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ABSTRACT
Maternal hormones can profoundly impact offspring physiology and behaviour in sex-dependent ways. Yet little is known about 
the molecular mechanisms linking these maternal effects to offspring phenotypes. DNA methylation, an epigenetic mechanism, 
is suggested to facilitate maternal androgens' effects. To assess whether phenotypic changes induced by maternal androgens 
associate with DNA methylation changes, we experimentally manipulated yolk testosterone levels in wild great tit eggs (Parus 
major) and quantified phenotypic and DNA methylation changes in the hatched offspring. While we found no effect on the hand-
ing stress response, increased yolk testosterone levels decreased the begging probability, emphasised sex differences in fledging 
mass, and affected methylation at 763 CpG sites, but always in a sex-specific way. These sites are associated with genes involved 
in growth, oxidative stress, and reproduction, suggesting sex-specific trade-offs to balance the costs and benefits of exposure to 
high yolk testosterone levels. Future studies should assess if these effects extend beyond the nestling stage and impact fitness.

1   |   Introduction

Environmental conditions experienced by mothers can have pro-
found impacts on the phenotypes of their offspring (Mousseau 
and Dingle  1991; Bernardo  1996; Kofman  2002; Groothuis 
et  al.  2005; Maestripieri and Mateo  2009). These so-called en-
vironmental maternal effects are aspects of the maternal phe-
notype that cause changes in offspring phenotype and have 
been documented across a wide array of taxa (e.g., Räsänen 
and Kruuk  2007). Maternal effects are predicted to adaptively 

modulate offspring phenotypes according to the local environ-
ment (Mousseau and Fox  1998; Marshall and Uller  2007; Yin 
et  al.  2019; Sánchez-Tójar et  al.  2020). Females may influence 
their offspring prenatally through, for example, incubation tem-
perature (Hepp, Kennamer, and Johnson 2006; Mitchell, Maciel, 
and Janzen  2015) and by providing nutrients (Roseboom, de 
Rooij, and Painter 2006; de Rooij et al. 2010) or other resources, 
such as antioxidants (Blount et al. 2002), immune factors (Blount 
et  al.  2002; Saino et  al.  2002), and hormones (Schwabl  1993; 
McCormick 1999; Dloniak, French, and Holekamp 2006; Uller, 
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Astheimer, and Olsson 2007; Dantzer et al. 2013). These prena-
tal conditions can subsequently affect offspring sex ratios (e.g., 
Carter, Bowden, and Paitz 2017), development (Hepp, Kennamer, 
and Johnson 2006; Mitchell, Maciel, and Janzen 2015), physiol-
ogy (Blount et al. 2002; Saino et al. 2002; Boots and Roberts 2012), 
behaviour (Eising, Muller, and Groothuis  2006; Partecke and 
Schwabl 2008), and ultimately offspring fitness (e.g., Ruuskanen 
et  al.  2012). What mediates the effects of prenatal conditions 
has, however, remained elusive (e.g., Groothuis et  al.  2019; 
Bebbington and Groothuis 2021).

Maternal hormones can profoundly affect offspring phenotypes. 
In oviparous species, the effects of yolk androgen hormones, 
especially testosterone, on phenotypic traits of developing off-
spring have been extensively studied (Gil 2008). Yolk testoster-
one levels have been found to vary between clutches, which can 
partly be explained by between-female differences, such as fe-
male age (Pilz et al. 2003), perceived predator risk (Coslovsky 
et  al.  2012), and personality (Ruuskanen et  al.  2018), and by 
environmental conditions, such as parasite load (Tschirren, 
Richner, and Schwabl 2004), or social conditions, such as mate 
attractiveness (Remeš  2011) and breeding density (Groothuis 
and Schwabl  2002; Eising et  al.  2008; Remeš  2011; Bentz, 
Navara, and Siefferman  2013). Despite studies showing that 
testosterone and other yolk androgens have largely disap-
peared after five days of incubation (Kumar et  al.  2019), yolk 
testosterone has profound effects on offspring physiology and 
behaviour. Increased yolk testosterone levels have been found 
to stimulate nestling growth (Schwabl 1996; Navara, Hill, and 
Mendonça 2005, 2006; Müller et al. 2007), decrease social de-
pendence and neophobia (Daisley et al. 2005), and alter breath 
rate (Bentz, Navara, and Siefferman 2013), food intake, and beg-
ging rates (Schwabl 1996; Eising and Groothuis 2003).

The effects of increased yolk testosterone levels are not always 
in the same direction, as some studies have reported decreased 
or unaffected begging rates (Pilz et  al.  2004; Boncoraglio 
et al. 2006) and reduced growth (Sockman and Schwabl 2000; 
Rubolini et al. 2006). Moreover, yolk testosterone can be depos-
ited in a sex-specific way (Müller et al. 2002) and is known to in-
duce sex-specific effects (Tschirren 2015). Yolk testosterone has, 
for example, been found to promote growth in male offspring, 
while female growth was unaffected (Tschirren 2015) or reduced 
(Saino et al. 2006). Likely, developmental trajectories and their 
associated costs and fitness returns are differentially affected in 
male and female offspring (Gil 2008). This suggests a pivotal role 
for yolk testosterone in explaining how the sexes trade off de-
velopmental processes differently. However, the interpretation of 
such sex-specific effects might be improved if the underlying mo-
lecular mechanisms that allow for such sex-specific effects are 
taken into account (Gil 2008; Groothuis Ton and Schwabl 2008). 
Yet little is known about the molecular mechanisms that are re-
sponsible for these phenotypic changes in developing offspring 
caused by variation in yolk testosterone.

