis, not the

techniques.
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3.3 Postprocessing

In this dissertation two different signal postprocessing approaches are suggested:

moving averaging of the model output and interpolation approach (cf. Sec-

tion 2.3). Postprocessing refers here to a signal processing method applied to the

model output or signal estimate. Both methods produce a time domain correction

of the given model to form enhanced estimates. A time domain correction may

utilize the local information of the temporal signal to decide whether the observed

instant appears fit based on its surrounding. Hence, the presumption is that each

time instant is related to its neighbours and should not differ significantly from its

close surroundings. Abrupt changes are considered as outliers or artifacts. This

presumption is suggested, because a change in the heart rate time series has cer-

tain physiological limits, e.g, the acceleration or recovery of the heart is restricted

with physiological laws. The applicability of postprocessing is demonstrated later

with an application presented in Section 6.3.

To gain local information we must have some objective measure to quantify

the reliability of the estimate at given time instances. It will be shown that reliabil-

ity information of the signal estimate may be produced by some models based on,

for example, the model error, distribution of residuals or properties of the input

signals. Such models include a generalized regression neural network presented

in Section 4.3.2 and the hybrid models introduced in Section 5. However, in this

section we have to presume that such information is available for these models

and the information may be used to enhance the quality of the model. The time

domain correction will also be called a reliability correction, as reliability is the main

tool to improve the model.

The reliability estimate rb(t) is assumed to be a discrete presentation of the

reliability of the model output y(t) at a given time instant t. It is scaled in such

a way that the higher the value, the higher the reliability of the signal is. Thus,

it gives quantified local information of the fit of the model estimate. An exam-

ple reliability estimate for an instantaneous frequency of the time-frequency and

time-scale distributions is presented in Section 3.3.1. Yet another example is the

reliability estimate for the peak detection algorithm presented in Section 3.3.2.

3.3.1 Reliability of an instantaneous frequency

Both time-frequency and time-scale distributions are able to elicit instantaneous

frequency moments of the signal (see Sections 3.1.1, 3.1.2 and 3.1.3). It appears that

the mode frequency may produce fast oscillations of the instantaneous frequency

estimate. This will be later demonstrated in Section 6.3. The question is whether

these oscillations can be controlled and perhaps reliabilities could be constructed

for the given instantaneous frequency estimate.

In this section we outline a concept that is not, to our knowledge, discussed

in literature. It is quite a simple observation and is formulated as follows: in
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instantaneous frequency estimation each cycle should last a certain period, e.g., if the

instantaneous frequency gives 0.1 Hz in certain time instant, a stable presentation

should have at least ten seconds of the frequency 0.1 Hz in the surrounding time

points.

Consider, for example, the Gabor transformation. It produces average spec-

tral contents of the signal defined within the used time window. If a signal has

several nonstationary frequency components, then the components with similar

amplitude may produce oscillating frequency estimates from one to another and

the estimates may not last the required time frame.

We suggest the following error to be calculated for the cyclic length devia-

tion:

E(t) = 2f(t) · min{

1
2f(t)∑

k=1

(f(t) − f(t + k))2,

1
2f(t)∑

k=1

(f(t) − f(t − k))2}, (30)

where E(t) is the estimated squared cyclic error of the instantaneous frequency

measure f(t) at time instant t. The formula is a heuristic and a compromise to con-

trol the uncertaintity where the given frequency component should start. Hence,

it is the squared error of the estimate to its neighbours right before and after it,

lasting half the cycle length 1
2f(t) . Analyzing the formula reveals that a frequency

component lasting its full length will always result in zero error.

This error information may also be used to construct a reliability measure

of the instantaneous frequency. Sudden jumps into frequencies that do not last

their respective cyclic length could be considered ”artifacts”. We presumed that

reliability should produce high values for time instants including better reliability.

Now the error E(t) produces small values for a more reliable time instant. To

override this, we may transform the error E(t) to follow the presumption. An

example of a nonlinear transformation function is defined as follows:

rb(t) = exp(−c · E(t)), c > 0, (31)

where c is a positive constant. The transformation maps the function E(t) to an

interval (0, 1]; a small error will now result in high reliability. Zero errors will

result in the reliability of one. Notice that the constant c may be optimized for

the application. Since the function in (31) is differentiable, the optimal constant

c may be optimized, e.g., with the nonlinear optimization methods discussed in

Section 4.

An example linear transformation is defined as

rb(t) = c − E(t), c > 0, (32)

where the constant c could be chosen large enough to keep the reliability positive.

3.3.2 Reliability of the peak detection algorithm

In Section 3.1.9 a geometric approach in the time domain was presented to esti-

mate the frequency and power contents of the signal. If we presume local stability
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of the signal, such as similarity of three adjacent cyclic components, we may im-

prove the algorithm by choosing between alternative peaks with a reliability mea-

sure. Reliability needs the algorithm modification to detect both up and down

peaks (adjacent local minimum and maximum) of the signal. At time moment t2,

the observed down peak’s reliability is a measure of the distance and amplitude

similarity between the adjacent up peaks labeled to occur at time moments t1 and

t3:

r(t2) =
min {|x(t1) − x(t2)|, |x(t3) − x(t2)|}

max {|x(t1) − x(t2)|, |x(t3) − x(t2)|}
(33)

The reliability should be interpreted as a utilization of amplitude information in

the signal. Clear and steady (similar) amplitudes simulate a perfect sine wave.

Clearly, the measure in (33) gives full reliability of one to an analytic sinusoid

signal.

3.3.3 Moving averaging of the model output

In Section 3.2.1 smoothing was suggested to be exploited to enhance the quality

of the input signals for the given time series model. Furthermore, a similar ap-

proach can be utilized for the postprocessing of the model estimate to smooth the

model output. This may improve the model especially if the model itself may

produce reliability information that can be utilized with the smoothing. The re-

sulting smoothing generates a weighting that is relative not only to distance of the

centre but also relative to the corresponding reliability of each time instant. The

procedure results in the following equation:

ŷ(t) =

∑K

n=−K h2K+1(n + K)rb(t + n)y(t)
∑K

n=−K h2K+1(n + K)rb(t + n)
, (34)

where rb(t) is the reliability of the estimate y(t) at time instant t.

Smoothing with and without reliability weighting may also be used as an

empirical test for whether the produced reliabilities are reasonable. If smoothing

without the reliability weighting produces better estimations, then the reliability

information is not valid. Notice also that there exists an optimal window length

and shape for the given application. It is also suggested that some pre-knowledge,

e.g., model inputs, could be exploited to form a dynamic window length having

non-constant length.

3.3.4 Interpolation approach

The reliability information may also be used to improve the model estimate by in-

terpolating instants where the reliability falls below a predefined threshold. The

threshold is chosen empirically to optimize the model. The threshold may be opti-

mized by any line-search algorithm, e.g., golden section search [154], backtracking

algorithm [33], Brent’s algorithm [154], hybrid bisection-cubic interpolation algo-

rithm [154] and algorithm described by Charalambous [22] (all cited in [101]).
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3.3.5 Remarks

The proposed time domain corrections have a heavy assumption: they both as-

sume that the time instants having poor reliability may be improved by shifting

them towards the values of the surrounding time moments with higher reliabil-

ity. In many time series, such as the heart rate signal, the adjacent time instants

are coupled and do not differ substantially. Hence, a correction towards adjacent

values having a higher reliability seems reasonable. Naturally, the effect of the

heuristic should be empirically evaluated.

Furthermore, the moving average methods will smooth the signal to have

a lower variance and instantaneous changes. Hence, we assume that there are

some limits for the instantaneous changes of the signal and the changes should be

reduced. This leads to an idea that the information on the difference limits itself

could be used to evaluate the reliability of the model. As discussed in Section 2.4,

the physiological limits can be utilized to detect artifacts and outliers in the heart

rate time series.

3.4 Time series segmentation

Fancourt and Principe define the basic signal segmentation problem as follows:

”given a single realization of a piecewise ergodic random process, segment the

data into continuous stationary regions” [37]. The dictionary of mathematics de-

fines ergodicity as a property of time-depended processes, such as Markov chains

(a stochastic process that depends only on the previous state of the system), in

which the eventual distribution of states of the system is independent of the ini-

tial state [31].

In this concept (heart rate time series analysis), we may conclude that the

purpose of the time series segmentation is to segment the data into continuous

stationary regions. Furthermore, we may use the segmentation information, such

as the beginning and end of each segment together with suitable segment-wise

statistics, to detect and analyze changes in time series level, trend or cyclic behav-

ior. In detrending, we could apply a data segmentation routine to improve the

curve-fitting approach to divide the data into linear or nonlinear segments and

treat each segment with the detrending routine.

Segmentation information may be used for data modeling, e.g., to construct

a piecewise nonlinear model of the system. Each segment is reproduced with a

different parameter set for a given model or models. For the frequency domain

analysis, methods like the Fourier transformation assume stationarity of the time

series. Thus, segmentation enables us to use the stationary frequency domain

methods to analyze nonstationary data.

Another application for time series segmentation is state detection or the clas-

sification of the time series. In the state detection procedure, a set of features is

calculated for each segment. A feature-vector contains, for example, time series
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statistics such as mean and variance. Also frequency domain features like mean

power or central frequency may be considered. After feature construction, each

data segment is defined and labeled, for example, as a shortest Euclidean distance

between the state prototypes and the feature vectors. State prototypes illustrate

an ”ideal” set of features for each possible state.

The described state detection heuristic is related to signal classification. The

combination of signal segmentation and classification has been experimented,

e.g., by Kehagias [73]. Kohlmorgen et al. present algorithms to utilize neural net-

works and time series segmentation to model physiological state transitions (for

example wake/sleep, music/silence) with an EEG signal [81, 82, 93, 114]. Further-

more, in articles [62, 80, 79, 127] Hidden Markov Models are exploited to model

switching dynamics.

Two different time series segmentation heuristics are presented next, the

moving of a PSD template and a generalized likelihood ratio test (GLR). The first

is presented for its simplicity, the latter to describe enhancements developed to

apply GLR in physiological on-line multivariate time series segmentation. The

common factor for the methods is that they are applied, in this dissertation, in the

time-frequency domain.

In a system described in [76, 78] the GLR-algorithm is used to segment HR

time series to detect the physiological state of a body. The overall system is applied

for the daily monitoring of physiological resources. HR is segmented, based on

the HR level and time-frequency distribution of the signal. Different statistical

features are calculated for each segment and exploited to detect rest, recovery,

physical exercise, light physical activity or postural changes.

The selection of a segmentation algorithm or a specific attribute set for the

method is application dependent. No universal segmentation algorithm allow-

ing segmentation of any nonstationary time series exists. Furthermore, there is

a compromise between the accuracy and computational complexity among the

methods. Thus, a variety of algorithms should be considered, depending on the

purpose and characteristic properties of the application.

3.4.1 Moving a PSD template across the signal to detect change points

Cohen [27, p. 825-827] presents a simple approach for segmenting biomedical non-

stationary signals. A reference window is constructed by calculating a PSD esti-

mate from the beginning of the signal. Suitable prior knowledge is used to de-

fine the appropriate and reliable window length. The algorithm proceeds with a

comparison between a sliding window, which is shifted along the signal, and the

reference window. A threshold and an appropriate distance measure are used to

decide if the two windows are considered to be close enough.

Cohen chooses a relatively normalized spectral distance to measure the dif-

ference between the windows:

Dt =

∫ (
SR(w) − St(w)

SR(w)

)2

dw,
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where SR(w) and St(w) are the PSD estimates of the two windows. When a thresh-

old is exceeded, the last window is defined as the reference window (or template),

a new segment is started and the algorithm continues.

The algorithm may be modified with a growing reference window instead

of a fixed one. Also the way PSD or distance measure is calculated may vary,

depending on the application. In addition, preprocessing and selection of a suit-

able frequency band may be required if, for instance, you wish for the affect of

long-term trends or signal noise to be eliminated.

The algorithm is sensitive to signal artifacts, which affect the power spec-

trum, and the squared distance between the PSD estimates. Hence, the correction

of signal artifacts and outliers are essential.

3.4.2 Signal decomposition and generalized likelihood ratio test

Another approach for nonstationary and nonlinear time series segmentation is the

use of the generalized likelihood ratio test to detect changes in signals. We follow

the ideas presented by Fancourt et al. [37]6, but introduce two enhancements to

this algorithm. The first improvement applies the GLR to multivariate signals.

The second discussion considers a hybrid model, where a signal is decomposed

and further processed with a simple model to find the proper segmentation with

GLR.

We will briefly discuss one possible setup for the GLR algorithm. A full

description, alternative setups, discussion of implementation issues, as well as a

theoretical backround of the GLR algorithm, are provided by the article of Fan-

court and Principe7 [37].

We define the time index N relative to the last detected change point (CP)

to keep the notation simple. The GLR algorithm is based on the following log-

likelihood ratio (LLR):

L(T, N) =
(T − 1)

2
log

(
E1

E2

)
+

(N − T + 1)

2
log

(
E1

E3

)
. (35)

It is used to test whether a change has occurred inside the window {1 . . .N} or not.

The variable T is the intersection point dividing the first (whole) region, {1 . . .N},

to second, {1 . . . T − 1}, and third, {T . . . N}, with respective estimation errors E1,

E2 and E3. The mean-squared estimation errors (see Section 3.1.4) are computed

between the model and signal in their respective regions. Figure 24 illustrates a

three model GLR.

The initial search region length (ISR) defines the minimum range in which the

algorithm is applied. It will also define the initial window range after the CP

6The article of Willsky and Jones [181] presented first application of GLR to detection of abrupt

nonstationary changes in signal.
7Fancourt and Principe apply neural networks to GLR as they produce the log-likelihood ratio from

neural network forecast errors of the signal. A time-delay neural network, trained with Lavenberg-

Marquardt algorithm, was applied for signal estimation.
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Figure 24: Three model GLR.

has been detected, and the search is continued from window {CP + 1, . . . , CP +

ISR} ≡ {1, . . . , N}. Notice that ISR affects the system’s accuracy, since if two

change points are inside the initial search region, only one of them can be detected.

A minimum region length (MRL) is defined to avoid having the LLR estimate

constructed with too few samples. It is applied to each variance estimate E1, E2

and E3 while the function of ISR is used to limit the initial window length. Hence,

the variance estimates are calculated in the following regions:

E1: [1, N ], where N ≥ ISR,

E2: [1, T − 1], where T > MRL,

E3: [T, N ], where N ≥ ISR and T > MRL and N − T + 1 ≥ MRL.

The limits reveal that MRL also defines the dead-zone: a window area where the

change points will not be detected.

In the outside loop of the GLR algorithm N is increased for each iteration with

a predefined step-size and the LLR is recalculated. The position of the intersection

point T can follow the middle of the window. A threshold will determine if a

change in the signal has occurred (L(T, N) > threshold).

In the inside loop, the log-likelihood ratio is used to estimate the change point

inside the window by moving the intersection point T and re-calculating LLR in

each instance for the three regions. In this stage the parameter N remains fixed.

The CP is the intersection point where the minimum value of the ratio is achieved.

Thus, the algorithm is a two-stage procedure: in the inner iteration a mini-

mum of L(T, N) respect to intersection point T is recovered while the outer loop

enlarges the search interval N or accepts a new segment.

GLR modifications

The basic GLR algorithm can also be applied to multivariate signals. One alter-

native is to run the algorithm separately for each signal and use the union of the
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outputs to produce final segmentation. If we presume the signals to be depen-

dent, we could run parallel GLR processes where a detected change in one signal

would also reset other processes to continue from the change point.

Multivariate signals may also be treated with a single GLR run, when sig-

nal estimation errors are combined in the likelihood calculation. A simple way to

unite the errors is to use the average over the errors. However, if the signal vari-

ances are not homogeneous, then the signal with the highest variance dominates.

This may be prevented with the normalization of the signals to unit variance and

zero mean. Normalization may fail for time-dynamic signals in on-line applica-

tions if the required statistics (mean and variance) change in time8. Our sugges-

tion for modifying the GLR is to form the error function as Mth root of product of

errors:

Ek = M

√√√√
M∏

j=1

Ekj , (36)

where M presents the number of signals and Ekj their respective estimation errors

in region k (see Figure 24).

With the modification presented above, the log-likelihood ratio equation re-

sults in the following:

L(T, N) =
(T − 1)

2
log


 M

√√√√
M∏

j=1

E1j

E2j


+

(N − T + 1)

2
log


 M

√√√√
M∏

j=1

E1j

E3j




=
(T − 1)

2M

M∑

j=1

log

(
E1j

E2j

)
+

(N − T + 1)

2M

M∑

j=1

log

(
E1j

E3i

)
.

(37)

The formula in (37) results in a multivariate generalization of equation (35) by pro-

ducing the log-likelihood ratio as an average variance between the error regions.

If M = 1, then the two formulas conclude.

Notice, that the denominator in equations (35) and (37) may become zero.

To prevent zero division in the equations, we may add a computer epsilon to the

corresponding error estimations.

The above modification may also be applied to form an advanced imple-

mentation of the GLR calculation for a univariate signal. The idea is to represent

the signal as a multivariate signal, by using multiple feature sequences. For ex-

ample, in applications where the signal level and cyclic fluctuation is of interest,

such as heart rate time series, we may chop the signal into several signals by using

time-frequency distribution moments.

TFRD moments, such as instantaneous frequency or power in a predefined

frequency band, may be used to estimate changes in the frequency domain. The

8If normalization is applied in an on-line application, the mean and variance is set before-hand

based on pre-data and assumptions of the system’s behavior. Hence, the normalization is used to

scale the data to follow approximately the wished statistics and we presume that the statistics do not

change considerably during the on-line process. However, if the observed system is nonstationary, the

presumptions will fail.
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original signal may be used to present the signal level. Furthermore, it may also

be high-pass filtered or moving averaged to emphasize the level. To these mul-

tivarate signals we may apply the multivariate GLR algorithm. Each signal is

estimated with a simple model, such as mean or median, resulting in fast estima-

tion of the change point in GLR algorithm. If, for instance, the sequence mean is

chosen, a mean-squared error at region k for feature sequence j, is calculated with

the following equations:

E1j =
1

N

N∑

t=1

(xj(t) − x1j)
2
, x1j =

1

N

N∑

t=1

xj(t),

E2j =
1

T − 1

T−1∑

t=1

(xj(t) − x2j)
2
, x2j =

1

T − 1

T−1∑

t=1

xj(t),

E3j =
1

N − T + 1

N∑

t=T

(xj(t) − x3j)
2
, x3j =

1

N − T + 1

N∑

t=T

xj(t).

A simple estimation function may be utilized, since the signal dynamics

are dispersed to the feature sequences, and the modeling of the dynamics are no

longer a problem of the estimation function: the cyclic changes in the original signal

are level changes in TFRD’s frequency moments.

The use of the median to estimate a region inside a segment may be more

stable than the use of the mean in presence of signal artifacts and outliers. Notice

that implementation of median does not necessarily require sorting of the array

(see, e.g., [29, 60, 138, 182]). For example, histogram or tree-based methods do

not require full sorting of the array to calculate the median. Choosing a suitable

algorithm depends on the array length, typical values, and whether we wish to

save memory or CPU-time.

In time-frequency distributions, the compromise between time and fre-

quency resolution must be considered. It is clear that the presented method suffers

from time sensitivity issues if a method such as the STFT is applied for signal de-

composition and calculation of, for instance, instantaneous frequency moments.

STFT’s time resolution depends on the used window size and is proportional to

the frequency resolution: STFT with a small window has better time resolution but

poor frequency resolution. However, if a larger window is used for a nonstation-

ary time series, STFT may offer a more stable presentation of the signal. A large

window gives an average estimate of power or frequency moments in a given

window. Methods like Wavelet transformation have perfect time resolution but

they suffer from other effects, such as instability of instantaneous frequency mea-

sures. Hence, the signal decomposition method for GLR and its usage depends

on the application. For example, an application calculating TFRD, regardless of

the GLR algorithm, may naturally use effectively the information for time series

segmentation.

The GLR algorithm has some theoretical assumptions we have not consid-

ered in this discussion. One is an assumption of Gaussian errors in the signal
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predictors and the use of the mean-squared error function. Another assumption

is the use of a parametric model in signal estimation. In our experience the pre-

sented modifications to use signal decomposition and a simplified model for the

estimation, seem to work and improve the algorithm implementation with de-

creased calculation time. The justification of a multivariate log-likelihood ratio

seems reasonable as introduced in (37), although a complete theoretical justifica-

tion of the enhancements is subject to future research. Next, an example of the

modified GLR to decompose a signal is presented.

An example with a nonstationary sinusoid signal

Figure 25 illustrates a sinusoid signal composed with the following set of equa-

tions:

ŷ(c1, c2, c3, t) = c1 sin (5 · (c2 + c3 · 2πt))) (38)

x(t) =





ŷ(0.9, 0, 0.2, t) + ŷ(0.5, 12.5, 0.8, t) + ŷ(1.5, 6.25, 0.1, t), t ≤ 20

ŷ(0.5, 0, 0.2, t) + ŷ(1.0, 12.5, 0.8, t) + ŷ(0.5, 6.25, 0.1, t), t > 20 ∧ t ≤ 40

ŷ(0.5, 0, 0.2, t) + ŷ(2.5, 12.5, 0.8, t) + ŷ(0.8, 6.25, 0.1, t), t > 40
(39)

where the sampling frequency of the signal is set to five hertz and time t is pre-

sented in seconds. The variables c1, c2 and c3 represent the time series amplitude,

phase and frequency, respectively. Notice that no noise or artifacts are presented

in the equation.

The signal consists of three stationary signals each containing three distinct

sinusoid components with defined amplitudes and frequencies. Furthermore, Fig-

ure 25 presents the mean frequency and power of the short-time Fourier transfor-

mation (STFT) applied to the dataset. In this example, the STFT is calculated with

a ten second Hanning window.

The mean frequency and power estimates are used as a multivariate input

for the GLR algorithm to search for change points in the signal using formula (37).

The true change points we wish to detect are in t = 20 and t = 40. A median func-

tion is used to fit the signal decomposition features, mean frequency and power,

to their respective median values inside each segment candidate. Estimation er-

rors Ekj for the three regions are calculated as a mean-squared error between the

median of the feature signal j in region k and the feature signal j. The result-

ing segmentation, together with medians of each feature inside the segment, are

illustrated with horizontal and vertical lines in Figure 25.

Visual inspection indicates that the setting of the first change point is not

consistent and thus the algorithm may be considered to behave well. A human

expert would perhaps place the second change point later if only the raw signal

would be considered. However, evaluation of the features indicate an abrupt in-

crease in the mean power just before the 40-second mark. Thus, based on the

visual inspection of the features, the second labeling is reasonably accurate.
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ISR MRL=1 MRL=3

4

12

20

28

36

TH=10 TH=30 TH=50

22/0.6 8/3.1 3/2.4

7/2.9 3/2.4 2/2.5

4/0.9 2/2.4 2/2.5

2/2.6 2/2.6 2/2.6

2/2.2 2/2.2 2/2.2

TH=10 TH=30 TH=50

6/2.8 3/2.5 2/2.5

4/1.0 2/2.5 2/2.5

2/2.3 2/2.3 2/2.3

2/2.0 2/2.0 2/2.0

Table 2: The sensitivity of GLR method on its own parameters with an example

dataset presented in (39) and Figure 25. The table contains a number of change

points and a mean absolute error presented as #CP/MAE-pairs. The MRL and

ISR are presented in seconds. Furthermore, the abbreviation TH stands for the

threshold value.

GLR sensitivity to its own parameters

The GLR algorithm has some attributes and variables of its own that must be set

for a given application. The step size of the algorithm affects the computational

load of the method and should be exploited in the outside loop if less precision

is tolerated. Naturally the step size should be small enough to avoid two change

points to appear in the observed window {1 . . .N}. The inside loop of the algo-

rithm searches the change point with a step size equal to one.

Also the minimum region length in the segmentation must be considered,

since too small a range, i.e., not enough data points, may result in poor model

estimation9. The initial search region length, i.e., the initial size of the region af-

ter each detected change point, should be small enough to avoid several change

points situated inside the observed region. Furthermore, the relationship between

the MRL and the ISR affects the precision of the GLR method and declares the

dead-zone. Thus, if there is a change point inside the initial region it may be accu-

rately discovered only if it is inside the interval [1 + MRL, N − MRL].

The search of GLR parameters for the segmentation of the signal presented

in Figure 25 is demonstrated in Table 2. The table contains the free parameters, the

number of change points and the mean absolute error of the segmentation. More

precisely, the error is defined as a mean absolute distance between the closest CP and

the true change point in seconds.

The analysis of Table 2 reveals that the correct number of change points and

the minimum error is achieved with three different attribute sets, where the ISR=

36 seconds. The best result is somewhat undesirable: the chosen ISR will start (and

restart) the outside loop of the algorithm in an optimal window, where exactly one

change point is located. Since the signal length is 60-seconds, the outside loop will

only be executed twice. In this example, other parameter settings with smaller

ISR could execute better with new data, as the result does not indicate optimal

9The stability of the median may help as the median is already a stable statistic for small amounts

of data.
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parameter set but only optimal ISR.

With a smaller initial range, the algorithm reveals more change points when

used with a small threshold. However, when a higher threshold value is set, the

algorithm has a better chance to discover the true number of segments regardless

of the small ISR.

Since the algorithm is sensitive to its own free parameters, an expert analysis

must be considered before an automated use of the method. The sensitivity anal-

ysis also indicates that the signal must contain some kind of stability: the signal

has to behave reasonably well for the algorithm to work on-line. If the attributes

are set with an initial signal, an explosion or a diminishing of the signal amplitude

or variance compared to the original signal will result in poor performance of the

algorithm. This is the price to pay, however, since an algorithm without any at-

tributes giving a reasonable segmentation for any temporal changes in the signal

would be a universal segmentation machine.
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Figure 25: Segmentation of an example dataset with the GLR algorithm. The up-

per figure illustrates the original signal, the middle the mean power of the STFT

of the signal, and the bottom figure the corresponding mean frequency of the

STFT. STFT is calculated with a ten-second Hanning window and the signal is

sampled in five hertz. Furthermore, the vertical dashed lines illustrate median of

the feature inside the segment. In the upper figure, horizontal lines illustrate the

true change points, while the middle and bottom figures illustrate the estimated

change points, the result of the GLR algorithm. The GLR algorithm was applied

with following parameters: threshold=10, ISR=36, MRL=3 and step size of one

second.



4 NEURAL NETWORKS

Neural networks provide a powerful and flexible nonlinear modeling tool for time

series analysis. They may also be utilized for classification, autoassociative fil-

tering, prediction, system control or image compression, just to mention a few

applications. See, e.g., [4, 20, 49, 95, 122, 147, 170, 173, 178].

In this dissertation we concentrate on the second generation neural networks

[173] and especially the feed-forward neural network. The basic principle for a

feed-forward neural network (FFNN) (a.k.a. multilayer perceptron) is to train a net-

work with real world empirical data with input-output samples to construct a

nonlinear relationship between the samples and to generalize this to outside ob-

servations. However, the generalization is limited, since for common problems

extrapolation may be harder than interpolation between the training points.

The universal approximation theory, presented in Section 4.1.1, provides the

grounds for the practical observation that, for the stationary time series, the se-

lection of the correct neural network architecture is not the main problem when

modeling a system. In our experience the most complex process is choosing an

appropriate neural network training algorithm. Training refers to the adaptation

process by which the neural network learns the relationship between the inputs

and targets. This process is often guided by an optimization algorithm [144].

Often the whole neural network concept seems less complex than the vari-

ety of optimization methods and heuristics that may be utilized for the training.

Still a number of articles are published proposing a new training algorithm or an

improvement to the existing one, see, e.g., [14, 21]. In this dissertation we out-

line some principles for network optimization and refer to common optimization

steps familiar within neural network literature.

The neural network is heavily influenced by the training samples, and thus,

a valid sampling of observations is necessary. The network optimization is usu-

ally executed in a mean-squared-error sense using the error functions (9) or (10).

This specializes the network in learning the observations occurring most often in

the set. It is therefore important to have even sampling of the function range.

Thus, the distribution of the output space should be generally smooth. Notice

that, as we mentioned, the neural network may be used to interpolate between

the training points. This may be exploited with sampling to reduce the data in

some applications.

Artifacts will affect the network performance as for any linear or nonlinear

model. If the noise in the signal is non-Gaussian with a mean other than zero, then

the model will include a bias towards the noise [88].
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4.1 Feed-forward neural networks

The unquestionably most popular neural network architecture is the family of

feed-forward networks, together with the backpropagation training algorithm in-

troduced by Rumelhart, Hinton and Williams in 1986 [148] 10.

