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Abstract—An extension of group independent component 

analysis (GICA) is introduced, where multi-set canonical 

correlation analysis (MCCA) is combined with principal 

component analysis (PCA) for three-stage dimension reduction. 

The method is applied on naturalistic functional MRI (fMRI) 

images acquired during task-free continuous music listening 

experiment, and the results are compared with the outcome of 

the conventional GICA. The extended GICA resulted slightly 

faster ICA convergence and, more interestingly, extracted more 

stimulus-related components than its conventional counterpart. 

Therefore, we think the extension is beneficial enhancement for 

GICA, especially when applied to challenging fMRI data.     

Keywords—Group ICA; temporal concatenation; naturalistic 

fMRI; dimension reduction; Multiset CCA; PCA  

I. INTRODUCTION  

Naturalistic neuroimaging experiments are increasingly 
utilized by neuroscience community to study cognitive brain 
function [1-6]. In such experiments real-world experiences  
are reproduced in laboratory conditions, enabling more 
ecologically valid stimulation than in common controlled 
experimental paradigms. From the methodological pers-
pective, analysis of naturalistic functional magnetic resonance 
imaging (fMRI) data involves new challenges associated with 
less control over stimulus and response timing, and lack of 
predefined models for such complex brain responses. That 
makes data-driven analysis approaches preferable over 
traditional hypothesis-driven ones due to their flexibility and 
few assumptions on the nature of data and noise. Independent 
component analysis (ICA) is arguably the most widely applied 

data-driven method to fMRI data. The ICA model assumes the 
observed fMRI data to be a linear mixture of several 
independent and non-Gaussian sources, and extracts them 
from observations. Various extensions of ICA exist 
nowadays. 

Group ICA (GICA) is commonly applied ICA variant on 
fMRI due to its advantage in drawing group inferences from 
multi-subject datasets. Within Group ICA, several approaches 
with different assumptions and data grouping strategies have 
been developed [1]. In this study, GICA with temporal 
concatenation was selected [7], since it was shown to 
outperform other strategies through the simulation study in 
[8]. Conventional GICA method [7] consists of three main 
stages: first, the dimensionality of data from each subject is 
reduced using principal component analysis (PCA). Second, 
the reduced datasets are concatenated across time dimension 
and PCA is applied again to further reduce dimensions. Third, 
the thus reduced dataset is subjected to ICA decomposition. 
As a result, one mixing matrix is estimated containing 
partitions corresponding to each subject, and one set of 
independent components (i.e. spatial maps) - that are common 
to all subjects. Spatial maps for each subject can also be 
reconstructed for exploring between-subject differences 
within each aggregate component. Although the described 
model has been successfully applied on fMRI before (see e.g. 
[1] for review), it does not always perform well, as 
demonstrated on our naturalistic fMRI data in the present 
study as well as in [9].  

In this work we extended the described conventional 
GICA model by integrating multiset canonical correlation 



analysis (MCCA) as an additional pre-processing step before 
subjecting data to ICA decomposition. Multiset CCA is the 
multiset generalization of standard two-set CCA introduced in 
[10], which finds correlated subspace from different but 
related datasets using second-order statistics [11]. In fMRI 
experiments finding common brain activation patterns among 
different subjects is important. Therefore, finding correlated 
subspace in the data before applying ICA is well justified for 
our purposes. The extension of blind source separation (BSS) 
by first finding correlated subspace was proposed in [12] and 
was reported to be significantly better than ICA alone in 
separating simulated mixtures. It should be noted, however, 
that the model we introduce here is not identical with the one 
applied in [12]. The main difference is in the ICA approaches 
employed. We selected group ICA with temporal 
concatenation strategy, whereas in [12] ICA was applied on 
each dataset separately. Furthermore, MCCA implementation 
in the present study is from [13], which in turn follows the 
original publication [11]. On the other hand, authors in [12] 
offered their own implementation of MCCA (or generalized 
CCA, as referred in the article). Nevertheless, the main 
principle of finding the correlated subspace in the data prior 
subjecting to ICA decomposition is the same. Interestingly, 
even though Karhunen et al. also included experiments on real 
fMRI data in [12], only two-set CCA was applied as source 
separation method rather than as a preprocessing of ICA. In 
this study, the developed GICA extension was applied on 
challenging fMRI data acquired during task-free continuous 
music listening experiment and the results were compared 
with outcome of conventional GICA. 