Epigenetic mechanisms have been suggested to facilitate effects 
of maternal androgens (Groothuis Ton and Schwabl 2008), spe-
cifically DNA methylation (Sepers et al. 2019). DNA methylation, 
the addition of a methyl group to a DNA nucleotide, interferes 
with the binding of transcription factors to the DNA (Bird 2002; 
Moore, Le, and Fan  2013; Yin et  al.  2017). DNA methylation 

usually suppresses gene expression (Bird  2002; Goldberg, Allis, 
and Bernstein  2007; Moore, Le, and Fan  2013), specifically if 
methylated cytosines in CpG context (CG dinucleotides) are lo-
cated nearby the transcription start site of a gene (Bird  2002; 
Goldberg, Allis, and Bernstein 2007; Li et al. 2011; Moore, Le, and 
Fan 2013; Laine et al. 2016). Therefore, DNA methylation is gen-
erally expected to affect the expression of phenotypic traits (Law 
and Jacobsen  2010). Prenatal maternal effects on DNA meth-
ylation have been found in the offspring of vertebrates such as 
mice (St-Cyr and McGowan 2015) and humans (Tobi et al. 2009, 
2014). Studies in wild avian species have experimentally shown 
(Hukkanen et  al.  2023) or suggested (Bentz et  al.  2016) that 
maternal androgens can impact offspring methylation. To our 
knowledge, there is only one genome-wide study on the effects of 
experimentally elevated yolk androgens (in this case testosterone) 
on DNA methylation. In this study on zebra finches (Taeniopygia 
guttata), differentially methylated regions between treated and 
untreated individuals were found in or near genes that were 
also differentially expressed in the hypothalamus and amygdala 
(Bentz et al. 2021). However, this might be specific to males, as 
female zebra finches were not included in this study, and sex dif-
ferences in DNA methylation are known to exist in several bird 
species. Multiple cytosines on the Z chromosome and on chromo-
some 1 are differentially methylated between the sexes in chick-
ens (Natt, Agnvall, and Jensen 2014) and in several other species 
belonging to the order Galliformes (Teranishi et al. 2001), suggest-
ing that differences in DNA methylation might aid in phenotypic 
sex differentiation. For example, CpG sites in a 460-kb long region 
on the short arm of the Z chromosome are hypermethylated in 
male chicken embryos compared to female embryos (Teranishi 
et  al.  2001). Furthermore, CpG sites in the dopamine receptor 
D4 gene are significantly hypermethylated in female great tits 
compared to males (Verhulst et al. 2016), but not in other genes 
(Sepers, Chen, et  al.  2023), suggesting that sex-specific DNA 
methylation patterns can be gene- or region-specific. While these 
studies clearly indicate that DNA methylation patterns cannot 
be generalised across sexes, it remains largely unknown to what 
extent DNA methylation is an underlying mechanism for yolk 
testosterone-mediated sex-specific maternal effects.

Here, we experimentally manipulated yolk testosterone lev-
els in a population of wild great tits (P. major) and assessed 
pre-fledging effects on biometric measures, behavioural traits, 
and genome-wide DNA methylation to test whether yolk 
testosterone-induced changes in DNA methylation may explain 
sex-specific phenotypic effects. We expected that testosterone 
positively affects body mass and tarsus length in male great tits, 
but not in females (Tschirren 2015), explained by higher com-
petitiveness in testosterone-treated males, observed by a higher 
begging rate and higher food reception (Schwabl  1996; Eising 
and Groothuis  2003). We expected that, as a result of experi-
encing favourable nutritional conditions (van Oers et al. 2015), 
testosterone-treated males would be more resilient to stress 
and therefore show a lower handling stress response than 
testosterone-treated females. As a low handling stress response 
is associated with decreased levels of exploratory behaviour after 
fledging (Fucikova et  al.  2009), this lower reactivity to acute 
stress might reflect behavioural adaptation to a non-competitive 
environment. If sex-specific effects of testosterone on behaviour 
and biometry are mediated by DNA methylation, we expected 
the transcription start site regions of genes involved in sexual 
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dimorphism, hormone receptor expression, steroid hormone 
secretion, neurone development, morphology, and growth to be 
differentially methylated between the testosterone-treated group 
and the control group, but only in within-sex comparisons. Our 
results show that sex-specific DNA methylation changes associ-
ate with sex-specific effects on biometry and behaviour caused 
by experimentally induced elevated yolk testosterone levels. 
This therefore strongly suggests that DNA methylation is indeed 
a mediator of post-hatching sex-specific effects of elevated yolk 
testosterone on offspring phenotypes, but these effects do not al-
ways induce a more competitive phenotype pre-fledging.

2   |   Materials and Methods

This study was conducted in 2020 in a long-term nest box popu-
lation in the Westerheide estate, near Arnhem, the Netherlands 
(52°01′00″ N, 05°50′30″ E). All information regarding the 
number of eggs, nestlings, clutches, and broods is provided in 
Tables S1, S2 and S5.

