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Abstract

Repeated covariate measurements bring important information on the time-
varying risk factors in long epidemiological follow-up studies. However, due
to budget limitations, it may be possible to carry out the repeated measure-
ments only for a subset of the cohort. We study cost-efficient alternatives
for the simple random sampling in the selection of the individuals to be
remeasured. The proposed selection criteria are based on forms of the D-
optimality. The selection methods are compared in simulation studies and
illustrated with the data from the East-West study carried out in Finland
from 1959 to 1999. The results indicate that cost savings can be achieved
if the selection is focused on the individuals with high expected risk of the
event and, on the other hand, on those with extreme covariate values in the
previous measurements.
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1 Introduction

Many epidemiological follow-up studies include covariates, such as blood
pressure, cholesterol and weight, that may vary over the time. If only the
baseline measurement of these covariates is used, the analysis may suffer
from the regression dilution problem,1,2 i.e. the measurement made a long
time ago does not anymore predict the disease risk. To avoid this problem,
we need to carry out repeated measurements on the time-varying covariates.
Conducting these measurements in a large population sample is expensive,
and due to budget limitations, we may not be able to select the entire co-
hort for the new measurement, but only a subset of it. In this article, we
study how this subset should be selected in order to estimate the effect of the
covariate on survival time as accurately and precisely as possible. We pro-
pose the subset to be selected so that a Fisher information based optimality
criterion will be optimized.

The planning of cost-efficient study designs has led to the development
of multi-stage (or sequential) designs. In multi-stage studies, the next stage
is constructed on the basis of the information obtained from earlier stages
under given budget limitations. Multi-stage designs allow us to allocate
the sample size optimally between the stages.3,4 Even further, optimality
criteria developed originally for design of experiments5,6 can also be applied
in observational multi-stage studies. Karvanen et al. explore optimal ways
to select a small subset of individuals for expensive genotyping in follow-up
studies.7 Mehtälä et al. consider optimal designs for the measurement times
of a binary continuous-time Markov process.8

The research question outlined above is explored here in a simplified setup
with one time-varying covariate and two measurement times using simulated
and real data. Several authors have considered general approaches for the
joint modeling of survival data and longitudinal covariate data.9–12 The real
data come from the Finnish cohorts of the Seven Countries Study13 carried
out in Finland from 1959 to 1999. The objective of The Seven Countries
Study was to investigate variation in cardiovascular disease and related risk
factors levels. In our example, diastolic blood pressure is the time-varying
covariate of interest, and the survival time is considered to be the age at
the time of death. With these data, we compare the results corresponding to
different selection methods to the situation where every individual is selected
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for the second measurement.
As we are selecting only a subset of individuals for the new measurement,

the majority of individuals does not have this measurement, and thus the
handling of missing data plays an important role in the modeling. We study
here two alternative ways to deal with the missing data: multiple imputation
and a likelihood-based approach with numerical integration.14

The underlying model is described in Section 2 and the selection criteria
are presented in detail in Section 3. In Section 4, we discuss an algorithm,
which is used in finding optimal or nearly optimal designs with respect to
the chosen criterion. Statistical analysis of data collected during the whole
follow-up, is described in Section 5, with an emphasis on the handling of
missing data. Simulation studies comparing different selection methods are
presented in Section 6, followed with results obtained using the real data in
Section 7. Finally, Section 8 concludes the paper.

2 Survival model

We consider a follow-up study with a predetermined length, where all in-
dividuals have a baseline measurement of a single time-varying covariate.
The outcome variable is survival time, which is censored at the end of the
follow-up. The second measurement of the covariate will be taken halfway
through the follow-up. Assume, that we cannot afford to remeasure the en-
tire cohort, and therefore have to select a subset of individuals for the second
measurement. Here, we study cost-efficient alternatives for the simple ran-
dom sampling in this selection, which is conducted just before the time of
the second measurement. The interest lies in the utilization of the baseline
measurement information. In addition, the age of an individual may also
affect the selection as we are operating with the age as the time axis in our
Weibull proportional hazards model.