Feed-forward networks are widely used by neural network researchers and

they give a theoretical basis for constructing more sophisticated models. In time

series modeling, feed-forward networks can give good results if the observed phe-

nomenon is stationary. This will be shown in the examples presented at the end

of this section. For time-varying or chaotic time series the network must contain

some temporal information to enable good performance.

4.1.1 Motivation

If the values of the time series are determined by some mathematical function,

then the system is said to be deterministic. For such systems Takens’ theorem [168]

implies that there exists a diffeomorphism, a one to one differentiable mapping with

a differentiable inverse, between a sufficiently large window of the time series

x(k − 1), x(k − 2), . . . , x(k − T ),

and the underlying state of the dynamic system which gives rise to the time series.

This implies that there exists, in theory, a nonlinear autoregression of the form

x(k) = g[x(k − 1), x(k − 2), . . . , x(k − T )],

which models the series exactly (assuming there is no noise). The function g is the

appropriate diffeomorphism.

Another important result, the universal approximation theorem, is the one

shown by Irie and Miyake [63], Hornik, Stinchcombe and White [58], Cy-

benko [30] and Funahashi [43]: a FFNN with a arbitrary number of neurons

is capable of approximating any uniformly continuous function to an arbitrary

accuracy [144, 178]11.

4.1.2 The network architecture

Figure 26 illustrates the structure of a multilayer feed-forward network. The data

flows strictly forward and no feedback connections exist, that is, connections from

the output units to the previous or same layers.

10It appears that the history of the backpropagation algorithm can be tracked to Paul Werbos and

his doctoral thesis at Harvard University in August 1974 [54, p. 41].
11Notice that universal approximation is not a rare property. Polynomials, Fourier series, wavelets,

etc. have similar capabilities, so that only a lack of the universal approximation capability would be

an issue [144].
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Figure 26: A multilayer feed-forward network with one hidden layer.

To investigate the architecture more closely let us take a look at a single unit

j (or neuron) in layer l of the network (Figure 27). The unit receives Nl−1 real-

valued inputs from the previous layer, which are multiplied by weight parameters

w
(l)
ij . Layer 0 is taken to consist of the input variables, thus the input layer has N0

units, hidden layer l has Nl units and output layer L has NL units. For weight

parameter w
(l)
ij the indices i and j notate a one-way directed connection between

unit i in layer l − 1 and unit j in layer l. Weight parameters are combined using

the integration function g, which (in the case of standard FFNN) is a sum of the

inputs

g(x
(l−1)
1 , x

(l−1)
2 , . . . , x

(l−1)
Nl−1

) =

Nl−1∑

i=1

w
(l)
ij x

(l−1)
i + w

(l)
(Nl−1+1)j .

This sum of the inputs multiplied by the weights is also called the excitation of the

jth unit. Haykin [54] refers to this as the net activation potential of neuron j.

As a more practical notation we define excitation of unit j in layer l as

s
(l)
j =

Nl−1∑

i=1

w
(l)
ij x

(l−1)
i + w

(l)
(Nl−1+1)j . (40)

The extra parameter w
(l)
(Nl−1+1)j in the preceding equations is a bias-term (a.k.a.

threshold, offset). Note that the inputs to a unit in layer l define an Nl−1-

dimensional space where the weights of the unit determine a hyperplane through

the space. Without a bias input, this separating hyperplane is constrained to pass

through the origin.

By setting

x
(l)
Nl−1+1 = 1 for 0 ≤ l ≤ L − 1
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Figure 27: A single unit in a feed-forward network.

we may write equation (40) in a shorter form:

s
(l)
j =

Nl−1+1∑

i=1

w
(l)
ij x

(l−1)
i .

Other types of integration functions, for instance multiplication, could be fore-

seen, but addition is used to preserve the locality of the neuron information in

backpropagation, introduced in Section 4.1.3 [147, p. 170].

After computation of the integration function the result is directed to the ac-

tivation function f . If the activation function is f(x) = x, then the neuron simply

computes a linear combination of the inputs. Since the composition of linear func-

tions is again a linear function, the network would only be a plain AR-net (see

Section 3.1.7). To add nonlinear properties we use a sigmoid function, mapping

−10 −5 0 5 10
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c=1/3
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Figure 28: Sigmoid function fc(x) with different values of parameter c.



80

the real numbers to the interval [0, 1] (see Figure 28):

fc(x) =
1

1 + e−cx
. (41)

The activation function must be a nonlinear differentiable map to allow the

backpropagation-algorithm to work. The logistic, tanh and Gaussian12 functions

are commonly used. Sigmoid and the tanh function have the same shape but tanh

defines a mapping from the real axis to the interval [−1, 1]:

tanh(x) =
ex − e−x

ex + e−x
. (42)

The output x
(l)
j of the unit j is now

x
(l)
j = f(s

(l)
j ).

If we use only one unit with a nonlinear activation function, then the network is a

representation of a generalized linear model [106].

In time series prediction (Figure 29) the feed-forward network has a single

output unit, T input units and (L − 1) hidden layers. To use previous notation,

N0 = T, NL = 1.

The T inputs are the previous values of the time series

x(k − 1), x(k − 2), . . . , x(k − T ) = x
(0) = x

(0)
1 , x

(0)
2 , . . . , x

(0)
T ,

where k denotes time. These are used to predict the output value

x̂(k) = x
(L)
1 .

The vector of inputs is sometimes referred to as the data window. Teaching is done

over all known times k. When teaching, real values x(k) are used in inputs, not the

network generated approximations x̂(k). This type of learning is also known as

teacher forcing, equation error formulation or open-loop adaptation scheme [54, p. 516].

When predicting future points, approximations x̂(k) must be used. Haykin

names this type of teaching a closed-loop adaptation scheme [54, p. 516] . Bishop

calls this multi-step ahead prediction and when predicting only one future point it

is called one-step ahead prediction [13, p. 303] .

4.1.3 Backpropagation algorithm

Backpropagation is the most commonly used method for training feed-forward

neural networks and is presented by several authors, e.g., [13, 19, 55, 144, 147].

It should be noted that the term backpropagation refers to two different things.

12Notice that the Gaussian function is mainly used with the radial basis function network presented

in Section 4.3.1.
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Figure 29: Feed-forward network in time series prediction.
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First, a backpropagation algorithm describes a method to calculate the derivatives

of the network training error with respect to the weights by utilizing a derivative

chain-rule. Second, the concept is used for the training algorithm that is basically

equivalent to the gradient descent optimization method [144, p. 49]. Both pur-

poses of use are presented in this section.

The backpropagation algorithm looks for the local minimum of the error

function in weight space using the gradient descent method. The combination of

weights that minimizes the error function is considered to be the solution of the

learning problem. The error function for p training patterns is defined as

E =
1

2

∑

k

||x(L)(k) − t(k)||2,

where x
(L)(k) is the output generated by the network and t(k) is the desired target

vector of dimension NL (cf. Section 3.1.4). Since we use a differentiable activation

function and addition as the integration function, this error function will be dif-

ferentiable.

Next we restrict the error function to contain only one training pattern. The

error function may, in this case, be written as

E =
1

2

NL∑

i=1

(x
(L)
i − ti)

2.

To minimize the error function with respect to the weight parameters we use an

iterative process of gradient descent for which we need to calculate the partial

derivatives
∂E

∂w
(l)
ij

.

Each weight is updated using the increment

4w
(l)
ij = −γ

∂E

∂w
(l)
ij

⇐⇒ w
(l)
ij = w

(l)
ij − γ

∂E

∂w
(l)
ij

,

where γ is a learning rate that defines the step length of each iteration in the nega-

tive gradient direction.

Let us take a closer look at the process in the example of a two-layer FFNN.

We will show the precise formulas to calculate each weight update. This example

can then be generalized to more complex structures.

The activation function f(x) will be fixed as the sigmoid, in (41), with pa-

rameter c set to 1. Its derivative evaluates to the simple form f(x)(1 − f(x)).

The backpropagation algorithm can be decomposed into four steps: Feed-forward

computation, backpropagation to the output layer, backpropagation to the hidden

layer and finally computation of the weight updates.

In the first step the input vector x
(0) = (x

(0)
1 , . . . , x

(0)
N0

) is presented to the net-

work. The vectors x
(1) = (x

(1)
1 , . . . , x

(1)
N1

) and x
(2) = (x

(2)
1 , . . . , x

(2)
N2

) are computed



83

and stored. The evaluated derivatives of the activation functions are also stored

at each unit.

In the second step we calculate the first set of partial derivatives ∂E/∂w
(2)
ij .

∂E

∂w
(2)
ij

= [x
(2)
j (1 − x

(2)
j )(x

(2)
j − tj)]x

(1)
i = δ

(2)
j x

(1)
i ,

where we defined the backpropagated error

δ
(2)
j = x

(2)
j (1 − x

(2)
j )(x

(2)
j − tj).

Next we have to calculate backpropagation to the hidden layer. The partial deriva-

tives are
∂E

∂w
(1)
ij

= δ
(1)
j x

(0)
i ,

where

δ
(1)
j = x

(1)
j (1 − x

(1)
j )

N2∑

q=1

w
(2)
jq δ(2)

q .

The final step is to calculate the weight updates. The corrections to the weights

are given by

4w
(2)
ij = −γx

(1)
i δ

(2)
j , for i = 1, . . . , N1 + 1; j = 1, . . . , N2,

and

4w
(1)
ij = −γx

(0)
i δ

(1)
j , for i = 1, . . . , N0 + 1; j = 1, . . . , N1,

where the bias terms are included by setting x
(0)
N0+1 = x

(1)
N1+1 = 1.

More than one training pattern

To achieve higher accuracy in the model, multiple training patterns are used. Cor-

rections can be made using on-line- or off-line updates. For p training patterns the

off-line method gives updates in the gradient direction in the form

4w
(l)
ij = 41w

(l)
ij + 42w

(l)
ij + · · · + 4pw

(l)
ij .

As gradient direction is mathematically a linear operator, the off-line update is an

analytically valid operation. An alternative is to use on-line training where weight

updates are made sequentially after each pattern presentation. On-line training

can be seen as adding noise to the gradient direction and, thus, it may help the

procedure to avoid falling into shallow local minima of the error function [147,

p. 167].



84

4.1.4 Some theoretical aspects for a feed-forward neural network

The universal approximation theory implies that any continuous function can be

approximated to arbitrary accuracy with a two-layered network. This does not,

however, mean that a two-layered network is optimal, e.g., in the sense of learning

time or the number of network parameters. In addition, there exists functions,

which may not be approximated with a two-layer network with any number of

units, but that can be approximated with three-layered networks [162, 163] (cited

in [144]).

Another theoretical result presented, for example, in Bishop [13], is that a

function presented by a two-layered feed-forward network with sigmoid activa-

tion with fixed c in (41) and N1 units in the hidden layer has N1!2
N1 different

parameter combinations that result in the same function.

Yet another result is, shown by Barron [3] and Jones [69], that the residual

error of the network function decreases as O(1/N1) as the number of hidden units

is increased13.

Kolmogorov’s theorem
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Figure 30: A feed-forward network to implement Kolmogorov’s theorem.

A theoretical result obtained by Kolmogorov [13, 85, 147] says that every

continuous function of N0 variables can be presented as the superposition of a

13For positive functions f and g, we use the notation f = O(g), if f(N) < ag(N) for some positive

constant a and sufficiently large N .
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small number of functions of one variable. In neural networks this means that any

continuous function can be presented exactly by a three-layered network having

N1 = N0(2N0 + 1) and N2 = 2N0 + 1 units in the hidden layers. The network

architecture is presented in Figure 30. Given the functions hj(x) and g(x) the

output of the network is

x
(3)
1 =

2N0+1∑

j=1

g

(
N0∑

i=1

γihj(x
(0)
i )

)
. (43)

Function hj is strictly monotonic and g is real valued and continuous. The func-

tion g depends on the function we wish to approximate but hj does not. Kol-

mogorov’s theorem is an existence result; we do not have any method to find the

unknown functions hj and g.

4.2 Introducing temporal dynamics into neural networks

The underlying presumption for feed-forward neural network is that the input-

output sample dynamics do not change in time, i.e., the same input always maps

to a similar output. To override this limitation network architectures developed

for temporal, dynamic time series include delayed, or recurrent synapses between

the neurons allowing the networks internal state to change in time resulting in

different outputs between equal inputs for different time instants.

Even if the feed-forward neural network is able to present any input-output

mapping to arbitrary accuracy, the network may not be optimal in the sense of

architecture (number of parameters), learning time or in terms of generalization.

In this section we introduce two different networks applicable for the modeling of

time dynamic systems: the Jordan network and FIR network. Later in Section 6.2

the networks are applied to excess post-oxygen consumption modeling, which

also demonstrates the significance of the dynamic neural network structure.

There are also other popular recurrent network architectures not discussed

in this work: Hidden Markov Models, Elman network, Hopfield network, Boltz-

mann machines, the mean-field-theory machine and methods for real-time non-

linear adaptive prediction of nonstationary signals [55].

4.2.1 An output recurrent network, the Jordan Network

Jordan presented his recurrent neural network model in 1986 [70, 71]. A Jordan

network has recurrent connections from the output layer to the input layer. These

delayed values are called state units. State units also have self-connections, making

their total output to be a weighted sum of the past k − 2 output values. Figure 31

shows the basic structure of the Jordan network.

State units at time k are defined as

x
(0)
i+N0−NL

(k) = ŵiix
(L)
i (k − 2) + x

(L)
i (k − 1), for 0 < i ≤ NL. (44)
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Figure 31: Jordan Network. The unit delay operator z−1 expresses a reduction of

time index by one, z−1x(k) = x(k − 1) and z−1(z−1x(k)) = x(k − 2).

The total excitation of unit j (including bias) in layer l is

s
(l)
j =

Nl−1+1∑

i=1

w
(l)
ij x

(l−1)
i , where x

(l−1)
Nl−1+1 = 1. (45)

Net excitation is directed to activation function f(·) and we get an output of unit

j in layer l:

x
(l)
j = f(s

(l)
j ), for 0 < l ≤ L. (46)

It is possible to solve the unknown network parameters, e.g., by unfolding

the network to its static representation. This training procedure is called temporal

backpropagation and it is introduced in Section 4.2.3.

4.2.2 Finite Impulse Response Model

The FIR, or Finite-Duration Impulse Response model (or simply Finite Impulse

Response model) is also a feed-forward network. It attains dynamic behavior by

introducing FIR linear filters to each weight connection.

Output at time k in each FIR linear filter corresponds to a weighted sum of
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Figure 32: FIR multilayer network and linear filter. z−1 is a unit delay operator.

past delayed values of the input:

y(k) =

T∑

n=0

w(n)x(k − n). (47)

Note that this is a result of one filter. Next we use notation introduced in the

previous section and generalize (47) into a multilayer perceptron (see Figure 32).
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We may write the excitation of neuron j in layer l given by input i in layer l− 1 as

sl
ij(k) =

T l∑

n=0

wl
ij(n)xl−1

i (k − n)

We may write this in a matrix form by introducing the following definitions:

w
l
ij = (wl

ij(0), wl
ij(1), . . . , wl

ij(T
l)),

x
l
i(k) = (xl

i(k), xl
i(k − 1), . . . , xl

i(k − T l+1)).

Now the excitation takes form

sl
ij(k) = w

l
ij(x

l−1
i (k))T . (48)

Total excitation of neuron j in layer l at time k may now be written as

sl
j(k) =

Nl−1+1∑

i=1

sl
ij(k), (49)

where

sl
(Nl−1+1)j(k) = θl

j for all k

is the bias term. The output of neuron j at time k is

xl
j(k) = f(sl

j(k)), (50)

where f(·) is an activation function, for example a sigmoid.

A note must be given to a fact that FIR networks can be shown to be func-

tionally equivalent to time-delay neural networks (TDNN). FIR (and TDNN) can

be formulated to follow static structure by removing all time delays [178, p. 199-

202]. This technique is known as unfolding-in-time. The resulting static network

is much larger and has perhaps mostly a theoretical value, as the network size is

proportional to the number of training samples. However, this shows that a FIR

network can be considered a compact representation of a larger static network and

its network parameters may also be solved by using a standard backpropagation

algorithm presented in Section 4.2.3.

Temporal backpropagation

As discussed in the previous section, it would be possible to train a FIR net-

work using standard backpropagation after unfolding. However, the technique

has some undesirable characteristics, e.g., it requires global bookkeeping to keep

track of which static weights are the same in the equivalent original network. Fur-

thermore, unfolding will grow the resulting static network size as a function of

the training samples [54, p. 510].

As an alternative, a more attractive temporal backpropagation algorithm, first

introduced by Wan [175], is presented next. The starting point for the temporal



89

backpropagation algorithm is similar to standard backpropagation: we wish to

calculate partial derivatives of the error function with respect to the weight vector

and update the weight parameters according to the negative gradient direction.

The error function E is given by the following equations:

ej(k) = xL
j (k) − tj(k),

where ej(k) is the error of output node j,

E(k) =
1

2

NL∑

j=1

e2
j(k),

E =
∑

k

E(k),

where summation of E(k) is taken over all time.

The gradient of the error function with respect to a synaptic filter is ex-

panded using the chain rule14:

∂E

∂w
l
ij

=
∑

k

∂E

∂sl
j(k)

∂sl
j(k)

∂w
l
ij

.

Note that the equality holds only if the summation is taken over all k. Now we

can write down the corrections of the synaptic filters:

w
l
ij(k + 1) = w

l
ij(k) − γ

∂E

∂sl
j(k)

∂sl
j(k)

∂w
l
ij

,

where γ is the learning-rate parameter. Furthermore, from the definition of sl
j(k)

in equations (48) and (49) we calculate

∂sl
j(k)

∂w
l
ij

= x
l−1
i (k),

where x
l−1
i (k) is the input vector applied to a neuron j in layer l. Defining

δl
j(k) ≡

∂E

∂sl
j(k)

leads to more familiar notation (see Section 4.1.3)

w
l
ij(k + 1) = w

l
ij(k) − γδl

j(k)xl−1
i (k).

Next we derive the explicit formulas for δl
j(k). For the output layer L we get

δL
j (k) ≡

∂E

∂sL
j (k)

=
∂E(k)

∂sL
j (k)

= ej(k)f ′(sL
j (k)).

14A good introduction for the use of the chain rule with backpropagation is given by Paolo Cam-

polucci [19, p. 22-26]
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For the hidden layer, we use the chain rule twice:

δl
j(k) ≡

∂E

∂sl
j(k)

=

Nl+1∑

m=1

∑

t

∂E

∂sl+1
m (t)

∂sl+1
m (t)

∂sl
j(k)

=

Nl+1∑

m=1

∑

t

δl+1
m (t)

∂sl+1
m (t)

∂sl
j(k)

=

Nl+1∑

m=1

∑

t

δl+1
m (t)

∂sl+1
m (t)

∂xl
j(k)

∂xl
j(k)

∂sl
j(k)

=

Nl+1∑

m=1

∑

t

δl+1
m (t)

∂
[∑Nl

j′=1 sl+1
j′m(t)

]

∂xl
j(k)

∂f(sl
j(k))

∂sl
j(k)

= f ′(sl
j(k))

Nl+1∑

m=1

∑

t

δl+1
m (t)

∂sl+1
jm (t)

∂xl
j(k)

.

But since

sl+1
jm (t) =

T l+1∑

k′=0

wl+1
jm (k′)xl

j(t − k′),

the partial derivative is

∂sl+1
jm (t)

∂xl
j(k)

=

{
wl+1

jm (t − k), for 0 ≤ t − k ≤ T l+1,

0, otherwise.

Now we may continue and find the final formula for δl
j(k) in the hidden layer:

δl
j(k) = f ′(sl

j(k))

Nl+1∑

m=1

T l+1+k∑

t=k

δl+1
m (t)wl+1

jm (t − k)

= f ′(sl
j(k))

Nl+1∑

m=1

T l+1∑

n=0

δl+1
m (k + n)wl+1

jm (n)

= f ′(sl
j(k))

Nl+1∑

m=1

δ̄l+1
m (k)(wl+1

jm )T ,

where

δ̄l+1
m (k) = [δl+1

m (k), δl+1
m (k + 1), . . . , δl+1

m (k + T l+1)].

Finally, the algorithm takes the form

w
l
ij(k + 1) = w

l
ij(k) − γδl

j(k)xl−1
i (k), (51)

where

δl
j(k) =

{
ej(k)f ′(sl

j(k)), l = L,

f ′(sl
j(k))

∑Nl+1

m=1 δ̄l+1
m (k)(wl+1

jm )T , 1 ≤ l < L.
(52)
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Notice that equations (51) and (52) can be seen as a vector generalization of the

standard backpropagation algorithm. If we replace the vectors x
l−1
i (k), wl+1

jm and

δ̄l+1
m (k) by their scalar counterparts, then the temporal backpropagation algorithm

reduces to the standard backpropagation algorithm.

Computations of δl
j(k) require future values of δ’s. This is obvious when

examining equation (52) (for l 6= L), definition of the vector δ̄l
j(k) and time index

k. To rewrite the algorithm in a causal form we use only a finite number of future

values of δ and do some reindexing. This leads to the following equations

w
L−n
ij (k + 1) = w

L−n
ij (k) − γδL−n

j (k − nT )xL−1−n
i (k − nT ), (53)

δL−n
j (k − nT ) =

=

{
ej(k)f ′(sL

j (k)), n = 0,

f ′(sL−n
j (k − nT ))

∑NL−n+1

m=1 δ̄L+1−n
m (k − nT )(wL−n+1

jm )T , 1 ≤ n < L.

(54)

Furthermore, in equations (53) and (54) we assumed that each synaptic filter is

of order T in each layer. For the general case let T l
ij be the order of the synaptic

filter connecting neuron i in layer l− 1 to neuron j in layer l. Then in the previous

equations we must replace the terms nT by

L∑

l=L−n+1

max {T l
ij , for all suitable i and j}.

The idea is that the time shift for the δ associated with a given neuron must be

made equal to the total number of tap delays along the longest path to the output

of the network [178, p. 216-217].

FIR in practice

Erik Wan successfully used the FIR network in the Santa Fe time series competi-

tion to forecast one hundred points of the laser data (see Figure 33). The data size

available for the training was one thousand. He used the first nine hundred points

for training and one hundred for validation. The network architecture consisted

of three layers, including twelve hidden units in both hidden layers and 25 delays

for each neuron in the first layer and five on hidden layers. The FIR network was

able to give one of the best results for this dataset [178].

Also Camps-Valls et al. [20] utilized the FIR network for time series pre-

diction. They compared three different neural network models (FFNN, FIR and

Elman recurrent network) for a prediction of cyclosporine dosage in patients after

kidney transplantation. They also experimented with a committee network for the

given task. The FIR network was chosen for the prediction of blood concentration

and the Elman-network for dosage prediction.
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Figure 33: First one thousand points of the laser data.

4.2.3 Backpropagation through time

A time-depended neural network architecture may be transformed to its equiv-

alent static structure. The backpropagation through time algorithm can be derived

by unfolding a recurrent network into FFNN. The idea is presented in terms of an

example in Figure 34. Each time step presents a new layer to the network. To

train this unfolded network we may use the backpropagation through time algo-

rithm [180].

In the procedure, layers correspond to time intervals. Time (or the number

of layers) runs from 0 to L:

0 ≤ l ≤ L.

Instantaneous error of unit j in layer l is

ej(l) = x
(l)
j − tj,

where tj is the desired response of unit j which is, naturally, same for all layers.

The total error is

E =
1

2

L∑

l=0

N∑

j=1

e2
j(l),

where N is the number of neurons in the network.

As in standard backpropagation we want to compute the partial derivatives

of the error function with respect to synaptic weights wij of the network. The

algorithm takes the following form:

1. Feed-forward computation for time interval [0, L] is performed. All the nec-

essary variables are stored.

2. Backpropagation to the output-, hidden- and input layers is performed to

calculate local gradients. The following equations define a recursive formula
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Figure 34: A two-neuron recurrent network and a corresponding network un-

folded in time.

for δ
(l)
j :

δ
(l)
j = −

∂E

∂s
(l)
j

=

{
f ′(s

(l)
j )ej(l) if l = L

f ′(s
(l)
j )
[
ej(l) +

∑N

m=1 wjmδ
(l+1)
m

]
if 0 < l < L

where f ′(·) is the derivative of activation function and s
(l)
j the total excitation

at time l for unit j. Index j runs from 1 to N and l from 1 to L.

3. Network weights are updated:

4wij = −γ
∂E

∂wij

= γ

L∑

l=1

δ
(l)
j x

(l−1)
i ,

where γ is the learning-rate parameter and x
(l−1)
i in layer l−1 is the ith input

of neuron j at layer l.

4.2.4 Time dependent architecture and time difference between observations

Sometimes the time difference between the observations is important in the mod-

eling of a phenomena. Examples are, for example, the reduction or increase of

lactates and glycogen as a function of time and exercise intensity.
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If the time series is evenly sampled but contain a few missing observations,

then there are basically two possible solutions. The first is natural for a static

neural network, e.g., feed-forward network. In the network architecture, the time

difference between the observations is fed in as a network input. However, this

may not be optimal for temporal neural networks as equal inputs will result in the

same output.

The alternative is to insert synthetic observations to reconstruct an even sam-

pled time series. A generation of a new observation may be based on, for example,

interpolation between samples. Furthermore, the error function may be modified

to assess the reliability weighting of the samples according to equation (12).

An opposite problem occurs when the training data is sampled with a higher

rate than necessary, resulting in repeated samples. For time series analysis and

cyclic patterns one possibility is to use the frequency domain analysis to discover

an adequate sampling rate based on the frequency-power distribution of the se-

quence. If the resulting spectrum does not contain power after a certain threshold

frequency, then the sampling rate may be adjusted in accordance with the thresh-

old. Naturally the Nyquist frequency and aliasing has to be taken into account.

A recurrent network may be applied to model the system based on equally

sampled data. If the sampling interval is not fed into the network, or it is constant

for all samples, then the network will not generalize for sequences containing a

different sampling interval. One solution is to generate samples with different

intervals to train the network and use the time difference between the samples as

one network input. An alternative is to train one network specialized in a certain

sampling and to interpolate the input or the output sequences.

4.3 Radial basis function networks

In this section we introduce a radial basis function (RBFN) and generalized regres-

sion neural networks (GRNN). GRNN is a modification of RBFN which is better

suited for regression estimation. Both networks have the advantage of natural in-

terpretation of reliability estimates as presented at the end of this section. RBFN

networks have been applied to a variety of applications, see, e.g., [4, 11, 176].

4.3.1 Classical radial basis function network

One approach to function approximation and regression problems is to use ra-

dial basis function networks. For neural networks they were first introduced by

Broomhead and Lowe [16] (cited in [54, p. 236]). RBFN networks have been shown

to be able to approximate any function to arbitrary accuracy by Hartman, Keeler

and Kowalski [51], and by Park and Sandberg [125, 126] (cited in [13, p. 168]).
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RBFN architecture

In radial basis function networks, a two-layer architecture is primarily used [13,

p. 168]. The basic form of the network can be presented with the formula (see

Figure 35)

x
(2)
1 = y(x) =

N1+1∑

j=1

wjgj

((
x

(0)
2 − µj

)2
)

. (55)

The activation function gj(x) is also called a basis function and µj is the prototype.

The basis function gives excitation as a Euclidean distance between the input x
(0)
1

and the prototype. Extra activation gN1+1 = 1 is used to include the bias term.

Equation (55) is a presentation of a one-dimensional regression approxima-

tion where the approximated function is a map from one-dimensional real space

to another. The generalization for a multidimensional function Rn → Rm takes

the form

yk(x) =

N1+1∑

j=1

wjkgj(||x − µj ||), (56)

where k = 1, . . . , m and x, µj ∈ Rn. The most common form of basis functions is

the Gaussian

gj(x) = exp

(
−

x2

2σ2
j

)
, (57)

where σ2
j introduces another free parameter for the basis function. It controls the

smoothness properties of the function [13, p. 165]. If very small values of the σ2
j are

used, then the resulting network function will act like a higher order polynomial.

For large values, the network function presents a simple function, a line in the

extreme case.
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Figure 35: A two-layer radial basis function network.
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Figure 36: Normalized Gaussian activation, with µ = σ2 = 3.0.

Bishop [13, p. 165-176] presents other possible basis functions of the form

g(x) = (x2 + σ2)−α, α > 0,

g(x) = x2 ln x,

and

g(x) = (x2 + σ2)β , 0 < β < 1.

