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Abstract
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Title: Semi-Classical Molecular Dynamics Simulations of Polariton Transport

in Organic Molecules Strongly Coupled to Bloch Surface Waves

Strong coupling has emerged as a mechanism to extend the diffusion length of
excitons in organic semiconductors beyond their typical limits. This phenomenon
manifests itself in the formation of hybrid light-matter states, known as polaritons,
which arise when the interaction strength between light (e.g., cavity modes) and
matter (e.g., molecular excitons) exceeds the decay rates in the system, such as
cavity losses and molecular deactivation. Because of their partially photonic nature,
polaritons exhibit fast and long-range propagation, resulting in enhanced transport
of excitation.

In this work, hybrid quantum mechanics/molecular mechanics simulations of
polariton transport in a structure supporting Bloch Surface Waves were conducted to
investigate the experimentally observed shift in the transport regime as the photonic
contribution to polariton states changes. By comparing the results of molecular
simulations with the results of simulations of static two-level systems, we analyze the
origin of this shift and reveal the crucial role of molecular vibrations behind the shift.
With the results, we demonstrate the critical role of selecting an appropriate model
when simulating dynamics of polaritons. We expect that these insights provided in

this thesis will be valuable for improving energy transfer in organic materials.
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Abbreviations

BSW
DBR
DFT

FP

LP

MD
MeB
MSD
PV
QM/MM
TDDFT
UP

Bloch surface wave

distributed Bragg reflector

density functional theory

Fabry-Pérot (microcavity)

lower polariton

molecular dynamics

Methylene Blue

mean squared displacement
photovoltaics

quantum mechanics/molecular mechanics
time-dependent density functional theory

upper polariton
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1 Introduction

The growing imperative for environmental conservation and sustainable growth has
increasingly spotlighted the use of energy as a critical global issue. From resource
depletion to pollution and climate change, the drawbacks of conventional energy
sources such as oil, natural gas, coal are increasingly apparent. To address these
issues, a paradigm shift towards renewable and sustainable energy solutions is im-
perative.

As mentioned in the seventh goal of the United Nations on sustainable develop-
ment, clean and affordable energy systems are key to ensuring development in all
areas.! The potential of solar energy and its clean and limitless capabilities were
explored 50 years ago, yet its use today accounts for only about one percent of the
global energy supply.? While solar energy holds immense promise, its widespread
integration into the global energy system remains a work in progress, underscoring
the need for continuous innovation and technological breakthroughs. The rich po-
tential of solar energy utilisation has led to tremendous value in research on solar
energy, such as solar photovoltaics (PV) and solar thermal technologies.

Solar PV, with its direct conversion of sunlight to electricity without carbon
emissions, has become a key area of focus. However, fully unlocking the potential
of solar energy requires tackling several key challenges: boosting energy conversion
efficiency, lowering production and installation costs, and ensuring the long-term
reliability and resilience of solar panels under various environmental stresses. Thus,
the exploration of new materials has become a promising frontier. The central aim is
to improve cell efficiency, enhance durability and reduce costs. Within the spectrum
of materials, organic and inorganic substances present contrasting advantages and
limitations, each offering unique potential for energy applications.

Inorganic materials are the backbone of the PV market, with 90% of the mate-
rials being silicon-based.? Silicon-based materials are widely used in the PV market
due to their technological maturity and mass production as well as their ease of
installation.* However, silicon-based materials have a number of drawbacks, includ-
ing the high temperatures required for processing, high energy consumption, and
limited module efficiency.’? In addition, the highest recorded efficiency of crystalline
silicon technology (27.6 %)% is approaching its theoretical efficiency limit (29.4%)" .
Therefore, further development of the PV market might require searching for other
materials to complement or even replace silicon in solar cells.

Organic PV cells, which belong to the third generation of emerging solar cells
after crystalline silicon and thin-film solar cells, are currently attracting the atten-

tion of the research community.® Organic materials exhibit flexibility and lower



production costs, making them appealing candidates for energy-related applications
like smart power generation in clothing, portable cell phone chargers, and power-
generating windows. Devices such as organic light-emitting diodes (OLEDs) are
already making significant commercial impacts due to their ability to deliver more
vibrant colors compared to conventional liquid crystalline screens.” 10

Despite these benefits, the actual share of organic materials in the PV market
is low. There are a number of reasons for this, the most obvious being the low en-
ergy conversion efficiency of organic semiconductors. Commonly used silicon solar
cells have achieved an efficiency of 24%,'! while organic solar cells are struggling
to reach 10% efficient. This performance deficit can be attributed to fundamental
material characteristics, such as restricted charge transport, limited light absorption
across the solar spectrum, and rapid recombination of excitons, all of which con-
spire to reduce the overall efficiency of energy conversion.'? 314 With this in mind,
researchers are actively developing new materials and processing techniques to en-
hance the performance of organic photovoltaic devices. Achieving higher efficiencies
is paramount for the widespread adoption of this technology, and thus, substantial
efforts are dedicated to exploring methods that improve the efficiency of organic
solar cells.

One promising avenue that has garnered significant interest is the concept of
strong coupling,’® which has been experimentally shown to improve the diffusion
coefficient of molecular excitons by a few orders of magnitude.? 1% Strong coupling
involves the interaction between light and matter within microcavities, leading to the
formation of hybrid states known as polaritons between the cavity electromagnetic
field and the molecular excitons.!” %19 Polaritons exhibit a unique combination of
light and matter properties, with a small effective mass and the ability to interact
coherently, while also exhibiting high group velocity and a delocalized character.?’
These hybrid properties open up potential applications for exciton polaritons in PV
devices. For instance, angle-resolved photodetection in microcavities has demon-
strated the potential for efficient energy transport and ultrafast modulation of po-
lariton states, paving the way for enhanced PV system performance.?!

In this work, we focus specifically on the transport mechanisms of exciton-
polaritons within the context of strong coupling phenomena. By employing the ad-
vanced quantum mechanics/molecular mechanics molecular dynamics simulations,
our goal is to investigate the exciton-polariton transport in structures supporting
Bloch Surface Waves and to provide valuable insights that could inform the devel-

opment of advanced energy transport technologies.



2 Theoretical Background

In this chapter, the fundamentals of strong coupling will be firstly illustrated, in-
cluding the mechanism and condition of achieving strong coupling, the properties
of polaritons and their transport. Then different types of cavities as well as the

simulation methods will be described.

2.1 The Fundamentals of Strong Coupling

In free space, the energy exchange between electromagnetic field and molecules is
relatively weak due to short interaction times and relatively low interaction strength
between the field and the molecules. To circumvent these constraints, researchers
have turned to optical cavities that serve to confine the electromagnetic field and
enhance the interaction with molecules. By confining light within the cavity, an
environment can be created in which photons are reflected multiple times, thereby
increasing the likelihood of interaction with the molecules within the cavity. This
repeated interaction enhances the electric field experienced by the molecule, which
in turn enhances the coupling to light. This process makes it possible to enter
a strong coupling regime, where the molecules and the electromagnetic field are
continuously exchanging energy resulting in the creation of hybrid light-matter states
called polaritons.

The interaction between a single molecule and a single cavity light mode can be
quantified using the coupling strength, denoted as g. Within the dipole approxima-

tion, the coupling strength is defined as:

g= _ﬁ' : Evaca (1)

where fi is the transition dipole moment operator of the molecule, and Ey,. is
the vacuum electric field in the cavity. This relationship shows that the strength of
the interaction depends directly on the molecule’s dipole moment and the intensity
of the local electric field inside the cavity.