We start by specifying the survival model, which we need later in defining
the selection criteria. Let Y1 = (t1, δ1) denote the survival information at the
time of the second measurement, where continuously measured time t1 is
censored if the individual is still alive. The status indicator gives δ1 = 1 for
the event and δ1 = 0 for censoring. For the second part of the follow-up we
use similar notation Y2 = (t2, δ2).

Under the proportional hazards model with a time-varying covariate x(t)
the hazard function has the form

λ(t|x(t)) = λ0(t)e
βx(t),

where parameter β describes the relation between the covariate and survival
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time. We continue by assuming the Weibull distribution for the survival
times. The baseline hazard function is parameterized with shape parameter
a and scale parameter b as

λ0(t) =
a

b

(
t

b

)a−1
.

Now, assume a piecewise constant covariate for an individual j:

xj(t) =

{
x0j, t ∈ [t0j, t1j)

x1j, t ∈ [t1j, t2j),

when the hazard can be written as

λ(t1j|x0j) =
a

b

(
t1j
b

)a−1
eβx0j

for the first part of the follow-up and as

λ(t2j|x1j) =
a

b

(
t2j
b

)a−1
eβx1j

for the second part of the follow-up. The whole data for N individuals are
denoted by (X0, X1, Y1, Y2).

In general form, the survival function and the density function are

S(t|x(t)) = S0(t)
exp(βx(t)) and

f(t|x(t)) = λ(t|x(t))S(t|x(t)),

where S0(t) is the baseline survival function. Because we are operating with
age as the time axis and individuals enter the follow-up at different ages, we
have to deal with truncated distributions. Denote the survival time (age)
at entering the follow-up by t0. The likelihood function of parameters θ =
(β, a, b) for an individual j has the form

Lj(θ) =

(
f(t1j|x0j)
S(t0j|x0j)

)δ1j (S(t1j|x0j)
S(t0j|x0j)

)1−δ1j (f(t2j|x1j)
S(t1j|x1j)

)δ2j (S(t2j|x1j)
S(t1j|x1j)

)1−δ2j
,

where the first two factors of the product correspond to information from the
first half of the follow-up and the last two factors correspond to information
from the second half of the follow-up. The survival functions in denominators
are needed to scale distributions, because we do not assume the follow-up to
start from the time origin. An individual has contribution to the part of the
likelihood concerning the second part of the follow-up only if he or she has
not had an event before the second measurement.
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3 Selection criteria

Our main question is, how to select a subset of individuals for the second
measurement if only n individuals can be selected. We would like to select a
subset which allows parameter β to be estimated as accurately and precisely
as possible. Applying the principles of optimal experimental design, the
selection criteria are based on the Fisher information matrix of parameters
θ = (β, a, b)

IX,Y (θ) = −Eθ
(
∂2 log p(X0, X1, Y1, Y2)

∂θ2

)
,

where at the time of the selection X0 and Y1 are observed and X1 and Y2 are
unknown. By factorizing the logarithmic joint distribution of X0, X1, Y1 and
Y2 with the assumption p(Y2|X0, X1, Y1) = p(Y2|X1, Y1) it follows

log p(X0, X1, Y1, Y2) = log p(X0)+log p(Y1|X0)+log p(X1|X0, Y1)+log p(Y2|X1, Y1)

and the information matrix becomes

IX,Y (θ) = −Eθ
[
∂2

∂θ2
log p(X0) +

∂2

∂θ2
log p(Y1|X0)

+Eθ

(
∂2

∂θ2
log p(X1|X0, Y1)

∣∣∣∣X0, Y1

)
+ Eθ

(
∂2

∂θ2
log p(Y2|X1, Y1)

∣∣∣∣X0, Y1

)]
= Eθ

(
− ∂2

∂θ2
log p(Y1|X0)

)
+ Eθ

[
Eθ

(
− ∂2

∂θ2
log p(Y2|X1, Y1)

∣∣∣∣X0, Y1

)]
= IY1|X0(θ) + Eθ(IY2|X1,Y1(θ)). (1)

Above, the terms log p(Y1|X0) and log p(X1|X0, Y1) do not include parameters
θ and cancel out. The likelihood contribution to p(Y2|X1, Y1) comes only from
the individuals, who have not had an event before the time of the second
measurement, i.e. individuals with δ1 = 0.