The simplest form of the activation is, naturally, the linear function

g(x) = x.

A common form of the Gaussian basis function [147, p. 422] is to use the normal-

ized form:

ĝj(x) =
gj(x)

∑N1

k=1 gk(x)
, (58)

where gj(x) is the basis function of equation (57).

To conclude, various basis functions can be chosen for different hidden units.

In practice, however, the same basis functions are usually applied and the proto-

type, or centre, will be the variable to specialize hidden units in a specific input.

Learning

One big advantage with RBFN is the fast optimizing of the free parameters. The

optimizing is done in two stages. During the first stage the basis function param-

eters µj and σ2
j are evaluated. This can be done in an unsupervised manner, where

target outputs are not needed for the evaluation of the parameters. In supervised

learning, the target outputs are used in the calculus. This is done at the cost of

simplicity and nonlinear optimization strategies must be used. The benefit is a

more accurate evaluation of the parameters. Notice that if the prototypes µj are

known, then equation (56) will result in a linear system and the parameters wjk

can be solved with linear programming.



97

Unsupervised learning techniques for the basis function parameters

One simple approach to choose the prototypes for basis functions is to use a subset

of the training data. The set can be chosen randomly. This is of course a fast

approach, and easy to implement, but might give sub-optimal results. The σj

can be set the same for all j and calculated as a multiple of the average distance

between centres. Another approach would be to determine σj from the distance

of the prototype to its L nearest neighbours.

Another unsupervised learning technique is to use clustering algorithms.

An easy-to-implement batch-version of the K-means clustering algorithm [13, 110]

can be used to evaluate centres for the basis function:

1. Choose K disjoint sets Sj randomly. Each set contains Nj data points.

2. Calculate the mean µj = 1
Nj

∑
k∈Sj

xk, for all j = 1, . . . , K .

3. Reconstruct each set Sj to have the nearest neighbours with respect to the

distance ||xk − µj ||. If some of the sets became different, then return to step

two.

Yet another way to separate features of the data is to use the Kohonen network,

also known as a self-organizing feature map [83, 147].

Supervised learning of the network parameters

For a one-dimension regression problem, using the Gaussian basis function of the

form (57), and the sum of squared error E, we can solve the unknown basis func-

tion parameters with backpropagation following the negative gradient direction:

4σj = −γ
∂E

σj

= −γ
∑

k

(x(k + 1) − y(x(k)))wj exp

(
−

(x(k) − µj)
2

2σ2
j

)
(x(k) − µj)

2

σ3
j

(59)

and

4µj = −γ
∂E

µj

= −γ
∑

k

(x(k + 1) − y(x(k)))wj exp

(
−

(x(k) − µj)
2

2σ2
j

)
(x(k) − µj)

σ2
j

,

(60)

where γ is the learning rate [13, p. 190-191].

The weight parameters wj may be solved with backpropagation using the

following equation [147, p. 423]:

4wj = −γ
∂E

wj

= −γgj((x(k) − µj)
2)(x(k + 1) − y(x(k))).
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However, if the basis function parameters are estimated using unsupervised train-

ing, then equation (56) will result in a linear system and linear programming can

be utilized. For more than one training pattern, on-line or off-line updates can be

used.

4.3.2 A generalized regression neural network
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Figure 37: A generalized regression neural network.

Figure 37 illustrates the architecture of the generalized regression neural net-

work [177] (cited in [101]). GRNN is basically a radial basis function network with

a normalized linear output. The overall network output y(x) with a given N × 1-

vector x is

y(x) =

∑NP
j=1 wj · gj(x)
∑NP

j=1 gj(x)
+ b, (61)

where b is a bias term, NP the number of prototypes in the network and wj are

the network weights. The function gj(x) is defined as

gj(x) = exp

(
−
||x− µj ||

2
vj

2σ2
j

)
+ ε, (62)

where µj is the jth prototype and σ2
j is the width parameter. The constant ε > 0

is used to create a forced activation. The forced activation is introduced for two

purposes: to prevent the denominator of the function in (61) to go zero and to

compute an average of the network weights if not a single prototype is active.

An alternative is to add the ε-constant to the denominator. Then, if none of the

network prototypes is active, the overall output y(x) will be equal to the bias.

Instead of Euclidean distance, we use a weighted Euclidean distance of the pro-

totype µj and vector x as

||x − µj ||
2
vj

=
N∑

k=1

v2
kj(xk − µkj)

2, (63)
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where vj is squared to allow negative values. This is necessary because of the su-

pervised training of the network introduced in the next subsection. The weighted

Euclidean distance is a modification to the presentation of the GRNN in [177].

The weighting gives different inputs different emphasis in the calculus. This may

be replaced by scaling the inputs to a desired value-range in unsupervised learn-

ing. This requires knowledge of the used inputs and their respective order. As-

sumption is that through supervised learning suitable weighting can be recovered

empirically.

Supervised learning of the network parameters

K-means clustering algorithm can be used as an initialization for supervised learn-

ing techniques with GRNN. Next we will present the error function derivatives in

respect to the network parameters. These formulas can be directly used with the

backpropagation algorithm to iteratively find a local solution of the network pa-

rameters.

Let us first consider the case with a single sample presented to the network.

The squared error of the sample is

E =
1

2
(y(x) − t)2. (64)

The derivative of (64) respect to the network weight parameters wj is given by the

equation
∂E

∂wj

= r
gj(x)

∑NP
k=1 gk(x)

, (65)

where r is the residual of the sample:

r = y(x) − t.

Notice that the second-layer parameters wj may be linearly solved since equa-

tion (61) is a linear system if all but wj are considered constant.

Next we define δj as

δj = r (gj(x) − ε)
wj − y(x) + b
∑NP

k=1 gk(x)
. (66)

Now we can list the derivatives of the error function in respect to the remaining

network parameters:

∂E

∂b
= r, (67)

∂E

∂σj

= δj

||x − µj ||
2
vj

σ3
j

, (68)

∂E

∂µij

= δjv
2
ij

xi − µij

σ2
j

, (69)
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∂E

∂vij

= −δjvij

(xi − µij)
2

σ2
j

, (70)

where µj = [µ1j , . . . , µNj ]
T and vj = [v1j , . . . , vNj ]

T .

Reliability of the network estimates

In Section 3.3 the concept of reliability and time domain corrections were intro-

duced. Next, two intuitive heuristics for the reliability of the estimates produced

by the GRNN are suggested. The concept of reliability for GRNN is compre-

hended as a measure of localized firing intensity in the network. This corresponds

to the idea of local neurons that together map the whole input space but also act

locally: it is assumed that there are no repeated prototypes and the prototypes are

in hierarchical order, i.e., they have neighbours but are also more apart from the

other neurons. Each neuron has a corresponding weight wj , which stands for the

overall output of the system if the input is equal to the corresponding prototype.

Prototypes close to each other also fire similar weighting wj .

If an input vector is distant to all prototypes, the total firing intensity of the

network is lower compared to the familiar input. Hence, the GRNN reliability

estimate is based on the mean firing intensity of the network:

rb1(t) =
1

NP

NP∑

j=1

gj(xt), (71)

where NP is the number of prototypes and rb1(t) is the reliability estimate for

time instant t.

We assumed that the neurons act locally and give similar weighting wj be-

tween similar prototypes. Thus, another reliability estimate would be the calcula-

tion of deviation of the prototype weights and network output:

rb2(t) =

∑NP

j=1 gj(xt)(wj − y(xt))
2

NP
∑NP

j=1 gj(xt)
. (72)

This can be read as a measure of similarity between those weights wj that consti-

tute most to the overall output. If the deviation is high, the locality assumption is

invalid.

The two reliability estimates differ in their interpretation. The first measures

the similarity of the input to the prototypes while the second is a measure of lo-

cality of the network output. The reliability concept gives a tool for the analysis

of the trained GRNN; to investigate empirically how it utilizes its neurons. Reli-

ability estimates constituted by the GRNN may also be utilized for time domain

corrections, as is discussed in Section 3.3.

The generalized regression neural network, reliability estimates and time

domain corrections are demonstrated later in Section 6.3.3, where they are applied

to respiratory frequency detection strictly from the heart rate signal.
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4.4 Optimization of the network parameters; improvements and

modifications

In neural networks, finding network parameters which give the smallest training

error and best fit is not a proper approach. There is a danger of encountering an

overfitting of the data if nothing else than a small training error is of interest. Data

may have noise in it. When the network reproduces the training set exactly, the

noise will also be reproduced. What we are really interested in is good generaliza-

tion. Generalization refers to the neural network producing reasonable outputs for

inputs not encountered during training [54]. In Section 4.4.2 the network training

is modified to avoid an overfit of the data and to avoid an over complex neural

network architecture. Methods of weight decay, early stopping and training with

noise are introduced.

In Section 3.2 the data preprocessing techniques were briefly presented,

which may be used to improve network performance. For example, data scaling

in Section 3.2.4, may be utilized to transform the network inputs and targets to the

order of unity. FFNN has a linear transformation in the first layer, which is similar

to the scaling procedure. If, however, the input and target scaling is not executed

the network weights may have markedly different values from each other and

this will result in problems, for instance, with the weight initialization [13, 87].

In addition to this, some classical improvements and modifications in network

optimization are introduced in the next subsection.

An automated procedure to find the right network architecture does not ex-

ist. One must have some knowledge of the data and the network in advance. Even

so, some algorithms are developed to find an optimal architecture. Often referred

to in the literature are the growing (e.g., cascade correlation) and pruning algo-

rithms (e.g., optimal brain damage, optimal brain surgeon). Growing algorithms

include the model order selection during the training process. One simple method

introduced by Bello [5] is to start with a few hidden units, train the network, and

use the optimized weights as the initial weights for a larger network. An opposite

approach to growing is to start with a large network and remove the weights or

nodes which are less important. Pruning algorithms differ in the way of how the

weights or nodes to be eliminated are selected [13, 52, 91, 143].

In this dissertation a different approach is chosen: the model is selected

based on the evaluation of several local minima, which are locally optimal in re-

spect to the error [87], with different initial conditions and network architecture,

e.g., the number of hidden units and the number of inputs, and a cross-validation

method presented in Section 4.4.3 to estimate the expected (general) error of the

network.
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4.4.1 Classical improvements to backpropagation convergence

There is plenty of literature describing various methods to make backpropaga-

tion converge better and faster. Unfortunately, these improvements only work in

restricted applications and are not universal. In many cases standard backprop-

agation begins to perform better than its improvements after a certain level of

complexity and size of the training set are achieved [147, p. 183].

Backpropagation with momentum

Rojas [147, p. 184] presents an improvement called backpropagation with momen-

tum. The idea is to calculate a weighted average of the current gradient and the

previous correction direction. This should help to avoid oscillations in narrow

valleys of the error function. The updates in the backpropagation algorithm take

the form

4w
(l)
ij (k) = −γ

∂E

∂w
(l)
ij

+ α4w
(l)
ij (k − 1),

where γ is the learning rate and α a momentum rate. Both learning parameters

affect convergence greatly and so they also become parameters which need to be

optimized.

Adaptive step algorithms

It is not trivial to fix universal learning rates, or design an adaptive algorithm

to find them. Too low learning rates will result in slow convergence of the al-

gorithm. If the learning rate is too large, the optimization process can fall into

oscillatory traps where updates ”jump” over the optimum and soon turn back in

the same direction only to get lost again. Adaptive approaches increase the step

size whenever the error function decreases over several iterations. The step size is

decreased when the algorithm jumps over a valley of the error function. In learn-

ing algorithms with a global learning rate, all weights are updated with this step

size. In algorithms with local learning rates, a different constant is used for each

weight. Depending on the information used to decide whenever to increase or

decrease the learning rate, different algorithms are developed, for example Silva

and Almeida’s algorithm [160], Delta-bar-delta [65], the dynamic adaptation algo-

rithm [153] and Rprop [145].

Offset terms in derivative

Exceedingly low derivatives in nodes can lead to a slow convergence. One so-

lution is to force |f ′(x)| ≥ ε. Another approach is to introduce an offset-term:

|4f ′(x)| = ε. However, using this approach raises the question as to what the

training is based on, since the analytic gradient information is no longer valid and

is manipulated.



103

Initial weight selection

One question is where the iterative learning process is started, i.e., what are the

best initial weights to start with. Usually weights are taken randomly from an

interval [−α, α]. Very small values of α paralyze training since the corrections will

become very small. Very large values can lead to saturation of the nodes in the

network and to flat zones of the error function, resulting in a slow convergence.

Choosing the right α value is usually not a great problem and α = 1 is used

in many neural network software packages. Perhaps analyzing and learning to

know one’s data will give much better results when fixing α [147, p. 197].

Second-order algorithms

Second-order algorithms include more information about the shape of the error

function than the mere value of the gradient. Newton’s method is one example of

a pure second-order algorithm. However, the problem with such an approach is

the complexity when calculating inverse of the Hessian matrix of the error func-

tion. In pseudo-Newton methods this can be avoided using a simplified form of the

Hessian. Other second-order algorithms are Quickprop [36] (cited in [147]) and

QRprop [130, 129]. It is also possible to rework the standard backpropagation

algorithm to use second-order information [13, 147]. The Hessian matrix for the

feed-forward neural network is presented, for example, by Bishop [13].

A second order algorithm commonly used in MathWorks products (opti-

mization and neural network toolboxes) is the Levenberg-Marquardt backprop-

agation. The algorithm uses an approximated Hessian matrix to update the net-

work parameters [13, p. 290-292]. The use of Levenberg-Marquardt algorithm in

neural network training is described in [48] and [47] (both cited in [101]).

4.4.2 Avoiding overfit of the data

Next we present, in more detail, three different approaches to prevent overfit, thus

improving the generalization of a network with noisy data.

Penalising model complexity

A network with a high number of parameters may often result in overfit and poor

performance. Reqularisation techniques [57] (cited in [13]) add a penalty term ω to

the error function:

Ẽ = E + αω.

Penalty parameter α controls the effect of the model complexity to the error func-

tion.

In weight decay regularization (a.k.a. ridge regression), the penalty term con-

sists of the sum of squares of all the network parameters wi:

ω =
1

2

∑

i

w2
i . (73)



104

−2 −1 0 1 2
0

1

2

3

4

Figure 38: Decay terms of equations (73) and (74) (ŵ = 1) respect to a single weight

wi.

Since the central region of the sigmoid function is close to linear, the units give

linear mapping for small values of weights, [13, p. 318-330]. If some of the units

become linear during training, the overall network complexity will reduce (re-

member, the composition of linear units can be replaced with a single linear unit).

Weight decay given in equation (73) favours many small values of weight

parameters rather than a few large ones. The following modification for the decay

term

ω =
1

2

∑

i

w2
i

ŵ2 + w2
i

(74)

will help to avoid this problem [50, 90, 179] (cited in [13, p. 363]). The parameter ŵ2

must be fixed in advance. Figure 38 shows how the decay terms of equations (73)

and (74) behave. As can be seen, the function corresponding to formula (74) is

non-convex, thus increasing the amount of local minima for the regularized error

function [87].

Weight decay techniques penalize model complexity of neural networks.

There are also other measures of complexity, e.g., the so-called information crite-

ria, e.g., Akaike’s (AIC), Bayesian (BIC), network (NIC) and deviance information

criteria (DIC), which can be used for this purpose [171, p. 49-55].

Training with noise

One approach to avoid overfit is to add small noise to the training data. Heuris-

tically, this could make it harder for the network to make an exact match of the

data. In [12] it is shown by Bishop that training with noise is closely related to the

technique of regularization.
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Early stopping

In the early stopping method (see, e.g., [137]) the network is trained with many

parameters. During training typically the sum of squared errors will decrease

and an effective number of parameters, whose values differ sufficiently from zero

will grow. However, at some point in the training, the generalization capacity of

the network will start to decrease. With early stopping learning is ended in an

optimum state where the generalization is at its best.

In practice the early stopping method is used with a validation set, a set of

observations held back from the training and used to measure network perfor-

mance. During training the network error is also calculated with the validation

set. The training is stopped when a good match for the validation set is achieved.

Then we expect to attain good data representation with the network.

4.4.3 Expected error of the network; cross-validation

The most common method for estimating a generalization error in neural net-

works is to reserve part of the data as a test set, which is not used during training.

After training the test set is fed to the network. The resulting testing error will

give us an estimate of the generalization error. The problem with this is that, from

a training perspective, part of the data is lost. Cross-validation is also known as

split-sample or hold-out validation [55, p. 213-218].

4.4.4 FFNN and FIR in matrix form: through training samples,

forward and backward

Feed-forward neural network and the network derivatives have frequently been

presented in matrix form as a single sample presentation (see, e.g., [147]). It ap-

pears that both the feed-forward neural network and finite impulse neural net-

works may be presented with the same compact matrix representation where the

FIR network gives a feed-forward neural network as a special case if no tapped

delays are present in the network. Furthermore, it will be shown that all the train-

ing samples may be included in the matrix presentation resulting in a simplified

presentation of both the network output and weight gradients.

The advantage of the matrix presentation is the abandonment of overpopu-

lation of indices in the network’s forward and backward calculation. The matrix

form improves the analytic presentation value and interpretation since much of

the optimization and control theory is illustrated in the matrix form. Further-

more, the matrix presentation enables fast implementation with software pack-

ages supporting a matrix presentation, especially the Matlab programming envi-

ronment, and software libraries available for common programming languages,

such as Fortran, C and C++ dedicated to matrix computation.



106

Feed-forward

Let Nl present the number of units in the layer l and L the number of layers in the

network. Thus, the number of inputs is presented as N0, and NL illustrates the

number of units in the output layer. Ns is the number of (training) samples and

Kl the number of tapped delays, FIR linear filters, in layer l. We may define the

layer l network weights in a matrix form with the following equations

Wl(k) =




wl
11(k) wl

12(k) . . . wl
1Nl

(k)

wl
21(k) wl

22(k) . . . wl
2Nl

(k)
...

...
. . .

...

wl
Nl−11

(k) wl
Nl−12

(k) . . . wl
Nl−1Nl

(k)



∈ RNl−1×Nl , (75)

Bl =

Ns︷ ︸︸ ︷


b1 . . . b1

b2 . . . b2

...
. . .

...

bNl
. . . bNl


 ∈ RNl×Ns , (76)

where the transpose of the bias vector [b1b2 . . . bNl
]T is repeated Ns times in the

matrix. This duplication of bias values is necessary when the bias is added

through samples to the network excitation.

The excitation Sl and activation Xl of layer l with Ns samples is defined with

the following equations

Sl =

Kl∑

k=0

(Wl(k))T Xl−1(k) + Bl, (77)

Xl = f(Sl), (78)

where the function f(·) is the activation function, e.g., sigmoid, and the activation

function is calculated for each element in the matrix. Thus, the matrix dimension

remains unchanged.

The excitation and activation of layer l is dependent on the past Kl activa-

tions of layer l − 1. The delayed activation in the matrix form may be constructed

with a special matrix padded with as many zero elements in columns as there are

delays in the activation Xl(k):

Xl(k) =

k︷ ︸︸ ︷


0 . . . 0

0 . . . 0
...

...

0 . . . 0

xl
11 xl

12 . . . xl
1(Ns−k+1)

xl
21 xl

22 . . . xl
2(Ns−k+1)

...
...

. . .
...

xl
Nl1

xl
Nl2

. . . xl
Nl(Ns−k+1)




∈ RNl×Ns , (79)
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where k is from 0 to Kl expressing the delays of layer l and Xl(0) ≡ Xl.

The ”zero-layer” is the input layer and therefore we may express the input

vector with Ns samples as

X0(0) ≡ X.

Furthermore, if the network output is linear, then the activation of the last layer L

is equal to the excitation of the layer:

XL = SL. (80)

Feed-backward, solving the network weight gradients

In case of a linear output, presented in (80), and mean-squared error between the

output and training target vector Y defined in vector form as

E =
1

2N0Ns

Ns∑

n=1

||XL
n − Yn||

2, (81)

we may solve the backpropagation error matrices δl through Ns samples with the

following equations:

δL = XL − Y, (82)

δl =

Kl+1∑

k=0

f ′(Sl) · (Wl+1(k)δl+1(k)), (83)

where f ′(·) is the activation function derivative processed for each element in the

matrix Sl. The multiplication between the derivative and total backpropagation

error from the layer l + 1 is executed element-by-element for the equal-sized ma-

trices, which results in an unchanged matrix dimension.

The delayed backpropagation error δl(k) is a reduction of a matrix δl(0) ≡ δl,

defined with the following zero-padded matrix

δl(k) =




δl
1(k+1) . . . δl

1Ns

δl
2(k+1) . . . δl

2Ns

...
. . .

...

δl
Nl(k+1) . . . δl

NlNs

k︷ ︸︸ ︷
0 . . . 0

0 . . . 0
...

...

0 . . . 0


 .

(84)

The weight and bias derivatives DWl(k) and DBl may now be given as

DWl(k) =
1

N0Ns

Xl−1(k)(δl)T , (85)

DBl =
1

N0Ns

Ns︷ ︸︸ ︷
[1 . . . 1](δl)T , (86)

where the Ns length row vector [1 . . . 1] contains ones. Hence, the vector matrix

multiplication in (86) adds the backpropagated errors δl for each training sample

in layer l, and the result is the gradient bias row vector of length Nl.
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Discussion

The matrix implementation requires more memory than conventional program-

ming of the forward-backward computation since all the computational stages

for backpropagation error, excitation, activation and activation derivatives must

be stored for each sample and each neuron. Clearly, without matrix storage, the

forward and backward stages may be performed in loops storing only the sum

of the weight gradients when running the whole training sequence through the

backward calculation.

In the matrix presentation, the number of computational operations is not

increased and, therefore, the computer implementation for systems optimized for

the matrix calculation may give good performance. However, the presentation is

not given justice if only the implementation performance is considered. The easier

interpretation may become important in a theoretical analysis. Furthermore, for

most of the practical applications memory usage is not considered a problem [88].

A question arises as to whether more networks could be presented in this

manner, giving network forward and backward calculus and FIR- or feed-forward

neural networks as a special case. This could be a situation with networks with lo-

cal feedback, generally referred as locally recurrent neural networks (LRNN) or lo-

cal feedback multilayer networks. The base of these models lies in the adaptation

of ARMA model in the network. FIR network is also a LRNN [19]. A comprehen-

sive theoretical foundation for different temporal network architectures enabled

for the matrix treatment is left for future research.

4.4.5 Backpropagation alternatives

A variety of improvements for neural network training have one certain out-

come: the number of alternatives makes the decision of the right procedure com-

plex. Since network training is basically an optimization problem it could also

be treated as one. There are general nonlinear optimization programs that use

different methods and algorithms depending on the problem and available extra

information, e.g., if approximations of the gradient or Hessian exist. For exam-

ple, Matlab Optimization Toolbox offers general functions for multivariate con-

strained and unconstrained nonlinear smooth- or non-smooth optimization [102].

However, a general ”best” approach for nonlinear programming does not exist

and the choice between various methods depends on the application.

The use of the general optimization program simplifies network training.

Only network output and, optionally, gradient evaluation are required. Gradient

or Hessian information decreases the calculation time but is optional, since the

program may use finite differencing, later presented in this section, to numerically

approximate function derivatives. In addition, the numerical derivatives may be

used to verify the analytic derivatives.

With a general optimization solver we can construct controversial network

architectures much easier, e.g., hybrid models or use the network as an inner func-
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tion, as presented in Section 5.2, since the emphasis is no longer in complicated

neural network optimization: the minimum requirement is to provide cost func-

tion with error between the (continuous) function estimates, such as neural net-

work, and target samples.

Numerical gradients

For common network architectures the analytic gradients are available. For ex-

ample Campolucci [19] presents a signal-flow-graph approach to solve network

gradients for family of neural networks called locally recurrent neural networks.

Also the Jordan-network, FIR network and feed-forward neural network belong

to this family of networks. However, if the network is heavily modified for a spe-

cific application, the resolving of analytic gradients may become time consuming.

Some authors also prefer non-gradient methods or a combination of non-gradient

and gradient methods as a general approach to find a ”global”15 solution for a

nonlinear problem.

If the approximated function is continuous and thus, in theory, has analyti-

cally solvable derivatives, a numerical estimate of the gradient may be produced

with finite differencing. A derivative of a function f(t) is defined with the following

formula:

f ′(t) = lim
t→0

f(x + t) − f(x)

t
. (87)

The numerical gradient estimate for a parameter is assessed by estimating equa-

tion (87) with small value for t, which in computer programs is related to ε-

precision.

The above derivative is solved with forward differencing. Naturally back-

ward differencing may be applied and in addition central differencing is defined

with the following formula

f ′(t) = lim
t→0

f(x + t) − f(x − t))

2t
. (88)

Forward/backward differences require one and central differencing two extra

function evaluations for each parameter. Thus, numerical derivatives requires extra

computing time compared to the use of analytic derivatives. The applicability of

the method depends on the complexity of the problem, i.e., the number of param-

eters and samples. Numerical derivatives may also be used to verify the analytic

derivatives.

Genetic algorithms

Another popular optimization strategy is introduced by a variety of genetic al-

gorithms, also applicable for neural network optimization. The basic principle in

15Generally the global optimum is difficult to prove. However, global optimization conditions and

solutions may be find, e.g., to convex or linear problems.
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genetic algorithms is to have a population of solution candidates for the problem,

where the best candidates are kept and modified, combined or perturbed to pro-

duce new candidates (see, e.g., [94, 107, 124, 173]). Genetic algorithms are natural

for non-smooth problems where the approximated function is not continuous.

Nelder-Mead simplex method

A general unconstrained and non-smooth nonlinear problem solver in Matlab

uses Nelder-Mead simplex method to minimize an object function. The method

is applicable to problems with a small number of parameters and may handle

discontinuity if it does not occur near the solution [89] (cited in [102]).

Constrained optimization

With a general nonlinear constrained optimization solver it is possible to intro-

duce constraints in neural networks optimization. Constraints could be used, for

example, to restrict the function range or to build a strictly increasing neural net-

work function.

However, since the constraints often make the optimization plane more com-

plex, it becomes harder to find a suitable local solution. An alternative would be to

resolve multiple local solutions with unconstrained optimization and afterwards

use constraints to select a valid local minimum.



5 HYBRID MODELS

A hybrid model is a system where the system output is formed by several mod-

els, different, e.g., in their structure or parameters. For example, neural networks

often interpolate well between the training points but the extrapolation maybe

completely undesirable. More precisely, the underlying phenomena to be mod-

eled by a network can increase naturally but the extrapolation shows a decrease

in values. Another example is the estimation of some natural system with positive

output space but the estimation results in negative values in the input boundaries.

Another observation is that different methods may work well within a cer-

tain input-target space. Observed phenomena may be linear in some regions and

nonlinear in others, or the system dynamics change depending on the input space.

This raises the question, if different models could be specialized in different re-

gions in the input-target space.

In neural network literature the hybrid models combining different expert

functions to one overall output are called committee machines. An individual expert

function is a model, e.g. a neural network, that is specialized in a specific input

space. Haykin presents an introduction to committee machines in [55, Chapter 7].

He divides different approaches of the expert function combination to static and

dynamic structures. In the dynamic structure the input signal affects the expert

combination unit while in the static structure the combination mechanism does

not involve the input signals.

Furthermore, the static structure category includes ensemble averaging [184,

115, 128, 183] and boosting methods [35, 34, 38, 39, 40, 41, 155, 156, 157] (all cited

in [55]). In both methodologies the integration function is a linear combination of

different experts. In ensemble averaging experts are trained with the same data,

for example with different initial conditions, while in boosting the experts are

trained on data sets with different distributions. Bishop [13, p. 364-369] uses the

concept committees of networks equivalent to ensemble averaging.

The dynamic structure category by Haykin contains a mixture of experts [118,

66, 67] (cited in [55]) and hierarchical mixture of experts, where the latter is a general-

ization of the first method. Dynamic methods include training of the entire com-

mittee with the input depended integration function. The system is supposed to

divide (and conquer) the input space and experts to a modular network16, where

the integration unit ”decides” which experts should learn which training patterns.

The experts are expected to specialize in simple tasks and are formed as simple lin-

ear units. The nonlinearity is achieved with the gating network constituting the in-

16In [123] (cited in [55]) a modular network is defined as follows: ”A neural network is said to be

modular if the computation performed by the network can be decomposed into two or more modules

(subsystems) that operate on distinct inputs without communicating with each other. The outputs of

the modules are mediated by an integrating unit that is not permitted to feed information back to the

modules. In particular, the integrating unit both (1) decides how the outputs of the modules should be

combined to form the final output of the system, and (2) decides which modules should learn which

training patterns”.
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put space depended weighting of the experts (for details see [55, p. 368-369]). The

parameters for the experts and integration function are searched in the same op-

timization routine with gradient descent or exceptation-maximization approach

(EM-algorithm) [32] (cited in [55]).