When electromagnetic field is confined within an optical cavity, the molecule-
light system enters a strong coupling regime, as the cavity facilitates the confinement
of light, enabling prolonged interaction with molecules and thereby enhancing the
strength of this interaction. This phenomenon entails the hybridization of molecu-
lar resonances (e.g., excitons or vibrational transitions) with electromagnetic field
modes, leading to the formation of new hybrid states. The result of this hybridiza-
tion is the disappearance of the original molecular and electromagnetic resonances,

which were independent of each other. They are replaced by two new hybrid states,



10

called upper (UP) and lower (LP) polaritons, which carry properties of both cavity

light modes and molecular excitations.'®

2.1.1 Concept of Strong Coupling

Strong coupling occurs when the interaction rate between molecular excitation and
the electromagnetic mode, defined by the coupling strength g, exceeds both the
decay rate of the cavity mode k and the decay rate of the molecular excitation
~. In this regime, the system continuously exchanges energy between light and
matter before dissipation occurs, giving rise to Rabi oscillations, which manifest as
a periodic exchange of energy.

Commonly, the condition for strong coupling is expressed as:

g > K,7. (2)

The quality factor @ of the cavity determines how long the cavity can trap light,

and it is inversely proportional to x by the equation:

(3)

K= 0
where w is the resonant frequency of the cavity mode.

When this condition is met, the single molecular resonance splits into two new
polaritonic states, which correspond to the upper and lower polaritons.?? The energy
difference between these states is known as the Rabi splitting, A)g.

The energy levels of the hybridized system are shifted by an amount proportional
to the coupling strength g. For a single molecule, the Rabi splitting between the
polariton states is given by:

rMr =2g. (4)

This splitting can be observed experimentally through absorption or reflection
spectra, where the presence of two peaks, rather than one, confirms that the system

has entered the strong coupling regime.?

2.1.2 Role of the Mode Volume and Vacuum Electric Field

The strength of the light-matter interaction within a cavity is influenced by the
mode volume Vj,04e of the cavity, which represents the spatial confinement of the
electromagnetic field. A smaller mode volume leads to a stronger local electric field,
which, in turn, increases the coupling strength. The vacuum electric field Ey,. inside

the cavity is inversely proportional to the square root of the mode volume, as shown

hwyac
E, \ o 5
ac & 2€0€b Vimode ( )

where A is the reduced Planck constant, wyse is the angular frequency of the

in the following relationship:

cavity mode, €g is the permittivity of free space, €, is the dielectric constant of the
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cavity medium. Thus, by reducing the mode volume, the vacuum electric field Ey,c
increases, enhancing the interaction with the molecules. This is why nanophotonic
structures and plasmonic cavities, with their smaller sizes, can achieve much stronger

coupling compared to larger, traditional optical cavities.

2.1.3 Dark States in Strong Coupling

When the number of molecule is more than one, in addition to the bright polariton
states, strong coupling also leads to the formation of dark states. These are collective
molecular states that lack contribution from the cavity field, and therefore they
cannot be excited by light. Dark states arise due to destructive interference among
the molecules, where the dipole moments of different molecules cancel out.?3

Dark states play a crucial role in the system’s overall dynamics, particularly in
the context of molecular ensembles with many molecules. Dark states can serve as

2

energy reservoirs®* and influence relaxation processes within the system.

2.2 Different Types of Cavities in Strong Coupling

To achieve strong coupling, various types of cavities can be used, each offering dis-
tinct advantages depending on the experimental setup and the desired interaction
strength. Next we introduce two types of cavities: Fabry-Pérot (FP) cavities, which
are the most commonly used in experiments due to their versatility and widespread
application, and structures supporting Bloch Surface Waves, as our study specifically

investigates polariton transport in this type of cavity.

2.2.1 Fabry-Pérot (FP) Cavity

Fabry-Pérot(FP, Figur cavities are optical resonators that consist of two parallel
reflective surfaces that trap light between them. This design allows for confinement
of the electromagnetic field within the cavity volume. In the context of strong
coupling, FP cavities play a crucial role in significantly enhancing the interaction
between light and molecules because they support a large number of molecules that
can collectively reach the strong coupling regime.?> 26

By varying the distance between mirrors, FP cavities can be fine-tuned to op-
timize the resonance conditions for specific molecular transitions, making them a
versatile tool for exploring and controlling polaritonic dynamics. This tunability

makes FP cavities highly popular for applications in polaritonic chemistry, quantum

optics, and light-driven molecular processes.
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Figure 1. Schematic illustration of molecules located in a Fabry-Pérot
(FP) cavity composed of two reflective mirrors. The yellow line is an
intensity of the vacuum field associated with exciting the cavity with a

single photon.
2.2.2 Structures supporting Bloch Surface Waves

Bloch Surface Waves (BSW, Figure are electromagnetic surface waves that propa-
gate along the interface between a truncated photonic crystal, such as a distributed
Bragg reflector (DBR), and a dielectric medium. Unlike Surface Plasmon Polari-
tons, which are confined to metal-dielectric interfaces and suffer from high losses,
BSW are supported by all-dielectric structures. This dielectric nature allows BSW
to provide lower losses, hence higher quality factors,?” and good light confinement,
making them an excellent platform for enhancing strong coupling.?®

The DBR structure represents a one-dimensional photonic crystal characterized
by a periodic variation in dielectric permittivity, expressed as e(x) = e(x+ A), where
A is the periodicity. This structure of periodically varying dielectric constant causes
electromagnetic waves to be repeatedly reflected in it, leading to the formation of
frequency ranges at which light can propagate through the crystal (pass bands) and
ranges at which light is unable to propagate through the crystal (stop bands). At
the same time, a localized state can form in the structure when a surface defect
is introduced, such as a layer with a slightly different dielectric constant or thick-
ness (as illustrated in Figure , which facilitates the emergence of the BSW, shown
as the black line in Figure In the context of strong coupling, BSW structures
significantly enhance the local electromagnetic field at the interface, increasing the
interaction between the optical mode and excitons of molecules. A key study by Lis-
cidini et al. demonstrated that BSW can achieve stronger exciton-photon coupling
than traditional microcavities, leading to larger Rabi splittings and more efficient

polariton formation.?? The ability to achieve such strong coupling at room temper-
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Figure 2. Schematic representation of a DBR structure supporting a
BSW. The DBR consists of alternating layers with different refractive
indices of n; and n, and a period of A along the z-axis. The side in
contact with the air is a special layer with a refractive index of ny and a
thickness different from that of the other layers. Between the DBR and
the air is a row of orange ellipses, which represent the molecules. The
electric field strength distribution of the BSW is shown as a black line.

ature was further confirmed by Lerario et al., who observed the formation of BSW
polaritons using J-aggregates of organic molecules at room temperature.3’

BSW structures also offer exceptional tunability. By adjusting the thickness
and refractive indices of the dielectric layers, the resonance frequency of the BSW
can be finely tuned to match specific molecular transitions. This tunability allows
BSW structures to be tailored for different applications, including sensing and spec-
troscopy, where the enhancement of light-matter interactions is critical. The low-loss,
high-field enhancement properties of BSW cavities make them an ideal platform for

sustaining strong coupling over longer periods of time.3"