A crucial question for any ICA-based approach is how 
many sources should be extracted from the observed data. 
Estimation of number of sources has tremendous influence on 
the success of the decomposition. The authors in [7] 
recommended commonly applied heuristics (such as selecting 
number of components explaining most of the variance in the 
data) as well as information-theoretic criteria for estimation of 
number of sources from the aggregate dataset. However, in the 
recent study Cong et al. [14] showed through simulations that 
popular information-theoretic methods, such as Akaike’s 
information criterion [15] and minimum distance length [16]  
fail to accurately estimate number of sources when the SNR is 
low. In fact, the suboptimal performance of estimators was 
later demonstrated in practice, where model order selection 
methods failed to estimate reasonable number of sources for 
GICA with temporal concatenation on the same naturalistic 
fMRI data as here [9]. To address this issue, we took a simple 
empirical approach for estimating the number of sources. 
Specifically, we examined GICA results for different number 
of sources to find the most appropriate number. Two general 
criteria were used for evaluating and comparing the results 
from different trials: first, the stability and reliability of ICA 
decomposition, and second, quality of the produced 
independent components. We devised six parameters, which 
provide concise description of ICA decomposition results 
according to the two criteria. The parameters, detailed in the 
section II.D, are simple and straightforward to compute from 
ICA decomposition results. The proposed evaluation 
heuristics can be adapted for testing and comparison of 
different ICA parametrizations in any application.         

To summarize, we developed an extension of conventional 
GICA, where correlated subspace from all subject data is 
found prior concatenating and separating sources. The model 
was applied to challenging naturalistic fMRI data, and the 
results were compared to conventional GICA. In addition, we 
proposed a set of parameters that enables evaluation and 
comparison of different parametrizations in terms of the two 
criteria.     

II. METHOD 

A. Data description 

The dataset analyzed in this study consists of fMRI scans 
of eleven healthy musicians (mean age: 23.2; SD: 3.7; 5 
females), who listened to a 512 second-long piece of modern 
tango. The fMRI measurements were made in 3T scanner at 
sampling frequency of 0.5 Hz. Obtained fMRI scans went 
through common preprocessing routine, which is described in 
[6]. Overall, 231 fMRI scans corresponding to stimulus 
between 21 to 480 seconds were used for analysis. Six high-
level features were obtained from stimulus audio, capturing 
timbral rhythmic and tonal information in music. The feature 
set, consisting of fullness, brightness, timbral complexity, 
pulse clarity, key clarity, and activity, were generated as a 
linear combination of 25 long-term and short-term features via 
PCA. The multi-stage process of their extraction and 
perceptual validation is described in [6]. 

B. Group ICA extension 

In this section, extension of GICA is introduced. For 
description of the conventional GICA algorithm with two-
stage PCA reduction refer to [7]. The entire model can be 
divided into three-stage dimensionality reduction, followed by 
source separation by ICA. First, PCA separates signal and 
noise subspaces in each dataset. Next, MCCA is applied to 
select correlated subspace across all subjects’ responses. 
Particularly, it extracts an orthogonal set of canonical 
components from each subject data such that the canonical 
components are correlated across different datasets only on 
corresponding indices. Subsequently, the correlated subspace 
is extracted by selecting the canonical components that are 
correlated above the predefined threshold. The third stage 
dimensionality reduction is applied on concatenated data 
using PCA. The main reason is that number of signals in the 
concatenated data are commonly assumed to be larger than 
number of sources. In other words, we have the 
overdetermined data model, where the number of sources in 
the mixture is less than number of signals (or samples, 
statistically speaking). Therefore, prior subjecting to source 
separation, dimension reduction needs to be applied in order 
to produce determined mixtures with equalized sources and 
samples. Finally, BSS is achieved by ICA, extracting 
statistically independent sources in the concatenated data. The 
approach consists of the following steps:  

Dimensionality reduction: 

1. Reduce dimensionality of each dataset using 
PCA 

2. Apply MCCA to select correlated subspace from 
each dataset 

3. Concatenate reduced data from all subjects  



4. Reduce dimensionality of concatenated data 
using PCA 

Blind source separation: 

5. Apply ICA and get sources and unmixing matrix 

6. Reconstruct time courses and spatial maps 

Fig.1 depicts more detailed view of the entire processing 
chain. In the figure dimensionalities of data matrices after 
each step are shows for more clarity.    