The committee machines share and improve some theoretical results and

properties of single neural networks [55]:

1. Committees are universal approximators.

2. The bias of the ensemble averaged function is the same and the variance is

less than the one achieved with a single neural network.

3. Suppose that three experts have an error rate of ε < 1/2 with respect to the

distributions on which they are individually trained (boosting algorithm).

Then the overall error rate of the committee machine is bounded by g(ε) =

3ε2 − 2ε3 [155].

The straightforward optimization of free parameters for dynamic structures

results in multiple experts being ”mixed” or ”switched between” in order to map

the input-target space. Hence, modularity is not achieved. Tang et al. [169] de-

scribes a procedure to enhance the mixture of experts by applying classification

methods, e.g., self-organized maps [83], to divide the input space and to feed the

”correct” inputs to the individual experts.

Next we will present a general method to construct a hybrid model. The

proposed approach is not intended to be used solely with neural network expert

functions, but rather with any individual models to be combined. The method

is closely related to the one presented in [169] since it is a compromise between

the static and dynamic committee machine categories: the integration function is

optimized with the input-target-space but the expert functions are not part of the

optimization. The expert functions may be formed with applying different ini-

tial conditions to training or using different subsets of the data as described with

committee machines with static structures. Furthermore, input space mapping

may also include the output space of the expert functions. It is assumed that not

only the input space but also the output space can be utilized in the integration

unit. Moreover, the algorithm will be applied to form a reliability measure of the

overall output as well as a time domain correction for the modeled time series. It

will also be illustrated how to define a cost function in optimization to prevent the

mixing of the expert functions.

In Section 5.2 a new concept and method called transistor network is intro-

duced. It is also a hybrid model where the neural network will be used as an inner

function in a larger system. The architecture may be utilized for neural network

optimized adaptive filtering introduced in Section 5.2.1.



113

Optimization of

expert 1


Data

preprocessing


Feature

extraction


Time

series

signal


Optimization of

expert 2


Optimization of

expert n


Optimization of the


integration function F(t) with

respect to unknown


credibility coefficients
 (CC)


. . .
 Target signal Y(t)


Hybrid model F(t)


Creation of

discrete decision


plane
 (DDP)


Figure 39: A flow chart illustrating the overall view and optimization steps re-

quired by the HMDD. Optimization of experts fk(t) is isolated from the integra-

tion function F (t). Expert functions may differ, e.g., in the way they are pre-

processed, modeled, trained (optimized), etc. The integration function combines

different experts with respect to the credibility coefficients of the discrete decision

plane.

5.1 A hybrid model with discrete decision plane

Next we suggest an optimization strategy for a limited input-target space to con-

struct a hybrid model designed for time series modeling. The system contains

credibility of each expert model corresponding to its input-output mapping and

gives a discrete decision plane for each expert function. We assume that each ex-

pert is capable of forming it’s own mapping.

Figure 39 illustrates the overall view and optimization steps required by the

hybrid model with discrete decision plane (HMDD). It is emphasized that the integra-

tion function and experts are optimized in separate steps to preserve the modu-

larity.

5.1.1 General presentation of the HMDD

A discrete decision plane (DDP) of the HMDD is defined as

Ak =




ak11 ak12 . . . ak1Lk

ak21 ak22 . . . ak2Lk

...
...

. . .
...

akMk1 akMk2 . . . akMkLk


 , aki =




ak1i

ak2i

...

akMki


 , bk =




bk1

bk2

...

bkLk


 , (89)
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where the matrix Ak defines the discrete coordinates (DC) of the system, and vector

bk the corresponding credibility coefficients (CC). Lk is the number of credibility coef-

ficients (#CC) and Mk the dimension of the discrete coordinates for the kth model.

Furthermore, the integration function F (t) producing the final output of the gen-

eral HMDD reads as:

F (t) =

∑N

k=1 egk(xk(t)) · fk(t)
∑N

k=1 egk(xk(t))
, (90)

where N is the number of experts and fk(t) ∈ R is the output of an expert k at

time instant t. The exponential transformation in (90) is used to keep the relative

weighting of each expert function positive. Another possibility for example, is

to use the sigmoid function in (41), which would give a more natural interpre-

tation of the weights, as the transformation would result in real numbers inside

the interval [0, 1]. The relationship between gk(xk(t)), discrete coordinate aki, and

credibility coefficients bk is defined as

i = arg min
i∈{1,...,Lk}

||xk(t) − aki||,

gk (xk(t)) = bki.

(91)

Hence, the discrete decision plane is defined for all model-wise reference points

xk(t) ∈ RMk , also between or outside the defined discrete coordinates defined

with the matrix Ak in (89).

The discrete coordinate system may be set by hand based on the knowledge

of the modeled system. An alternative is to search for a suitable division with

a clustering algorithm, e.g., SOM [83] or K-means clustering introduced in Sec-

tion 4.3.1. Notice that the discrete coordinates may be different for each expert. In

addition, the expert inputs and outputs, the discrete coordinates and the credibil-

ity coefficients are connected in time, but the coordinates do not necessary have

to include the expert inputs or outputs. The construction of the coordinates may

be based on any division; the only requirement is that each expert output fk(t) for

each time moment t can be unambiguously connected with a discrete coordinate

aki and the respective credibility coefficient bki.

The credibility coefficients bk are the free parameters of the system opti-

mized with supervised learning. The derivatives of the credibility coefficients

with respect to an objective function is presented later in the section.

Notice that if we define DDP by means of expert outputs and set Lk ≡ 1, ∀k

in (89), then the system describes one setup for ensemble averaging. Hence, out-

put of the model is a weighted average of the expert outputs and the normalized

weights are the free parameters of the system.

5.1.2 Deviation estimate of the HMDD

We may construct a deviation estimate of the hybrid model in equation (90),

based on the deviation between the hybrid model output F (t) and experts fk(t),
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weighted with the discrete decision plane:

rb(t) =

∑N

k=1 egk(xk(t)) · (F (t) − fk(t))
2

∑N

k=1 egk(xk(t))
. (92)

Hence, the deviations between experts may be estimated as a weighted distance

between each expert and the HMDD at each time instant. Notice that expert out-

puts with a large variance result in to higher deviation estimates. Thus, the devi-

ation may not be absolutely interpreted but is expert dependent.

If the hybrid model produces high deviation estimates, the model may only

use its extra parameters to combine the experts to decrease the overall error. This

may suggest a rejection of the hybrid model, or just the time moments with a

high deviation estimate, since the improvement of the error is only due to free

parameters and expert combination, instead of modularity. Thus, the expert de-

viation may be interpreted as a reliability estimate of the hybrid model. Devia-

tion estimate may also be applied to postprocessing with time domain corrections

presented in Section 3.3. The transformation of the deviation estimate to the re-

liability measurement may be executed in several manners, for example with the

exponential scaling or linear transformation presented in equations (31) and (32).

Transformation is required, for example, to invert the deviation estimates close to

zero to reliability of one.

The applicability of the deviation estimate can be evaluated by correlation

between the expert deviations and squared model estimate residuals r(t)2 =

(F (t) − Y (t))
2

or absolute residuals |r(t)|. Here Y (t) presents the target signal.

Positive correlation suggests that in time instants where deviation is high the

residuals will also increase. High deviation is a result of expert combination, i.e.,

there is no single expert that would give a distinctive output in this target-space

region. Also if the residuals are high in these time instants then the combination

of the experts does not result in lowered residual. Negative correlation can sug-

gest that the hybrid model is able to reduce the overall error by combining the

expert outputs. Notice, however, that the correlation is not an exact measure in

this concept and may only be used to guide the analysis.

5.1.3 Optimization of the credibility coefficients

Determination of credibility coefficients is realized using a gradient descent algo-

rithm with supervised learning. The error function E is defined as follows:

E =
1

2

T∑

t=1

(F (t) − Y (t))
2

+ w ·

T∑

t=1

rb(t), (93)

where F (t) and rb(t) are defined in (90) and (92). Here w defines a regularization

parameter to control the effect of the deviation estimate rb(t) on the optimization.

The deviation estimate contributes the idea of penalizing mixing of experts in the

overall model. This concept is close to the idea of penalising model complexity of

a neural network discussed in Section 4.4.2.
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Derivative of the error function E respect to the credibility coefficients is

given by the following equation:

∂E

∂bki

≡
∂E

∂gk (xk(t))
=

egk(xk(t)) (fk(t) − F (t)) (r(t) + w · (fk(t) − F (t) − rb(t)))
∑N

m=1 egm(xk(t))
,

(94)

where the relationship between gk (xk(t)) and bki is given in (91).

Smoothing of the credibility coefficient derivatives

The interpretation of the discrete decision plane may be improved by smoothing

the credibility coefficient derivatives in (94). If the discrete coordinates are stored

in a vector arranged in equidistant and increasing order, then a moving averaging

can be utilized to smooth the corresponding derivatives. This is illustrated with

the following equation:

∂̂E

∂bki

=

i+ N
2∑

j=i− N
2

hN(j)
∂E

∂bk(i+j)
, (95)

Here hN(·) is a symmetric window, for example the Hanning window, with N

nonzero samples. Generalization to multi-dimensional coordinate system re-

quires smoothing window to be defined to a multi-dimensional space, for ex-

ample, as a weighting diminishing as a function of Euclidean distance from the

observed coordinate.

The procedure results in a smoother discrete decision plane. This may im-

prove the interpretation of the DDP and, furthermore, enhance generalization of

the hybrid model. It may also affect those coordinate positions that are inactive

with the current data, by directing the respective passive credibility coefficients

towards their neighbours. The credibility coefficients connected with such coor-

dinates are recommended to be interpolated or set to some pre-defined constant,

as the supervised learning leaves them to their initialized values.

Notice that the derivatives solved in (94) are no longer valid, when smooth-

ing is used. In practice, however, a solution of the optimization problem is found,

as the smoothing only perturbs the derivatives. Direct smoothing of the coordi-

nate coefficients is not recommended since it will result in a suboptimal solution.

The smoothing approach will later be demonstrated with an example.

5.1.4 Deterministic hybrid model

The optimization of general HMDD results in several local minima, and thus to

many solutions depending on the random initialization of the credibility coeffi-

cients. An alternative deterministic heuristic is to calculate the model errors at

each coordinate to decide the best expert. To generate such deterministic hybrid

model, the experts have to share the same coordinate system.
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Figure 40: The target signal and expert functions of the hybrid model.

The deterministic hybrid is an example of hard-decision integration func-

tion. It cannot use the decision plane to declare compromise between the experts:

only a single model will determine the output for each time instant. Furthermore,

the deviation estimate in (92) may not be applied, neither the reliability correc-

tions.

5.1.5 An example of hybrid models optimized to output space mapping

The HMDD optimized to output space mapping is a special case of the general

HMDD. The model is obtained by setting Mk ≡ 1 and xk(t) ≡ fk(t). Thus, the

discrete coordinates are defined based on the output range of the expert functions.

Figure 40 demonstrates the use of the hybrid model which is optimized to

output space mapping. The target data is a combination of two expert function

outputs f1(t) and f2(t). Table 3 presents the outcome of hybrid models opti-

mized and postprocessed with different approaches. Two- and three-dimensional

discrete decision planes (Mk = 1 or Mk = 2) were experimented. The result-

ing HMDDs resulted in a total of 62 and 512 credibility coefficients, respectively.

In addition, the effect of the regularization parameter w was tested. The mean-

squared errors and correlations between the squared deviation estimates and

model residuals are presented. The various models are analyzed in the follow-

ing subsection.
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1

8
#CC = 62, Mk = 1

w=0.0

w=0.3

Derivative

smoothing

R0 R1 R2 R3 R4

0.0178/0.3389 0.0103/0.2222 0.0117/-0.0042 0.0094/0.1307 0.0084/-0.0196

0.0297/0.0716 0.0194/0.2765 0.0468/0.3148 0.0197/0.2826 0.0232/0.3544

0.0257/-0.0185 0.0146/-0.0333 0.0257/-0.0185 0.0146/-0.0333 0.0146/-0.0333

#CC = 512, Mk = 2

w=0.0

Deterministic

integration

R0 R1 R2 R3 R4

0.0067/0.8491 0.0061/0.4178 0.0006/0.3079 0.0052/0.2854 0.0042/-0.0017

0.0322 0.0183

Table 3: Results of various HMDD optimized to output space mapping to estimate the signal with the two expert functions presented

in Figure 40. The abbreviations R1−R4 presents the results of different time domain post-correction heuristics applied to the HMDD

output. R0 expresses the MSE/CP between the model output and target without any post-correction. The Pearson’s correlation,

CP , is calculated between the squared model residuals and deviation estimates of the HMDD. R1 corresponds to the results obtained

in moving averaging of the model output with a Hanning window of length three. R2 is a time domain correction with interpolation

method, presented in Section 3.3.4, and threshold value 0.01. R3 and R4 presents the outcome of the reliability weighted moving

average time domain correction in (34), with a length three Hanning window, and exponential and linear transformations of the

deviation estimate, presented in (31) and (32). In addition, w presents the regularization parameter in (93).
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Figure 41: The upper figures present the two-dimensional discrete decision planes

of the hybrid model and bottom figures estimate the corresponding model esti-

mates. The left column is optimized without derivative smoothing while the right

column is optimized with derivatives smoothed with a five point Hanning win-

dow h5(·).

Hybrid models with two- and three-dimensional discrete decision planes

Figure 41 illustrates the results with a HMDD optimized with and without

smoothing of the derivatives in (94). The two-dimensional DDP had discrete

coordinates set as follows: a1 = a2 = [0 0.1 0.2 . . . 2.8 2.9 3.0]. Thus, the number

of credibility coefficients for one expert was 31 and total was 62. As may be ver-

ified from the right column of the figure and Table 3, the smoothing results in a

higher estimation error but more of a construed discrete decision plane. Figure 42

illustrates the corresponding deviation estimates of the HMDD presented in (92).

As may be noticed the deviations become larger in the target space areas where

the two experts interact and the decision between the models is not possible.

Notice that in (90) the credibility coefficients are transformed with an expo-

nential function. Thus, the negative credibility coefficients illustrate output re-

gions where an individual expert has little or no weight in the overall result, as

the weighting approaches zero.

It appears from Figure 42 that the deviation estimates with smoothing of

the derivatives are smaller but become active more often compared to the opti-
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Figure 42: The upper figures presents the deviation estimates of the HMDD with

two-dimensional DDP as a function of time while the bottom figure illustrates

the scatter plot between the output space and deviation. The left column is op-

timized without smoothing of the derivatives and the right column is optimized

with derivatives smoothed with a five point Hanning window.

mization without derivative smoothing. The result is clear when the credibility

coefficients presented in the right column of Figure 41 are observed, e.g., in the re-

gion between 1.3 and 2.0. In this particular region the two models intersect. This

is also verified with the scatter plot in Figure 42. This demonstrates how smooth-

ing does not decrease the deviation but rather separates the experts in order to

yield a more interpretable presentation. As may be compared from Figure 41, the

right column, is somewhat more clear to interpret: the output-space below 1.3 is

mapped by the first expert while the middle part from 1.3 to 2.0 is combined by

both models. The remaining part is modeled by the second expert. The described

division is harder to apply for the left column in Figure 42.

The hybrid model reliability may also be visually interpreted from the cred-

ibility coefficients. If the target space is separated into distinct regions where at

each region only one expert has positive credibility coefficients while others re-

main negative, the hybrid model is well founded. Furthermore, the deviation will

also be close to zero.

Figure 43 presents the outcome of the example optimized with deviation



121

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

E
st

im
at

e

Time in seconds

0 0.5 1 1.5 2 2.5 3
−400

−200

0

200

400

C
re

di
bi

lit
y 

co
ef

fic
ie

nt
s

Output space

0 0.5 1 1.5 2 2.5
0

0.5

1
x 10

−8

Output space

D
ev

ia
tio

n 
es

tim
at

e

Figure 43: The upper figure presents the result of a hybrid model optimized with

deviation term in the error function and regularization parameter set to w = 0.3.

The middle figure presents the corresponding two-dimensional discrete decision

plane. The bottom figure illustrates the scatter plot between the output space and

the deviation estimates.

term and regularization parameter w = 0.3. As may be compared, the two-

dimensional decision plane is more distinct and expert deviation has decreased.

However, this is done at a cost of increased error of the estimate.

Figure 44 presents the outcome of a deterministic hybrid in a three-

dimensional discrete decision plane. Now both expert outputs are used to de-

termine the DDP for both experts. The discrete coordinate matrix in (89) is the

following:

A1 = A2 =

256︷ ︸︸ ︷[
0 0 . . . 0 0.2 0.2 . . . 3.0 3.0

0 0.2 . . . 3.0 0 0.2 . . . 2.8 3.0

]

Thus, the resulting discrete decision plane has a total of 512 credibility coefficients.

Figure 45 illustrates the corresponding HMDD. The decision planes in Fig-

ure 44 are very distinctive but the model error is higher (MSE=0.0322) compared
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Figure 44: The upper figure presents the deterministic hybrid model estimate of

the signal in Figure 40. The bottom figures illustrate the three dimensional discrete

decision planes.

to those achieved with the HMDD (MSE=0.0067).

Table 3 reveals that the correlations between squared residuals and devi-

ation estimates are a good quantitative measure of the model quality and mix-

ing of experts. The hybrid models optimized with regularization parameter and

derivative smoothing result in a small deviation, but also to uncorrelated devia-

tion estimates and residuals. Hence, the time domain corrections using reliability

information are unable to improve the model, and pure moving averaging results

in better outcome. Furthermore, the models optimized without any attempt to

control mixing of the experts resulted in improved estimates with the reliability

information. The there-dimensional DDP with interpolation time domain post-

correction outperforms other estimates.

5.1.6 Mixing of the expert functions

Next we will demonstrate the problem of expert function mixing also recognized

in [169]. In the mixture of experts model it is assumed that the expert functions

will self-organize to find a suitable partitioning of the input space so that each

expert does well at modeling of its own subspace. The procedure is called divide

and conquer [55]. The presumption is that the expert functions will learn to map a

specific input space and the integration function F (t) will only combine the results
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Figure 45: The upper figure illustrates the HMDD estimate of the signal in Fig-

ure 40. The middle figures illustrate the discrete decision plane and the bottom

figure the hybrid model deviation estimate. The correlation between the absolute

residuals and the deviation estimate was 0.9262. The mean-squared error between

the estimate and target signal was 0.0067.

emphasizing the correct experts according to the input. Even if the parameters of

the expert functions and the integration function are optimized simultaneously it

is expected that they will act apart.

A HMDD optimized to one dimensional input space mapping is defined

with the following parameterizations respect to the general HMDD:

Mk ≡ 1, xk(t) ≡ t.

In the following demonstration the expert functions are all linear:

fk(t) = akt + bk.

The general solution of the credibility coefficient derivatives in (94) are applied

and the simultaneous optimization of the parameters ak and bk of the expert func-
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Figure 46: A piecewise-linear function defined in (97).

tions is performed with the following equations:

∂E

∂ak

=
t · egk(t) (r(t) + 2w (F (t) − akt − bk))

∑N

m=1 egm(t)
,

∂E

∂bk

=
egk(t) (r(t) + 2w (F (t) − akt − bk))

∑N
m=1 egm(t)

.

(96)

For this example we define the target as follows (see Figure 46):

Y (t) =





3t, t > 0 ∧ t ≤ 30

2t + 30, t > 30 ∧ t ≤ 60

t + 90, t > 60 ∧ t ≤ 90

(97)

The discrete coordinates are defined as [0 10 20 . . . 90] for all experts.

A HMDD was searched with 4648 local minima, where optimization started

with different initial conditions and regularization parameters. The results are

presented in Table 4. The best fit resulted in MSE=4.5124 (see Figure 47) with reg-

ularization parameter w = 0. The deviation term was utilized to force better sep-

aration of the input space between the three experts. Notice the increase of error

and decrease of the mean deviation as a function of the regularization parameter.

As may be verified from Figure 47 and Table 4 the overall result is not as

expected with a clear division of the input space and separation of the experts. In-

MSE w Mean de-

viation

a1 b1 a2 b2 a3 b3

4.5124 0 5.2e+002 1.8 37.0 0.9 18.5 3.3 -3.2

12.9762 1 2.0e-001 1.8 31.4 1.5 52.9 3.0 -0.4

13.1909 5 1.8e-003 2.3 14.7 3.0 0.2 1.5 53.6

13.2200 10 4.3e-005 1.5 52.2 2.9 0.3 3.0 0.2

13.4549 20 5.8e-007 3.0 -0.3 1.5 52.0 2.9 1.9

Table 4: Optimal results of a HMDD, total of 4648 local minima were searched.
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Figure 47: Two estimates of the piecewise-linear function defined in (97) modeled

with a HMDD. The upper Figure is optimized with deviation term excluded and

the bottom Figure with a deviation term and w = 20 as the regularization pa-

rameter. The left column illustrates the model estimates and the right column the

corresponding discrete decision planes.

stead the optimization without deviation term results in a combination of experts.

The complicated optimization plane due to several parameters will not result in

the desired solution with the deviation term either.

This simplified example illustrates that the optimal solution of a complicated

nonlinear system may not be managed with divide and conquer. The gradient

descent algorithm can not differentiate between different parameters in the opti-

mization plane but just finds an optimal solution regardless of the architecture of

the system, especially, when there are too many free parameters compared to the

complexity of the phenomenon.

5.1.7 Generalization capacity of the HMDD

The integration function in (90) is basically a weighted average of the expert out-

puts. Hence, the model may not extrapolate outside the boundaries defined by

the experts. Furthermore, the integration may allow a combination of the experts

based only on extra parameters the model introduces. Thus, the number of credi-

bility coefficients affects not only the accuracy, but also the generalization capacity

of the HMDD. To find proper balance between the number of credibility coeffi-
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Figure 48: A mean-squared errors of a different number of random signals esti-

mating a random target signal. All the signals are drawn from an interval [0, 1]

and they are uncorrelated. The example demonstrates how the HMDD begins to

make convex combinations to reproduce the target signal, even when the signals

are random.

cients and generalization, the discrete decision plane has to be post-analyzed.

To further investigate the problem with generalization, we present the fol-

lowing example. Consider multiple random uncorrelated time series signals that

are used to estimate another random target signal. If the signals are drawn from

the same interval and overlap with the target, the hybrid model can decrease the

overall error as a function of the number of experts. This is demonstrated in Fig-

ure 48, where a hundred point long random signals drawn from uniform distri-

bution in the interval [0, 1] is used to estimate target random signal from the same

function range. For illustrative purposes the optimizations are performed sepa-

rately for a different number of signals to demonstrate the decrease of the hybrid

model error. In this way the increase in the number of experts may be exploited

to decrease the error of the HMDD. However, the hybrid model will not give as

good MSE with a new data.

5.1.8 Summary

The current section introduces a general concept of constructing hybrid models

with a discrete decision plane. Heavy assumption of the model is that, for ex-

ample the input or output space, can be utilized in the integration function and

the discrete decision plane will divide the expert functions to act separately in

different regions of input-output space of the experts.

In Kettunen et al. [77] the preferred embodiment of respiratory frequency de-

tection from the heart rate signal included HMDD optimized to output space map-

ping, where different time-frequency features were combined to decrease overall

error. The examples presented in this section demonstrated the potential of the

HMDD with an artificial dataset. Furthermore, several general properties of the

HMDD were outlined:
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1. Ensemble averaging, HMDD optimized to output or input space mapping

are special cases of the general HMDD.

2. Also a deterministic hybrid model with hard-decision integration function

was presented. The deficiency of the model is that it may not fully utilize the

information loaded in the experts. Neither can any reliability measures or

corrections be exploited. The benefit of the model is a very distinct decision

plane that is easy to interpret. Also optimization of the model is straightfor-

ward and unambiguous for the given dataset.

3. The integration function and experts are optimized in separate steps to pre-

serve modularity of the hybrid. This premise was demonstrated to be correct

in Section 5.1.6. A simple example demonstrated how the optimal solution

of a nonlinear system may not be managed with divide and conquer, if the

integration function and expert functions are optimized simultaneously.

4. A deviation estimate of the HMDD may be utilized to control modularity

of the system. It may also be interpreted as a reliability estimate and used

in time domain post-corrections of the model output. However, care must

be taken in the exploitation of the deviation estimate as it should not be

interpreted as absolute.

5. Validity of the reliability estimates should be evaluated. Some possible

heuristics were introduced, e.g., studying the correlation between the

squared model residuals and deviation estimates. In addition, the post-

correction methods may be indirectly used to evaluate validity of the re-

liability estimates. For example, if reliability weighted moving averaging

decreases the model error, it should be compared to pure moving averaging

with the same window template.

6. The number of extra parameters HMDD includes, affects on the accuracy

and generalization capacity of the model. As a warning example, it was

demonstrated how a HMDD can combine random signals on a desired tar-

get. In addition, other deficiencies were linked with the HMDD: as the inte-

gration function is basically a weighted average of the expert function out-

puts, the model may not extrapolate outside the boundaries defined by the

experts. The integration may also allow a combination of the experts based

only on extra parameters the model introduces resulting in poor generaliza-

tion.

Hence, it is emphasized that the discrete decision plane has to be post-

analyzed with, e.g., visualization and studying deviation estimates of the

HMDD. Also cross-validation may be utilized to estimate the generalization

capacity of the model.

7. Smoothing of the credibility coefficient derivatives may be exploited to en-

hance generalization of the HMDD. Smoothing may also affect the inactive
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coordinate positions, by directing otherwise passive credibility coefficients

towards their neighbours.

8. Including a deviation term in optimization, and smoothing of the deriva-

tives, are both modifications that are made in the cost of increased training

error. However, instead of the training error, the overall testing error should

be examined, as it gives a better estimate of the model quality and general-

ization.

5.2 A transistor network; a neural network as an inner function

A common usage for a neural network in time series analysis is to form a model by

optimizing it with respect to a target signal. In the optimization process the net-

work input is fed to the network and the output is directly compared to the target

signal and, e.g., a squared error between the network output and the target is cal-

culated. Furthermore, the error function is used to update the network parameters

towards the negative gradient directions of the parameters. For example, for the

feed-forward neural network, the derivatives in respect to the error function may

be solved with the backpropagation algorithm presented in Section 4.1.3.

Now let us consider a system where the network is calculated several times

with a different input to form the overall output. This system will be called a

transistor network. A transistor network output is defined as follows:

G = F(g(x1), . . . , g(xK)),

where the function F is the integration function gathering K network outputs to

a single instance. The vector xk illustrates the kth input of the neural network

g. We will limit the inspection to real valued network and integration function.

Furthermore, to simplify the notation we will illustrate the results for a single

input-target sample. The analysis may be extended to several samples, multiple

outputs in the network output layer and to vector valued integration function.

In electronics a transistor is a circuit that transmits the electricity forward

after enough power is supplied into it. A gate is launched when enough tension is

reached. The analogy is apparent as the transistor network fires only after enough

inputs are fed to the neural network. The neural network g receives several inputs

and produces several outputs before the actual output G is produced with the

integration function F .

The applicability of the transistor network is shown especially in Sec-

tion 6.3.2, where a transistor network is utilized for the respiration frequency

detection from the heart rate time series. The general concept of adaptive filter-

ing is presented in Section 5.2.1. To our knowledge, the concept of a transistor

network is new and may find other useful applications in the future.

Next we will show the general solution of the derivatives of the transistor

network parameters. Let us consider a single transistor output G and target Y .
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The squared error (divided by two) is defined as

E =
1

2
(G − Y )2 .

The derivative of the neural network parameter wl
ij in layer l respect to the error

function E may be calculated as follows:

∂E

∂wl
ij

= (G − Y )
∂G

∂wl
ij

= (G − Y )

K∑

k=1

∂G

∂g(xk)

∂g(xk)

∂wl
ij

=

K∑

k=1

∂G

∂g(xk)

∂E

∂wl
ij

(k) ,

(98)

where we have used the chain rule once. Furthermore, we use the identity

∂E

∂wl
ij

(k) = (G − Y )
∂g(xk)

∂wl
ij

, (99)

which includes the derivative of the network function g in respect to the param-

eter wl
ij for the kth input. Thus, the general solution in (98) may be exploited by

utilizing the traditional backpropagation derivatives resulting in a simple analytic

solution for the problem.