2.3 Polariton Transport

The distinctive transport characteristics of polaritons are attributable to their com-
posite nature, comprising both matter and light. This enables polaritons to exhibit
behaviours that diverge from those of conventional excitons. The formation of po-
laritons can facilitate enhanced transport, enabling both long-range diffusion and
even ballistic motion in certain regimes.” 31,32:33,34

In traditional organic materials, the transport of excitons is dominated by a ran-
dom hopping process between molecular sites, resulting in a slow, diffusive motion.?
This process is constrained by the short-range nature of molecular interactions and is
further limited by disorder in the material, which disrupts coherent energy transfer.
Polaritons, in contrast, incorporate a photonic component that delocalises their wave
functions over considerably greater distances than those available to bare excitons,
thereby significantly enhancing transport. This hybridization enables long-range co-
herence, allowing polaritons to move across macroscopic distances more efficiently

than conventional excitons, as evidenced by experiments where the diffusion coeffi-



14

cient of molecular excitons was enhanced by up to six orders of magnitude upon the
formation of polariton.?®

The mean squared displacement (MSD) was used to characterize excitation en-
ergy transport. MSD quantifies how far the excitation travels over time, ¢, and it
is derived from the expectation value of the position operator Z(t), which defines
the average position of the wave function at a given time. The expectation value is

expressed as:

GO = oeeer

(6)

PAERONIED]

SUv(z)2
where W(¢, z;) represents the probability amplitude of the wave function at po-
sition z; and time ¢. The numerator computes the weighted sum of positions z;(t),
with the weights given by the probability density |¥(, z;)|?, while the denominator

ensures normalization.

The MSD extends this idea by quantifying the squared deviation of positions

over time, specifically relative to the initial position zy. The MSD is given by:

MSD = SO -H0)" )
(7)

S (zi(t)=20)2 ¥ (t,2:) |2
3 W ()2

This formula calculates the average squared displacement of the wave function

from its initial position, weighted by the probability density. MSD can be fitted
with:

MSD,,(t) = Dst?, (8)

where Dg is a pre-factor and 3 is the transport exponent.
For diffusive transport, f = 1, and the MSD follows a linear relationship with
time:

MSD o t, (9)

where Dpg in this case becomes the diffusion coefficient here.

This is typical for excitons, which move through molecular systems via short-
range hopping. In the case of ballistic transport, where 8 = 2, the MSD scales
quadratically with time:

MSD o #2. (10)

In the context of wave mechanics, a wave packet can be defined as a localized
grouping of waves, which is typically formed by the superposition of multiple waves
with varying wavelengths and frequencies. In contrast to a continuous wave, which
extends indefinitely through space, a wave packet represents a localized disturbance
that can be used to describe the motion of a particle or excitation. In many physical

systems, the propagation of energy, information, or excitations is described in terms
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of wave packets, which represent a fundamental concept in both quantum mechanics
and classical wave theory.?®

A wave packet is constructed by superimposing a range of wave components,
each with a distinct wave vector k and angular frequency w. The overall motion of
the wave packet is then governed by how these individual components interfere with
each other. In the absence of interactions, the wave packet moves through space, and
the speed at which the centre of the packet propagates is called the group velocity.

The group velocity vy is given by:

= — 11
Ug dk? ( )

where w is the angular frequency and k is the wave vector.
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Figure 3. Simulated dispersion of BSW-polaritons structure. The lower
polariton (LP) and upper polariton (UP) branches represent the hy-
bridized light-matter states resulting from strong coupling. The dark
states (DS) represent uncoupled excitonic states that remain localized
and have no contribution from the cavity light modes. The color bar
indicates the photonic fraction, Py, of the polaritonic states, i.e. the

total contribution of all cavity modes to each polaritonic state.

Group velocity is crucial in determining polariton transport properties, indicating
whether a transport is slow or fast. Figure [3/ shows the simulated dispersion for a
system with the parameters described in Section 3, revealing two distinct branches
formed under strong coupling: the LP and UP. At lower energies, particularly in
the wave vector range of k = 9 to 9.5 um™', the LP branch exhibits a higher
photonic weight. Within this range, the group velocity of the LP branch approaches
approximately half the speed of light (Figure [4)), which is 300 pum/ps, highlighting

the significant photonic contribution to polaritonic transport in this region. The
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high group velocity serves to illustrate the potential of BSW-polaritons to facilitate
efficient, long-distance energy transport, leveraging the low-loss characteristics of
BSW structures.

150+
a
£ 1004 — LP
T — P
:U’a
50
I I I |
9 10 11 12

k, um~1
Figure 4. Group velocity of lower (LP, green line) and upper (UP, blue
line) BSW-polaritons.

Recently, a study by Balasubrahmaniyam et al. have mapped the ultrafast dy-
namics of polaritons in systems where surface-bound optical waves interact with
molecular excitons. The experiments demonstrated a transition between diffusive
and ballistic transport, depending on the photonic weight of the LP. Ballistic trans-
port occurs when the photonic component dominates, allowing polaritons to travel
over macroscopic distances on the order of 100 micrometers at speeds approach-
ing two-thirds the speed of light and diffusive transport occurs at small photonic
contributions.%

This shift between transport regimes highlights the flexibility of polaritons as
a tool for controlling energy flow in hybrid light-matter systems; however, the rea-
sons behind this have not yet been determined. We have therefore reproduced the
experimental part of this article using computers with the aim of gaining a deeper
understanding of polariton transport and what causes the crossover in the polariton

transport regime.

2.4 Molecular Dynamics Simulations Approach

Molecular Dynamics (MD) simulations, grounded in classical mechanics, provide a
microscopic perspective on the behavior of systems by numerically solving New-
ton’s equations of motion. This method enables the study of equilibrium properties,
time-dependent phenomena, and the structural evolution of particles on millisecond

timescales, offering unmatched insights into molecular interactions and dynamics.3°
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In MD simulations, the system is initialized with particles whose positions and
velocities are assigned based on predefined conditions. The positions may follow
specific arrangements, such as lattice structures or random distributions, while ve-
locities are typically sampled from the Maxwell-Boltzmann distribution correspond-
ing to the desired temperature.?” The interactions between particles are described
by potential energy functions, known as force fields, which define the forces and
energy landscape that govern the system’s behavior. These functions include con-
tributions from bonded interactions, such as covalent bonds and angle bending, as
well as non-bonded forces like van der Waals and electrostatic interactions.

To compute the time evolution of the system, numerical integration schemes,

38 These methods balance

for example the Verlet or Velocity Verlet algorithms.
computational efficiency and accuracy, ensuring stable trajectories over extended
simulation times. Periodic boundary conditions are often applied to approximate
bulk properties and minimize edge effects, where particles leaving one side of the
simulation box re-enter from the opposite side, maintaining continuity in the system.

MD simulations typically consist of two phases: equilibration and production.
During equilibration, the system evolves toward a steady state, allowing physical
properties like temperature and pressure to stabilize around target values. Once
equilibrated, the production phase begins, during which trajectories are recorded
and time-averaged properties are computed. From these trajectories, key quantities
such as radial distribution functions, diffusion coefficients, and root mean square
deviation can be extracted, linking molecular-scale dynamics to macroscopic ob-
servables through statistical mechanics.