More formal description of the model is as follows. Let us 
denote dataset from each subject by	�� ∈ ℝ�×�, where 		 =
	[1, 2, . . �] denotes number of subjects, � is number of fMRI 
scans and � is number of voxels. First, dimensions of each 
dataset is reduced using PCA. If we denote dimension 

reduction matrix (i.e. selected � eigenvectors) as 	�� ∈ ℝ�×�, 
then the reduced data for each subject (i.e. projection of data 
vectors to a new space) can be expressed as: 

 �� = ������                                         (1) 

Note that pseudoinverse will be assumed in the cases when a 
matrix to be inverted is not square. Now �� becomes an input 
for MCCA. Solving MCCA problem can be considered as 
finding orthogonal matrix �� and canonical components are 
obtained by projecting the input data to ��: 

 �� = ������ = ���������� = ����                (2) 

where, �� = ��������  and �� 	 contains components, such 
that the canonical correlations, or correlation between 
corresponding components among different subjects are in 
decreasing order. The dimensions are reduced from � to � by 
selecting canonical components showing �  highest mean 
correlations. Subsequently, datasets from all subjects are 

concatenated. The concatenated dataset �� ∈ ℝ !×� consists 
of � ∗ �  samples and is an overdetermined mixture. Then, 
dimensionality of the data is reduced using PCA to make the 
mixture determined:  

    �� = #���                                          (3) 

where, # ∈ ℝ !×$ is a dimension reduction matrix. Finally, 

��  is subjected to ICA decomposition to find sources of 
activations as independent components (IC) and mixing 
matrix, or temporal courses of IC-s. The model ICA follows 

is	�� = %&. In practice, ICA algorithm estimates the unmixing 

matrix ' = %�� 	 ∈ ℝ$×$ and IC-s such that: 

	( = '��                                            (4) 

According to ICA model applied here, aggregate unmixing 
matrix containing partitions unique to each subject, while the 
independent components are common. Reconstruction of 
temporal courses in the reduced data space is done by simply 
inverting the estimated unmixing matrix. However, we are 
interested in time courses in the original scan space. It can be 
achieved by inserting (3) in (4), partitioning aggregate data for 
each subject, and then inserting (2): 

(� = '�#������� = )���  	                    (5) 

Here, (�  denotes reconstruction of subject-specific spatial 
maps. Then, temporal courses can be estimated by: 

 *� = )��� = ���+#�'�                            (6) 

For ICA calculation FastICA algorithm was used [17].  

C. Analysis of extracted components by ICA 

Within the temporal concatenation approach, each 
extracted common activation pattern may feature different 
temporal dynamics among subjects. The aim is to find the 
common maps temporally correlated with the stimulus. To 
this end, we first correlate subject-specific temporal courses 
of each IC with the time courses of the six stimulus features. 
The significance thresholds for correlations are estimated 
using Monte-Carlo simulation presented in [6] and the level 
of significance selected throughout this study is p<0.01. If 
majority of the subject-specific temporal courses of a given IC 
are significantly correlated with the temporal course of any of 
the stimulus features, then the IC is considered to be stimulus-
related and is selected for further analysis. At this point we 
reconstruct subject-specific spatial maps of the selected IC-s 
in order to observe individual differences in activation 
patterns. Ideally, we would have one or more similar 
activation patterns from all the subjects per acoustic feature. 
However, in practice similar spatial patterns from different 
subjects are not synchronized in time and show heterogeneous 
correlations with acoustic features, which makes them 
difficult to interpret. 
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Fig. 1. Schematic view of the extended GICA model. Dimensions of data matrices after each stage are shown.  



D. Evaluation of different parametrisations 

Two general criteria were used for evaluation and 
comparison of the results from different trials. The first 
criterion is stability and reliability of ICA decomposition. 
Stochastic nature of ICA-based decomposition renders direct 
comparison of results unreliable. To address the issue the 
software package ICASSO [18] was utilized. This tool has 
been designed for analysis of the stability and robustness of 
ICA decomposition. Essentially ICASSO runs ICA repeatedly 
N times (N=100 in this study), each time with randomly 
initialized unmixing matrix, clusters the extracted 
independent components, and provides multiple parameters 
for observing and visualizing the clustering and separation 
results.  