The formulation in (99) appears simple but yet a sophisticated application

may be built around it as will be shown in Section 6.3.2. The basic principle of

the derivative solution is powerful as may be verified from equation (109), where

quite a complex objective function is derived based on equation (99).

5.2.1 A neural network optimized adaptive filter

Next an optimized adaptive filter is constructed with a neural network to modu-

late a discrete time-frequency distribution. The general procedure may be applied

to optimize the time-frequency plane for respiratory frequency detection from the

heart rate time series. This application is later presented in Section 6.3.2. The

benefit of this approach is its capability to utilize the information controlling the

filter’s adaptation inside the neural network architecture. A special ingredient of

the method is the use of the neural network as an inner function inside an instan-

taneous frequency estimation function. Thus, the described system is a transistor

network introduced in the previous section. Furthermore, the procedure results

in a relatively small number of network parameters processing large number of

inputs to form a single output.

Digital filter design with a neural network has also been demonstrated in

[9]. The article mainly focuses on designing a FIR filter for a desired amplitude

response and is not frequency moment optimized filter as the system presented

here.



130

In this method the time-frequency distribution is presumed to be positive

and it must contain at least one non-zero element per time instant. Furthermore,

for each time instant t there exists a target frequency y(t) we wish to estimate.

A neural network function g(k, t) is used to weight the time-frequency distri-

bution17. It may include time- and frequency depended variables, but at least dis-

crete frequency variables w(k) in its input. In general, the time depended variables

are utilized to modify the filter shape: they form the adaptive part of the neural

network. For example, a filter shape depending only on a frequency instant w(k)

would be defined as g(k, t) = g (w (k)). Thus, the neural network would have a

single input w(k) at frequency instant k.

A neural network weighted TFRD is defined as follows

F̂ (k, t) = F (k, t)g(k,t), (100)

where the neural network g has a linear output and the discrete time-frequency

matrix F (k, t) is computed with T time instants and K frequency bins. Alternative

weighting is given by equation

F̂ (k, t) = g(k, t)F (k, t), (101)

which may be applied when the network g has sigmoidal output resulting in pos-

itive weighting inside the interval [0 1].

The relationship of weighting to digital filtering is as follows: digital filtering

(for example FIR filtering) is used to remove specified frequency components of

the time series signal. The number of parameters in the filter specifies the sharp-

ness of the filtering. Thus, a small number of parameters results in lowered am-

plitude of the nearby frequencies, if the spectrum of the signal is analyzed. In

addition, e.g., FIR filtering results in an amplitude response to the interval [0 1].

In a similar manner, the weighting of the TFRD or a single spectrum may be

comprehended as a filtering of the signal. However, the manipulated spectrum

and the corresponding amplitude response may often be impossible to re-create

in the time domain, as the FIR filter with similar, complicated, amplitude response

may not be generated. As the weighting defined in (100) has filter response out-

side the interval [0 1] the interpreting is liberal. However, the weighting is still

used to diminish signal frequency components not of interest. Thus, we will refer

the weighting procedure as filtering of the signal.

Discrete instantaneous, or mean, frequency of weighted TFRD F̂ (k, t) is de-

fined as (see equation (4))

f̂MEAN (t) =

∑K

k=1 w(k)F̂ (k, t)
∑K

k=1 F̂ (k, t)
. (102)

Similarly, mode frequency of weighted TFRD at time instant t, is defined as

f̂MOD(t) = {w(k); argmax
k

F̂ (k, t)}. (103)

17The notation g(k, t) should be read as a description of a network function which the input is varied

depending on the frequency and time instants.
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Equations (102) and (103) together with (100) and (101) form the transistor

network and optimization problem is to solve the unknown network parameters

in respect to, e.g., mean-squared error (divided by two) between the target y(t)

and the frequency moment estimate f̂(t):

E =
1

2T

T∑

t=1

(
f̂(t) − y(t)

)2

, (104)

where the frequency moment estimate f̂(t) may be, e.g., f̂MEAN or f̂MOD . For

mode frequency analytic derivatives in respect to the error function do not exist,

since it results in a discontinuous function and non-smooth optimization problem.

In the procedure, the neural network function g is inside the object func-

tion in (104) and it is calculated K times for each time instant. Only the network

inputs containing frequency information vary. Time depended variables remain

and change only when new time moments are estimated. Hence, the benefit of the

architecture is a small number of network parameters compared to the number of

time-frequency variables it processes.

In principle, any neural network architecture may be applied for the method.

In case of temporal dynamics the time depended neurons need special focusing.

Temporal neurons or connections should remain their state inside the inner loop

while the frequency information is processed. Time depended states should be

allowed to change only after the algorithm moves to a new time instant.

Figure 49 illustrates one possible overall view of the system. The target and

input time series signals are first both preprocessed, e.g., outliers and artifacts are

removed. For validation signal the target frequency is revealed to construct a su-

pervised learning setup. Time-frequency distribution of the input signal is calcu-

lated and time, frequency and time-frequency features are extracted. Notice that

several distributions may be utilized with different parameterizations but only

one is optimized and weighted. Probably, a more complicated system could be

formed with the decision function between different distribution estimates.

For one time instant the network feed-forward stage is repeated K times

with varying frequency and time-frequency features, but with constant time

depended features. The resulting K-length vector is used to weight the time-

frequency distribution F (·, t) resulting in filtered spectrum F̂ (·, t) (see equa-

tions (100) and (101)). The instantaneous frequency of the spectrum is calcu-

lated with, e.g., frequency moments defined in (102) or (103). The result is the

instantaneous frequency estimate of the system.

Off-line optimization process also requires output of all time instants, and

the network is run K × T -times total. For on-line updates the network gradient is

updated every Kth feed-forward stage.
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Figure 49: A flow chart illustrating the system view of neural network optimized

adaptive digital filtering.



6 APPLICATIONS

In Section 6.1 we demonstrate with a large heterogeneous dataset that there may

exist a high correlation between training and testing errors, even with a large num-

ber of network parameters. The neural network may use its neurons as ”memory”

to repeat different RRI patterns.

Two neural network based physiological models are presented in sections

6.2 and 6.3. The first application presents a dynamic neural network applied

to modeling of excess post-exercise oxygen consumption while the second intro-

duces the detection of breathing frequency strictly from the heart rate time series

with a transistor neural network.

6.1 Training with a large dataset; correlation of training and test-

ing error

Large datasets may become problematic for optimization routines. Second order

algorithms often require more memory than basic backpropagation and the mem-

ory usage is proportional to the training set sizes. Also calculation time increases

as more samples are introduced as the number of function calculations increases

in the optimization algorithm.

Nevertheless, the use of large datasets is required for certain applications,

e.g., if we wish to cover interindividual laws from physiological signals and rep-

resent them with good generalization. If we only use part of the data, then some

dynamics and individual information may be missed. Another benefit with large

datasets could be that the signal-to-noise ratio may be improved for certain data

sets. The signal noise may start nearing the Gaussian distribution with zero mean

as more data is introduced. This might lead to better generalization since the net-

work does not bias towards nonzero error.

In the following experiment the RR intervals of the orthostatic tests were

used to train a feed-forward network with five input units and one hidden layer.

Only one person’s data was used. The number of orthostatic tests was 51 each

lasting 8 minutes. The number of input units was not optimized and was based

on intuition. This modeling scene is very challenging; the network should learn

and remember the past RRI sequence x(t − 5), . . . , x(t − 1) to predict the next RRI

x(t). It is not necessarily clear that any deterministic patterns exist. The hypothesis

is that the number of hidden units may be used to increase the neural network’s

”memory”. We do not believe that there is any system that can be modeled, rather

there might exist some repeating patterns that can be memorized by the network.

We trained the network with seventy percent of the data with one to forty

hidden units, the rest of the data, thirty percent, was used for testing. Validation

set and early stopping were not used since the amount of data is heterogeneous

and large enough (total of 26162 RR intervals) to prevent overfitting. The training
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was repeated ten times for each case resulting in 400 training sessions. The full

experiment took one week of computer time.

The feed-forward network was trained with Levenberg-Marquardt back-

propagation. The ending criteria for the network training were set as follows: the

MSE goal was 0.001 and maximum number of epochs was set at 300 to decrease

overall computation time. One epoch means the training of the network with the

entire data once. Sigmoid units were used in the hidden layer and linear unit in

the output.

Notice that in the more general framework when cross-validation together

with early stopping is used, the Levenberg-Marquardt based optimizing strategy

might lead to poor generalization. It gives a fast convergence even in one algo-

rithm step that might lead to overfitting of the data.

The results

Figure 50 presents the best training and testing records as a function of the number

of hidden units. Also the histograms of the training sessions are presented. It

appeared that in 365 out of 400 training sessions the mean-squared error reached

a value less than 3400. For the test data 350 out of 400 resulted in MSE less than

4600. A few training sessions resulted in MSE higher than 10000 showing the

failure of the local optimizing strategy. These ”outliers” appeared randomly and

were unrelated to any specific network architecture.

Increasing the number of hidden units decreased the training and testing er-

rors. This suggests that the hypothesis in the beginning was justified: adding more

”memory”, i.e., hidden units in the architecture, results in better performance with

both the testing and training data.

Figure 51 presents statistics of the best test data fit. In addition, the corre-

sponding MSE of the training data is illustrated in the top left corner of the figure.

To have a better interpretation the mean-squared errors are scaled to a minimum

of zero and maximum of one.

The mean absolute value of the network parameters (or weights) as a func-

tion of the number of hidden units is presented in the middle of Figure 51. Only

the networks resulting in the best testing error are included. The ”netmean” de-

scribes the effective number of parameters. As can be seen the minimum test error

is achieved with 31 hidden units where the ”netmean” is high locally compared

to the surroundings.

The scatter plot between the number of network parameters and ”netmean”

presented at Figure 51 does not show any clear pattern. However, with few pa-

rameters the effective number of parameters is relatively higher with less variance

in interpretation.

The most clear result is presented with the scatter plot between the testing

and training mean-squared errors at figure 51. The relationship is very linear

suggesting that the optimizing strategy without early stopping seems justified:

a good training performance results in a relatively good test data fit.
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The average training time measured as epochs is presented in the bottom

left corner of Figure 51. The number of epochs seemed quite arbitrary and did not

decrease or increase as a function of the number of hidden units.
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Figure 50: The minimum training and testing errors as a function of the number

of hidden units. The smoothed line interprets the decreasing trend of the mean-

squared error. The histograms present the total distribution of the training and

testing mean-squared errors. Networks including one to forty hidden units and

five input units were each trained ten times with the orthostatic test data.
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Figure 51: The figure in top left corner illustrates the best test data fit (solid) as a

function of network hidden units and the corresponding scaled MSE of the train-

ing data (dashed). The average absolute value of the network parameters, ”net-

mean”, as a function of hidden units is presented in the middle figure. The upper

scatter plot illustrates the linear correlation between the testing and training MSE.

The scatter plot below presents the correlation between the number of parameters

and ”netmean”. Both scatter plots include all the training cases.
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Figure 52: The upper figure is an example of the training data (solid) together with

the network fit achieved with one-step-ahead predictions (dashed). The lower

figure presents the same information with test data.

Figure 52 presents an example of the training and testing data with the cor-

responding network fit, with an architecture of forty hidden units.

Discussion

The current neural network experiment leaves open questions to further inves-

tigation. It will be interesting to see the neural network prediction on different

stages of the test and if there is any repeated patterns before or after the subject

starts to stand.

The experiment was continued to forty hidden units. The upper scatter plot

at Figure 51 shows the training results of all the cases. The training cases resulting

in a good training fit also resulted in a good testing fit. This means that we did

not encounter overfitting. Overfitting happens when the training MSE is small

but the testing MSE is high. If we continued to add hidden units to the system,

then overfitting would probably happen at some point. In this experiment the

unsuccessful training cases corresponded to optimization failure with a poor local

minimum.

By studying the first layer weights of the network, the amount of effec-

tive network inputs could be estimated. If some input has very small outgoing
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weights, it could be erased. The network should be trained several times to make

reliable conclusions.

One possible application for RRI modeling could be detection and correction

of signal artifacts. A one step-ahead prediction with a threshold could be used to

detect artifacts in the signal. Furthermore, a neural network model could be used

to replace the missing or corrupted beats and to simulate local variance of the

signal.

6.2 Modeling of continuous Excess Post-exercise Oxygen Con-

sumption

Excess post-exercise oxygen Consumption (EPOC) is the extent of physical activ-

ity induced by a heightened level of oxygen consumption after the cessation of

physical activity, or briefly, the extent of additional oxygen consumption after ex-

ercise [105, p. 133].

After exercise, oxygen consumption (VO2) does not return to it’s resting

level immediately but rather in a curvilinear fashion (see, e.g., short-term recov-

ery and oxygen depth [45, p. 1011]). The causes of EPOC after exercise may not

be totally clear but based on literature it is hypothesized that the greater the fa-

tigue accumulation during exercise the greater the EPOC and the longer the time

required for VO2 to recover to the pre-exercise level.

Excess post-exercise oxygen consumption may accurately be measured af-

ter the exercise with machinery providing respiratory gases. The total amount

of oxygen consumption above the base resting level gives the amount of EPOC

for the exercise. To measure EPOC the respiratory gases are recorded until the

base level is reached. The integral of the oxygen consumption during the resting

phase is the quantity of EPOC. In Figure 53 three different exercises with 70% ex-
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Figure 53: Measured EPOC of a 70 kilogram weighted individual exercising for

different durations with 70% intensity. The figure suggests that the EPOC mea-

sured as a function of exercise time and intensity is not linear in respect to time.
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ercise intensity lasting twenty, fifty and eighty minutes are illustrated. The figure

demonstrates that the amount of EPOC is not linear in respect to time.

The heart rate during exercise gives information on the intensity of the exer-

cise but it does not take into account the cumulative effect of the exercise duration.

In [140, 149, 151] heart rate derived EPOC is suggested as a noninvasive measure

of body fatigue, and furthermore, a system for the prediction of EPOC, recovery

and exhaustion time is proposed. The innovation offers a method for continu-

ously tracking the influence of exercise on body fatigue and the recovery from

exercise without the restrictions of the laboratory environment or equipment. The

procedure is claimed to be useful for providing real time feedback on exercise

status to optimize physical exercise, sports training and recovery, and to provide

predictions of time requirements for body recovery and exhaustion.

In this dissertation an alternative neural network based model is constructed

for continuous modeling of EPOC as a function of accumulated body fatigue and

current exercise intensity. The example is used to illustrate the benefits of dynamic

neural network modeling compared to its static counterpart. It will also demon-

strate the importance of the physiologically based presumptions in the model

building. Furthermore, the example will demonstrate the use of constraints in

the model selection and it will illustrate how to generate extra data to produce

evenly sampled dataset. Moreover, the presentation is a completion for the im-

plementation described in Saalasti, Kettunen and Pulkkinen 2002 [151], but may

also be considered as a separate, isolated, presentation for modeling of body fa-

tigue, or EPOC. The physiological context and interpretation is mainly described

in [140, 149, 151] and is partly produced here to provide sufficient physiological

background for the computational system.

The quantity of EPOC depends on the intensity and duration of the exercise.

As the dissertation is concentrated on heart rate time series analysis, the relation-

ship between heart rate and oxygen consumption is founded next to define the

appropriate exercise intensity estimation.

6.2.1 Oxygen consumption and heart rate level as estimates for exercise inten-

sity

The rate of oxygen intake, oxygen consumption (VO2), is a central mechanism in

exercise and provides a measure to describe the intensity of the exercise. Oxygen

is needed in the body to oxidize the nutrition substrates into energy and, therefore,

VO2 is very tightly coupled with the energy consumption requirements triggered

by exercise and physical activity. Thus, VO2 is an indirect measurement of burnt

calories during the exercise. The American College of Sports Medicine Position

Stand of recommendations for exercise prescription [119] suggests the use of VO2

for measuring physiological activity.

The level of oxygen consumption can be measured by different methods.

The most accurate methods rely on the measurement of heat production or analy-

sis of respiratory gases. The disadvantage of precise measurement is the require-
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Figure 54: A scatter plot between absolute VO2 and HR-values together with a

polynomial fit based on the data. The data is a collection of 158 recordings with

different individuals and different tasks.

ment of heavy equipment restricting the measurement to the laboratory environ-

ment.

Given the relative difficulty in measuring oxygen consumption directly, we

may estimate VO2 on the basis of heart beat. Heart rate is a major determinant

of the circulatory volume and often provides a reasonable estimate of the oxy-

gen consumption. This is empirically illustrated in Figure 54, where a nonlinear

relationship between VO2 and heart rate level is demonstrated together with a

polynomial fit to the data. A raw estimation of transformation from heart rate to

oxygen consumption may be expressed with the following equation:

V O2 = 0.002 · HR2 − 0.13 · HR + 2.3. (105)

The proposed model in (105) is inaccurate (MAE=3.6982 ml/kg), and for increased

precision additional information, like individual maximal oxygen consumption

or heart rate level or resting heart rate level, could be exploited. Furthermore,

other bio-signals, like respiratory activity, may improve the model’s accuracy. The

effect of heart rate derived respiration frequency into VO2 estimation is presented

in [139, 141].

Maximal oxygen consumption (VO2max) is defined as the maximal oxygen

intake during exhaustive exercise. It describes a person’s ultimate capacity of

aerobic energy production. This may be achieved by stepwise exercise protocol

where body stress is taken into voluntary exhaustion (maximal stress test). Dur-

ing the test the oxygen uptake is measured with suitable laboratory equipment.

Also non-exercise methods are available to estimate a person’s aerobic capacity.

They are often based on individual characteristics such as, for example, age, sex,

anthropometric information, history of physical activity, or resting level physi-

ological measurement (e.g. Jackson et al. [64], or [172]). In a similar manner,

via maximal stress test or via mathematical formulation, maximal heart rate level

(HRmax) may be evaluated. An example heuristic for determination of HRmax is
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Figure 55: A maximal stress test illustrating the relationship between the oxygen

consumption and heart rate level.

a raw formulation 220 − age expressing linear relationship between HRmax and

the age of an individual. Figure 55 illustrates an example HR and VO2 time series

in a maximal oxygen uptake test. A close relationship between the measurements

is expressed with a high correlation coefficient CP = 0.9185.

The database illustrated in Figure 54 also contains the laboratory recorded

HRmax and VO2max values. Constructing a second order polynomial fit between

HR proportional to HRmax (pHR) and VO2 proportional to VO2max (pVO2) re-

sults in a formula

pV O2 = 1.459 · pHR2 − 0.49 · pHR + 0.04. (106)

The resulting pVO2 may be transformed to absolute scale by multiplying the re-

sult with individual VO2max. The error of the fit was MAE=3.1558 ml/kg, de-

creasing the error 15%, compared to (105).

The transformation in (106) gives a foundation for expressing the individual

exercise intensity by means of the proportional heart rate. As the exercise intensity

is expressed in percentages, the conversion to relative scale is both intuitive and

practical, since the intensity measure may be directly compared between different

exercises, and in some degree between individuals having different physiological

attributes. Thus, two people that differ in their maximal VO2 but exercise at the

same relative intensity have the similar exercise impact on their bodies.

Notice that the error measurements are absolute and the models are fitted

to the whole database without taking the data distribution into account. The er-

ror distribution is considerably higher in low intensities. If only part of the data

is selected, e.g., a partition of data consisting of oxygen the consumption levels

between 1 − 5 ml/kg, the error estimates are MAE=2.1895 ml/kg and MRE=82%

for model presented in (105). For the VO2 estimate in (106) the corresponding er-

rors reduce to MAE=2.0124 ml/kg and MRE=75%. The selection was composed

of 47% of the data. The selected VO2 level corresponds to the resting oxygen con-

sumption level of a young adult man [45, p. 1014].
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In the higher end of the distribution we selected exercise intensities

pVO2>40% consisting of 25% of the data. The mean HR in this area was

140 bpm±24 bpm. The corresponding model errors in this partition were

MAE=6.2726 ml/kg, MRE=23% and MAE=4.6950 ml/kg, MRE=19%, for the

models in (105) and (106), respectively.

The above analysis demonstrates that the relative error for both models is

high in VO2 level between 1 − 5 ml/kg and considerably lower for higher ex-

ercise intensities. This also reveals that different error measurements should be

exploited in the analysis: a mean absolute error suggests that both models map

the lower exercise intensities better, but when evaluating relative errors it appears

that both models work better with the higher exercise intensities.

Furthermore, the modeling reveals that the oxygen consumption level has

a high inter-individual variation. Guyton reports average VO2max levels for an

untrained average male to follow 3600 ml/min, an athletically trained average

male 4000 ml/min, and male marathon runners 5100 ml/min [45, p. 1014].

Naturally the high exercise intensities result in an increasing effect on mea-

sures like body fatigue or energy consumption. Our interest is to measure the

body fatigue accumulated during exercise, where the effect of lower intensities

on the index is less dramatic. Furthermore, we are modeling the system giving a

response of an average individual, so that some modeling error must be tolerated.

As discussed earlier, the quantity of EPOC depends, at least, on the intensity

and duration of the exercise (see Figure 53). The above analysis concludes that

HR may be used as an indirect measure of exercise intensity for a person. Next

the foundations of the EPOC model are built.

6.2.2 Building the EPOC model

A presumption for the model is that the EPOC may be estimated as a function

of the current exercise intensity and accumulated body fatigue. Furthermore, to

build a discrete model, the time difference between consecutive sampling points,

4t, has an effect on the index. This may be mathematically formulated as follows:

EPOCt = f(EPOCt−1, exercise_intensityt,4t). (107)

The recursive modeling of the accumulation of the body fatigue has the benefit of

not having requirements for knowing a priori the beginning time of the exercise

and different durations of exercise at varying intensities.

Let us emphasize that the amount of EPOC may not be continuously

recorded in a laboratory. EPOC may only be accurately measured by finish-

ing the exercise and recording the oxygen usage during the recovery until a base

level of oxygen consumption is reached. The formulation in (107) has to be con-

sidered as a model that is able to predict the amount of post-oxygen consumption

if the exercise finished at any given moment.

The described restrictions will have the effect on the availability of consis-

tent data. In a laboratory we are able to measure exercise intensity as VO2 and
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the amount of EPOC after the exercise. We may control the duration of the exer-

cise and the intensity. The state before exercise is presumed to be the base line,

i.e., normal inactive oxygen consumption rate (EPOC equals zero). For the EPOC

modeling a dataset of 49 sessions were gathered consisting of different individu-

als, exercise durations, and intensities. In all datasets, the intensity of the exercise

was kept constant during the training. Different sets of data consisted of exercises

lasting between 2 to 180 minutes and exercise intensities between 18 − 108% of

VO2max. Figure 53 illustrates the amount of EPOC in three different exercises

with different durations with a constant, 70%, exercise intensity.

The pre-model in (107) introduces the properties we wish to have: the model

should not require the starting time of the exercise, but rather be a pure function of

the current intensity and accumulated fatigue. In addition, we limit the inspection

to strictly increasing functions; the estimation of recovery is not demonstrated. To

estimate EPOC continuously the model has to interpolate each sample from the

beginning to the end, from zero to the recorded fatigue. To generate equidistantly

sampled signal we linearly interpolate the data to a one minute sampling. Thus,

adjacent samples will have a one minute difference (4t = 1). As the phenom-

ena itself is not necessary linear we will base the optimization of the model to

weighted squared error defined in (12). Model predictions inside the sampling

interval may be obtained using interpolation.

An output recurrent neural network (ORNN), with current exercise intensity

as input, is chosen to model the system. The network will give the current amount

of EPOC as output, and the output is fed back to the network as an input in the

next iteration. Sigmoid units are used in the hidden layer and linear unit in the

output. The network is a special case of Jordan-network without recurrent self-

connections in the input layer. It is apparent that ORNN architecture may be used

to follow the characteristics formed in (107).

As has been discussed in Section 4.2, a recurrent network has a static coun-

terpart. However, the static equivalence is only apparent for the set data length.

Static networks will also map equal inputs to the same output. If exercise time and

intensity were both used as an input for, e.g., FFNN, the resulting model would

only give an average response for a certain input pair. Also for the model to be

strictly increasing, the current state of the system should be fed back to the model.

The latter is the final drawback that will prevent static modeling of this phenom-

ena based on the pre-model. This also implies that other recurrent models could

be applied here, as they are able to store the internal state of the system.

6.2.3 Results with the output recurrent neural network

Output-recurrent neural network was trained with varying (3 − 14) number of

hidden units 1595 times altogether starting with different initial conditions. No

constraints were used during the optimization. The weighted squared error was

constructed as follows: the beginning (EPOC=0) and end of each exercise had

a weight of one and all the linearly interpolated time instants in between were
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Figure 56: Two simulated intensity time series and the corresponding EPOC es-

timate based on output recurrent neural network model. The continuous time

series is the EPOC and step-function is the corresponding exercise intensity.

weighted with 0.00001. The latter parameter was not optimized but rather chosen

by intuition and trial and error. If the constants were set to zero, the optimization

failed to find a strictly increasing model.

Only twelve local minima resulted to strictly increasing functions with the

given test data. The training data, two artificial datasets and a maximal stress test

time series were used to test the constraint. Naturally all possible inputs were not

experienced and it may not be guaranteed that the model would increase in all

possible setups. Thus, the model is only empirically strictly increasing.

Surprisingly all the twelve local minima were found with 6 hidden units.

This empirically suggests a correct model complexity for the given phenomena.

The artificial datasets together with the resulting EPOC are presented in Fig-

ure 56. It appears that the model behaves well as a function of intensity and previ-

ous EPOC estimate; higher intensity results in an increased EPOC. In addition, the

past intensities affect the final result as both datasets include the same intensity in

the end resulting in differing total EPOC.

Figure 57 illustrates a heart rate time series dataset together with the exercise

intensity estimated with the transformation in (106) and the continuous presenta-

tion of EPOC. The simulation indicates that EPOC model continuously tracks the

body fatigue during exercise and is sensitive to different exercise intensities.
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Figure 57: Upper figure illustrates a heart rate time series during a maximal stress

test. The bottom figure illustrates the corresponding pVO2 estimate transformed

with equation (106) together with a continuous presentation of EPOC. The EPOC

estimate is based on output recurrent neural network model. The exercise inten-

sity at current time instant and the previous EPOC quantity were used to predict

the current quantity of EPOC.

The chosen EPOC model resulted to MAE=32.7 ml/kg, MRE=27.5 % for the

49 original, true, EPOC samples. The corresponding residuals together with the

sample labels are gathered in Figure 58. The figure proposes that the network is

less accurate for the samples having a higher intensity, EPOC or exercise duration.

The data distribution is concentrated on lower exercise durations and EPOC. Since

the optimization is also affected by the distribution, the model predictions favour

the most frequent samples. Longer lasting exercises are iterated more often, i.e.,

the estimations are fed back to the network more frequently resulting in, perhaps,

increased error and stability problems. The inter-individual variation may also af-

fect the residual distribution, suggesting that the differences between individuals

tend to grow as more exhausting exercise is performed.

6.2.4 Revisiting the presumptions; experiment with a FIR network

It was discussed in Section 6.2.2 that a static neural network may not be used to

model the strictly increasing and continuous EPOC model. It was also presumed
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Figure 58: Residual plot of the EPOC model between different dimensions, where

each sample is labeled with a number. The analysis reveals, with some exceptions,

that the model error increases as a function of exercise intensity, time and quantity

of EPOC. This may be result of the data distribution, since low intensity exercises

are more common. In addition, network is ran multiple iterations, which may

result in stability problems of recurrent neural network. Furthermore, the problem

may be result of inter-individual variation, or finally a combination of all three

deficiencies.

in (107) that the EPOC model should use the current intensity and previous EPOC

to predict the current amount of EPOC. The last presumption is now re-evaluated:

it is possible that other dynamic neural networks could be applied, since they are

able to store the internal state of the system, which allows a strictly increasing

function to be constructed mapping similar input to different output. Perhaps an

alternative model could be utilized, which does not rely on the recurrent connec-

tion between the output and input layers.

A FIR network, presented in Section 4.2.2, was trained in a similar concept

as ORNN in the previous section. The whole procedure consisted of calculating

over one thousand different local minima for different three-layered FIR networks

including linear output, initialized with different initial conditions. The number

of sigmoid hidden units in the both hidden layers varied between three to eight

and the delays in the first hidden layer varied between two to four.

The best MAE=53.9 ml/kg and MRE=63.1% were achieved with a FIR net-

work including three hidden units in the second and third layer. The number of

delays was two in the second layer. The model selection was based on both the es-

timation error and the number of occasions the constraints were violated, as there

did not exist such a network that would have realized all the empirical constraints.