In practice, we replace the first term of (1) by observed information
JY1|X0(θ), and get a mixture of the observed and expected information ma-
trices, which has the elements

ΨX,Y (θ)i,j = JY1|X0(θ)i,j + Eθ(IY2|X1,Y1(θ))i,j

= −
N∑
k=1

[
∂2

∂θi∂θj
log p(Y1k = y1k|X0k = x0k)

]
−

n∑
k=1

[
Eθ

(
∂2

∂θi∂θj
log p(Y2k|X1k, Y1k = y1k)

∣∣∣∣X1k, Y1k = y1k

)]
,
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where the first term consists of the information from the first period of the
follow-up from all individuals k = 1, . . . , N . The second term includes the
information from the second measurement, thus the sum is only over the
selected subset of individuals k = 1, . . . , n. As the selection of individuals
is carried out just before the time of the second measurement, the variables
X1 and Y2 are not observed for anyone and the expectation above can be
calculated by Monte Carlo integration.15

The two selection criteria we will apply, are well known criteria from the
theory of optimal designs. Methods we will apply in the selection are based
on forms of the D-criterion. The D-optimal design is obtained by maximizing
the determinant of the information matrix det(ΨX,Y (θ)). This is equivalent
to minimizing det(ΨX,Y (θ)−1).

The second method we are using is the Dβ-criterion. Dβ-optimal design
is obtained by minimizing the Dβ-criterion, which we define as a diagonal
element corresponding to β of the ‘covariance matrix’ ΨX,Y (θ)−1. In other

words, we want to minimize Var(β̂). This criterion is a special case of Ds-
optimality, where we are interested in a subset of s parameters.5 In our case
this subset consists of the parameter β.

The calculation of optimality criteria requires the second order partial
derivatives of log p(y1|x0) and log p(y2|x1, y1). First, considering log p(y1|x0),
we calculate the second order partial derivatives of

log p(y1|x0) = log

[(
f(t1|x0)
S(t0|x0)

)δ1 (S(t1|x0)
S(t0|x0)

)1−δ1
]
,

which are

∂2

∂β2
log p(y1|x0) = x20e

βx0 log

(
S0(t1)

S0(t0)

)
,

∂2

∂a2
log p(y1|x0) = −δ1a−2 − eβx0

[
log

(
t1
b

)]2(
t1
b

)a
+ eβx0

[
log

(
t0
b

)]2(
t0
b

)a
,

∂2

∂b2
log p(y1|x0) = δ1

a

b2
+ eβx0a(−a− 1)b−a−2(ta1 − ta0),

∂2

∂β∂a
log p(y1|x0) = −x0eβx0

[(
t1
b

)a
log

(
t1
b

)
−
(
t0
b

)a
log

(
t0
b

)]
,

∂2

∂β∂b
log p(y1|x0) = x0e

βx0ab−a−1(ta1 − ta0) and

∂2

∂a∂b
log p(y1|x0) = −δ1

1

b
+ eβx0b−a−1

[
ta1a log

(
t1
b

)
+ ta1 − ta0a log

(
t0
b

)
− ta0

]
.