One interesting parameter in our list is ICASSO cluster 
quality index: 

,- =
1

|/�|0 1 234 −
1

|/�||/��| 1 1 234
4∈6783∈683,4∈68

 

where /�  denotes the set of estimated independent 
components in the cluster 	, |/�| is the size of the cluster, 
/��  is the set of indices outside the cluster 	, and 234 is an 

absolute value of mutual correlations between estimated 
independent components extracted in different runs. Cluster 
quality index characterizes compactness and separation of 
clusters and is a good measure for estimating stability of the 
extracted component as well as detecting possible overfitting. 

 We propose three parameters for assessing the stability 
and reliability of ICA decomposition: 1. number of converged 
runs (out of N=100). If ICA decomposition does not converge, 
the estimation of mixing matrix is not reliable. 2. 
mean/standard deviation of convergence rate across N runs. 
Convergence rate is the number of steps required for 
convergence. 3. Cluster quality index.  

Since a stable ICA decomposition does not guarantee good 
quality of produced independent components, it is necessary 
to quantify the quality of the output in order to make 
comparison between different ICA decompositions possible. 
Last three of the six parameters assess the quality of produced 
components and consist of: 4. Number of the selected 
components, 5. Number of the common maps, and 6. Number 
of the active voxels in a common map(s). 

III. RESULTS 

For simplicity we denote conventional group ICA as 
simply GICA, and the extension introduced in this study - as 
MCCA+GICA. Furthermore, to differentiate between the two 
stage PCA reductions, the term individual PCA will be applied 
to the reduction of each subject’s data, while group PCA will 
refer to dimension reduction of concatenated data. 

We first investigated different parametrizations of GICA 
in order to select appropriate number of sources.  To this end, 
the number of dimensions was consecutively fixed for one of 
the two PCA stages while varying the other, and examined the 
GICA output. For individual PCA we wanted to retain most 
of the variance data and reduced the dimension from 231 to 
80, explaining about 88% of variance in average over all 
subjects. As the tests involving different numbers of 
dimensions showed, individual PCA did not have as major 
influence on ICA decomposition as group PCA. It is expected 
because individual PCA does not define number of sources to 
be extracted by ICA. However, it increases SNR by separating 
signal and noise subspaces, and therefore, intuitively will have 
more influence on quality of independent components. For 
group PCA, conversely, significant influence on ICA 
decomposition was observed. Intuitively, it is probably related 
to the fact that it directly determines the number of sources in 
the mixture and suboptimal estimation of sources has 
devastating effect on ICA decomposition. Indeed, in our 
experiments ICA decomposition always failed above certain 
number of sources, regardless of the settings of individual 
PCA, or MCCA. For GICA, none of the tested number of 
dimensions for each PCA stage led to finding common spatial 
maps. Hence, it was difficult to evaluate quality of the 
produced independent components except counting the 
number of selected ones. Nevertheless, the first three 
evaluation parameters were helpful for dramatically 
narrowing down the range of all possible number of sources 
to a few. As a result, we reduced data to 80 and 40 dimensions 
after individual and group PCA respectively. Next, the 
developed MCCA+GICA extension was applied and different 
sizes of correlated subspace were tested. Throughout the tests, 
individual and concatenated PCA reduction outputs were 
fixed to 80 and 40 respectively, since this parametrization 
produced the best results and we wanted any other parameters 
except MCCA to be similar among GICA and MCCA+GICA.    
Average canonical correlations corresponding to the selected 

TABLE 1. Evaluation parameters for MCCA+GICA vs conventional GICA (last entry in the table). The output dimensionalities of the first and the third 

stages (PCA) are fixed to 80 and 40 respectively, while the output of the second stage (i.e. MCCA) is varied from 10 to 60  

MCCA 

dimensions 

Converged 

runs  
Convergence 

rate 
(mean/SD ) 

Cluster quality 

index 

(Mean/SD) 
Selected  

independent 

components 
Common maps 
(feature/sub) 

Active voxels in 

common map 

(left/right 

hemisphere) 
MCCA-10 66 82/11 0.64/0.21 37 - - 
MCCA-20 72 74/13 0.78/0.19 27 - - 
MCCA-40 96 64/17 0.9/0.09 24 - - 
MCCA-60 100 59/14 0.89/0.1 31 1 (Bright./6 sub) 2317/2283 
No MCCA 99 65/14 0.9/0.11 29 - - 