Hence, the resulting network was not strictly increasing with the test datasets.

Furthermore, the network’s output soon became constant, as constant intensity

was fed to the network. It is reminded that for the ORNN the corresponding er-

rors were MAE=32.7 ml/kg and MRE=27.5%. Furthermore, the ORNN was able

to satisfy the empirical constraints.
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Using elapsed time from the beginning of the measurement as another in-

put, decreased the error to MAE=30.0 ml/kg and MRE=62.4%. The network had

three hidden units in the second and third layer, and four delays in the second

layer. Still, however, the constraints were left unsatisfied. The network seemed

to operate similar to FFNN, and the delays in the hidden layer did not direct the

model estimates to follow the constraints. Thus, it may be concluded that the

ORNN was superior to the FIR network. Furthermore, the presumptions of the

model structure in (107) seems valid.

6.2.5 Discussion

In athletic training and sports the balance between training load and recovery is

crucial to achieve, improve and maintain good physical fitness. Enough rest to

recover from the exercise is required and the load and timing of the training bouts

have to be optimal to gain positive training effect. Too frequent and strenuous

training bouts may lead to a negative training effect [140].

Control of the training load is conventionally based mainly on the previous

personal experience about the effect of exercise on the body. Current methods

that may be used to obtain objective information on body fatigue due to exercise

requires invasive procedures (e.g., lactate measurement) and are, thus, restricted

to a laboratory environment demanding professional aid.

A physiology based measure revealing the accumulation of exercise-induced

fatigue during different intensities and phases of exercise was established. The ac-

cumulated body fatigue, or EPOC, is suggested to be utilized to optimize exercise

and fitness training. Requiring only heart rate monitoring makes the proposed

approach especially suitable for field use.

In innovation presented in [76, 78] EPOC information is exploited for the

detection of different states of the human body. The overall system is applied for

daily monitoring of physiological resources. A key part of the system is segmen-

tation of the HR signal with the GLR-algorithm. The segmentation information

together with calculated features and chosen statistics, are used to detect rest, re-

covery, physical exercise, light physical activity and postural changes from HR.

From a mathematical point of view, the presentation demonstrated an ap-

plicability of a dynamic neural network, the output recurrent network, to a bio-

signal. The overall process of data collection, pre-model generation, transforma-

tion of heart rate to exercise intensity, and model building for continuous excess

post-exercise oxygen consumption estimation were presented. Furthermore, a

heuristic for searching a strictly increasing function was presented and a proce-

dure to re-generate the missing data with an appropriate optimization heuristic.

The behavior and properties of the resulting EPOC model were found sat-

isfactory. The overall error was tolerable as the inter-individual variation of the

modeled system was considerably high. In addition, an alternative experiment

with a FIR network was illustrated. The experiment suggested that the presump-

tions of the model structure in (107) were valid; the current EPOC estimate should
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be fed back to the network.

The application was not presented in all its dimensions, and further work

may be required to find the optimal model architecture. The recovery of the exer-

cise was not modeled as it introduces another complicated dimension in the phe-

nomena. The solution for estimating and combining both recovery and fatigue

components to model EPOC is introduced in Saalasti et al. [151].

It is not claimed that the presented output recurrent neural network is opti-

mal for the given problem. However, we may say that to model the problem in

a physiologically sensible way, only a dynamic network may be applied, not its

static counterpart. The current state of the system has to be presented in the model

for the model to strictly increase. Otherwise equal input will result in equal out-

put and accumulated EPOC will not affect the system. Furthermore, the temporal

memory in the network should exploit the output estimates when constructing

recurrent connections.

6.3 Modeling of respiratory sinus arrhythmia

Even if the relationship between the respiratory frequency and heart rate is a

well known phenomena (see Section 2.5), a methodology to accurately reveal the

breathing component from the heart rate is yet to be constructed. Only under op-

timal conditions, for example, during spaced breathing, the breathing frequency

is distinct enough to be expressed with time-frequency analysis. The identifica-

tion and accuracy of the respiration frequency diminishes considerably whenever

the heart period signal obtained during ambulatory monitoring includes nonsta-

tionary changes in either the breathing cycle or heart rate variability. Such non-

stationarities may occur, for instance, due to movement, postural change, speech,

physical exercise, stress or sleep apnea.

Heart rate monitoring has been successfully used in managing exercise train-

ing in field use since the introduction of heart rate monitors in the 1980’s, but at

present it offers only limited information to the individual engaged in exercise

training. Information on respiratory activity would certainly provide new per-

spectives in optimizing training in field.

In Kettunen et al. [77] a general approach for the detection of respiratory fre-

quency based on heart rate time series is created. The target of the research was

to derive a reliable measure of respiratory information based solely on the heart

period signal. Furthermore, in [152, 141] the heart rate derived respiration fre-

quency is exploited for oxygen consumption estimation. The solutions presented

in this section may be considered as alternative implementations or completions

for these studies, but may also be read as a solid presentation.

In this section three different models are applied to respiratory detection:

a feed-forward neural network, a transistor network and generalized regression

neural network. The purpose of this study is not to compare the methods but

rather show their varying properties. Limiting the use of different models to a
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few applications does not provide full proof for general use of the methods. Thus,

an analytic approach is attempted instead of an empirical comparison between

the methods.

6.3.1 Time-frequency analysis on the breathing test data

The effect of respiration on the heart rate high-frequency component (0.15 − 0.5

Hz) is an acknowledged phenomenon [17, 117] (see also Section 2.5). To examine

the relationship, a dataset is created and analyzed using time frequency presen-

tations. The dataset18 consists of a metronome-spaced breathing test followed by

data generated under spontaneous conditions. The test starts with one minute

of spaced breathing at a frequency of 0.5 Hz. Then the breathing rate is stepped

down by 0.1 Hz every minute until it reaches 0.1 Hz. After this, the procedure is

reversed to the starting frequency. The total test time is nine minutes. Each new

step is indicated and controlled by a computer-generated sound.

Eight different measures were recorded during the test: skin conductivity,

RR intervals, systolic and diastolic blood pressure, electromyogram presenting

muscle activity from the biceps and triceps, respiration using a spirometer (to

measure tidal volume) and respiration from the chest expansion.

After the breathing test spontaneously generated data was recorded for 40

minutes. The subject was sitting and allowed to speak and read. During this part

the spirometer was not used.

Similar experiments as the breathing test have been studied to understand

the influence of respiration on heart rate and blood pressure (see Novak et al.

[117]).

Figure 59 presents the time-frequency distributions of the heart rate and res-

piration in the high-frequency band calculated with a short-time Fourier trans-

formation (see Section 3.1.2). Figure 60 shows the corresponding instantaneous

frequencies for the signals.

Inspection of the figures reveals that the respiration frequency cannot be fol-

lowed purely with the mode frequency. The fast frequency changes presented in

the top of Figure 60 suggest that the method is not completely reliable as some of

the changes are not physiologically valid. The breathing frequency oscillates and

is noisy.

The mean frequency does not give the true frequency either, since it does

not have a sharp frequency resolution. There is a lot of power in the frequencies

close to the maximum frequency component (see Figure 59). However it gives the

most smooth and continuous performance. If the periodic components were very

sharp and concentrated on one frequency the mean frequency would give its best

performance. The more spread the power spectrum is, the less accurate the mean

frequency is.

18Dataset was produced at the Research Institute for Olympic Sports as part of the StateMate-project

(years 2000-2001). The project was developing an on-line physiological monitoring system as part of a

personal health monitoring service.
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Figure 59: Upper figure presents the time-frequency distribution of the respiration

measured from chest expansion. The lower figure presents the time-frequency

distribution of the heart rate.
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Figure 60: Instantaneous frequencies calculated for the respiration (solid line) and

heart rate (dashed line) with two different methods. The figure at the top presents

the mode frequency of the time-frequency distribution while the second figure

presents the calculations with mean instantaneous frequency.
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Figure 61: Upper figure is the time frequency presentation of the respiration dur-

ing the breathing test. The lower figure presents the time frequency distribution

of the heart rate during the test.
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Figure 62: Instantaneous frequencies of the breathing test calculated for the respi-

ration (solid line) and heart rate (dashed line). The first figure is the instantaneous

frequency calculated with mode frequency and the second figure presents the cal-

culations with mean frequency.
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Figures 61 and 62 present the results achieved in the breathing test. Notice

from Figure 62 that the breathing frequency at 0.5 Hz is noisy. The breathing fre-

quency and the corresponding heart rate power have strong negative correlation.

The heart rate’s low-frequency component is always present and may have more

power compared to the high-frequency band where the breathing power exists.

Another reason for the failure could be the difficulty to breath at this high phase.

Figure 62 also shows the failure of the mean frequency: it cannot follow the

true respiration frequency as reliably as the mode frequency when heart rate is

considered. At lower frequencies the two instantaneous frequencies almost over-

lap, as the relative power is higher and the breathing pattern is more clear.

6.3.2 Optimizing a time-frequency plane to detect respiratory

frequency from heart rate time series

In Section 2.5 the oscillations of the heart rate time series were linked to respira-

tory sinus arrhythmia. In the previous Section time-frequency distributions were

utilized for the analysis of the phenomena. It appeared that the link between the

heart rate and respiratory oscillations was apparent and possible to reveal with

the correct mathematical methodology. However, some questions remained as

neither of the instantaneous frequency estimates were able to follow the correct

respiratory frequency.

It was discussed that the respiratory frequency has a strong negative correla-

tion with the total power of the heart rate. Hence, high breathing frequency results

in a lowered total power in heart rate. Furthermore, the heart rate low-frequency

component is always present and may have more power compared to the high-

frequency band where the breathing power exists. To make it less predictable,

the respiratory frequency may also appear in the LF-band. Actually the breathing

frequency may empirically range from 0.03 to 1.3 Hz19. This raises the question

if the described variation and balance between the LF- and HF-powers could be

modeled and controlled to follow the respiratory frequency from the heart rate.

Perhaps, by giving an optimized weighting for the whole frequency-band, the

respiratory detection could be improved.

In this section we will utilize a feed-forward neural network for adaptive fil-

tering to detect respiratory frequency from the heart rate time series. The general

concept of neural network adaptive filtering was presented in Section 5.2.1.

Creation of the target data

The adaptive filtering procedure presented in Section 5.2.1 requires target time

series y(t) providing the true respiratory frequency. This cannot be extracted ac-

curately from the heart rate time series. The task is to dynamically filter the TFRD

of the heart rate time series in such a way that the respiratory oscillations may be

estimated from it.

19The empirical breathing range is based on the database used in this section.
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Figure 63: The upper figure illustrates the chest expansion time series presenting

the expiration and inspiration as sinusoidal oscillations. The lower figure presents

the corresponding instantaneous frequency derived from the upper signal with

the peak detection algorithm presented in Section 3.1.9. The peaks were visually

verified and corrected by a human expert.

The target respiratory frequency time series may be produced from the infor-

mation achieved from spirometer or respiration derived from the chest expansion.

Here the latter is used for practical issues, since it is more convenient for long time

recordings.

Figure 63 demonstrates an example chest expansion time series together

with the instantaneous frequency derived from it. For automated processing the

algorithm presented in Section 3.1.9 was utilized to detect lower peaks of the chest

expansion time series together with visual inspection of a human expert to derive

instantaneous respiratory frequency target time series.

A total of 35 hours of heart rate and respiratory oscillation data was pro-

duced in the described manner to provide sufficient dataset for the experiment20.

Distribution of the data along different dimensions is presented in Figure 64.

20The database is property of Research Institute for Olympic Sports and Firstbeat Technologies Ltd.
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Figure 64: A database consisting of over 35 hours of heart period recordings and

chest expansion time series derived respiratory frequency. Data was sampled in

five hertz and it consisted of over 50 different individuals with varying age, sex

and physiological condition, performing different tasks from sleeping to maximal

exercise performance.

Model building

We have chosen a feed-forward neural network with a linear output neuron as

the adaptive filter function. This results in a real-valued filter presented in (100).

Furthermore, we will use the mean frequency moment presented in (102). The

network g has five inputs: a single time-frequency input; normalized power
F (k,t)

maxk F (k,t) , three time series inputs; heart rate divided by two-hundred and mov-

ing averaged with ten seconds Hanning window, instantaneous frequencies; the

mode and mean frequencies of the original TFRD calculated from the heart rate

time series (see Section 3.1.1) and finally the frequency input w(k). The value

range of each input is already from zero to two, so the linear combination in the

network input layer is reasonable and no further normalization is required.

The network input for frequency w(k) and time instant t is defined as

g(k, t) ≡ g

(
w(k),

F (k, t)

maxk F (k, t)
, fMOD(t), fMEAN (t),

hr(t)

200

)
. (108)

The three time series inputs were considered to have coupling with the true res-

piration frequency. This may also be quantitatively verified as a correlation be-

tween the respiration frequency and the corresponding input. The normalized

TFRD contains information about the power distribution over frequencies. The

frequency bins w(k) are required for the network to produce the correct weight-

ing for each frequency instant.

Since in the original TFRD derived from heart rate time series the power

distribution concentrates in the very and ultra low-frequency bands (ULF-VLF),

the mode frequency may be misplaced. The high-frequency band (HF) is usually

considered to be mostly affected by the respiratory sinus arrhythmia, so the mode

frequency may be chosen to be calculated only for frequencies higher than 0.15
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Hz.

A squared error E(t) (divided by two) between the target respiration fre-

quency y(t) and the frequency moment estimate f̂MEAN (t) reads as:

E(t) =

(
f̂MEAN (t) − y(t)

)2

2
,

and the mean-squared error is

E =
1

T

T∑

t=1

E(t).

Unknown network parameters may be solved by using the general result

in (98), since the error function is continuous and has analytic derivatives. The

gradient of a network weight wl
ij respect to the error function E reads as follows:

∂E(t)

∂wl
ij

=

K∑

k=1

∂f̂MEAN (t)

∂g(k, t)

∂E(t)

∂wl
ij

(k)

=
K∑

k=1

w(k)∂F̂ (k,t)
∂g(k,t)

∑K

m=1 F̂ (m, t) − ∂F̂ (k,t)
∂g(k,t)

∑K

m=1 w(m)F̂ (m, t)

(
∑K

m=1 F̂ (m, t))2
·
∂E(t)

∂wl
ij

(k)

=

∑K

k=1 F̂ (k, t) log F (k, t)
(
w(k) − f̂MEAN (t)

)
∂E(t)

∂wl
ij

(k)
∑K

k=1 F̂ (k, t)
,

(109)

∂F̂ (k, t)

∂g(k, t)
= F̂ (k, t) log F (k, t),

∂E

∂wl
ij

=
1

T

T∑

t=1

∂E(t)

∂wl
ij

,

where ∂E(t)

∂wl
ij

(k) is the kth derivative corresponding to the kth input, kth output

and time instant t with respect to the squared error E(t).

Results

Since the distribution of the respiration frequencies is concentrated to lower

breathing frequencies training and testing sets were sampled from smoothed dis-

tribution with an equal amount of data between respiration frequencies from 0.03

to 1.3 Hz. A total of 1000 randomly drawn samples (time instants) were used for

both training and testing. Thus, the total number of training and testing samples

contained only 0.3% of the data. Training was performed with a different num-

ber of hidden units to find the optimal network architecture. Testing error was

utilized for model selection.
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f̂MEAN f̂MOD hr

f̂MEAN 1 0.5907 0.2602

f̂MOD 0.5907 1 0.5298

hr 0.2602 0.5298 1

Table 5: Cross-correlations between different features in the respiration detection

procedure.

The optimization was performed with Matlab Optimization Toolkit’s

FMINUNC-function specialized in unconstrained nonlinear optimization using

Levenberg-Marquardt-algorithm to approximate the Hessian matrix [102].

The TFRD was calculated with 255 frequency bins but only the frequencies

between 0.03 to 1.3 Hz were considered. Thus, the resulting time-frequency ma-

trix dimensions were 65 × 631500 for the full dataset. This is equal to 1.3 giga-

bytes of information with double-precision (32 bits). Thus, the optimization of

the whole dataset would be computationally very expensive, so that training and

testing sets were utilized. Also using the whole dataset would danger general-

ization of the model, since the model would be biased towards the lower breath-

ing frequencies. Furthermore, the length of the short-time Fourier transformation

Hanning-window length was chosen to be 255 (or 51 seconds).

The time series correlations between the true respiratory frequency and neu-

ral network inputs were calculated for the dataset. The correlations were 0.6415,

0.4995 and 0.6652 for the averaged heart rate, mean and mode frequency, respec-

tively. If the mode frequency was calculated including ULF-LF frequency bands,

then the correlation would be left to 0.1277. Furthermore, the mean-squared er-

rors between the mean and mode frequency and true respiratory frequency were

0.0202 and 0.0111, respectively. Without filtering these instantaneous frequency

moments can be considered as the best pre-estimates for the respiratory frequency.

The correlation between the features presents the additional information a

feature contributes. A high, close to one, positive or negative correlation between

the features suggests that the two features are similar. The cross-correlations be-

tween feature combinations are presented in Table 5. The analysis suggests that

the features are uncorrelated and contribute additional information to the system.

The normalized TFRD feature may not be comprehended in a similar man-

ner as the discussed time features. Each time feature is a pre-estimate for the

breathing frequency. Instead, the normalized TFRD contributes the overall shape

of the instantaneous spectrum providing the amplitude information to the cal-

culus. Furthermore, the frequency bins contribute the location of the spectrum

amplitude.

The whole procedure consisted of calculating over thousand different local

minima for different two-layered feed-forward neural networks initialized with

different initial conditions. The optimal network chosen with the test set had fif-

teen hidden units, with a total of (5 + 1) · 15+ (15 + 1) = 106 network parameters.
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Figure 65: A scatter plot illustrating the distribution of residuals as a function of a

true respiration frequency.

The error for the whole dataset was MSE=0.0047 and correlation between the esti-

mated and true respiration frequency was 0.8579. This shows that the optimized

TFRD outperforms the pre-estimates.

Notice that if the feed-forward neural network would have been used in the

conventional manner by feeding all the inputs to the network at once, the number

of inputs would have been 65 + 65 + 1 + 1 + 1 = 133. Furthermore, the shape of

the filter would have been calculated instantly requiring 65 outputs. The resulting

network with fifteen hidden units would have had (133+1)·15+(15+1)·65 = 3050

parameters instead of 106.

Figure 65 demonstrates a scatter plot illustrating the distribution of resid-

uals as a function of a true respiration frequency. The plot includes the whole

dataset. The result seems to give linear bias towards a positive difference. This

suggests that we have a suboptimal solution for the problem and further analysis

is required. However, this analysis is left for future work. The demonstration is

satisfactory as the results indicate an improved system for the breathing frequency

estimation. The object of this study is to illustrate the properties and applicabil-

ity of the transistor network to physiological modeling, not to claim an optimal

solution.

Figure 66 illustrates an example heart rate time series, true respiration fre-

quency and estimated respiration frequency of the system. As may be verified the

system gives an average frequency response depending on the time resolution set

for the TFRD. Diminishing of the time window would probably result in oscilla-

tions and increase the overall error. However, optimal time resolution was not

searched for in this demonstration.

Figures 67-69 illustrate the shape of the neural network adaptive filter with

different input conditions together with the original and weighted spectrums. The

adaptive nature of the filter depending on its input is apparent. Even the rela-

tive number of the network parameters was small compared to the traditional ap-

proach, fifteen hidden units is quite many. This high number of network param-
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eters is a result of the requirement of the complicated and dynamically changing

filter shapes. To include different shapes, the network requires more parameters

to adapt into the various inputs.
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Figure 66: The upper figure illustrates a heart rate time series of a maximal uptake

test of a person. The middle figure presents the true respiration frequency during

the exercise while the bottom figure is the estimation derived from the heart rate

time series.
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Figure 67: A snapshot of the respiratory detection procedure. The upper figure

presents the original TFRD together with the true respiratory frequency for the

given time moment illustrated by a horizontal line. Above the figure is presented

the mean heart rate for this time instant. The middle figure illustrates the neural

network produced time-frequency weighting together with mean and mode fre-

quencies of the original TFRD (solid and dashed lines). The bottom figure demon-

strates the resulting weighted spectrum with the mean frequency presented by a

horizontal line.
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Figure 68: A snapshot of the respiratory detection procedure. The upper figure

presents the original TFRD together with the true respiratory frequency for the

given time moment illustrated by a horizontal line. Above the figure is presented

the mean heart rate for this time instant. The middle figure illustrates the neural

network produced time-frequency weighting together with mean and mode fre-

quencies of the original TFRD (solid and dashed lines). The bottom figure demon-

strates the resulting weighted spectrum with the mean frequency presented by a

horizontal line.
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Figure 69: A snapshot of the respiratory detection procedure. The upper figure

presents the original TFRD together with the true respiratory frequency for the

given time moment illustrated by a horizontal line. Above the figure is presented

the mean heart rate for this time instant. The middle figure illustrates the neural

network produced time-frequency weighting together with mean and mode fre-

quencies of the original TFRD (solid and dashed lines). The bottom figure demon-

strates the resulting weighted spectrum with the mean frequency presented by a

horizontal line.
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6.3.3 Applying generalized regression neural network for

respiratory frequency detection

Another setup for the respiratory frequency detection was utilized with a gener-

alized regression neural network introduced in Section 4.3.2. The data presented

in the previous section was utilized in the model building.

The peculiarity of the GRNN, and radial basis function networks in general,

is that we may construct a reliability measure, e.g., based on a mean firing inten-

sity of the network at the given time instant (see equation (71)), for the network

output. The reliability estimation in (71) basically measures the similarity of the

network inputs and the prototypes. Thus, it is assumed that the network is trained

with an ideal, unambiguous set and similar inputs should be mapped to the same

output. If an input is distant from all the prototypes it is ”unfamiliar” resulting in

small reliability.

In addition to the reliability estimation, the GRNN introduces two different

methods for the possible training procedures, which could also be combined: The

unknown network weights may be found in a supervised or unsupervised man-

ner or by using the network weights found with unsupervised learning as initial-

ization for the supervised training. In this demonstration, the K-means clustering

algorithm was applied to the training data and different error estimates were cal-

culated. The second step included supervised training of the GRNN with given

input-output samples based on the network trained with the K-means clustering

in the previous step. Supervised learning was based on analytic gradients solved

in Section 4.3.2 and gradient descent algorithm.

In the pre-analysis different inputs were experimented for the GRNN. The

initial model included similar inputs as the transistor network model in the pre-

vious section. However, it appeared that it was not possible to utilize the spectral

information of the time series in the modeling. This may be the result of several

factors. Perhaps prototyping the normalized spectrum is impossible as the non-

stationary of the heart rate time series results in an infinite number of different

spectral shapes. In addition, the short-time Fourier-transformation operates with

a pre-defined window length resulting in an average spectrum containing several

distinguishable frequency components. The innovation in the dynamic filtering

approach was to reduce the number of these components based on pre-inputs.

As the spectral information was not exploitable only three network inputs

were chosen (presented in the previous section): average heart rate, mean, and

mode instantaneous frequencies. Furthermore, the training and testing data was

selected from a smooth distribution to prevent the model from specializing to the

most frequent samples, in order to achieve better generalization. A total of 2000

training samples were generated. The testing set consisted of the whole database,

35 hours of data.

The reliability estimate was applied to the time domain corrections, or post-

correction, of the network’s output. Three different correction heuristics were

applied for the whole dataset. In the first method, the time instants, where the
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deviation estimates rb(t) are below the defined threshold, are interpolated by the

surrounding values having higher reliability. In the second correction heuristic

the reliability weighted average defined in (34) is utilized. The third correction is

pure Hanning averaging, as smoothing is assumed to decrease the overall error.

Results

Table 6 presents the outcome of the experiment. A total of 400 different local min-

ima were calculated with a different number of network prototypes. In addition,

a suitable averaging window was searched for the post-correction heuristics. The

optimal result for each possible setup is presented as a mean-squared error be-

tween the estimate and target respiratory frequency.

The training error decreased in both supervised and unsupervised learning

as more network prototypes were introduced. However, only in unsupervised

learning the resulting model also decreases the overall (testing) error. This may

be due to the preservation of locality of the neurons in K-means clustering. In

gradient descent optimization, the locality of the neurons is not maintained and

the network may overfit increasing the overall error.

All the correction heuristics were able to diminish the error for the dataset.

The post-correction with interpolation resulted in a minor improvement. Smooth-

ing averaging appeared to be the optimal post-correction method for this applica-

tion. As the optimal window lengths were quite large the difference between the

reliability and pure Hanning smoothing was insignificant. This suggests that in

the present case the average response is not affected much by the local differences

between the reliability estimates as the smoothing operates in moving windows

larger than two minutes.

In this application the reliability based corrections did not appear to be very

effective or had only a minor effect. In the example presented in Section 5 the

time domain corrections were able to diminish the overall error considerably with

the artificial data. It seems that neither of the examples should be considered as

proof for the applicability of the post-correction in the time domain. It may only be

speculated that for some time series the post-correction may appear to be valuable

and should be considered.
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6

7
(#Proto-

types/

#params ) K-means clustering Gradient Descent

5/41

10/81

15/121

20/161

30/241

50/401

Etr Eall EC1 EC2 Eave

0.0111 0.0087 0.0083 0.0077/120 0.0078/160

0.0102 0.0080 0.0077 0.0071/140 0.0072/160

0.0100 0.0082 0.0078 0.0071/120 0.0072/160

0.0098 0.0078 0.0074 0.0067/120 0.0069/160

0.0089 0.0074 0.0071 0.0064/120 0.0065/160

0.0085 0.0071 0.0070 0.0064/120 0.0064/120

Etr Eall EC1 EC2 Eave

0.0092 0.0072 0.0070 0.0063/120 0.0064/140

0.0087 0.0069 0.0068 0.0060/120 0.0061/140

0.0080 0.0067 0.0067 0.0061/120 0.0060/120

0.0081 0.0068 0.0068 0.0061/120 0.0061/120

0.0081 0.0068 0.0067 0.0061/120 0.0061/120

0.0080 0.0071 0.0070 0.0063/120 0.0062/140

Table 6: Table presenting the results of the generalized regression neural network applied to respiratory frequency detection. Mean-

squared errors of the training, testing, interpolation- , weighted average- and average corrected outputs (Etr, Eall, EC1 , EC2 , Eave,

respectively) are compared between the two training heuristics, K-means clustering (unsupervised learning) and gradient descent

optimization (supervised learning). The minimum errors are underlined. In the Hanning window and reliability weighted averag-

ing the corresponding window lengths (in seconds) are presented as MSE/window length-pairs.



168

6.3.4 PCA and FFNN for respiratory frequency estimation

A classical approach for multivariate time series modeling with a feed-foward

neural network is to use the principal component analysis (PCA) to reduce the di-

mensions of the input vectors and then to train the network. PCA has three ef-

fects: First it orthogonalizes the components of the input vectors, so that they are

uncorrelated with each other. In addition to this, it orders the resulting orthogo-

nal components, i.e., principal components, so that those with the largest variation

come first. At last it eliminates those components that contribute the least to the

variation in the data set [68, 101].

To apply the idea we use PCA to reduce the inputs presented in (108) and

estimate the respiration frequency with a FFNN directly. The initial input vector

included the following features for each time instant t:

F (1, t)

maxk F (k, t)
, . . . ,

F (K, t)

maxk F (k, t)
, fMOD(t), fMEAN (t),

hr(t)

200
.

Here the frequency bin vector w(k) was not included, as it would have contained

only the same information for each time instant. Hence, the total number of net-

work inputs were 68 before applying the PCA.

Principal component analysis was carried out with the Matlab Neural Net-

work Toolkit’s PREPCA-function. It eliminates those principal components that

contribute less than p% to the total variation in the data set. Different values for

p were experimented in the training. Over 2000 local minima were calculated for

the various number of hidden units (between 6 and 20) in the network. Training

and testing sets were used in a similar manner as in Section 6.3.2. In addition, the

inputs were normalized before applying the PCA. Table 7 gathers the results. The

best MSE resulted in 0.0070 for the FFNN model.

PCA(p) #inputs #hidden

units

#params CP MSE

0.5% 38 20 801 0.7470 0.0083

1.0% 26 14 393 0.7498 0.0082

2.0% 12 20 281 0.7529 0.0083

3.0% 6 12 97 0.7888 0.0070

4.0% 3 16 81 0.7836 0.0071

5.0% 2 10 41 0.7625 0.0077

Table 7: Pearson correlations and the mean-squared errors between the FFNN

estimates and the true respiration frequencies. The correlations and errors were

calculated for the whole dataset. Various architectures for FFNN and different

values for PCA parameter p were experimented.
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6.3.5 Discussion

In the first subsection time-frequency distributions of the heart rate time series

was analyzed to introduce the base numerical approach to reveal respiratory fre-

quency component of the signal. It appeared that in some steady conditions, as in

metronome-spaced breathing, the RSA component of the heart rate was distinct.