2.1   |   Experimental Injection Protocol

We manipulated yolk androgen levels following a procedure 
that has been successfully applied before (e.g., Tschirren 
et al. 2005; Ruuskanen and Laaksonen 2010) (described in detail 
in Appendix S1A). Briefly, clutches were alternately assigned to 
be in either the testosterone-treated group or the control group. 
On the day the fifth egg was laid, egg yolks in clutches assigned 
to the testosterone-treated group were injected with 12 ng of tes-
tosterone dissolved in 5 μL of sesame oil, while egg yolks in con-
trol clutches were injected with 5 μL of sesame oil. We aimed to 
elevate yolk testosterone to concentrations that would still fall 
within the population's natural range in the majority of eggs 
while inducing detectable effects on biometry (Tschirren 2015). 
We therefore injected 12 ng testosterone per egg (approxi-
mately twice the standard deviation of yolk testosterone con-
centrations in great tit eggs  from a nearby study population: 
mean ± SD = 22.9 ± 6.2 ng/yolk in Ruuskanen, Darras, de Vries, 
et al. 2016). Thereafter, injections were done each day for the 
newly laid egg. Clutch size, egg weight, the duration of the 
incubation period, and hatching success did not differ signifi-
cantly between the treatment groups (Appendix S2A). Although 
hatching success was low (58.4% for control broods and 61.6% 
for testosterone-treated broods, Table S1), it was high compared 
to other injection studies (50%–55%, e.g., Podlas, Helfenstein, 
and Richner 2013; Ruuskanen, Darras, Visser, et al. 2016; Bentz 
et al. 2021).

2.2   |   Cross-Fostering

To minimise the differences in rearing environment between 
nestlings from testosterone-treated eggs and nestlings from 
control eggs, we used a partial cross-foster design as in Van 
Oers et al. (2015) and Sepers et al. (2021) (described in detail in 
Appendix S1B). Briefly, we assigned broods to pairs on day 2 or 
3 after hatching. Within a pair, the nestlings were weighed (to 
the nearest 0.01 g) and partially cross-fostered to create mixed 
broods containing nestlings from both treatments. Pairs of small 

broods (± three nestlings) were merged into one brood to lower 
the chance of desertion. We discarded 21 cross-fostered broods 
where the testosterone-treated nestlings were one day younger 
than the control nestlings from all analyses (asynchronous 
pairs, Table S1), as this made it impossible to disentangle treat-
ment effects from age effects. Therefore, all analyses were only 
conducted on cross-fostered broods with zero days difference in 
hatching date between the control and the testosterone-treated 
nestlings (synchronous pairs, Table  S1). On day 6 after hatch-
ing, the nestlings were weighed, and approximately 10 μL of 
blood was collected by brachial venipuncture. The samples were 
stored at room temperature in 1 mL of cell lysis buffer (Gentra 
Puregene Kit, Qiagen, USA) until further analysis for molecular 
sexing (following Griffiths et al. 1998) and to measure erythro-
cyte DNA methylation levels.

2.3   |   Video Recordings and Analysis

Seven days after hatching, we installed an infrared spy camera 
(Velleman, CMOS camera, CAMCOLMBLAH2) to record nest-
ling food solicitation behaviours. Cameras were connected to 
a digital video recorder placed outside the nest box (PV-500L2, 
LawMate International, Taipei, Taiwan). On day 8 after hatch-
ing, we weighed nestlings and marked them with red acrylic 
paint to enable their identification on video recordings under 
infrared light. Subsequently, we recorded the brood for at least 
2 h between 07:00 and 15:00. One nest box was recorded be-
tween 15:30 and 17:30. At least 1.5 h of video recordings were 
analysed using Adobe Premiere Pro 2021 (Adobe Inc.) by a sin-
gle person who was blind with respect to nestling treatments. 
During each parental feeding visit, we scored (1) which nest-
lings showed a begging response right before feeding and (2) 
which nestling received food.

2.4   |   Handling Stress Test

We conducted a handling stress test 14 days after hatching, 
as described in Fucikova et  al.  (2009) and Sepers, Mateman, 
et  al.  (2023), with two modifications. We measured handling 
stress for only 1 min instead of 2, and the nestlings were not so-
cially isolated. Handling stress was measured by counting the 
number of breath movements (i.e., breath rate) during four sub-
sequent bouts of 15 s each. Once all nestlings were tested sep-
arately, they were weighed, and their tarsus length (callipers, 
± 0.1 mm) was measured. Individual estimates for the handling 
stress response were obtained as described in Sepers, Mateman, 
et al. (2023), using a linear mixed model (LMM) with the num-
ber of breaths per 15 s bout as the dependent variable. The pro-
duced estimates (i.e., handling stress response) quantify the 
individual deviations from the average slope in breath rates over 
time and were extracted for further analysis.

2.5   |   DNA Methylation Data Generation 
and Bioinformatics

From all blood samples collected on day 6 after hatching, we 
randomly selected four samples per brood of rearing (two sam-
ples from each treatment). In total, we selected 180 samples, 
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of which 100 were from broods without an age difference be-
tween control and testosterone-treated nestlings (Table S5). We 
assessed genome-wide DNA methylation levels using epiGBS2 
(Gawehns et  al.  2022). This is a reduced-representation DNA 
methylation laboratory protocol and a bioinformatics pipeline. 
Five libraries, each containing 36 barcoded samples, were pre-
pared and sequenced as described in Gawehns et al. (2022) with 
the improvements reported in Sepers, Mateman, et  al.  (2023) 
and described in detail in Appendix S3.