 



number of canonical components are shown in Fig.2. As 
depicted in the figure, the examined correlated subspace sizes 
(see Table 1) correspond to a wide range of thresholds for 
canonical correlations varying from fairly strict (above 0.5) to 
very liberal (above 0.1). In Table 1, six parameters 
summarizing MCCA+GICA output for different sizes of 
correlated subspace are shown. For comparison, GICA results 
for the same PCA outputs are also provided (labelled as ’No 
MCCA’). In terms of ICA stability, it is evident that increasing 
the size of correlated subspace improves ICA convergence 
(see Table 1). However, the rate of improvement quickly 
decreases, and for 40 and 60 components (MCCA-40 and 
MCCA-60 in the table) first three evaluation parameters are 
very similar. And yet, the parameters related to quality show 
more contrasting picture. For  MCCA-40, none of the stimulus 
features were selected and common maps were not extracted, 
whereas for MCCA-60 two acoustic features including 
Brightness and Activity were selected, and common map 
related to Brightness was found with six contributing subjects. 
The common map in Fig.3 shows large clusters of bilateral 
auditory cortex activations, which is in line with previous 
findings [6, 9].  

To summarize, the empirically selected parametrization of 
GICA after multiple tests was the following: individual PCA 
reduced dimensions from 231 to 80 and group PCA reduced 
aggregate data from 880 to 40. For MCCA+GICA: individual 
PCA reduced data from 231 to 80, MCCA reduced each 
dataset from 80 to 60, and group PCA – from 660 to 40.  Based 
on our evaluation parameters (see Table 1), it can be seen that 
MCCA+GICA shows improvement over conventional GICA 
both in ICA convergence and quality of produced 
components.  

IV. DISCUSSION 

In this study we introduced MCCA-based extension of 
GICA, applied it on challenging fMRI data and compared the 
obtained results with the outcome from the conventional 
GICA. Interestingly, the latter failed to extract stimulus-
related common spatial maps for any of the tested 
parametrizations.  

The reason behind improved results by MCCA+GICA is 
that finding correlated subspace reduces complexity of 

sources and therefore, has positive effect on inter-subject 
variability in terms of the temporal courses. As a result, for a 
given component, temporal courses from more than half of the 
subjects showed significant correlations with acoustic 
features. Reduced complexity of sources also explains faster 
convergence of ICA decomposition observed for the extended 
GICA model. In favour of this argument, Karhunen et al. [12] 
indicated that CCA alone already provides separation of 
sources at some degree using second-order statistics. 
Subsequently, in the next stage, partly separated sources form 
the new mixture of less complex sources in turn is 
decomposed further by ICA using higher-order statistics. 
Hence, benefits of introduced extension is expected and 
justified.   

In addition, we proposed means for quantifying output of 
ICA-based method, in order to: a) estimate reasonable number 
of sources for ICA-based methods, should an automatic model 
order selection method fail. b) compare results from multiple 
different ICA parametrizations. A somewhat intuitive 
explanation of why evaluation parameters are useful for 
estimating number of sources stems again from the fact that 
suboptimal estimation of number of sources has strong 
influence on ICA decomposition. Over-estimated number of 
sources leads to complete failure of ICA decomposition, 
which will be easily reflected in first three evaluation 
parameters. Under-estimated number of sources, on the other 
hand, is primarily exhibited in reduced quality of produced 
independent components, and will probably be detected by 
last three parameters. It should be noted that the proposed set 
of evaluation parameters is still under the development. For 
example, parameters such as convergence rate and converged 
rounds can be improved by normalizing with respect to the 
number of sources.  

  Temporal concatenation approach assumes common 
spatial maps and individual time courses among subjects. The 
reconstructed subject-specific spatial activation patterns were 
very similar as expected, but within the standard model only 
part of the corresponding temporal courses were significantly 
correlated with the stimulus features. Large variability in 
temporal dynamics among subjects’ responses elicited from a 
complex stimulation is presumably the major contributing 
factor to the failure of the conventional temporal 

 

Fig. 2. Average correlations between canonical components  
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Fig. 3. Common spatial map, averaged across six contributing subjects 



concatenation approach. In light of this, and with the 
supporting evidence in [9], perhaps spatial concatenation 
approach with the constraint of common mixing matrix for all 
subjects would be more appropriate for the specific cases such 
as the one considered here, although the opposite has been 
suggested previously [8]. We are planning to test the extension 
of spatial concatenation strategy with MCCA. 
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