However, under spontaneous or ambulatory recording the resulting heart rate

time series appears nonstationary adding several major frequency components in

the signal. Especially the 0.1 hertz component of the HR-signal is often dominant

reflecting the rhythmic changes in blood pressure control.

Also the RSA component itself is nonstationary. For example, speech ir-

regulates the breathing pattern resulting in a difficult instantaneous detection of

the RSA with, e.g., Gabor transformation. Gabor transformation only gives av-

erage periodic spectral shape of the signal for a given time instant. Methods

like Wavelet transformation or smoothed Pseudo Wiegner-Ville may offer sharper

time-resolution but are less stable and in our experience are not suitable for the

given problem.

Three different approaches for detection of respiratory frequency from the

heart rate time series were introduced. The neural network architectures con-

tained different properties and perspectives for the modeling. The transistor-

network based dynamic filtering attempted optimization and weighting of the

TFRD to expose the hidden respiratory component. With the GRNN an assump-

tion was that a set of features can present the input-output mapping of the phe-

nomena by prototyping an adequate set of input-space combinations. The FFNN

was used to estimate the respiration frequency directly. GRNN was optimized

with both in a supervised and unsupervised manner, while the other two models

were optimized with a supervised learning strategy.

Table 8 lists the best results of the models. Naturally we may apply the

time domain correction, not only to the GRNN network, but also to the transistor

network and FFNN by using two minutes Hanning window to moving average

the results. With the transistor network the resulting MSE decreases slightly from

0.0047 to 0.0044. Smoothing the FFNN respiration frequency estimate with the

same window decreases the mean-squared error from 0.0070 to 0.0060. Hence, the

FFNN and GRNN estimates produce a similar estimation error.

It appeared that for this application dynamic filtering was an advantageous

method, able to process the time- and frequency domain information in a compact

Model MSE #parameters

Transistor network 0.0044 106

FFNN 0.0060 97

GRNN 0.0060 81

Table 8: The best post-corrected results of the three models presented for respira-

tion detection.
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and efficient way resulting in a decreased error. As a result an average breathing

frequency is revealed from a full breathing scale as Figure 66 suggests.

Even if the GRNN was not as effective as the transistor network, the analysis

revealed two important factors: moving averaging may be used to enhance the

quality of the signal and resulting estimate. In addition, the reliability estimate

may be exploited in the time domain correction.

In Section 5.1.2 optimization of the objective function including the deviation

estimate was introduced. Naturally GRNN optimized with supervised learning

could include the deviation estimate in the error function. The approach could

better preserve the locality of the prototypes, thus resulting in enhanced reliability

estimates. However, the overall error of the system could increase. The interesting

question is, if there could be an optimal regularization parameter contributing

enhanced reliability and optimal time domain correction (cf. [88]).

Notice that the number of prototypes in GRNN was 81, thus one additional

feature would result in 2 ·81 = 162 extra parameters21. This is the disadvantage of

the GRNN: each new feature increases the number of network parameters relative

to the number of prototypes. As complex maps require a large number of proto-

types, the networks may become quite large and impractical as more memory and

CPU-time is required.

Hybrid models with a discrete decision plane were introduced in Section 5.1.

In the patent by Kettunen and Saalasti [77] the preferred embodiment included

output space optimized hybrid model, where different time-frequency features

were combined to decrease the overall error. For example, the moving window

length in Gabor transformation may introduce one set of features. Short window

length may appear optimal to reveal the breathing frequency, e.g., during heavy

exercise when the breathing pattern is relatively high. Increased time resolution is

achieved with the shorter window length. Also different frequency bands could

be used to generate features. Clearly, this could be exploited in the GRNN by

introducing new set of features based on different parameterizing of the given

TFRD. In the patent by Kettunen et al. [77] the GRNN is suggested as one alterna-

tive integration function for breathing frequency feature combination.

21As the GRNN uses the weighted Euclidean distance, additional feature produces two extra pa-

rameters for each prototype.



7 CONCLUSIONS

The physiological time series are often complex, nonstationary, nonlinear and un-

predictable. Especially, the ambulatory measurement offers challenge for the anal-

ysis and used methods, by introducing an increased measurement error and signal

artifacts. Furthermore, interpretation and statistics of heart rate data are distorted

by mathematical operations like nonlinear transformations or resampling of the

data. The complexity of the heart rate signals were brought forth with discussion,

examples and visualization. In spite of the difficulties, we introduced method-

ology which were able to quantify and model the heart rate data. Thus, several

innovations combining human physiology and mathematical modeling were pre-

sented in the examples:

1. Utilization of individual physiological parameters like maximal heart rate

and oxygen consumption were demonstrated to improve the explanation

value of the proportionally scaled signal. Furthermore, the physiological

constraints were proposed to be exploited in on-line applications to form a

normalization, or scaling, of nonstationary signals.

2. Data ranking was demonstrated to preserve signal rhythm diminishing the

heart rate signal acceleration, resulting in an improved estimation of fre-

quency components in the spectral analysis of the signal.

3. A new peak detection algorithm was applied for the estimation of the

respiration frequency from chest expansion data resulting in perfect time-

frequency resolution.

4. Postprocessing and time domain corrections appeared valuable for phys-

iological time series as the adjacent time instants are coupled and do not

differ substantially. Reliability estimates were successfully exploited with

the post-corrections and a new heuristic for estimating reliability of instan-

taneous frequency for time-frequency distributions was presented. In ad-

dition, a generalized regression neural network, peak detection algorithm

and HMDD were demonstrated to include a natural interpretation of the

reliability estimation.

5. A transistor neural network, feed-forward neural network and generalized

regression neural network were successfully utilized to extract the respira-

tory frequency from the heart rate time series.

6. Physiological constraints were utilized for model selection in neural net-

work training. The resulting EPOC model was able to extrapolate to unseen

values in a physiologically valid way.

These innovations offer new insights to physiological time series modeling, and

to our knowledge, are new and as yet not published.
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Neural network architectures and optimization

Neural networks are universal approximators introducing powerful and flexible

nonlinear models with several applications. However, the most complex pro-

cesses is the choice of the appropriate network architecture and optimization

method to find the unknown weights of the network.

In this dissertation the presented neural network architectures included two

dimensions: static vs. dynamic network architecture and local vs. global neurons.

Global neurons include models like FFNN, FIR network and Jordan network that

use sigmoidal activation. Network architectures including local neurons are ra-

dial basis function- and generalized regression neural networks operating with

Gaussian activation functions and Euclidean distance between the network input

and prototypes. It was demonstrated how these networks include the different

characteristic properties and strengths, for example, networks with local neurons

offer a natural interpretation of reliability estimates.

Temporal neural networks, like FIR network and Jordan network, may be

unfolded to follow the static structure. However, this should be applied only to

network training. Temporal neural networks are very different to their static coun-

terparts when they are run for new data and especially with different lengths of

data. The applicability of dynamic networks, generation of synthetic observations

and the use of reliability weighting of training samples in the objective (error)

function were demonstrated with the modeling of excess post-exercise oxygen

consumption.

Several classical methods to improve backpropagation or network perfor-

mance were reviewed. Moreover, modifications and improvements for network

training are constantly published. Non of these improvements were utilized for

the examples presented in the dissertation: We wish to emphasize that network

training is basically a nonlinear optimization problem and it should be treated

as one. Hence, we used a general optimization solver and searched several local

minima to find the appropriate parameter set using cross-validation. The number

of hidden units varied during the model search to select an appropriate model

complexity. In addition, we used physiological constraints for the model selection

with the EPOC model instead of using constraints in the objective function. Also a

formulation of FFNN and FIR network in a matrix form was presented improving

the analytic presentation value of the backpropagation equations.

The signal artifacts and distribution of the target signal biases the neural net-

work model towards the outliers and most frequent samples. Hence, we select an

even distribution of the training data to improve the generalization of the neural

network model.

It was demonstrated how the divide and conquer-approach for classical hy-

brid models does not lead to modularity of the resulting network, when the pa-

rameters of the expert and integration functions are optimized simultaneously.

It may be speculated that it is possible to find a local minimum that includes
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the wished properties. However, this may realize improbable and instead of a

hybrid model with a discrete decision plane was introduced, where the integra-

tion function is optimized separately from the experts improving the possibility

of constructing a modular system. Also tools for measuring and monitoring the

modularity were presented.

A common usage for a neural network model is to form a model by optimiz-

ing it in respect to some defined target signal. A new concept, a transistor neural

network, was introduced to expand the applicability and flexibility of neural net-

work architectures. It was also successfully applied for the modeling of a respira-

tory frequency from the heart rate time series, where traditional approaches were

outperformed.



174

REFERENCES

[1] P. Augustyniak. Recovering the precise heart rate from sparsely sampled

electrocardiograms. w materialach konferencji Computers in Medicine,

Lódz, 23-25.09.1999, str. 59-65, 1999.

[2] P. Augustyniak and A. Wrzesniowski. Ecg recorder sampling at the vari-

able rate. In proceedings of 6th International Conference SYMBIOSIS 2001,

Szczyrk, Poland 11-13 September, 2001.

[3] A. R. Barron. Universal approximation bounds for superposition of a sig-

moidal function. IEEE Transactions on Information Theory, 39:930–945, 1993.

[4] L. Behera. Query based model learning and stable tracking of a robot arm

using radial basis function network. Computers and Electrical Engineering,

29:553–573, 2003.

[5] M. G. Bello. Enhanced training algorithms, and integrated train-

ing/architecture selection for multilayer perceptron networks. IEEE Trans-

actions on Neural Networks, 3:864–875, 1992.

[6] G. G. Berntson, T. Bigger, D. Eckberg, P. Grossman, P. G. Kaufmann, M. Ma-

lik, H. N. Nagaraja, S. W. Porges, P. J. Saul, P. H. Stone, and M. Van

Der Molen. Heart rate variability: Origins, methods, and interpretative

caveats. Psychophysiology, 34:623–648, 1997.

[7] G. G. Berntson, K. S. Quigley, J. F. Jang, and S. T. Boysen. An approach

to artifact identification: application to heart period data. Psychophysiology,

27(5):586–598, 1990.

[8] G. G. Berntson and J. R. Stonewell. ECG artifacts and heart period variabil-

ity: Don’t miss a beat! Psychophysiology, 35:127–132, 1998.

[9] D. Bhattacharya and A. Antoniou. Design of equirriple FIR filters using a

feedback neural network. IEEE Transactions on Circuits and Systems II: Analog

and Digital Signal Processing, 45(4):527–531, 1998.

[10] G. Bienvenu. Influence of spatial coherence of the background noise on high

resolution passive methods. In Proceedings of the International Conference on

Acoustics, Speecs, and Signal Processing, Washington, DC, pages 306–309, 1979.

[11] S. A. Billings and X. Hong. Dual-orthogonal radial basis function networks

for nonlinear time series prediction. Neural Networks, 11:479–493, 1998.

[12] C. M. Bishop. Training with noise is equivelant to tikhonov regularization.

Neural Computation, 7(1):108–116, 1995.

[13] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University

Press, Somerset 1997.



175

[14] A. Bortoletti, C. D. Fiore, S. Fanelli, and P. Zellini. A new class of quasi-

newtonian methods for optimal learning in MLP-networks. IEEE Transac-

tions on Neural Networks, 14(2):263–273, 2003.

[15] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting

and Control. Prentice-Hall, Inc., USA 1994.

[16] D. S. Broomhead and D. Lowe. Multivariable functional interpolation and

adaptive networks. Complex Systems, 2:321–355, 1988.

[17] E. T. Brown, L. Beightol, J. Koh, and D. Eckberg. Important influence of

respiration on human r-r interval power spectra is largely ignored. Appl.

Physiol., 75(5):2310–2317, 1993.

[18] L. Burattini, W. Zareba, J. P. Couderc, J. A. Konecki, and A. J. Moss. Optimiz-

ing ecg signal sampling frequency for t-wave alternans detection. Computers

in Cardiology, 25:721–724, 1998.

[19] P. Campolucci. A Circuit Theory Approach to Recurrent Neural Network Archi-

tectures and Learning Methods. PhD thesis, Universita Degli Studi Di Bologna,

Dottorato di Ricerca in Ingegneria Elettrotecnica, 1998.

[20] G. Camps-Valls, B. Porta-Oltra, E. Soria-Olivas, J. D. Martin-Guerrero, A. J.

Serrano-López, J. Pérez-Ruixo, and N. V. Jiménez-Torres. Predicion of cy-

closporine dosage in patients after kidney transplantation using neural net-

works. IEEE Transactions on Biomedical Engineering, 50(4):442–448, 2003.

[21] D. Chakraborty and N. R. Pal. A novel training scheme for multilayered

perceptrons to realize proper generalization and incremental learning. IEEE

Transactions on Neural Networks, 14(1):1–14, 2003.

[22] C. Charalambous. Conjugate gradient algorithm for efficient training of ar-

tificial neural networks. IEEE Proceedings, 139(3):301–310, 1992.

[23] C. Chatfield. The Analysis of Time Series: An Introduction. Chapman and Hall,

5 edition, 1999.

[24] C. Chatfield. The Analysis of Time Series: An Introduction. Chapman and Hall,

Great Britain 1991.

[25] Y. P. Chen and P. M. Popovich. Correlation: Parametric and Nonparametric

measures. Sage University Papers Series on Quantitative Applications in the

Social Sciences, 07-139, Thousand Oaks, CA: Sage, 1999.

[26] C. Chui. An introduction to wavelets. Academic Press, San Diego, 1992.

[27] A. Cohen. Biomedical signals: Origin and dynamic characteristics; fre-

quency domain analysis. In J. D. Bronzino, editor, The biomedical engineering,

pages 805–827. CRC Press, Inc., 1995.



176

[28] L. Cohen. Time-frequency distributions - a review. Proceedings of the IEEE,

77:941–981, 1989.

[29] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.

Cambridge (Mass.) : MIT Press, 20 edition, 1998.

[30] G. Cybenko. Approximation by superpositions of a sigmoidal function.

Math. Control, Signals, and Sys., 2(4), 1989.

[31] J. Daintith and R. D. Nelson, editors. Dictionary of mathematics. Penguing

Group, 1989.

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society,

39:1–38, 1977.

[33] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations. New York: Prentice-Hall, 1983.

[34] H. Drucker, C. Cortes, L.D. Jackel, and Y. LeCun. Boosting and other en-

semble methods. Neural Computation, 6:1289–1301, 1994.

[35] H. Drucker, R. E. Schapire, and P Simard. Improving performance in neural

networks using a boosting algorithm. Advances in Neural Information Pro-

cessing Systems, 5:42–49, 1993.

[36] S. Fahlman. Faster learning variations on back-propagation: An empirical

study. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings

of the 1988 Connectionist Models Summer School, pages 38–51. Morgan Kauf-

mann, 1989.

[37] C. L. Fancourt and J. C. Principe. On the use of neural networks in the

generalized likelihood ratio test for detecting abrupt changes in signals. Intl.

Joint Conf. on Neural Networks, pages 243–248, 2000.

[38] Y. Freund. Boosting a week learning algorithm by majority. Information

Computation, 121:256–285, 1995.

[39] Y. Freund and R. E Schapire. Experiments with a new boosting algorithm.

Machine Learning: Proceedings of the Thirteenth International Conference, Bari,

Italy, pages 148–156, 1996.

[40] Y. Freund and R. E Schapire. Game theory, on-line prediction and boosting.

Proceedings of the Ninth Annual Conference on Computational Learning Theory,

Desenzano del Garda, Italy, pages 325–332, 1996.

[41] Y. Freund and R. E Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sci-

ences, 55:119–139, 1997.



177

[42] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, and

H. T. Nagle. A comparison of the noise sensitivity of nine qrs detection

algorithms. IEEE Transactions on Biomedical Engineering, 37(1):85–98, 1990.

[43] K. I. Funahashi. On the approximate realization of continuous mappings by

neural networks. Neural Networks, 2:183–192, 1989.

[44] A. Grossmann and J. Morlet. Decomposition of hardy functions into square

integrable wavelets of constant shape. SIAM Journal of Mathematical Analy-

sis, 15:723–736, 1984.

[45] A. C. Guyton. Textbook of medical physiology. W.B. Saunders company, 7

edition, 1986.

[46] A. C. Guyton and J. E. Hall. Textbook of medical physiology. W.B. Saunders

company, 9 edition, 1996.

[47] M. T. Hagan, H. B. Demuth, and M. H. Beale. Neural Network Design. PWS

Publishing, 1996.

[48] M. T. Hagan and M. Menhaj. Training feedforward networks with the mar-

quardt algorithm. IEEE Transactions on Neural Networks, 5(6):989–993, 1994.

[49] L. O. Hall, A. M. Bensaid, L. P. Clarke, R. B. Velthuizen, M. S. Silbiger, and

J. C. Bezdek. A comparison of neural network and fuzzy clustering tech-

niques in segmenting magnetic resonance images of the brain. IEEE Trans-

actions on Neural Networks, 3(5):672–682, 1992.

[50] S. J. Hanson and L. Y. Pratt. Comparing biases for minimal network con-

struction with back-propagation. Advances in Neural Information Processing

Systems, 1:177–185, 1989.

[51] E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks

with Gaussian hidden units as universal approximations. Neural Computa-

tion, 2:210–215, 1990.

[52] B. Hassibi and D. G. Stork. Second order derivatives for network pruning:

optimal brain surgeon. Advances in Neural Information Processing Systems,

5:164–171, 1993.

[53] S. Haykin. Addaptive Filter Theory. Prentice Hall, 2002.

[54] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, Inc.,

New Jersey 1994.

[55] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, Inc.,

2 edition, New Jersey 1999.



178

[56] G. M. Hägg. Comparison of different estimators of electromyographic spec-

tral shifts during work when applied on short test conditions. Med Biol Eng

Comp, 29:511–516, 1991.

[57] G. E. Hinton. Learning translation invariant recognition in massively paral-

lel networks. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors,

Proceedings PARLE conference on parallel architectures and Languages Europe,

pages 1–13. Berlin: Springer-Verlag, 1987.

[58] K. Hornik, M. Stinchombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural Networks, 2:359–366, 1989.

[59] J. H. Houtveen, S. Rietveld, and E. J. C. De Geus. Contribution of tonic vagal

modulation of heart rate, central respiratory drive, respiratory depth, and

respiratory frequency to respiratory sinus arrhythmia during mental stress

and physical exercise. Psychophysiology, 39:427–436, 2002.

[60] T. S. Huang, G. J. Yang, and G. Y. Tang. A fast two-dimensional median

filtering algorithm. IEEE transactions on acoustics, speech and signal processing,

27:13–18, February 1979.

[61] H. V. Huikuri, T. Mäkikallio, J. Airaksinen, R. Mitrani, A. Castellanos, and

R. Myerburg. Measurement of heart rate variability: A clinical tool or a

research toy? Journal of the American College of Cardiology, 34(7):1878–1883,

1999.

[62] D. Husmeier. Learning non-stationary conditional probability distributions.

Neural Networks, 13:287–290, August 2000.

[63] B. Irie and S. Miyake. Capabilities of three-layered perceptrons. Proceedings

IEEE Second International Conference on Neural Networks, 1:641–647, 1988.

[64] A. S. Jackson, S. N. Blair, M. T. Mahar, L. T. Wier, R. M. Ross, and J. E.

Stuteville. Prediction of functional aerobic capacity without exercise test-

ing. Medicine & Science in Sports and Exercise, 22(6):863–870, 1990.

[65] R. A. Jacobs. Increased rates of convergence through learning rate adapta-

tion. Neural Networks, 1:295–307, 1988.

[66] R. A. Jacobs. Task Decomposition Through Computation in a Modular Connec-

tionist Architecture. PhD thesis, University of Massachusetts, 1990.

[67] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures

of local experts. Neural Computation, 3:79–87, 1991.

[68] I. T. Jollife. Principal Component Analysis. New York: Springer-Verlag, 1986.

[69] L. K. Jones. A simple lemma on greedy approximation in Hilbert space

and convergence rates for projection pursuit regression and neural network

training. Annals of Statistics, 20:608–613, 1992.



179

[70] M. I. Jordan. Attractor dynamics and parallelism in a connectionist sequen-

tial machine. Proceedings 8th Annual Conference of the Cognitive Science Society,

pages 531–546, 1986.

[71] M. I. Jordan. A Parallel Distributed Processing Approach. University of Cali-

fornia, technical report 8604, 1986.

[72] P. G. Katona and F. Jih. Respiratory sinus arrhythmia: noninvasive measure

of parasympathetic cardiac control. Journal of Applied Physiology, 39(5):801–

805, 1975.

[73] A. Kehagias and V. Petridis. Time-series segmentation using predictive

modular neural networks. Neural Computation, 9:1691–1709, 1997.

[74] S. Kendall. The Unified Process Explained. Addison-Wesley, 2001.

[75] J. Kettunen and L. Keltinkangas-Järvinen. Smoothing enhances the detec-

tion of common structure from multiple time series. Behaviour Research

Methods, Instruments & Computers, 33(1):1–9, 2001.

[76] J. Kettunen, J. Kotisaari, S. Saalasti, A. Pulkkinen, P. Kuronen, and H. Rusko.

A system for daily monitoring of physiological resources: A pilot study.

Science for Success congress, Jyväskylä, Finland, October, 2002.

[77] J. Kettunen and S. Saalasti. Procedure for deriving reliable information

on respiratory activity from heart period measurement. Patent number

FI20011045 (pending), 2002.

[78] J. Kettunen, S. Saalasti, and A. Pulkkinen. Patent number FI20025039 (pend-

ing), 2002.

[79] J. Kohlmorgen and S. Lemm. A dynamic HMM for on-line segmentation of

sequential data. Advances in Neural Information Processing Systems, 14:793–

800, 2001.

[80] J. Kohlmorgen, S. Lemm, K.-R. Müller, S. Liehr, and K. Pawelzik. Fast

change point detection in switching dynamics using a hidden markov

model of prediction experts. Proc. of the Int. Conf. on Artificial Neural Net-

works, pages 204–209, 1999.

[81] J. Kohlmorgen, K.-R. Müller, and K. Pawelzik. Segmentation and identifi-

cation of drifting dynamical systems. Neural Networks for Signal Processing,

7:326–335, 1997.

[82] J. Kohlmorgen, K.-R. Müller, J. Rittweger, and K. Pawelzik. Identification of

nonstationary dynamics in physiological recordings. Biological Cybernetics,

83:73–84, 2000.

[83] T. Kohonen. Self-Organizing Maps. Springer, 1995.



180

[84] M. Kollai and G. Mizsei. Respiratory sinus arrhythmia is a limited measure

of cardiac parasympathetic control in man. Journal of Physiology, 424:329–

342, 1990.

[85] A. N. Kolmogorov. On the representation of continuous functions of sev-

eral variables by superposition of continuous functions of one variable and

addition. Dijkadt Akademiia Nauk SSSR, 114:953–956, 1957.

[86] I. Korhonen. Methods for the analysis of short-term variability of heart rate and

blood pressure in frequency domain. PhD thesis, VTT-Technical Research Cen-

tre of Finland, 1997.

[87] T. Kärkkäinen. MLP-network in a layer-wise form with applications to

weight decay. Neural Computation, 14(6):1451–1480, 2002.

[88] T. Kärkkäinen and E. Heikkola. Robust formulations for training multilayer

perceptrons. To appear in Neural Computation, 2003.

[89] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence

properties of the nelder-mead simplex method in low dimensions. SIAM

Journal of Optimization, 9(1):112–147, 1998.

[90] K. J. Lang and G. E. Hinton. Dimensionality reduction and prior knowledge

in e-set recognition. Advances in Neural Information Processing Systems, 2:178–

175, 1990.

[91] Y. Le Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. Advances in

Neural Information Processing Systems, 2:598–605, 1990.

[92] M. Lehtokangas. Neural Networks in Time Series Modelling. Tampere Univer-

sity of Technology Electronics Laboratory, Tampere 1994.

[93] S. Liehr, K. Pawelzik, J. Kohlmorgen, and K.-R. Müller. Hidden markov mix-

tures of experts with an application to EEG recordings from sleep. Theory in

Biosciences, 118:246–260, 1999.

[94] H. Maaranen, K. Miettinen, and M. M. Mäkelä. Training multi layer percep-

tron using a genetic algorithm as a global optimizer. In M. G. C. Resende

and J. P. de Sousa, editors, Metaheuristics: Computer Decision-Making, pages

421–448. Kluwer Academic Publishers B.V., 2003.

[95] S. Makeig, T-P. Jung, and T. J. Sejnowski. Using feedforward neural net-

works to monitor alertness from changes in EEG correlation and coherence.

Advances in Neural Information Processing Systems, 8:931–937, 1996.

[96] S. A. Mallat. A theory for multiresolution signal decomposition: The

wavelet representation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 11:674–693, 1989.



181

[97] K. Martinmäki, L. Kooistra, J. Kettunen, S. Saalasti, and H. Rusko. Car-

diovascular indices of vagal activation as a function of recovery from vagal

blockade. ACSM Congress, St. Louis, May 28 - June 1. Abstract: Medicine

and Science in Sports and Exercise 34(5), Supplement: S60., 2002.

[98] K. Martinmäki, L. Kooistra, J. Kettunen, S. Saalasti, and H. Rusko. Intraindi-

vidual validation of heart rate variability indices to measure vagal activity.

Science for Success congress, Jyväskylä, Finland, October, 2002.

[99] Matlab. Time-Frequency Toolbox for use with Matlab, 1996.

[100] Matlab. The Language of Technical Computing, 1999.

[101] Matlab. Neural Network Toolbox for use with Matlab, 2000.

[102] Matlab. Optimization Toolbox for use with Matlab, 2000.

[103] Matlab. Signal Processing Toolbox for use with Matlab, 2000.

[104] Matlab. Wavelet Toolbox for use with Matlab, 2002.

[105] W. D. McArdle, I. Katch, F., and V. L. Katch. Exercise Physiology: Energy,

nutrition and human performance. Williams & Wilkins, 4 edition, 1996.

[106] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and

Hall, Great Britain 1985.

[107] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, 1994.

[108] T. Mäkikallio. Analysis of heart rate dynamics by methods derived from nonlin-

ear mathematics: Clinical applicability and prognostic significance. PhD thesis,

Department of Internal Medicine, University of Oulu, 1998.

[109] S. Mohsin, Y. Kurimoto, Y. Suzuki, and J. Maeda. Extraction of the qrs

wave in an electrocardiogram by fusion of dynamic programming match-

ing and a neural network. Trans. of Institute of Electrical Engineers of Japan,

122-C(10):1734–1741, 2002.

[110] J. Moody and C. J. Darken. Fast learning in networks of locally-tuned pro-

cessing units. Neural Computation, 1(2):281–294, 1989.

[111] J. Möttönen, V. Koivunen, and H. Oja. Sign and rank based methods for au-

tocorrelation coefficient estimation. Tampere International Center for Signal

Processing (TICSP) Seminar Presentation, 2000.

[112] J. Möttönen, H. Oja, and V. Koivunen. Robust autocovariance estimation

based on sign and rank correlation coefficients. IEEE HOS’99, 1999.



182

[113] L. J. M. Mulder. Assessment of cardiovascular reactivity by means of spectral

analysis. PhD thesis, Instituut voor Experimentele Psychologie van de Rijk-

suniversiteit Groningen, 1988.

[114] K. R. Müller, J. Kohlmorgen, A. Ziehe, and B. Blankertz. Decomposition al-

gorithms for analysing brain signals. IEEE Symposium 2000 on adaptive Sys-

tems for Signal Processing, Communications and Control, pages 105–110, 2000.

[115] U. N Naftaly and D. Horn. Optimal ensemble averaging of neural networks.

Network, 8:283–296, 1997.

[116] J. Nocedal and S. J. Wright, editors. Numerical optimization. Springer-Verlag,

New York, 1999.

[117] V. Novak, P. Novak, J. DeChamplain, A. R. LeBlanc, R. Martin, and

R. Nadeau. Influence of respiration on heart rate and blood pressure fluctu-

ations. Journal of Applied Physiology, 74:617–626, 1993.

[118] S.J. Nowlan. Maximum likelihood competetive learning. Advances in Neural

Information Processing Systems, 2:574–582, 1990.