Raw reads were demultiplexed, checked, trimmed, filtered, 
merged, aligned, and called for methylation using the refer-
ence branch of the epiGBS2 bioinformatics pipeline (Gawehns 
et  al.  2022) with minor modifications. We aligned the reads 
in directional and paired-end mode to the P. major reference 
genome v1.1 (GCF_001522545.3) (Laine et  al.  2016), removed 
overlap between read pairs (Table S6), and called methylation 
in CpG context only. We observed a bias in DNA methylation 
due to read position, which could reflect sequencing errors, 
base-calling errors (Hansen et al. 2012; Taub et al. 2010), or in-
troduced cytosines during end-repair (Bock 2012). Therefore, 
we ignored the first four nucleotides in all reads. Mapping effi-
ciency ranged from 43.10% to 51.40% (Table S6). While mapping 
efficiency seems low, it is comparable to other bisulfite sequenc-
ing studies in great tits (e.g., Mäkinen et  al.  2019; van Oers 
et al. 2020; Sepers, Chen, et al. 2023; Sepers, Verhoeven, and van 
Oers  2024). Complementary CpG dinucleotides were merged 
using the R package methylKit v1.16.1 (Akalin et  al.  2012). 
Subsequently, using a custom script, CpG sites (CpGs) with low 
coverage (< 10×) or very high coverage (> 99.9th percentile) and 
CpGs that were not covered in at least 15 individuals in each 
treatment or with a high (< 0.05) or low (> 0.95) mean methyla-
tion level across all individuals were discarded (Table S7), lead-
ing to a total of 169,215 CpGs in the final analysis.

2.6   |   Statistical Analysis

2.6.1   |   General

For all mixed models described below, unless described other-
wise, we included treatment, sex, and their interaction as fixed 
effects. Brood of origin and brood of rearing were included as 
random effects to account for the non-independence of nestlings 
from the same brood.

We used a binomial error distribution and logit-link function for 
all generalised linear mixed models (GMMLs). The significance 
of the interaction of treatment with sex and/or the significance 
of treatment was determined with a Likelihood Ratio Test (LRT) 
by comparing a model with the interaction or factor of interest 
with a model without the interaction or factor of interest using 
the anova function in R.

All LMMs were run with ML estimation, and we used back-
wards elimination of the interaction between treatment and sex 
based on the p-values provided by a type III analysis of vari-
ance via Satterthwaite's degrees of freedom method using the 
anova function in R. In case the interaction was non-significant 
(p < 0.05 for biometry and behavioural data, p < 0.1 for DNA 
methylation data), it was deleted. The minimal adequate model 

always included treatment and sex. The analyses were done 
using the packages lme4 v1.1.28 and lmerTest v3.1.3. Post hoc 
comparisons were performed with the lsmeans function in 
the package emmeans v1.7.2. p-values were provided via the 
Satterthwaite's degrees of freedom method and corrected for 
multiple testing with a Bonferroni correction.

All behaviour and biometry analyses were done in RStudio 
v2021.9.2, while the analyses of the methylation calls were done 
with RStudio v1.4.1717.

2.6.2   |   Statistical Analysis, Biometry and Behaviour

We used separate LMMs to analyse the effect of the treatment on 
weight on day two, day 6, day 8, and day 14 after hatching and 
on tarsus length and handling stress on day 14. Brood of rearing 
was not included when analysing the effect on weight on day 2, 
as weighing happened before cross-fostering.

We analysed the effect of the treatment on the probability of 
begging (yes/no) and the probability of getting fed at each 
parental visit using GLMMs. Nestling ID was included as a 
random effect in addition to the fixed and random effects de-
scribed in general.

2.6.3   |   Statistical Analysis of DNA Methylation

To analyse the effect of the treatment on DNA methylation level 
per CpG, we used a GLMM in which the dependent variable was 
modelled as the fraction of the number of methylated Cs over the 
total number of analysed reads (i.e., coverage: number of meth-
ylated Cs plus unmethylated Cs per CpG) with the cbind func-
tion. This model was run for each CpG separately and included 
the fixed and random effects described in general. CpGs with 
a False Discovery Rate (FDR) (Benjamini and Hochberg 1995) 
corrected p-value below 0.1 were considered as significantly 
differentially methylated CpGs. CpGs for which the effect of 
the treatment depended on sex were referred to as sex-specific 
differentially methylated sites (sex-specific DMS). We excluded 
models of CpGs that produced warnings other than singularity 
warnings. Furthermore, we corrected for potential overdisper-
sion by excluding CpGs that fell out of the 95% Highest Density 
Interval (HDI) for the distribution of the dispersion statistic 
(Zuur, Hilbe, and Ieno  2013) using the R package HDInterval 
v0.2.2 (Table S7).