For log p(y2|x1, y1) corresponding formulae are obtained by replacing f(t1|x0),
S(t1|x0) and S(t0|x0) by f(t2|x1), S(t2|x1) and S(t1|x1), respectively.
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From these formulae, it cannot be directly seen what kind of individuals
would be included in the Dβ-optimal or D-optimal subsets. Intuitively, we
could expect that individuals with extreme covariate values or with high risk
of the event would be important for the estimation. In a case of first-order
linear regression models extreme selection of covariate values is optimal,16

but this does not hold e.g. for quadratic models or binary responses. Extreme
selection means selecting individuals with highest and lowest covariate values.
Although this method could be applied also in our case, there is no guarantee
that it would be optimal in any sense, because we consider a survival model
instead of a linear regression model. On the other hand, in survival models,
events contain more information than censorings. Intuitively, this means that
individuals, who are likely to have an event during the follow-up should be
selected. Results with simulated and real data in Sections 6 and 7 show,
how these intuitive principles will be balanced according to Dβ-optimal and
D-optimal selections.

4 Finding optimal designs

As the optimal designs of nonlinear models depends on the parameters, we
need initial estimates for parameters a, b and β, to use optimality criteria
in practice. These can be obtained from the data already collected during
the follow-up before the time of second measurement and/or from previous
studies. For study cohorts of reasonable size, it is not computationally pos-
sible to explore all possible subsets of individuals to be selected for the new
measurement but heuristic methods are needed. We use a greedy method,17

where the individuals are selected sequentially one by one to find the opti-
mal subset. This method is also known as the sequential search18 and is a
simplified special case of the Fedorov-Wynn algorithm19. The jth individual
is selected so that the selection criterion is optimized on the condition that
j − 1 individuals have already been selected.

Denote the set of individuals already selected by S. Using Dβ-optimality,

the next individual j /∈ S is selected so that Var(β̂) obtained from the ap-
propriate diagonal element of(∑

i∈S

Ψxi,yi(θ̂) + Ψxj ,yj(θ̂)

)−1
is minimized. To find the D-optimal design, the selection is carried out so
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that

D = det

(∑
i∈S

Ψxi,yi(θ̂) + Ψxj ,yj(θ̂)

)
is maximized. In a case in which there are more than one individual that
optimizes the criterion at issue, the selection between them is done randomly.
The selected individual is added to the set S and the procedure continues
until the set S has reached the predetermined size.

In general, the selection problem is NP-hard and the greedy method pro-
duces only a suboptimal solution. However, the empirical results7 indicate
that the gain from more complicated heuristics may not be large in this kind
of design problem.

5 Statistical analysis

5.1 Likelihood-based approach with numerical integra-
tion

After the follow-up study we have data with a large amount of missing data,
as only a subset is selected for the second measurement. When that subset
is selected using Dβ-optimality or D-optimality, the missingness of that mea-
surement is clearly not missing completely at random (MCAR). However, as
the selection depends only on the observed data (X0, Y1), the missing data
are missing at random (MAR). Handling missing data plays an important
role in the analysis, and for that there are several methods, which can be
used. In this section we present a likelihood-based approach and Section 5.2
considers a multiple imputation approach for carrying out the analysis.

Next, we will use the following indexing of individuals. Individuals j =
1, . . . , n are measured both at the baseline and at the halfway of the follow-
up and individuals j = n + 1, . . . , N have the baseline measurement only.
We also divide individuals without second measurement into two groups so
that individuals j = n + 1, . . . , n′ have not had an event before the time of
the second measurement and thus could have been selected and individuals
j = n′+1, . . . , N have already had an event and were not candidates for that
measurement.

The analysis can be carried out with the likelihood-based approach for
incomplete data.20 This requires also the specification of the distributions
of the covariate, namely p(x0) and p(x1|x0, y1). The parameters associated
only with the covariate process are denoted by ψ. Utilizing the assumption
p(y2|x0, x1, y1) = p(y2|x1, y1), the likelihood becomes
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L(θ, ψ) = p(x0, x1, y1, y2)

= p(x0, y1)p(x1|x0, y1)p(y2|x1, y1)

= p(x0, y1)
n∏
j=1

p(x1j |x0j , y1j)p(y2j |x1j , y1j)

×
N∏

j=n+1

∫ ∞
−∞

p(x1j |x0j , y1j)p(y2j |x1j , y1j)dx1j

=

n∏
j=1

p(x0j)p(t1j , δ1j = 0|x0j)p(x1j |x0j , t1j , δ1j = 0)p(y2j |x1j , t1j , δ1j = 0)

×
n′∏

j=n+1

p(x0j)p(t1j , δ1j = 0|x0j)
∫ ∞
−∞

p(x1j |x0j , t1j , δ1j = 0)p(y2j |x1j , t1j , δ1j = 0)dx1j

×
N∏

j=n′+1

p(x0j)p(t1j , δ1j = 1|x0j).