Force fields are crucial to the accuracy of MD simulations. For simple systems,
Lennard-Jones potentials effectively capture non-bonded interactions, while more
complex systems require sophisticated parameterization that accounts for torsional
potentials, long-range electrostatics, and solvent effects.?® The choice of force field
must be validated against experimental data or high-level quantum calculations to
ensure reliability.

MD simulations offer valuable insights into molecular behavior and time-dependent
processes. However, their reliance on classical Newtonian mechanics inherently limits
their ability to accurately capture the quantum nature of molecules, which is impor-
tant for describing excited states and transition dipole moments. These properties
are crucial for understanding light-matter interactions, particularly in the context
of strong coupling with cavity modes. The inherent limit restricts the applicability
of MD simulations in understanding the mechanisms of complex chemical reactions,

emphasizing the need for advanced methods to solve this problem.
2.5 Quantum Mechanics/Molecular Mechanics Approach

In order to overcome the shortcomings of MD simulations, we introduce an advanced
method named quantum mechanics/molecular mechanics (QM/MM) approach (Fig-

ure , which is based on semi-classical MD simulation, to perform the simulation
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of polariton transport.

The QM /MM approach is a hybrid computational approach that allows for the
detailed simulation of complex systems where quantum and classical behaviors are
intertwined. It is particularly useful for modeling systems where localized quantum
interactions, such as those between molecules and confined light fields, are influ-
enced by a broader, classically behaving environment.*® This approach is essential
in situations where full quantum mechanical treatment of the entire system is com-
putationally impractical but where the accuracy of quantum calculations is critical

in a specific region of interest.

Figure 5. Schematic representation of a QM/MM simulation system.*!

The central region (blue) represents the Quantum Mechanics (QM) re-
gion, which contains the molecular system of interest where quantum ef-
fects are significant. This region is embedded within the larger Molecular
Mechanics (MM) region (green), which models the surrounding environ-

ment, using classical mechanics.

In QM /MM approach, the system is partitioned into two regions: the quantum
mechanical (QM) region, where quantum effects are important and hence cannot be
ignored, and the molecular mechanical (MM) region, which is treated classically. The
QM region typically encompasses the part of the system where the chemical reaction
or photo-excitation occurs, such as the molecular exciton interacting with the cavity’s
electromagnetic field.*> The MM region, on the contrary, models the surrounding
environment, such as a solvent or molecular matrix, using classical force fields. This
dual treatment is crucial for accurately capturing the quantum properties of large
molecules while simultaneously accounting for large-scale environmental effects.

In the context of polaritons, a quantum mechanical description is required to
accurately model photoexcitation and light-matter interactions. The QM /MM ap-
proach, originally developed to treat quantum effects in molecules while simultane-
ously capturing the surrounding environment classically, is particularly suited for
this purpose. In the context of polariton dynamics, the QM region enables a precise

description of the photoexcitation process, which is essential for correctly modeling
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light-matter coupling. At the same time, the MM subsystem plays a crucial role in
capturing environmental effects such as thermal fluctuations and excitation energy
disorder, all of which significantly influence polariton transport. These environmen-
tal interactions can modify the transport properties of polaritons by introducing
decoherence or altering energy transfer pathways.

By efficiently combining the quantum treatment of light-matter coupling with the
classical simulation of the environment, the QM /MM approach provides a powerful
framework for studying energy transport in strongly coupled system. This hybrid
method is particularly effective in analyzing how confined light interacts with its
surroundings, balancing the complexity of quantum interactions with the broader

scale of classical systems to enable a realistic investigation of polariton dynamics.
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3 Simulation Model

In this chapter, we will focus on the specifics of how to perform semi-classical dy-
namics simulations within our model. This includes a full explanation of the com-
putational methods used to capture molecular interactions and dynamics and the

parameters of the molecules chosen for the simulation.

3.1 Molecular Dynamics Simulation Model

To model the interactions between the molecules and cavity modes, a Multi-scale
Tavis-Cummings Hamiltonian*®44 (Equation was used. In our MD simulations,
we utilize the Born-Oppenheimer approximation®46 to separate the nuclear and
electronic-photonic degrees of freedom. The nuclear degrees of freedom are treated
classically, while the electronic and photonic degrees of freedom are described quan-

tum mechanically.

fITC = Z;V hwexc(Rj) Aj&; + ZZ:IOdeS ﬁwcav(kz)&};z dkz+
SN S gy (ko) (67 an e + 67l e )+ (12)

Z mol( )

In Equation the operator (”};-r = \S{)(S{ﬂ excites molecule j with nuclear
coordinates R from its electronic ground state |S}), which has an energy Vs, (R;),
to its first electronic excited state ]S{), with energy Vs, (R;).

The excitation energy of molecule j, is defined as:
hwexe (Rj) = VEU(R;) — VE°(R), (13)

where VmOI( ;) and VmOI( ;) represent the adiabatic potential energy surfaces
(PESs) of molecule j in its electronic ground state (Sp) and excited state (Si),
respectively.

Conversely, the operator ¢ ]SJ )(SJ | de-excites molecule j from the first elec-
tronic excited state |S]) back to the electronic ground state |S{)>.

The last term in Equation [12|is the total potential energy of the system in the
absolute ground state (i.e., with all molecules and cavity modes de-excited), defined
as the sum of the ground-state potential energies of all molecules in the cavity.

The third term in Equation |[12|represents the light-matter interaction under the
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long-wavelength and rotating wave approximations:

9j(kz) = —u(Ry) - Ucay - |E|
(14)

f cav k:Z
= _U(Rj ) * Ucav M;eoVEaf)7

where pu(R;) is the transition dipole moment of molecule j, which depends on its
molecular geometry (R;); Ucay is the unit vector along the direction of the electric
field component of the cavity vacuum field |E|; €y is the vacuum permittivity; and
Veav is the cavity mode volume.

The electric field distribution in a one-dimensional DBR (Figure [2), or photonic
crystal, is governed by the wave equation, where the periodic dielectric constant

e(x) = e(x+ A), with period A, determines the behavior of electromagnetic waves*”

? ?E(z,t) _82E(x,t)
e(x) 0x2 o2’

(15)

where ¢ is the speed of light. By assuming the electric field can be separated into
spatial and temporal components, the equation simplifies to an eigenvalue problem
that relates the spatial variation of the field to its frequency.

According to the Bloch-Floquet theorem, the solution of the wave equation for
the electric field can be expressed as a product of a periodic envelope function and a
phase factor, Ex(x) = ux(x)e' * where ug(z) repeats with the periodicity of the
structure, and K is the Bloch wave number. For BSW, the Bloch wave number is
complex, K = i|K|, leading to an exponentially decaying field inside the photonic
crystal:

Ek(z) = ug(z)e 1Kl (16)

Therefore, the electric field strength of the BSW exhibits a periodic decay inside
the photonic crystal (indicated by the black line at < 0 in Figure . In the air,
outside the photonic crystal, the periodic modulation of the dielectric constant is

absent, and the electric field decays purely exponentially as:
Eg(z) = Ege K12, (17)

where Ej represents the electric field strength at the interface between the photonic
crystal and air.