Subsequently, each sex-specific DMS was assigned to a category. 
A significant (FDR corrected) difference between control and 
testosterone-treated females only corresponded to the category 
“female-specific DMS”, while a significant difference between 
control and testosterone-treated males only corresponded to the 
category “male-specific DMS”. A significant difference between 
control and testosterone-treated individuals in both the females 
and males, while the within-sex differences were in opposite 
directions, corresponded to the category “antagonistic DMS”. 
No significant difference between the treatments in either the 
males or females, but some other significant difference corre-
sponded to the category “other DMS” (e.g., significant difference 
between testosterone-treated females and control males).
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2.6.4   |   Gene Annotation and Ontology Analyses

CpGs were assigned to genomic regions using custom R scripts, 
R packages GenomicFeatures v1.42.3 (Lawrence et al. 2013) and 
rtracklayer v1.50.0 (Lawrence, Gentleman, and Carey  2009), 
and the P. major reference genome build v1.1, annotation ver-
sion 102 (Laine et al. 2016). CpGs were assigned to the follow-
ing genomic regions: TSS region (300 bp upstream to 50 bp 
downstream of the annotated transcription starting position), 
promoter region (2000 bp upstream to 200 bp downstream of 
the annotated transcription starting position), gene body (in-
tron or exon), upstream (10 K bp upstream of the gene body), 
and downstream (10 K bp downstream of the gene body) (Laine 
et al. 2016; Viitaniemi et al. 2019; Lindner, Laine, et al. 2021; 
Lindner, Verhagen, et al. 2021; Sepers et al. 2021). If a CpG was 
assigned to multiple regions, the regions were prioritised in the 
above-described order. If a CpG was assigned to both up- and 
downstream regions, we prioritised characterised genes and 
genes with the nearest gene body. To facilitate interpretation 
of genes associated with these sex-specific DMS, we searched 
the literature for relevant studies on phenotypic effects, DNA 
methylation, and gene expression. We specifically focused on 
genes with DMS within regulatory regions (promoter and TSS 
regions) and (groups of) genes with multiple DMS (Tables S17–
S20). In addition, we identified enriched Gene Ontology (GO) 
terms using the ClueGO v2.5.8 (Bindea et  al.  2009) plug-in 
for Cytoscape v3.9.1 (Shannon et  al.  2003) following Sepers, 
Verhoeven, and van Oers (2024). The target lists consisted of all 
genes associated with either (1) antagonistic DMS, (2) female-
specific DMS, or (3) male-specific DMS. The background list 
consisted of all genes associated with any of the analysed 
CpGs, except for 3603 functionally uncharacterised genes (i.e., 
LOC genes). All ontologies were updated on 09-03-2022. We 
used Revigo (Supek et  al.  2011) to summarise GO terms and 
eliminate redundant terms. We applied a semantic similarity 
cut-off value of 0.5 simRel (Schlicker et al. 2006).

3   |   Results

3.1   |   Treatment Effects on Biometry

Nestlings hatching from testosterone-injected eggs did not 
differ in weight from those hatching from control eggs on 
day 2 (treatment, LMM: F1,34.10 = 0.30, p = 0.59; Table S8), day 
6 (treatment, LMM: F1,33.19 = 0.13, p = 0.72; Table  S9), or day 
8 after hatching (treatment, LMM: F1,27.43 = 0.26, p = 0.61; 
Table  S10). Sexes significantly differed in weight on day 6 
after hatching (sex, LMM: F1,137.06 = 5.43, p = 0.02), but not on 
day 2 or 8 (all p ≥ 0.25). The treatment effect on variation in 
weight on day 2, 6, or 8 did not differ between the sexes (treat-
ment × sex, all p ≥ 0.22).

Testosterone treatment affected nestling weights on day 14 
after hatching in a sex-specific way (treatment × sex, LMM: 
F1,110.24 = 5.24, p = 0.02; Table S11). Testosterone-treated females 
weighed significantly less than testosterone-treated males (esti-
mate ± SE = −0.98 ± 0.17, t-ratio114.5 = −5.64, p < 0.001; ​Figure 1), 
while the sexes in the control group did not differ significantly in 
weight (−0.41 ± 0.18, t-ratio114.2 = −2.28, p = 0.15), and treatment 
effects within sexes were non-significant (females: 0.48 ± 0.27, 

t-ratio32.2 = 1.74, p = 0.55; males: −0.09 ± 0.27, t-ratio30.3 = −0.33, 
p = 1.00). We found a non-significant trend (treatment, LMM: 
F1,27.54 = 3.08, p = 0.09; Table  S12) that testosterone-treated in-
dividuals (mean ± SE = 19.30 ± 0.07) had longer tarsi on day 14 
after hatching compared to control individuals (19.10 ± 0.07), 
after correcting for sex differences (sex, LMM: F1,127.72 = 61.30, 
p < 0.001). This tendency existed irrespective of the offspring sex 
(treatment × sex, LMM: F1,120.93 = 0.40, p = 0.53).

3.2   |   Treatment Effects on Behaviour

Testosterone-treated nestlings (probability ± SE: 0.50 ± 0.03) 
begged significantly less than control nestlings did (0.57 ± 0.03) 
(treatment, GLMM: �2

1
 = 3.99, p < 0.05; Figure 2; Table S13). This 

did not result in different probabilities of being fed (treatment, 
GLMM: �2

1
 = 1.02, p = 0.31; Table S14). The treatment effect on 

the probability of begging or getting fed did not differ between 
the sexes (treatment × sex, all p ≥ 0.18; Figure S1). Sex differences 
in the handling stress response (sex, LMM: F1,124.63 = 10.38, 
p = 0.002; Table S15) were not affected by the treatment (treat-
ment × sex, LMM: F1,122.21 = 1.90, p = 0.17). Treatment itself also 
did not affect the handling stress response (treatment, LMM: 
F1,32.85 = 0.006, p = 0.94) when correcting for sex.