[119] American College of Sports Medicine Position Stand. The recommended

quantity and quality of exercise for developing and maintaining cardiores-

piratory and muscular fitness, and flexibility in healthy adults. Medicine &

Science in Sports and Exercise, 30(6):975–991, 1998.

[120] Task Force of the European Society of Cardiology, the North American So-

ciety of Pacing, and Electrophysiology. Heart rate variability: standards of

measurement, physiological interpretation, and clinical use. European Heart

Journal, 17:354–381, 1996.

[121] A. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice

Hall, 1999.

[122] E. Oropesa, H. L. Cycon, and M. Jobert. Sleep stage classification using

wavelet transform and neural network. Technical Report 8, International

Computer Science Institute, 1947 Center St., Suite 600, Berkeley, California

94704-1198, 1999.

[123] D. N. Osherson, S. Weinstein, and M. Stoli. Modular learning. Computational

Neuroscience, pages 369–377, 1990.

[124] P. M. Pardalos and E. H. Romeijn, editors. Handbook of Global Optimization

Volume 2. Kluwer Academic Publishers, 2002.

[125] J. Park and I. W. Sandberg. Universal approximation using radial basis func-

tion networks. Neural Computation, 3:246–257, 1991.

[126] J. Park and I. W. Sandberg. Approximation and radial basis function net-

works. Neural Computation, 5:305–316, 1993.



183

[127] W. D. Penny and S. J. Roberts. Dynamic models for nonstationary signal

segmentation. Computers and Biomedical Research, 32:483–502, 1999.

[128] M. P. Perrone and L. N. Cooper. When networks disagree: ensemble meth-

ods for hybrid neural networks. Artificial Neural Networks for Speech and

Vision, pages 126–142, 1993.

[129] M. Pfister. Hybrid learning algorithms for neural networks. PhD thesis, Free

University Berlin, 1995.

[130] M. Pfister and R. Rojas. Speeding-up backpropagation - a comparison of or-

thogonal techniques. International Joint Conference on Neural Networks, pages

517–523, 1993.

[131] V. Pichot, J. M. Gaspoz, S. Molliex, A. Antoniadis, T. Busso, F. Roche,

F. Costes, L. Quintin, J. R. Lacour, and J. C. Barthelemy. Wavelet transform

to quantify heart rate variability and to assess its instantaneous changes.

Journal of Applied Physiology, 86(3):1081–1091, 1999.

[132] M. V. Pitzalis, F. Mastropasqua, F. Massari, A. Passantino, P. Totaro, C. For-

leo, and P. Rizzon. belta-blocker effects on respiratory sinus arrhythmia and

baroreflex gain in normal subjects. The Cardiopulmonary and Critical Care

Journal, 114(1):185–191, 1998.

[133] M. V. Pitzalis, F. Mastropasqua, A. Passantino, F. Massari, L. Ligurgo, C. For-

leo, C. Balducci, F. Lombardi, and P. Rizzon. Comparison between nonin-

vasive indices of baroreceptor sensitivy and the phenylephrine method in

post-myocardial infarction patients. Circulation, 97(14):1362–1367, 1998.

[134] S. Pola, A. Macerata, M. Emdin, and C. Marchesi. Estimation of the power

spectral density in nonstationary cardiovascular time series: Assessing the

role of the time-frequency representations. IEEE Transactions of Biomedical

Engineering, 43:46–59, 1996.

[135] R. Poli, S. Cagnoni, and G. Valli. Genetic design of optimum linear

and nonlinear QRS detectors. IEEE Transactions on Biomedical Engineering,

42(11):1137–41, 1995.

[136] S. W. Porges and E. A. Byrne. Research methods for measurement of heart

rate and respiration. Biological Psychology, 34:93–130, 1992.

[137] L. Prechelt. Early stopping - but when? In G. B. Orr and K. R. Müller,

editors, Neural networks; Tricks of the Trade, pages 55–70. Berlin Heidelberg.

Springer-Verlag, 1998.

[138] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C: The art of scientific computing. Cambridge University Press, 2

edition, 2002.



184

[139] A. Pulkkinen. Uusien sykkeeseen perustuvien hapenkulutuksen arvioin-

timenetelmien tarkkuus. Master’s thesis, University of Jyväskylä, Depart-

ment of Biology of Physical Activity, 2003.

[140] A. Pulkkinen, J. Kettunen, S. Saalasti, and H. Rusko. New method for the

monitoring of load, fatigue and recovery in exercise training. Science for

Success congress, Jyväskylä, Finland, October, 2002.

[141] A. Pulkkinen, J. Kettunen, S. Saalasti, and H. Rusko. Accuracy of VO2 es-

timation increases with heart period derived measure of respiration. 50th

Annual Meeting of the American College of Sports Medicine, San Francisco,

California, USA, May 28-31, 2003.

[142] K. S. Quigley and G. G. Berntson. Autonomic interactions and chronotropic

control of the heart: Heart period versus heart rate. Psychophysiology,

33:605–611, 1996.

[143] R. D. Reed. Pruning algorithms - a survey. IEEE Transactions on Neural

Networks, 4(5):740–744, 1993.

[144] R. D. Reed and R. J. Marks II. Neural smithing: Supervised learning in Feed-

forward Artificial Neural Networks. Cambridge (Mass.) : MIT Press, 1 edition,

1999.

[145] M. Riedmiller and H. Braun. Speeding-up backpropagation. In R. Eckmiller,

editor, IEEE International Conference on Neural Networks, pages 586–591, 1993.

[146] T. Ritz, M. Thöns, and B. Dahme. Modulation of respiratory sinus arrhyth-

mia by respiration rate and volume: Stability across posture and volume

variations. Psychophysiology, 38:858–862, 2001.

[147] R. Rojas. Neural Networks: A Systematic Introduction. Springer Berlin, 1996.

[148] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations

by back-propagating errors. Nature, 323:533–536, 1986.

[149] H. Rusko, A. Pulkkinen, S. Saalasti, and J. Kettunen. Pre-prediction of

EPOC: A tool for monitoring fatigue accumulation during exercise. 50th

Annual Meeting of the American College of Sports Medicine, San Francisco,

California, USA, May 28-31, 2003.

[150] S. Saalasti. Time series prediction and analysis with neural networks. Li-

centiate thesis, University of Jyväskylä, Department of Mathematics and

Statistics, 2001.

[151] S. Saalasti, J. Kettunen, and A. Pulkkinen. Patent number FI20025038 (pend-

ing), 2002.



185

[152] S. Saalasti, J. Kettunen, A. Pulkkinen, and H. Rusko. Monitoring respira-

tory activity in field: applications for exercise training. Science for Success

congress, Jyväskylä, Finland, October, 2002.

[153] R. Salomon. Verbesserung konnektionistischer Lernverfahren die nach der Gradi-

entenmethode arbeiten. PhD thesis, Technical University of Berlin, 1992.

[154] L. E. Scales. Introduction to Non-Linear Optimization. New York: Springer-

Verlag, 1985.

[155] R. E Schapire. The strength of weak learnability. Machine Learning, 5:197–

227, 1990.

[156] R. E Schapire. Using output codes to boost multiclass learning prob-

lems. Machine Learning: Proceedings of the Fourteenth International Conference,

Nashville, TN, 1997.

[157] R. E Schapire, Y. Freund, and P. Bartlett. Boosting the margin: A new expla-

nation for the effectiveness of voting methods. Machine Learning: Proceedings

of the Fourteenth International Conference, Nashville, TN, 1997.

[158] R. O. Scmidt. Multiple emitter location and signal parameter estimation. In

Proc. RADC, Spectral Estimation Workshop, Rome, pages 243–258, 1979.

[159] H. R. Shumway and S. D. Stoffer. Time Series Analysis and Its Applications.

Springer-Verlag, 2000.

[160] F. Silva and L. Almeida. Speeding-up backpropagation. In R. Eckmiller,

editor, Advanced Neural Computers, pages 151–156. North-Holland, 1990.

[161] S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing.

California Technical Publishing, 1997.

[162] E. D. Sontag. Feedback stabilization using two-hidden-layer nets. Technical

report, Rutgers Center for Systems and Control, 1990.

[163] E. D. Sontag. Feedback stabilization using two-hidden-layer nets. IEEE

Transactions on Neural Networks, 3(6):981–990, 1992.

[164] R. Stark, A. Schienle, B. Walter, and D. Vaitl. Effects of paced respiration

on heart period and heart period variability. Psychophysiology, 37:302–309,

2000.

[165] P. Stoica and R. Moses. Introduction to Spectral Analysis. Prentice Hall, 1997.

[166] F. B. Stulen and C. J. DeLuca. Frequency parameters of the myoelectric sig-

nal as a measure of muscle conduction velocity. IEEE Trans Biomed Eng,

28:515–523, 1981.



186

[167] Y. Suzuki. Self-organizing qrs-wave recognition in ecg using neural net-

works. IEEE Transactions on Neural Networks, 6(6):1469–1477, 1995.

[168] F. Takens. Detecting strange attractors in turbulence. Dynamical Systems and

Turbulence, 898:336–381, 1981.

[169] B. Tang, M. I. Heywood, and M. Shepherd. Input partitioning to mixture

of experts. IEEE World Congress on Computational Intelligence (IEEE WCCI

2002), 2002.

[170] M. Till and S. Rudolph. Optimized time-frequency distributions for sig-

nal classification with feed-forward neural networks. Proceedings SPIE Con-

ference on Applications and Science of Computation al Intelligence III, Orlando,

Florida, April 24-28th, 2000.

[171] A. Vehtari. Bayesian Model Assessment and Selection Using Expected Utili-

ties. PhD thesis, Department of Electrical and Communications Engineer-

ing, Helsinki University of Technology, 2001.

[172] K. Väinämö, S. Nissilä, T. Mäkikallio, M. Tulppo, and J. Röning. Artificial

neural networks for aerobic fitness approximation. International conference

on Neural Networks (ICNN ’96), Washington DC, USA, June 3-6, 1996.

[173] P. Virtanen. Neuro-fuzzy expert systems in financial and control engineering.

PhD thesis, Department of Mathematical Information Technology, Univer-

sity of Jyväskylä, 2002.

[174] G. Walker. On periodicity in series of related terms. In Proceedings of the

Royal Society of London, 131, pages 518–532, 1931.

[175] E. A. Wan. Temporal backpropagation for FIR neural networks. Proceedings

IEEE International Joint Conference on Neural Networks, 1:575–580, 1990.

[176] Z. Wang and T. Zhu. An efficient learning algorithm for improving gen-

eralization performance of radial basis function neural networks. Neural

Networks, 13:545–553, 2000.

[177] P.D. Wasserman. Advanced Methods in Neural Computing. New York: Van

Nostrand Reinhold, 1993.

[178] A. S. Weigend and N. A. Gershenfeld. Time Series Prediction: Forecasting the

Future and Understanding the Past. Addison-Wesley Publishing Company,

USA 1994.

[179] A. S. Weigend, B. A. Huberman, and D. E. Rumelhart. Predicting the future:

a connectionist approach. International Journal of Neural Systems, 1(3):193–

209, 1990.



187

[180] R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line

training of recurrent network trajectories. Neural Computation, 2:490–501,

1990.

[181] A. S. Willsky and H. L. Jones. A generalized likelihood ratio approach to

detection and estimation of jumps in linear system. IEEE Trans. Automatic

Control, AC-21(1):108–112, 1976.

[182] N. Wirth. Algorithms + data structures = programs. Englewood Cliffs (N.J.) :

Prentice-Hall, 1 edition, 1976.

[183] D. H Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[184] D. H Wolpert. Optimal linear combinations of neural networks. Neural

Networks, 10:599–614, 1997.

[185] T. H. Wonnacott and R. J. Wonnacott. Introductory statistics. John Wiley &

Sons, 4 edition, 1990.

[186] G. U. Yule. On a method of investigating periodicities in disturbed series,

with special reference to wolfer’s sunspot numbers. In Phil. Trans. Royal

Society of London, 226, pages 267–298, 1927.



YHTEENVETO (Finnish summary)

Tämä väitöskirjatutkimus luo katsauksen moderneihin matemaattisiin menetelmi-

in fysiologisen aikasarjamallinnuksen viitekehyksessä. menetelmät luovat kokon-

aisuuden, jota voidaan käyttää hyväksi analysoitaessa fysiologista aineistoa. Eri-

tyisesti keskitytään sykkeen mallintamiseen käyttäen hermoverkkomallinnusta.

Fysiologinen aineisto voitaisiin määritellä ihmisen sisäistä fysiologiaa ku-

vaaviksi objektiivisesti mitattaviksi muuttujiksi. Täten esimerkiksi ihmisen ikä ei

ole fysiologinen muuttuja, vaan sitä nimitetään taustamuuttujaksi. Psykologiset

muuttujat ovat subjektiivisia ja niitä ei voida todentaa mittaamalla. Psykologi-

nen aineisto kerätään haastatteluilla ja kyselylomakkeilla. Niiden luotettavuu-

teen vaikuttavat monet häiriötekijät, kuten sosiaalisesti hyväksyttävät vastaukset,

huolimattomuus tai haastattelijan virhearvioinnit.

Psykologisen ja fysiologisen aineiston yhtymäkohdat ovat tutkimuksissa,

joissa halutaan fysiologian perusteella määritellä ihmisen psykologista tilaa.

Tämäntyyppisessä tutkimuksessa psykologinen aineisto muutetaan numeerisen

muotoon siten, että sitä voidaan tilastollisesti käsitellä. Fysiologisista muuttu-

jista pyritään löytämään piirteet, jotka pystyvät selittämään psykologisia muut-

tujia. Tutkimuksen sovellutuksia on esimerkiksi ihmisen resurssien seuraami-

nen. Yhteiskunnallisesti voitaisiin säästää huomattavia rahamääriä, jos ihmisen

työuupumus voitaisiin havaita ajoissa suorittamalla päivittäinen yksinkertainen

tehtävä. Tehtävässä voitaisiin mitata esimerkiksi suoritustasoa, sykettä, havainto-

tai reaktionopeutta.

Fysiologisessa aineistossa on omat erityispiirteensä, jotka tulee ottaa

huomioon käytettäessä ja kehitettäessä matemaattisia menetelmiä. Aineistoa on

usein mahdollista tallentaa suuria määriä, esimerkiksi sykeväliaikasarjaa voidaan

tallentaa kuluttajamarkkinoille suunnatuilla sykemittareilla n. 30000 lyöntiä en-

nen mittalaitteen muistin täyttymistä. Fysiologisen aineiston erityispiirteissä on

myös yhtymäkohtia mm. biologiseen ja finanssiaineistoon, jolloin esitettäviä

ratkaisumenetelmiä voidaan mahdollisesti hyödyntää myös yleisemmin.

Aineiston visualisointi tuottaa asiantuntijalle mallinnuksen pohjana käytet-

tävää tietoa. Väitöstyössä demonstroidaan eri tapoja havainnollistaa aineistoa ja

fysiologisia ilmiöitä, sekä fysiologisten ilmiöiden kompleksisuutta.

Tutkimuksessa esitetään menetelmälaajennuksia käsiteltäessä mitattavia

muuttujia suoraan mittalaitteelta. Tämä näkökohta palvelee mittalaiteteollisuutta

ja etenkin kuluttajamarkkinoille suunnattuja sulautettuja tuotteita, joiden koko

ei mahdollista tehokkaita suorittimia tai suuria muistikapasiteetteja. Edelliset

ovat tietysti myös kustannuskysymyksiä. Ohjelmistotasolla tehdyt ratkaisut ovat

kertakustanteisia, joita voidaan monistaa tuotteisiin.
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Fysiologinen aikasarja-analyysi

Fysiologiset aikasarjat ovat usein kaoottisia, epälineaarisia ja epästationaarisia,

johtaen signaalin huonoon ennustettavuuteen ja fysiologisen tulkinnan vaikeu-

teen. Etenkin vapaat kontrolloimattomat mittaukset ovat haastavia mittaus-

laitteistojen herkistyessä erilaisille ulkopuolisille häiriöille tuottaen signaaliin

virheitä.

Fysiologian ennustettavuus riippuu tarkasteltavasta kohteesta ja mit-

tausvälistä. Mitattaessa sykettä ei keskisykettä mallintamalla voida ennustaa

tulevia arvoja. Kuitenkin tiedetään henkilön hapenkulutuksen jäävän korkeam-

malle tasolle kovan fyysisen suorituksen jälkeen. Myös lihaksen puristusvoiman

voidaan tilastollisesti ennustaa aidosti laskevaksi vanhuusiällä mittausvälin ol-

lessa esimerkiksi kymmenen vuotta.

Fysiologinen aineisto sisältää lainalaisuuksia, joita tulisi pystyä hyväk-

sikäyttämään luotaessa matemaattisia malleja. Muuttujat ovat järkeviä vain tie-

tyissä fysiologisissa rajoissa. Esimerkiksi syke ei voi olla alle kahtakymmentä

tai yli kolmeasataa lyöntiä minuutissa. Aineisto on ajassa etenevää ja mitattavat

muuttujat korreloivat keskenään. Matemaattisen mallin tulee käyttäytyä myös

aineiston ulkopuolella järkevästi. Esimerkiksi seurattaessa saman henkilön vi-

taalikapasiteettia voidaan sen arvioida tietyn iän jälkeen jatkuvan vähenevänä.

Malleja voidaan yleistää skaalaamalla mitattavia muuttujia taustamuuttujiinsa.

Taustamuuttujia ovat mm. ihmisen ikä, paino, pituus, fysiologiset minimit ja

maksimit (minimaalinen tai maksimaalinen hapenkulutus, -syke, -ventilaatio, tai

-lihaksen puristusvoima). Väitöksessä esitetään mm. sovellus happivelan (EPOC)

mallintamiseen, jossa käytetään hyväksi fysiologisia rajoitteita, sekä maksimaal-

ista sykettä arvioitaessa suhteellista hapenkulutusta. Fysiologisen aineiston ra-

joitettua skaalaa voidaan käyttää hyväksi myös esim. aineiston skaalaamisessa

(tai normalisoinnissa) mittauslaitteistoissa tietämättä etukäteen todellista aineis-

ton jakaumaa.

Asiantuntijatiedon siirtäminen matemaattiseen malliin voidaan toteuttaa

useilla eri tavoilla. Sumeat asiantuntijajärjestelmät pohjautuvat asiantuntijalau-

seista koottaviin totuuslauseisiin, joilla pystytään koostamaan asiantuntijoiden

monimutkaista päättelyä. Sumeaa logiikkaa voidaan käyttää myös yleisemmin

sumeuttamaan taustamuuttujia, kun jatkuva esitys tahdotaan tiivistää. Esimerkik-

si syötettäessä neuroverkolle tietoa ihmisen painosta, saattaa järjestelmän kannal-

ta olla tarkoituksenmukaisempaa sumeuttaa muuttuja, siten että se antaa totu-

usarvon henkilön ylipainosta nollan ja ykkösen välille.

Puhtaassa aikasarjamallinnuksessa käytettävien menetelmien kirjo on laaja.

Eri menetelmät tarjoavat ominaisuuksia, joita voidaan käyttää hyväksi mallinnet-

taessa fysiologista aikasarjaa. Klassisten lineaaristen ja epälineaaristen mallien

vahvuus on niiden teoriakehyksen laaja ymmärrys, sekä mallien tarkkailtavuus

ja ominaisuuksien parempi hallinta. Esimerkiksi ekstrapoloitaessa aineiston ulko-

puolelle lineaarisen mallin käytös on ennustettavissa. Neuroverkot pystyvät esit-
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tämään hyvin monimutkaisia pintoja, mutta ne ovat ns. mustia laatikoita joiden

käyttäytymistä ei aina voida täysin ennakoida tai hallita.

Klassisia ja moderneja menetelmiä voidaan käyttää rinnakkain luomalla

hybridejä, jotka yhdistetään käyttämällä asiantuntijatietoa tai muodostamalla ns.

päätösfunktio.

Väitöksessä käsitellään erilaisia aineiston esikäsittelyrutiineja, kuten seg-

mentointia, aineiston järjestäminen (eng. ”data ranking”), normalisointi/skaalaus,

digitaalinen suodatus, suora aikataajuusmatriisin painotus, sekä lineaarisen tai

epälineaarisen trendin poistaminen. Esikäsittelymenetelmien vaikutus mallinnuk-

sen laadun paranemiseen on usein kriittistä. On kuitenkin tärkeää ymmärtää

esikäsittelyrutiinien periaatteet, sillä ne saattavat yli-yksinkertaistaa aineistoa ja

poistaa todellisia esim. epälineaarisia ilmiöitä käytettäessä lineaarisia menetelmiä.

Aikasarjasta voidaan irrottaa piirteitä automatisoidusti segmentoimalla

aikasarja homogeenisiin väleihin. Segmentointiin voidaan käyttää myös usei-

ta muuttujia. Tutkimuksessa esitetään laajennettu versio ns. GLR-algoritmista

aikasarja segmentointiin. Mitattavista muuttujista laskettavia piirteitä voidaan

käyttää selittämään fysiologista tai psykologista tilaa.

Käytettävien mallien ennustavuuden, yleistyvyyden, teoreettisen hallinnan

ja tarkkuuden lisäksi oleellista on pystyä laskemaan luottamus saadulle tulok-

selle. Luottamusta voidaan käyttää temporaalisessa aineistossa tulosten kor-

jaamiseen tai aineiston karsimiseen. Tilantunnistuksessa luottamus kertoo mallin

kyvystä tunnistaa ilmiö. Mallin tuottamien arvojen luottamus tuo myös epäsuo-

raa tietoa syötemuuttujien laadusta. Tietoa voidaan käyttää syötesignaalin virhei-

den tunnistamiseen. Luokitus-algoritmit, kuten Kohosen itseorganisoituva kart-

ta, pystyy tuottamaan luottamustietoa laskemalla sisääntulovektorin etäisyyden

prototyypeistä. Hybridi-järjestelmistä luottamusta voidaan mitata mm. laskemal-

la asiantuntijafunktioiden ja lopullisen tuloksen välinen varianssi. Aikataajuus-

jakaumissa ajallinen taajuushavainto tarkoittaa sitä, että kyseisen taajuuskom-

ponentin tulisi jatkua komponentin määräämän ajan aikatasossa. Luottamus-

muuttujalla tulisi myöskin olla tiettyjä ominaisuuksia. Väitöksessä pohditaankin

luottamuskertoimien ongelmakenttää fysiologisessa viitekehyksessä esitetyille

malleille.

Esikäsittelyn lisäksi fysiologisen mallin tuottamaa ulostuloa voidaan

jälkikäsitellä mm. liukuvalla keskiarvostamisella tai käyttämällä hyväksi mallin

luottamusestimaatteja. Tämänkaltaisen jälkikäsittelyn perusoletuksena on, että

aikasarja on lokaalisti riippuvaista, ts. vierekkäiset havainnot eivät poikkea suu-

resti toisistaan. Esimerkiksi sykkeen kiihtyvyys ja palautuminen on rajoittunutta,

ja jälkikorjaus menetelmät osoittautuvatkin toimiviksi fysiologisessa viitekehyk-

sessä.

Erilaiset aikataajuusjakaumat, sekä aika-skaalajakaumat luovat pohjan

epästationaaristen aikasarjojen taajuusinformaation laskennalle. Väitöksessä esi-

tetään uusi geometrinen menetelmä, jolla saavutetaan täydellinen aikataajuus-

resoluutio. menetelmää sovelletaan hengitysvenymäpannan tuottaman signaalin
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käsittelyyn hengitystaajuuden laskemiseksi.

Neuroverkkoarkkitehtuurit ja optimointi

Neuroverkolla voidaan arvioida mitä tahansa yhdenmukaisesti jatkuvaa funk-

tiota mielivaltaisen tarkasti lisäämällä riittävä määrä verkon parametreja. Neu-

roverkot ovatkin joustavia yleismalleja, joita on käytetty useissa tosielämän sovel-

lutuksissa.

Neuroverkkojen käytön pääongelmat ovat oikean arkkitehtuurin ja opti-

mointimenetelmän valinta. Erilaiset neuroverkko arkkitehtuurit voidaan jakaa

ajallisesti staattisiin ja aikadynaamisiin järjestelmiin. Staattisissa verkoissa on

lokaalisti ja globaalisti toimivia neuroneja, joista jälkimmäistä edustaa esim.

FFNN. Edellistä edustaa mm. radiaalifunktio-neuroverkko.

Oleellinen osa neuroverkko-julkaisuista edelleen käsittelee erilaisia paran-

nuksia ns. ”backpropagation”-algoritmiin ja tapaan, millä neuroverkon tun-

temattomat parametrit voidaan optimoida. Tutkimuksessa kuvataankin ”back-

propagation”-algoritmin soveltamista FFNN- ja FIR-neuroverkoille matriisimuo-

dossa, sekä esitellään erilaisia vaihtoehtoisia menetelmiä neuroverkko-paramet-

rien ratkaisemiseksi. Oleellista on se, että neuroverkko tulisi ajatella vain yhtenä

epälineaarisena järjestelmänä, jonka ratkaisumekanismit löytyvät epälineaarisen

optimoinnin teorioista. neuroverkkoteorian rinnalle syntynyt optimointiteoria ja

erilaiset optimointi menetelmät eivät ole tarkoituksenmukaisia. Sen sijaan ana-

lyyttisten derivaattojen sujuva ja yleinen ratkaisumalli on tärkeää, koska klassiset

epälineaarisen optimoinnin menetelmät tehokkaimmillaan käyttävät tavalla tai

toisella derivaattoja tai toisen asteen derivaattoja hyväkseen.

Fysiologisissa sovellutuksissa esitelläänkin optimointi yleisen optimoin-

tiratkaisijan avulla. Pääajatuksia optimointiin ovat useiden lokaalien minimien

läpikäyminen, eri piiloneuronien määrien kokeileminen oikea verkko komplek-

sisuuden löytämiseksi, sekä fysiologisten rajoitteiden käyttö mallin valinnasta.

Lisäksi esitellään puuttuvien havaintojen korvaaminen, sekä näiden painotettu

optimointi.

Signaalin häiriöt ja jakauma vaikuttavat neuroverkon opetukseen siten, että

malli harhautuu kohti aineistoa, joka on virhemielessä tärkein. Tämä voi johtaa

mallin huonoon yleistettävyyteen, ts. huonoon käyttäytymiseen uuden aineiston

kanssa. Ongelmaa voidaan vähentää valitsemalla neuroverkolle tasaisesti jakau-

tunut opetusaineisto. Testiaineistoa voidaan käyttää parhaan lokaalin minimin

valitsemisessa.

Erilaiset klassiset hybridi-mallit perustuvat oletukseen, että malli voidaan

optimoida modulaariseksi optimoimalla yhtäaikaisesti eri asiantuntijafunktiot ja

integraatiofunktio. Rinnakkainen optimointi johtaa kuitenkin hyvin epätoden-

näköisesti modulaariseen malliin. Sen sijaan väitöksessä esitetyssä diskreetis-

sä päätöspinta hybridi-mallissa asiantuntijafunktiot ja integraatiofunktio opti-

moidaan erikseen. Lisäksi mallille esitetään eri työkaluja modulaarisuuden ja
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yleistettävyyden mittaamiseen ja havainnollistamiseen.

Väitöskirjassa esitetään kaksi laajempaa fysiologisen mallinnuksen esi-

merkkiä. Hengitystaajuuden tunnistaminen sykeaikasarjasta tuottaa informaa-

tiota, jota voidaan käyttää hyväksi mm. hapenkulutuksen arvioinnissa. Hap-

pivelkaa mallinnetaan palautuvalla verkolla, jossa osoitetaan dynaamisen neu-

roverkon mahdollisuudet ennennäkemättömän aineiston ekstrapoloinnissa, sekä

staattisten verkkojen epäonnistuminen tehtävässä. Happivelan ja hengitystaajuu-

den arviointi perustuu täysin sykkeestä laskettaviin muuttujiin.

Tutkimuksessa esitettään uusi yleinen neuroverkko-arkkitehtuuri, jo-

ta nimitetään transistori-verkoksi. Transistori-verkossa järjestelmän lopulli-

nen ulostulo saadaan integroimalla neuroverkon antamat ulostulot yhdek-

si. Tätä sovelletaan dynaamisen suodattimen rakentamiseen ja hengitystaa-

juuden estimointiin. Transistori-verkossa neuroverkko on sisäfunktiona ja se

prosessoi useita sisääntuloja muodostaakseen yhden. Kuvatulla menetelmällä

pystytään tuottamaan paras hengitys-estimaatti, sekä prosessoimaan suuri määrä

aineistoa pienemmällä määrällä parametreja verrattuna klassisiin neuroverkko-

menetelmiin.
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