It is worth mentioning that the electric field of the BSW along the DBR surface
can propagate freely as a plane wave along the entire yz surface. In this work,
we restrict ourselves to modelling the one-dimensional transport along a molecular

chains (orange ellipses in Figure [2) in the z direction:
E(z) = Eget™=. (18)

Following Michetti and La Rocca,*® we introduce periodic boundary conditions
along the z-direction of the DBR to limit the wave vectors to discrete values: k. , =
27p/L,, where p € Z and L, is the DBR slab width. Therefore, the Tavis-Cummings
Hamiltonian in (Equation can be represented as a matrix with four blocks,
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mol int
HIC - ( ot g ) - (19

The upper left block, H™! | is a N x N matrix containing the single-photon
excitations of the molecules. Since direct exciton interactions between molecules are
ignored, the block is diagonal. Each matrix element of H™®! represents the potential
energy of molecule j for 1 < j < N in the electronic excited state ]S{ (R;)) and all

other molecules i # j in the electronic ground states |S§(R;)).

Hjn,ljpl mol Z mol (20)
i#j

The lower right block, H** | is a Nmodes X Mmodes Matrix (with npodes = Mmax —
Nmin + 1) containing the single-photon excitations of the cavity modes. Each matrix
element of H* represents the energy which is the sum of ground state energies of
all molecules and the energy of cavity mode p for 0 < p < npyax in the excited state

with wave vector k;, = 27p/L..

H™ = hweay (27p/L2) + Z Viel(R;), (21)
J
where weay(27p/ L) is the cavity dispersion, and in this project the dispersion
of the BSW is fitted to reproduce the experimental dispersion.'6
The two N X nmedes Off-diagonal blocks H'™* and Hint! represent the interactions
between the molecules and the cavity modes. These matrix elements are approxi-
mated based on the overlap between the transition dipole moment of the molecule

j between its ground state and first excited state and the electric field of the cavity

mode p,
i hweav (2 L. A oAdaA g . N
Hjlgl?t = _H(Rj)'ucav %<¢0|O'j0';~rap6Z27rpZJ/Lza;)|¢O>
(22)
f cav 2 LZ . .
= —u(Ry) - Ueay %ezzwmg/@

for 1 < j < N and npin < p < Nmax-

The Ehrenfest molecular dynamics method was employed to describe the evolu-
tion of the classical degrees of freedom.* In this approach, the classical coordinates
evolve on a potential energy surface defined as the expectation value of the total
energy of the quantum wave function: V(R) = (¥|H|¥). The total wave function,
|W(t)), was propagated along the classical trajectory as a linear combination of di-
abatic product states involving the N molecular excitations and the n0d4es BSW

modes:®Y

N+nmodes

V(1) = Z d;j(t)65), (23)

with
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|6;) = 6715656 Sy=1siy @ 100..0) (24)

for 1 <j < N, and

i) —aj ~19888..S5 ~1s{) @ |00..0) (25)

for N < j < N 4 Nmodes-

The state |¢;) represents molecule j in its first electronic excited state (S{), while
all other molecules remain in their ground states (Séﬁ ) and the photonic modes are
unoccupied. Conversely, the state |¢;~n) corresponds to one of the BSW modes
being excited, with all molecules in their electronic ground states. In Equation [23]
the coefficients d;(t) are time-dependent expansion coefficients of the total wave
function, representing the population of each molecular excitation and photonic
mode as the system evolves. These coefficients were propagated using a unitary
p1rop:emgzautor.51

In order to analyse the trajectories, we also expand the total time-dependent

wave function in the basis of the eigenstates of the Tavis-Cummings Hamiltonian,

as follows:
= cm(t)|tm), (26)
J
where
Mmodes
|om) = Zﬁm e Z amal | [sis2..sy1sy) @ |0). (27)

In this context, the expansion coefficients 5]’-” and «," represent the contributions
of molecular excitons (|S7)) and photonic modes (|1,)) to the adiabatic eigenstate
|tm). These coefficients are determined by diagonalizing the matrix representation
of HTC (Equation in the basis of diabatic product states (Equations .
The time-dependent expansion coefficients ¢, (t) in the adiabatic representation are
related to the time-dependent coefficients d;(t) in the diabatic representation (Equa-
tion through the unitary matrix U, which diagonalizes the Tavis-Cummings
matrix. Specifically, this relationship is given by

N+nNmodes

()= ULd;(), (28)
J

where Ujm, = " if j < N and Uy, = oty if j > N.
To investigate the influence of the photonic properties of the adiabatic eigen-
states on their contribution to overall transport, the photonic part of the total wave

function was decomposed into partial wave functions within a window w of width
Ak, defined as:

1 Mmodes nmodes
t ik N
|\Ilg?11;>tw( J’t)> = \/ﬁ E § am ! pZJa;L;|¢0>7 (29)
m/ew

where z; is the position of molecule j (with z; = (j —1)L,/N for 1 < j < N).
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These partial wave functions are linear combinations of the eigenstates of the
Tavis-Cummings Hamiltonian (Equation corresponding to fixed wave vector in-
tervals, referred to as windows, w;. Each window is centered at k,; and spans the
range from k:;n;n to k7. The expansion coefficients cpeq,(t) for these partial wave
functions are determined by projecting the adiabatic eigenstates within a given win-

dow onto the total time-dependent wave function in the adiabatic representation

(Equation [26)).
3.2 Methylene Blue Model

In order to study the experimentally observed shifts in polariton transport modes,
QM /MM molecular dynamics simulations were conducted for a system of N = 1024
methylene blue (MeB, Figure@ molecules in water, coupled to a BSW.

MeB molecules were chosen for the simulations instead of the experimentally'®
used J-aggregates due to the latter’s complexity, which currently renders their simu-
lation in a cavity computationally prohibitive. Despite having a broader absorption
line-width, MeB molecules retain the key characteristics of J-aggregates, including a
bright electronic transition and several Raman-active vibrational modes,’® making

them suitable substitutes for the study.

Figure 6. Molecular structure of Methylene Blue (MeB) molecule.?*The
grey spheres represent carbon atoms, blue spheres indicate nitrogen
atoms, yellow represents a sulfur atom, and white spheres correspond

to hydrogen atoms.

To model the MeB-BSW system, the electronic ground state (Sp) and first ex-
cited state (S1) of MeB were described using density functional theory (DFT) and
time-dependent density functional theory (TDDFT) with the B97 functional and
3-21G basis set.?4:55:56:57 The interactions between MeB and the water solvent were

modeled using the Amber03 force field, while water molecules were represented by
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the TIP3P model.’® Partial atomic charges for MeB were derived using the RESP
method® based on electrostatic potential calculations obtained from geometry op-
timizations at the HF/6-31G** level, employing the IEFPCM continuum solvent
model.%°

The simulation box contained one MeB molecule, initially optimized at the
B97/3-21G level, and 2031 TIP3P water molecules. Van der Waals interactions were
modeled using Lennard-Jones potentials, while Coulomb interactions were computed
using the particle mesh Ewald method.®! The system was equilibrated at 300 K and
1 atm with a 2 fs timestep using the v-rescale thermostat®? and the Berendsen
pressure coupling algorithm® . Subsequently, the system underwent QM /MM equi-
libration, treating MeB quantum mechanically while representing water classically.
At this level of theory, the excitation energy of MeB was determined to be 2.5 eV,
which is shifted with respect to experimentally measured excited state of MeB at
1.86 €V,% but can be compensated by tuning the cavity resonance.