3.3   |   Treatment Effects on DNA Methylation

While we did not find any DMS when comparing methylation 
between nestlings from testosterone-treated eggs and control 
nestlings (all FDR-corrected p-values > 0.1), we found 763 sites 
that showed a sex-specific treatment effect (Figure  3; Table  1). 
In 338 CpGs, testosterone significantly affected methylation in 
both sexes, but in different directions (antagonistic DMS). In 117 
CpGs, we found a significant effect of testosterone on methylation 

FIGURE 1    |    Weight day 14. Weight (g) on day 14 after hatching for 
both sexes and control  and testosterone-treated treated nestlings. Red 
dots and triangles  represent raw data points for females. Blue dots and 
triangles  represent raw data points for males. Black dots represent the 
predicted marginal means of both sexes in both treatments. Error bars 
represent standard error of predicted marginal means. P-values below 
0.05 but above 0.01 are indicated with *, p-values below 0.001 are indi-
cated with ***.
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in females, but not in males (female-specific DMS), while the op-
posite pattern was found in 201 CpGs (male-specific DMS).

Out of these 763 CpGs, the 650 that could be annotated were found 
in or adjacent to 576 different genes, including 456 characterised 
genes. Out of the 650 annotated sex-specific DMS, 138 were found 
in the promoter region of a gene, including 18 situated in the TSS 
region. Furthermore, 392 sites were found in a gene body, and 120 
sites were found upstream or downstream of genes (Table S16).

Using the genes associated with antagonistic DMS, we detected 
49 significantly enriched GO terms (FDR corrected p < 0.05; 
Tables S21 and S22), which clustered into 21 enrichments. The 
gene ontologies were mainly involved in nervous system devel-
opment, cell adhesion, protein secretion, regulation of signalling 
pathways, and transcription coregulator binding (Figure 4a).

We detected nine significantly enriched GO terms (FDR-corrected 
p < 0.05) when we conducted a GO analysis on genes associated 
with female-specific DMS only (Table S23). Five enrichments re-
mained after merging. The gene ontologies were nuclear periph-
ery, nuclear matrix, spinal cord development, neural precursor cell 
proliferation, and actin filament-based movement (Figure 4b).

We also detected nine significantly enriched GO terms (FDR-
corrected p < 0.05) when we conducted a GO analysis on genes 
associated with male-specific DMS only (Table  S23), which 
merged into four enrichments. The gene ontologies were tran-
scription coregulator binding, cell fate specification, embryonic 
skeletal system morphogenesis, and regulation of carbohydrate 
metabolic process (Figure 4c).

4   |   Discussion

Hormonally mediated maternal effects have profound effects 
on offspring phenotypes, often in a sex-specific way. DNA 
methylation is predicted to mediate these effects. The aim of 
this study was, therefore, to assess whether DNA methylation 

FIGURE 2    |    Begging probability. The effect of treatment on the aver-
age probability (± SE) of begging during parental visits. P-value below 
0.05 but above 0.01 is indicated with *.
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FIGURE 3    |    Manhattan plot of sex-specific DMS. Manhattan plot showing the significance of the interaction of treatment (control and testos-
terone) with sex in explaining variation in DNA methylation (−log10(p-values)). Each dot represents a CpG tested for a sex-specific treatment effect 
(169,215 CpGs). Dark blue dots represent CpGs with a significant sex-specific treatment effect. Red dots represent significant CpGs that are in the 
TSS region of a gene. The dotted red line marks the genome-wide significance threshold. The sites are plotted against the location of the associated 
site within the genome. Alternating colours help to differentiate adjacently displayed chromosomes. ChrZ is a sex chromosome; all the other chromo-
somes are autosomes. All unplaced scaffolds are merged into the category scaffolds.
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TABLE 1    |    Number of sex-specific DMS assigned to different categories.

Female-specific Male-specific Antagonistic Other Total

Number of sex-specific DMS 177 201 338 47 763

Note: The categories are based on whether the within-sex differences between testosterone and control individuals are significant and the direction of the difference. 
Female-specific DMS: FDR-corrected p-value < 0.1 between control and testosterone-treated females only. Male-specific DMS: FDR-corrected p-value < 0.1 between 
control and testosterone treated males only. Antagonistic DMS: A significant difference between the treatments in both sexes, while the within-sex differences are in 
opposite directions. Other DMS: No significant difference between the treatments in either the males or females.
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FIGURE 4    |     Legend on next page.
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can potentially mediate sex-specific effects of experimentally 
manipulated yolk testosterone levels on postnatal biometry 
and behaviour. We found that experimentally elevated lev-
els of yolk testosterone indeed affected individuals in a sex-
specific way. Increased levels of yolk testosterone decreased 
the probability of begging and increased fledging mass differ-
ences between the two sexes. Experimental exposure to high 
levels of yolk testosterone also affected DNA methylation at 
763 CpGs. Interestingly, the direction of this effect always de-
pended on offspring sex.

We found a similar number of male-specific DMS and female-
specific DMS, suggesting that the sexes are equally sensitive to 
an increase in testosterone in terms of DNA methylation, but 
at different CpG sites. As DNA methylation can affect gene ex-
pression, it is generally expected to affect the expression of phe-
notypic traits (Law and Jacobsen  2010). Indeed, the biological 
functions of these genes were linked to phenotypic effects of ex-
perimentally elevated prenatal testosterone found in this study 
and in previous ones. However, we acknowledge that linking 
single differentially methylated sites to single phenotypic traits 
is challenging. First, the effect of DNA methylation outside of 
the promoter region on gene expression is not clear-cut, and 
DNA methylation also affects the expression of distant genes, in 
so-called trans effects (van Eijk et al. 2012). Second, gene expres-
sion variation itself is not easily translated into the expression of 
polygenic traits without knowing the underlying genetic archi-
tecture of the studied trait.