Missing data are treated here as integrals with respect to the missing variable
over the support of it. In simple settings with only one covariate, the inte-
grals in the likelihood function can be calculated by numerical integration,
which we apply in this paper. If the covariates are categorical variables, the
integration would simplify to summation and direct numerical maximization
would be feasible and straightforward. In the general setting, methods such
as EM-algorithm21 or Bayesian data augmentation22 could be used.

5.2 Multiple imputation

Another method we apply in handling missing data is multiple imputation.23

Now, we do not have to model the marginal distribution p(x0j) as in the pre-
vious approach, but only the distribution p(x1j|x0j, t2j, δ2j) (the imputation
model) has to be specified. It is known that when the missing data are in
a covariate of the analysis model, the outcome variable should be used in
imputation model.24 In our case, this means that in addition to baseline co-
variate measurement, the survival information must also be used to predict
the missing covariate value of the second measurement.

We use a linear imputation model of the form proposed by White and
Royston25

x1j = β0 + β1x0j + β2δ2j + β3H0(t2j) + εj, (2)

where εj ∼ N(0, σ2) and the survival information is included in the predictors
using the status indicator δ2 and the cumulative baseline hazard function
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H0(t2). For normally distributed x1 this imputation model is approximately
valid when covariate effects and cumulative incidence are small.25 White and
Royston also discuss the estimation of H0(t) in the case of the semiparametric
Cox model.25 We assume instead a Weibull proportional hazards model, when
we have

H0(t) =

(
t

b

)a
.

The multiple imputation, using the above imputation model, is carried out
in a standard way.23

6 Simulation study

6.1 Description of the simulation study

Simulation studies were carried out in different settings to explore the per-
formance of the proposed selection methods, namely Dβ-optimality and D-
optimality. Simulated data were made to resemble our real data of Section 7
apart from a few exceptions.

We considered a follow-up setting of 20 years with 1500 individuals. A
time-varying piecewise constant covariate had the baseline measurement x0
in the beginning and second measurement x1 in the half-way of the follow-up.
First, the baseline values x0 of the covariate were generated from the normal
distribution with mean µ0 = 0 and variance σ2 = 0.02 and the values of
second measurement were drawn from the normal distribution conditioned
on the baseline measurement with mean µ1 = 0.5x0 and variance σ2

ε = 0.015,
which leads to the correlation of 0.5 between x0 and x1. Then, the ages
of individuals were generated from the uniform distribution. We created
datasets with a narrow age range from 35 to 44 years and a wide age range
from 25 to 64 at the baseline to see whether this has an effect on the results.
The age and the covariate of an individual were assumed to be independent.

Survival times were simulated from the Weibull distribution depending
on the time-varying values of the covariate through the proportional hazards
model with regression coefficient β = 3. We chose to use such a large value
of β compared to real data, so that the possible effect of covariate stands
out in the selection. The parameters of the Weibull distribution were set
to shape a = 5.7 and scale b = 28000 (time scale in days), which roughly
equal those estimated from the real data. The survival times of individuals
who were alive at the end of the follow-up were censored. The follow-up
was conducted at the same calendar time with all individuals, but at each
measurement time the ages are not the same for the individuals.
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With both narrow and wide age range, 1000 datasets were generated.
The numbers of events were on average 101 and 187 during the first half of
the follow-up and 222 and 288 during the second half of the follow-up, in
datasets with narrow and wide age range, respectively.