t,16 where a single J-aggregate

To replicate the initial conditions of the experimen
was optically pumped, the system was initialized with a single MeB molecule, j, ex-
cited to the Sy state at z; = 125 pum. This corresponds to d;(0) = 1 and d;-;(0) =0
in Equation placing the excitation at the center of a periodic DBR surface of
width L, = 250 um. BSW modes were discretized into 120 components to simulate
the polariton dispersion. The experimental BSW dispersion was fit to a linear func-
tion, Fpsw(k,) = 0.119 -k, + 0.771 eV, and adjusted to match the MeB excitation
energy.'6

Simulations were conducted using five Ehrenfest QM /MM trajectories for 200 fs
with a 0.5 fs timestep. Decay effects were neglected due to the short trajectory
times compared to the typical BSW lifetime.®® The vacuum electric field was set to
0.071 MV /cm, resulting in a Rabi splitting of 131 meV, which closely matches the
experimental value of 142 meV. Partial wave functions were analyzed across different

wave vector windows to investigate polariton transport along the LP branch.
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4 Polariton Transport in BSW Structure

In this chapter, the results of polariton transport simulations are presented, accom-
panied by an analysis and discussion of the results. In Section 4.1, static two-level
simulations with excitation energy disorder are performed to determine whether the
experimentally observed shift can be explained by it. Then molecular simulations
with dynamic factors are performed in Section 4.2. In order to better analyze the
LP states with different ranges of wave vectors, in Section 4.3 we introduce the con-
cept of windows. Thus, we are able to study the regime of polariton transport in
the seven windows. The results of static two-level systems and molecular dynamics
simulation models using the window strategy, are respectively presented in subsec-
tions 4.3.1 and subsections 4.3.2. Together, this chapter provides a theoretical basis

for exploring the experimentally observed shift from ballistic to diffusive.

4.1 Static Two-Level Model

To establish a foundation for investigating polariton transport dynamics, we first
performed simulations of N = 1000 static two-level systems before conducting MD
simulations of realistic molecules. The two-level model is computationally cheap
and isolates the essential physical interactions, capturing the hybridization between
excitons and cavity modes that results in strong coupling. This approach allows
for rapid testing and tuning of key parameters, such as exciton-cavity resonance
and Rabi splitting, which are critical for ensuring a strong coupling regime. Ad-
ditionally, the two-level model provides a benchmark for validating the polariton
dispersion against experimental results, ensuring consistency before transitioning to
more complex simulations incorporating environmental effects and dynamic molec-
ular interactions.

The comparison of simulated (Figure [Ta) and experimental (Figure [7p) disper-
sions of the BSW polaritons demonstrates the consistency between the theoretical
model and experimental observations. In Figure [Ta, the dispersion is characterized
by the LP and UP branches, with the photonic weight (Pphet) indicated by the color
gradient. At smaller wave vectors, the LP branch becomes more photonic, resulting
in a greater group velocity (Figure . The black dashed line in Figure |za was taken
from the experimental LP data (dotted line) shown in Figure , highlighting the
agreement between simulation and experiment. The black line in Figure[7a is a lin-
ear fit to the experimental dispersion of the BSW1!¢ (which corresponds to the white
line in Figure [7b), with linear function Fpgw(k.) = a-k,+b with a = 0.119 eVum™!
and b = 0.771 eV. In Figure [Tb, the white horizontal line represents the excitation
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Figure 7. Dispersion of BSW-polaritons from simulation (panel a) and
the experiment (panel b). In Panel a, dispersion of the BSW is shown
as the black line, the dashed line is experimental data corresponding
to the LP line (dotted line) in panel b. Panel b is reproduced with
permission from Balasubrahmaniyam et al., Nat. Mater., 22, 338-344
(2023). Copyright 2023 Springer Nature Ltd.

energy (FE;) of a J-aggregate of cyanine dyes used in the experimental study, which
was selected as the initial configuration for each of N = 1024 two-level systems in
static simulations.

This alignment between the simulated and experimental LP dispersions under-
scores the reliability of the two-level model for accurately describing the hybridiza-
tion of light and matter. It validates the use of this model for further exploration of
polariton transport dynamics.

In the simulation of static two-level systems, we also introduce an excitation

energy disorder, which is derived from a Gaussian distribution, which is defined as:

1

2o

(E — Ey)?
202

exp | —

p(E) = ) (30)

where FEj is the mean value, and o is the disorder strength that determines the
absorption line-width of the disordered two-level system.

The time-space maps presented in Figure [§] illustrate the evolution of the to-
tal polariton wave function probability amplitude, |¥(z,t)|?, under two different
conditions: without static excitation energy disorder (Figure Ea) and with static
excitation energy disorder (Figure ) The color scale illustrates the logarithmic
amplitude of the probability density, where higher intensities correspond to regions
of significant wave function presence. In Figure [BR, where no static excitation en-
ergy disorder is introduced, the initial excitation at z ~ 125 pum generates a wave
packet that propagates coherently along the z-axis over time. The propagation is

predominantly directional, with the wave packet spreading smoothly, contributed by
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polaritonic states propagating ballistically with their group velocities according to
the polariton dispersion (Figure Ea and . The amplitude decreases uniformly with
time as the wave packet disperses across a larger spatial region, reflecting a well-
preserved coherence. The continuous and smooth distribution of the wave packet
highlights the efficient energy transfer facilitated by strong coupling in the absence

of external perturbations.
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Figure 8. Time-space maps of the probability amplitude of the total wave
function |¥(z,t)|* , without (panel a) and with static excitation energy

disorder (panel b). Panel b is an average over 100 realisations of disorder.

In contrast, Figure shows the propagation dynamics when static excitation
energy disorder is introduced into the system. Although the initial excitation is
similarly localized at z ~ 125 pm, the subsequent propagation of the wave packet
is visibly disrupted. A significant portion of the probability amplitude remains near
the initial excitation site, suggesting that static excitation energy disorder introduces
localization effects and hinders long-range transport. The wave packet becomes frag-
mented, with irregular bands of intensity indicating scattering and reduced coher-
ence. Unlike the directional uniform spreading observed in Figure [8a, the presence
of disorder leads to a more diffusive transport regime, characterized by diminished

propagation and weakened spatial coherence.
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4.2 Molecular Dynamic Simulations

As in previous section, in the MD simulations, we analyze the time-space evolution
of the probability amplitude of the total wave function, |¥(z,t)?. Figure @ depicts
the spatial and temporal distribution of a polariton wave packet after excitation at
z = 125 um. The wave function begins at the excitation point and propagates along
the z-axis, demonstrating ballistic transport behavior over the simulated timescale of
200 femtoseconds. This result highlights the coherent propagation of the polaritonic

wave packet within the system, a key feature of strong light-matter coupling.
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Figure 9. Time-space map of the probability amplitude of the total wave
function, |U(z,t)[%.

Figure (10 illustrates the mean squared displacement, MSD,,(t) — MSD,(0), of
the total wave function |¥(z,¢)|? as a function of time. The MSD increases steadily,
and the excellent agreement with a quadratic fit (dashed line in Figure implies
ballistic transport of the polariton wave packet.

Figure illustrates the dispersion obtained from the static model without ex-
citation energy disorder, while Figure presents the results from MD simulations.
In the static model, the LP branch displays a consistent, gradual change of photonic
contribution (Pphet) across the wave vectors, reflecting the behavior expected in an
ideal system without energy disorder. This uniformity suggests a relatively wide
distribution of bright polaritonic states with well-defined wave vectors.