4.1   |   Nervous System Development and Behaviour

Female-specific and antagonistic DMS were found in or near 
genes involved in nervous system development and behaviour 
(Table S17), which indicates that DNA methylation mediates sex-
specific effects of prenatal testosterone on brain organisation and 
behaviour. This was not reflected in the behavioural traits mea-
sured in our study, as we found no effect of exposure to high yolk 
testosterone on the handling stress response, and it decreased 
the probability of begging, but regardless of sex. As many of the 
female-specific and antagonistic DMS were found in or near 
genes involved in cognitive phenotypes and neurological diseases 
(Table S17), it is possible that we should have focused on cognitive 
traits instead. Indeed, experimentally increased yolk testosterone 
affected the brain anatomy differently in male and female chick-
ens (Gallus domesticus) (Schwarz and Rogers 1992), and in other 
bird species it has been found to affect lateral preference consis-
tency (yellow-legged gull, Larus michahellis: Possenti et al. 2016) 
and prenatal auditory learning (bobwhite quail, Colinus vir-
ginianus: Bertin et al. 2009), although regardless of sex. To our 
knowledge, there are no studies on the (sex-specific) effects of ex-
perimentally elevated yolk testosterone on cognition in wild birds. 
Given the link of the differentially methylated genes in our study 

to cognition, we see ample opportunity for future experimental 
studies on the link between prenatal testosterone, epigenetic 
mechanisms, and avian cognition (Sepers et al. 2019).

Although most studies reported stimulating effects of exper-
imentally increased yolk testosterone on begging behaviour 
(Schwabl  1996; Eising and Groothuis  2003), decreased beg-
ging rates as in our study have been found before as well (Pilz 
et al. 2004). As the treatment did not affect nestling mass on day 
2, 6, or 8 after hatching, it is unlikely that a difference in nest-
ling quality or the need for food explains the treatment effect on 
begging behaviour. It is more likely that this was facilitated by 
structural differences in nervous system development, possibly 
mediated by DNA methylation of genes involved in nervous sys-
tem development and behaviour (Table S17).

4.2   |   Mass, Growth, and Metabolism

Exposure to high yolk testosterone increased fledging mass dif-
ferences between the two sexes, since it had a negative effect 
on female but not on male fledging mass. However, this result 
must be interpreted with caution as the treatment only caused 
a marginally significant difference in fledging mass between fe-
males. This antagonistic effect of experimentally elevated yolk 
testosterone on growth has also been found in other bird spe-
cies (Saino et al. 2006; Holmes and Schwabl 2022). Sex-specific 
effects on fledging mass are also supported by the functions of 
several of the genes in which male-specific and antagonistic 
DMS were found, such as growth and metabolism (Table S18), 
suggesting that the effect of prenatal testosterone on fledging 
mass is mediated by DNA methylation changes.

As described before, the decreased probability of begging of 
testosterone-treated nestlings did not lead to a decreased nest-
ling weight at earlier stages, possibly because sibling competi-
tion was low, which is supported by our results that they were 
not fed less. A likely explanation for the late appearance of an 
effect on weight is that when the nestlings from the testosterone 
group remain to beg less often than those from the control group 
when nestling competition increases, the female offspring may 
suffer the most in such suboptimal conditions (de Kogel 1997; 
Martins 2004). Indeed, several studies suggest that male great tit 
nestlings have a competitive advantage in suboptimal conditions 
(Dhondt 1970; Drent 1984; Smith, Kallander, and Nilsson 1989; 
Lessells, Mateman, and Visser 1996; Oddie 2000). However, we 
acknowledge that we cannot exclude the possibility that the ef-
fect on fledging weight was influenced by multiple or other fac-
tors, such as decreased energetic costs due to lower begging rates 
(which may be limited: Leech and Leonard 1997), higher diges-
tive efficiency in testosterone-treated males (Ruuskanen and 
Laaksonen  2013), or trade-offs with, for example, unobserved 
physiological components (Moreno-Rueda 2010).

FIGURE 4    |    Representation of functional roles of genes associated with sex-specific DMS. Treemaps of GO terms associated with sex-specific 
DMS for the categories (a) antagonistic DMS, (b) female-specific DMS and (c) male-specific DMS. The GO terms from ClueGO were merged based 
on semantic similarity using REVIGO. Each rectangle indicates the FDR-corrected p-value of the representative GO term for each merged cluster. 
Within each category (i.e., treemap), different colours represent superclusters comprising related clusters within the ontologies of biological process, 
molecular function, and cellular component.
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4.3   |   Oxidative Stress