6.2 Selection of individuals

The selection of individuals for the second measurement was carried out
after ten years of follow-up by simple random sampling (SRS), Dβ-optimality
selection and D-optimality selection. Two different sizes, n = 600 and n =
200, of subsets selected for the second measurement were considered. In the
case where n = 600, we selected on average 43% with narrow age range and
46% with wide age range of the individuals, who were alive at that moment.
The corresponding numbers in the case where n = 200 are 14% and 15%,
respectively.

Before presenting the results obtained with different selection methods,
we examine what kind of individuals are selected according to Dβ-criterion
and D-criterion, in other words, who are most important to remeasure. Fig-
ure 1 shows the selection order for any n up to 600, when the selection is
based on the Dβ-optimality. The order is, of course, irrelevant when we
analyze the data. The selection seems to prefer extreme baseline covariate
values, but also the age of an individual has an effect. With the wide age
range, the age is the more important factor in the selection than with the
narrow age range.

From Figure 2 we see that using the D-optimality leads to rather different
kind of selection compared to Dβ-optimality. With the narrow age range,
during the first few dozens of selection rounds, the D-optimal selection is
focused on individuals with high covariate values and high age. However,
the age has a greater effect on selection than with Dβ-optimality, especially
when we consider the wide age range.
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Figure 1: Selection order of individuals to be remeasured for any n up to
600 using Dβ-optimality and simulated data. The left panel shows the order
for data the with narrow age range and the right panel is for the wide age
range. Each point corresponds to one individual: the brightness (color in the
online version) shows the age of the individual at the time of the selection,
the vertical axis shows the value of the baseline covariate and the horizontal
axis shows the round when the individual was selected in the greedy algo-
rithm. The histograms on the right vertical axes show the distribution of the
covariate in the entire cohort. With the wide age range, the minimum age
selected is 41 years although the minimum age in the cohort is 35 years.

6.3 Analyses with different designs

The aim of the selections illustrated in Figures 1 and 2 is to find the sub-
set which would lead to as reliable as possible estimation of parameter β in
our Weibull proportional hazards model. All analyses were carried out with
the R statistical software.26 With multiple imputation the weibreg function
from the eha package27 was used to fit the Weibull model. When applying
the likelihood-based approach with numerical integration, the likelihood was
optimized using the optim function with the BFGS algorithm and the stan-
dard errors were evaluated using the hessian function from the numDeriv

package28. Integrals were calculated numerically with the integrate func-
tion. In Weibull proportional hazards models, especially with small samples,
the profile likelihood could be considered instead of the maximum likelihood,
which we are using, to improve the estimation.29

Estimation results using numerical integration in handling missing second
measurement data are presented in Table 1. Bias seems to be negligible
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Figure 2: Selection order of individuals to be remeasured for any n up to
600 using D-optimality and simulated data. The left panel shows the order
for data with the narrow age range and the right panel is for the wide age
range. Each point corresponds to one individual: the brightness (color in the
online version) shows the age of the individual at the time of the selection,
the vertical axis shows the value of the baseline covariate and the horizontal
axis shows the round when the individual was selected in the greedy algo-
rithm. The histograms on the right vertical axes show the distribution of the
covariate in the entire cohort.

in all the designs. From the standard errors, obtained from the inverse of
the numerically differentiated Hessian matrix, and standard deviations of
estimates, it can be seen that with the optimal selections the estimation is
more precise than with the simple random sampling (SRS). The differences in
the standard errors and standard deviations between the full cohort and the
designs with n = 600, are smaller than one would expect simply considering
the difference in the number of observations. Although the Dβ-optimality is

defined to provide the minimal variance for β̂ there are no clear differences
between the standard errors of the Dβ-optimal and D-optimal designs.

Table 2 shows the results when multiple imputation is used in dealing
with missing data. We see that there is virtually no bias. Again we see that
although only a subset is selected for the second measurement, results are
rather good compared to the case where everyone is measured twice.