In contrast, the MD simulations (Figure [L1p) reveal significant disruption in the
dispersion profile. The inclusion of energy disorder in these simulations leads to
scattering of the polaritonic states, especially in the DS region, leading to irregular
Pphot distribution. Consequently, the range of bright polaritonic states is reduced,

effectively narrowing the LP branch and highlighting the impact of disorder on
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Figure 10. Mean squared displacement, MSD,,(t) —MSD,,(0), of the total
wave function |¥|? as a function of time. The dashed line is a fit to a
quadratic function (Equation .
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Figure 11. Panel a: Simulated dispersion of BSW-polaritons with static
two-level model without excitation energy disorder. Panel b: Simulated

dispersion of BSW-polaritons with MD model for a single instant of time.

polariton coherence. This comparison demonstrates how energy disorder modifies
the dispersion, diminishing both the clarity and the range of wave vectors associated

with well-defined polaritonic states.56
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4.3 Resolving Polariton Transport in Energy /Momentum
Space

To analyze how different LP states with specific wave vectors contribute to the overall
propagation of the total wave function, we divided the dispersion into discrete wave
vector intervals, referred to as windows (w), as depicted in Figure Since the
photonic component of the wave function is less affected by fluctuations in molecular
excitation energies compared to the total or excitonic wave functions,?® therefore,
for each window, we constructed partial photonic wave functions (\\I/gflgtt,w(z,t)),
Equation [29). Each window corresponds to a fixed range of wave vectors, as listed
in Table [I| These partial photonic wave functions capture the contributions of LP

states within their respective wave vector ranges.
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Figure 12. Polariton dispersion in molecular dynamics simulations at

time t=0. Green frame in panel a shows one of the wave vector windows

part
phot,w

Panel b indicates the positions of the centre of each of seven windows

through which partial photonic wave functions, |¥ |2, was extracted.

(Table , through which partial photonic wave function was extracted.

The central position of each window (kS) represents the wave vector corre-
sponding to the middle of the interval, for which the total photonic contribution
of the BSW modes is |ag,|? (third column in Table [I). For example, in window
a (k, € [9.00,9.50] um~1), the central wave vector is k¢ = 9.25 um~!, with a
c |2

corresponding photonic contribution of |af,

= 0.93, suggesting that this state is
predominantly photonic. As the wave vector increases across the windows (e.g.,
from window a to window ¢), the photonic character gradually decreases, indicating
a transition to the more excitonic character.

This windowing strategy is essential to distinguish the contributions of polari-
tonic states across the LP branch and to observe how the wave packet dynamics
vary with changes in the photonic-to-excitonic character. By extracting partial
wave functions from these windows, we are able to analyze the time evolution of

the probability densities (|U5**(z,¢)|?), shown in subsequent subsections, and gain
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Table 1. Ranges of wave vectors (k,, first column) at which partial pho-
tonic wave functions, y@gigtt(z, t)), were extracted. The third and fourth
columns indicate, respectively, the wave vector of the polariton state cor-
responding to the centre of each window (k<) and the total contribution

of all BSW modes (|ag,[> = Y 7" |a;?[?) to this state.

Index letter | k,-range (um™!) | k¢ (um™1) | |ag |?
a [9.00; 9.50] 925 | 0.93
b [9.25;9.75] 9.50 | 0.91
¢ [9.50; 10.00] 9.75 0.89
d [9.75;10.25] 10.00 0.85
e [10.00; 10.50] 10.25 0.80
f [10.25; 10.75] 10.50 0.73
g [10.50; 11.00] 10.75 | 0.64

insight into the transport characteristics of the LP states at different wave vector

regions.

4.3.1 Simulation of Two-Level Systems with Static Excitation En-
ergy Disorder

To investigate whether the transition from ballistic to diffusive transport along the
LP branch can be attributed solely to the excitation energy disorder, we performed
simulations involving N = 1000 statically disordered two-level systems. In these
simulations, the excitation energies of the two-level systems were drawn from a
Gaussian distribution (Equation [30]).

The MSD,, of the partial photonic wave function |\Ifgi1:t]2 is shown for different
wave vector windows in static simulations, both without (Figure [13h) and with
excitation energy disorder (Figure , o = 63 meV). In the absence of disorder,
the MSD curves exhibit a parabolic increase over time, characteristic of ballistic
transport. Notably, as the wave vector window shifts toward higher values (from
k €[9.0;9.5] um~? to k € [10.5;11.0] um~1), the MSD growth rate decreases. This
reduction reflects the diminishing group velocity of polariton states at higher wave
vectors (Figure , where the photonic component of the polariton wave function
decreases.67,68

When static excitation energy disorder is introduced (Figure ), the MSD
curves retain their parabolic shape, indicating that polariton propagation remains
ballistic despite the disorder. While there is a slight reduction in the overall MSD
growth compared to the disorder-free case, particularly for higher wave vector win-
dows, the persistence of ballistic behavior demonstrates that static excitation energy
disorder alone is insufficient to explain the experimentally observed transition to dif-

fusive transport, at least for short time-scales simulated in this work.
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Figure 13. Panels a and b: Mean squared displacement (MSD,,) of

art

the partial photonic wave function |\Ijghot|2 extracted from different

wave vector windows in static simulations of two-level systems without

(0 = 0 meV, a) and with (¢ = 63 meV, b) excitation energy disorder.

Panels ¢ and d: Values of the transport exponent, , as a function of

the BSW modes contribution |ayy|? to polaritonic states. The errors are

standard deviations of five hundred individual runs.

After fitting the MSD to the Equation [8](see Table[2|for the values of a regression

coefficient), the transport exponents [ can be extracted. Figure —d displays

as a function of the photonic contribution |app|? to the polaritonic states. All of

the extracted values of 8 remain close to 2, reflecting the characteristic of ballistic

motion, no matter the excitation energy disorder is included or not.
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Table 2. Coefficients of determination (R?) for the fits to Expres-
sion [§ of the MSD,,’s obtained for the partial photonic wave function,
(WP (2, 1)), in static simulations of two-level systems with disorder
strength o of 63 meV . The first column indicates ranges of wave vectors
(k,) at which partial wave functions were extracted. The second column

shows the corresponding coefficients of determination.

k,-range (um™') | R? (0 = 63 meV)

[9.00;9.50) 1.0000

[9.25; 9.75] 0.9998
[9.50; 10.00] 0.9986
[9.75:10.25] 0.9986
[10.00; 10.50] 0.9983
[10.25; 10.75] 0.9998
[10.50; 11.00] 0.9989

However, this result deviates from experimental observations, which suggest a
transition from ballistic to diffusive polariton transport. This discrepancy highlights
the limitations of the static model: while it succeeds in capturing the idealised be-
haviour of the system, it fails to take into account realistic environmental effects such
as dynamic disorder and molecular vibrations, which play a crucial role in modifying
polariton transport.5%70 As a result, the purely ballistic transport predicted by the
static model is not consistent with the dynamics observed experimentally, and more

advanced simulations are needed to incorporate these environmental factors.

4.3.2 Transition from Ballistic to Diffusive Motion in MD Simula-

tions

Figure [[4pa-g shows the time-space maps of the probability amplitude of the partial

part
\Ilphot

N = 1024 MeB molecules. These maps reveal how the photonic component of the

photonic wave function | (z,t)|? in different wave vector windows in a system of
polariton state propagates within these intervals. Polariton wave packets in lower
k. windows (e.g., Figure and Figure ) exhibit stronger spatial propagation,
owing to a higher photonic contribution of the states within these windows.