Since heavier fledglings are more likely to recruit locally 
(Tschirren  2015), the testosterone-treated males in our study 
might be more likely to survive than testosterone-treated fe-
males. However, elevated yolk testosterone levels might 
also entail costs for these males, which might have mani-
fested as higher resting metabolic rates (Tobler, Nilsson, and 
Nilsson  2007; Ruuskanen et  al.  2013) and subsequently more 
oxidative damage (Feuerbacher and Prinzinger 1981; Buchanan 
et  al. 2001). Indeed, experimentally increased yolk testoster-
one has been found to reduce DNA damage repair efficiency 
(Treidel et al. 2013) and increase telomere shortening (Parolini 
et al. 2019). Furthermore, experimentally increased yolk testos-
terone reduced plasma antioxidant levels in male nestlings, but 
not in female nestlings (Tobler and Sandell 2009). Although we 
did not measure sex-specific effects on resting metabolic rate and 
oxidative damage, we did find several sex-specific DMS in genes 
associated with DNA binding, oxidative stress, and DNA repair 
(Table S20). The sex-specific effects of elevated yolk testosterone 
on nestling weight and on DNA methylation of genes related to 
growth, metabolism, and oxidative damage suggest that there 
was a trade-off between investment in nestling growth and in-
vestment in DNA repair or protection. Furthermore, these results 
suggest that the costs and benefits of elevated yolk testosterone 
differ between sexes, possibly as a result of differences in DNA 
methylation patterns. It would thus be of particular interest to 
assess how elevated yolk testosterone affects the covariance be-
tween these traits and the covariance between DNA methylation 
and gene expression of associated genes. We expect that DNA 
methylation can be an underlying mechanism for mediating sex-
specific trade-offs across many taxa, as long as the sexes differ in 
how traits affect their fitness. For example, for males, the costs 
of elevated yolk testosterone might be outweighed by becoming 
larger and by subsequently becoming more competitive, thereby 
increasing their fitness. Whereas for females, there might not be 
a competitive benefit in being larger.

4.4   |   Future Avenues

Several of the male-specific and antagonistic DMS were associated 
with male fertility (Table S19), which is confirmed by experimen-
tally elevated yolk testosterone effects on fecundity and other traits 
that are important for reproduction, such as plumage development 
and sexual display (Eising, Muller, and Groothuis 2006; Partecke 
and Schwabl 2008; Galván and Alonso-Alvarez 2010), testis and 
egg size (Uller, Eklöf, and Andersson 2005), and egg fertility and 
laying activity (Rubolini et al. 2007). This strongly suggests an ef-
fect of exposure to high yolk testosterone on fecundity and ulti-
mately fitness via DNA methylation. To confirm this, it would be 
particularly interesting to assess DNA methylation, sperm qual-
ity, and fitness measures, such as lifetime reproductive success, 
during subsequent breeding seasons.

In addition to assessing effects on cognition, trade-offs, and repro-
duction, it would also be interesting to further explore the mecha-
nisms that account for sex-specific methylation. Sex differences in 
DNA methylation are known to exist and have been confirmed in 
humans (Liu et al. 2010; McCarthy et al. 2014; Yousefi et al. 2015; 
Gatev et  al.  2021; Solomon et  al.  2022) and chickens (Teranishi 

et  al.  2001; Natt, Agnvall, and Jensen  2014). The mechanisms 
that account for sex-specific methylation patterns remain elusive. 
These differences might be driven by hormones, which could be 
confirmed with the effects of increased levels of yolk testosterone 
on DNA methylation in this study. However, we cannot exclude 
the possibility that genetic variation plays a role too. DNA meth-
ylation is not only influenced by environmental factors (Sepers 
et al. 2021; Sepers, Verhoeven, and van Oers 2024) but also by ge-
netic variation (Höglund et al. 2020; Sepers, Chen, et al. 2023) or 
by genotype-by-environment interactions (Sepers et al. 2019). As 
the treatment effect on DNA methylation depended on offspring 
sex, and because the sex chromosomes are highly differentiated 
in carinate birds (see Solari  1993; Graves  2014), we expect that 
the epigenetic response to enhanced yolk testosterone will be 
genotype-dependent for at least part of the CpGs. In birds, sex is 
genetically determined, with females being the heterogametic sex 
(ZW) and males being the homogametic sex (ZZ). Interestingly, 
none of the DMS was located on the Z chromosome. We potentially 
missed DMS on the sex chromosomes as we could only analyse 
a fraction of the CpGs on this chromosome (~0.9%). However, as 
genetic variation can affect methylation of distant CpGs (Höglund 
et al. 2020; Sepers, Chen, et al. 2023), it is also possible that genetic 
variation on the sex chromosomes induces sex-specific the meth-
ylation patterns on the autosomes. To be able to separate mater-
nal effects from sex-specific genetic effects on DNA methylation, 
quantitative trait loci should be mapped for the sex-specific DMS.

5   |   Conclusion

Our study suggests that in contrast to our expectations, experi-
mentally enhanced levels of yolk testosterone resulted in a less 
competitive phenotype, especially in females. Testosterone af-
fected DNA methylation in genes belonging to different path-
ways for males and females, pointing to a difference in costs and 
benefits of being exposed to higher yolk testosterone between 
the sexes. While it remains challenging to link DNA methyla-
tion changes to changes in phenotypic traits, differential meth-
ylation of genes involved in metabolism, mass, and development 
align with the phenotypic effects of elevated yolk testosterone, 
suggesting that DNA methylation induced by elevated yolk tes-
tosterone can affect nestling mass and behaviour. In conclusion, 
our results support the hypothesis that DNA methylation varia-
tion caused by maternal hormones deposited in the egg can be a 
mediator for sex-specific effects during early development.
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