In Tables 1 and 2 the standard errors and deviations seem to be quite con-
sistent when n = 600, especially with the wide age range. Nevertheless, when
we compare the results of multiple imputation and numerical integration with
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Table 1: Simulation results for different designs using numerical integra-
tion. Bias is the mean bias of estimates β̂, SD is the standard deviation of
estimates β̂ and Mdn(SE) is the median of the estimated standard errors of
β̂ from 1000 simulation runs for both narrow and wide age ranges.

Design Baseline ages 35–44 Baseline age 25–64
Bias SD Mdn(SE) Bias SD Mdn(SE)

Full cohort 0.01 0.40 0.40 0.01 0.35 0.33

n = 600 SRS 0.01 0.49 0.48 0.00 0.41 0.39
Dβ-optimal 0.01 0.46 0.46 0.01 0.38 0.36
D-optimal 0.00 0.47 0.46 0.01 0.38 0.36

n = 200 SRS 0.00 0.57 0.55 0.00 0.46 0.44
Dβ-optimal −0.01 0.56 0.53 0.00 0.42 0.40
D-optimal 0.01 0.55 0.53 0.00 0.42 0.40

narrow age range in the case where n = 200, we see that multiple imputation
produces clearly greater standard errors and deviations. Furthermore, in this
setting the D-optimality seems to perform better than Dβ-optimality. This
is, however, a problem related to multiple imputation, since theoretically the
Dβ-optimal design cannot give larger standard error for β̂ than the D-optimal
design. The assumptions of the imputation model (2) do not hold, because
the covariate effect or cumulative incidence cannot be considered small. As a
summary of the simulation study we can say that optimal selections improve
the estimation and that the two design criteria seem to lead virtually to same
improvement.

7 Results for the East-West study

Data from the Finnish cohorts of the Seven Countries Study are used. The
Seven Countries Study was initiated in the late 1950s to study variation in
cardiovascular disease and related risk factors levels.13 The Finnish cohorts
(N = 1711) included all men born between 1900 and 1919 in two geographi-
cally defined areas, one in Eastern and the other in South-Western Finland,
from which comes the name East-West study. The baseline survey was con-
ducted in 1959 and re-examinations in 1964, 1969, 1974, 1984, 1989 , 1994
and 1999.30,31 The cohorts were followed-up for mortality until the end of
2010. In these analyses data on re-examination from 1964 and 1974, and
information on the age of death are used.
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Table 2: Simulation results for different designs using multiple imputation.
Bias is the mean bias of estimates β̂, SD is the standard deviation of estimates
β̂ and Mdn(SE) is the median of the estimated standard errors of β̂ from 1000
simulation runs for both narrow and wide age ranges.

Design Baseline ages 35–44 Baseline age 25–64
Bias SD Mdn(SE) Bias SD Mdn(SE)

Full cohort 0.00 0.41 0.40 0.02 0.34 0.33

n = 600 SRS 0.00 0.53 0.52 −0.02 0.42 0.41
Dβ-optimal 0.00 0.50 0.49 0.05 0.37 0.36
D-optimal −0.01 0.49 0.48 0.04 0.37 0.36

n = 200 SRS −0.03 0.82 0.79 −0.07 0.60 0.61
Dβ-optimal 0.01 0.77 0.74 0.04 0.53 0.50
D-optimal -0.09 0.70 0.71 0.01 0.52 0.50

We use only a part of the data so that we consider the measurement of
the year 1964 as the baseline measurement, 1974 as the year of the second
measurement and 1984 as the end of the follow-up, when censoring is carried
out. As a time-varying covariate, we use diastolic blood pressure, which is
logarithmic and centered in the analyses. Survival time is considered to be the
age at the time of death. After removing individuals who were already dead
before the measurement of the year 1964 and who do not have observations
of diastolic blood pressure, we have 1501 eligible individuals for our study. In
this setting, we have 354 events in the first half and 424 events in the second
half of the follow-up.