In Figure , Pyhot systematically decreases with increasing k. value, which
directly affects the propagation of the observed polariton dynamics in the time-
space maps. As a result of an increase in the excitonic content of polariton states
at higher k, values, such as in Figure and Figure [14lg, polariton wave packets
in these windows undergo a stronger scattering and propagate slower than the wave

packets at lower k, windows.
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Figure 14. Panels a-g: Time-space maps of the probability amplitude of
the partial photonic wave function |\Ifgﬁf)tt(z, t)|? extracted through differ-
ent wave vector windows in molecular dynamics simulations of N = 1024
molecules. Panel h: The position of the centre point of each window

corresponding to the position on the dispersion curve.

To analyze the transport regime of polaritons along the LP branch, we com-
puted the mean squared displacements (MSD,,) of the partial photonic wave function
\\Ifgim? extracted from different wave vector windows (Figure 15|a—g). For each wave
vector range, MSD,, was obtained in both the MD simulations (black dashed lines)
and simulations of static two-level systems (cyan lines), allowing a direct comparison

of the two approaches.
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Figure 15. Panels a-g: Mean squared displacement, MSD,,(t)—MSD,,(0),
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wave vector windows in molecular dynamics simulations of N = 1024
molecules. Dashed lines are fits of the dots to Ds - t# (Equation .

The cyan lines correspond to static simulations of two-level systems with

excitation energy disorder. Panel h: The position of the centre point of

each window corresponding to the position on the dispersion figure.

As discussed in Section 4.3.1, in the static two-level simulations, the MSD,, shows

a smooth, parabolic increase across all wave vector windows, indicating a purely bal-

listic transport regime (Figure . In contrast, in the MD simulations, significant

deviations emerge as time progresses, particularly at the windows with larger k, val-
ues (e.g., Figures and ) The MSD,, growth in these regions becomes slower

and less uniform compared to the static case, reflecting the influence of dynami-

cal effects such as molecular vibrations and thermal fluctuations. These changes

demonstrate that the ballistic transport observed in the static two-level simulations

is altered in the MD framework, which incorporates a more realistic description of

the environment. The differences between the two approaches underscore the im-
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portance of including dynamics of molecules and a realistic description of molecules,
in particular vibrations, to capture the complexity of polariton transport.

To further analyze the transport behavior observed in the MSD results, we fitted
the MSD in Figures [15] to the Equation [8 and extracted the transport exponents /3
as a function of the photonic mode contribution |apn|?. Figure [16| provides a direct
comparison between the experimental results (Figure ) and the MD simulations
(Figure [16b). In both cases, the transition from ballistic (8 ~ 2) to diffusive trans-
port (8 ~ 1) becomes evident as |app|? decreases, which correspond to the wave
vector regions with reduced photonic weight, unlike static simulations, for which the
transport exponent remains close to two within the whole range of LP states with

well-defined wave vectors (Figure [13d).
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Figure 16. Panel a and b: The transport exponent as a function of the
cavity modes contribution |a,u|* to polaritonic states, extracted from
the experiment (a) and MD simulations (b). Panel a is reproduced with
permission from Balasubrahmaniyam et al., Nat. Mater., 22, 338-344
(2023). Copyright 2023 Springer Nature Ltd. The error bars in panel b

are standard deviations of five runs.

To fully understand the shift from ballistic to diffusive transport, it is crucial
to examine the underlying mechanisms at play. Molecular vibrations are key here,
as they enable non-adiabatic couplings that facilitate transitions, specifically, pop-
ulation exchange between the LP states and the dark states. The strength of these
couplings is highly sensitive to the energy difference between the states involved.”
LP states with a stronger excitonic character (i.e., those closer in energy to the dark
states) experience more frequent exchanges of energy. This, in turn, amplifies the
transfer of population towards the dark states. Because these dark states lack group
velocity, they effectively impede transport efficiency.?

The impact of this vibration-driven population redistribution is clearly evident
when comparing the MD simulations with static model simulations. The results
from static simulation only show ballistic transport regime across the LP branch.

However, once molecular vibrations are incorporated into the MD simulations, we
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observe a transition from ballistic towards diffusive transport as |apn|? decreases.
The agreement between experimental results!® (Figure ) and simulations (Fig-
ure ) confirms that the transition is strongly correlated with the diminishing
contribution of cavity modes (|ay,|?) to the polaritonic states.

The inclusion of molecular vibrations in MD simulations offers a significantly
more nuanced and complete picture of polariton transport, highlighting the com-
plex interplay between light-matter interactions and the surrounding dynamic en-
vironment in determining energy transport characteristics. Our findings show that
static excitation energy disorder alone, a previously suggested explanation, is insuf-
ficient to account for the observed transition from ballistic to diffusive transport.
Consequently, our findings emphasize the critical importance of considering both vi-
brational and molecular dynamics for a comprehensive understanding and eventual

optimization of polariton transport.
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5 Conclusions

In this thesis, excitation energy transport in a system of organic molecules coupled
to Bloch Surface Waves in a one-dimensional photonic crystal was investigated, with
a particular focus on how the transport undergoes a transition between ballistic to
diffusive regimes. We employed a multi-scale computational approach, integrating
MD simulations with a QM /MM framework, to dissect the influence of dynamics of
molecules on polariton transport under these strong coupling conditions.

Initially, we used a simplified static two-level systems model to benchmark our
approach, verifying the calculated polariton dispersion against experimental data.
This initial model successfully reproduced the characteristic LP and UP branches,
confirming its ability to capture the fundamental energetic landscape of the system.
However, analysis of the MSD revealed a purely ballistic transport regime across all
seven ranges of wave vectors, failing to reproduce the experimentally observed tran-
sition from ballistic transport to diffusive transport. This discrepancy underscored a
key limitation: the static model inherently neglects the dynamic fluctuations present
in real molecular systems, such as molecular vibrations and variations in excitation
energy, which are crucial for a realistic description of transport.

To overcome this limitation, we incorporated MD simulations, which explicitly
account for the effects of dynamic disorder and molecular vibrations. By examining
the mean squared displacement of partial photonic wave functions extracted from
specific wave vector windows, we observed a clear modification of transport behavior.
At low wave vectors, where the polariton behavior is dominated by its photonic
component, transport remained ballistic. However, at higher wave vectors, where
the excitonic contribution becomes more significant, the MSD deviated from the
parabolic trajectory characteristic of ballistic transport. Analysis of the transport
exponents () derived from the MD simulations shows a gradual shift from ballistic
transport (8 ~ 2) towards diffusive behavior (5 & 1) at larger k, values. This result
is in good agreement with experimental observations, highlighting the crucial role
of dynamic molecular effects in driving the transition between transport regimes.
In particular, specific vibrational modes of the organic molecules are responsible for
the population transfers between polariton states and dark states via non-adiabatic
coupling.

In conclusion, our work demonstrates that static excitation energy disorder alone
is insufficient to explain the experimentally observed shift in polariton transport.
Instead, molecular vibrations and changes in excitation energy, i.e. dynamic factors,

cause the transition, as shown by our MD simulations. By moving beyond the
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constraints of static models, this study provides a more nuanced and accurate picture
of polariton transport in these hybrid light-matter systems, emphasizing the critical

role of dynamic effects.
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