The selection order with Dβ-optimality and D-optimality can be seen
in Figure 3. Dβ-optimality seems again to prefer extreme covariate values
and at a fixed value of covariate, older individuals are selected first. In D-
optimality, the age is clearly more important factor in the selection. All in
all, the selection with the East-West data looks very similar compared to
one with the simulated data, which could have been expected, because the
simulated data were made to resemble these real data.

It turned out that the numerical integration did not work well with the
real data. Different initial values of the optimization function led to different
estimates, which may have arisen from invalid distributional assumptions.
Thus, only the estimation results using multiple imputation for missing data
are presented. Table 3 shows that there are some differences in the estimates,
especially with D-optimal design when n = 200. Relative to the standard
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Figure 3: Selection order of individuals to be remeasured for any n up to
600 in the East-West data using Dβ-optimality (left panel) and D-optimality
(right panel). Each point corresponds to one individual: the brightness (color
in the online version) shows the age of the individual at the time of the selec-
tion, the vertical axis shows the value of the baseline covariate and the hori-
zontal axis shows the round when the individual was selected in the greedy
algorithm. The histograms on the right vertical axes show the distribution
of the covariate in the entire cohort.

errors, the Dβ-optimal seems to be the best. By fitting the model separately
for younger and older age groups, we see that the same model does not
hold for younger and older individuals. This explains the problems with the
D-optimal design, since it consists mainly of individuals with high age.

It is worth noticing, that the gain from the optimal designs is free of
charge once the selection procedure has been implemented. Comparing the
designs with n = 600, we approximate that reducing the standard error of
the SRS-design to the level of the Dβ-optimal design would require about 189
more individuals to be remeasured. That is, the efficiency of the SRS-design
is 75% in this comparison. This kind of amount of measurements would
create notable additional costs in epidemiological studies, like the East-West
study. In the case where n = 200, approximately 23 more individuals are
required in the SRS-design to reach the standard error of the Dβ-design,
which means that the SRS has here the efficiency of 90%.

16



Table 3: Results with the East-West data for different designs using multiple
imputation. For the simple random sample (SRS) Estimate is the median of
estimates β̂ and SE is the median of the estimated standard errors of β̂ from
100 analyses with random sample for the second measurement.

Design Estimate SE Individuals required
to reach the SE of
the Dβ-design

Full cohort 0.91 0.27

n = 600 SRS 0.91 0.32 189 (32%) more
Dβ-optimal 0.89 0.30
D-optimal 0.71 0.30

n = 200 SRS 0.97 0.45 23 (12%) more
Dβ-optimal 0.85 0.44
D-optimal 0.53 0.48

8 Conclusion

Limited resources lead us to investigate the cost-effectiveness of study de-
signs. In this paper, we considered the selection of individuals for the often
costly re-examination of a time-varying covariate in a follow-up study. Two
different Fisher information based optimality criteria, Dβ-optimality and D-
optimality, were applied and compared to the SRS using simulated data and
real epidemiological follow-up data.

The selections carried out according to the optimality criteria indicate
that individuals with extreme baseline covariate values and high age would be
most important to remeasure. The criteria balance differently between these
characteristics: Dβ-optimality stresses the extremity, whereas D-optimality
prefers old individuals. With both criteria, age is the more important factor
in the selection when the age range of individuals is wide than when the age
range is narrow. Results from the analyses with different designs show that,
when handling missing data with multiple imputation or numerical integra-
tion, the precision is usually better for the optimal selections than for the
SRS. No clear differences between the two optimal selections were observed.
Numerical integration looks better than multiple imputation according to
the simulation results, but from the real data we have learned that it may
be sensitive to the model assumptions.

When the proportion of the missing data is large, the estimation may be
sensitive to the model misspecification.32 However, it should be emphasized
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that the model used for the optimal selection may be different from the model
used in the analysis. After the second measurement it is possible to check the
validity of the distributional assumptions and change the model if needed.

The future work will consider more complicated designs where several
repeated measurements will be carried out on several covariates. The current
work forms a basis for these extensions.
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