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Abstract 

The macroscopic properties of superfluid helium are well known and their 
microscopic background is understood to a good extent. However, the mi­
croscopic description of superfluid in the presence of atomic scale anisotropy, 
for example, an atom or a molecule, is not complete and it has been exten­
sively studied in the recent years. Especially, the dynamic properties have 
remained as a challenge. 

The earlier theoretical studies on atomic scale impurities in superfluid 4He 
have mainly used the standard (classical) bubble model, the quantum Monte 
Carlo methods, or the one-dimensional density functional theory, all of which 
having their own specific restrictions. In the present thesis , a fully three­
dimensional bosonic density functional method is developed, which enables 
the study of a variety of time-dependent and time-independent, anisotropic 
systems. Fully three-dimensional systems are computationally very demand­
ing and an efficient numerical implementation is crucial. Thus a lot of atten­
tion must be paid to the design of the implementation. 

The developed method was applied to three different systems: 1) molecular 
hydrogen solvated in bulk superfluid helium, 2) a hypothetical two-level atom 
in a helium droplet, and 3) electron bubbles in bulk superfluid. The solva­
tion of the first four triplet states of H2 was studied using the bosonic density 
functional method and a hybrid density functional - diffusion Monte Carlo 
method. The solvation structures as well as absorption and emission spectra 
were calculated. The absorption spectrum of a hypothetical two-level atom, 
which is excited from its anisotropic (isotropic) ground state to its isotropic 
(anisotropic) excited state, was simulated by recording the time evolution 
of the system. The absorption spectra obtained are compared with the cor­
responding isotropic cases and the spectra were found essentially equal in 
small helium droplets. Electron bubbles in superfluid 4He were calculated
using a combination of electronic and bosonic density functional methods. 
As a result, the properties of the first three states of one-electron bubbles 
were obtained and the two-electron bubble was found unstable in its both 
(singlet and triplet) states. 
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Chapter 1 

Introduction 

Since its discovery in 1938 by P.L. Kapitza [1, 2] superfluid helium has been 

extensively studied. Early experiments were focused on the macroscopic 

properties of superfluid helium revealing its extraordinary properties, such 

as vanishing viscosity. Theoretical studies made by famous scientists, such 

as L.D. Landau [3] and R.D. Feynman [4-8], formed the basis for under­

standing the underlying physics of superfluidity. More recent experiments 

have been more focused on atomic scale phenomena, for example, the static 

and dynamic properties of superfluid helium around atomic scale impurities . 

To explain the observations made in these experiments, new theoretical and 

numerical methods have been developed. The present thesis focuses on these 

developments. 

1.1 Superfluid 4He 

A helium atom consists of a nucleus and an electron pair, which fills the ls 

atomic orbital. The electrons are strongly bound as the first excited state 

lies ~20 eV above the ground state [9]. As a result the chemical interactions 

between a helium atom and other atoms or molecules are very weak and no 

stable molecules containing a helium atom are known. The van der Waals' 

forces (induced dipole - induced dipole interaction) are also weak because 

helium atoms are weakly polarizable. The light mass of helium atoms con­

tributes to a large zero point energy. For example, He-He pair-interaction 

is only about 1 meV bound, and consequently the dimer has an equilibrium 

distance of the order of nanometers [10-12]. Illustratively, to other atoms, 

a helium atom looks like a small, light, hard ball, which attracts slightly at 

1 



2 CHAPTER l. INTRODUCTION 

close distances, but strongly prevents penetration inside the ball. 

Of the two stable isotopes, :;He and 4He, 4He is the more common (>99.99%) 

in nature. It has two protons and two neutrons in its nucleus with both 
nuclear spins paired. Together with the paired electron spins it is a boson 

with a total spin equal to zero. This light, inert boson has a very exceptional 

phase diagram as shown in Figure 1.1. In addition to the gas, liquid and 

solid forms it possesses a superfluid phase. When liquid helium is cooled at 

the saturated vapor pressure, it undergoes a phase transition at the A-point 

(2.17 K) [13]. A fraction of the liquid begins to behave purely quantum 

mechanically and remains liquid down to absolute zero. To describe the 

macroscopic properties of the superfluid phase (He-II), the two-fluid model 

can be used [3, 14]. In this model the superfluid phase is assumed to consist of 

two different fluids: a "pure" superfluid and a normal fluid. The contribution 

of the superfluid fraction increases as the temperature is decreased below the 

A-point and reaches unity at O K (Figure 1.2).

SOLID 

30 

E 
LIQUID 

20 

a. 

SUPERFLUID 
10 A· POINTf 2.17 K, 0.0497 atm) GAS 

0 1.0 2.0 3.0 4.0 5.0 

T/K 

Figure 1.1: Phase diagram of 4He. The four different phases are shown: the 
gas, liquid, solid, and superfluid. Reproduced from reference [13]. 

1.1.1 Macroscopic view 

On the macroscopic scale, the superfluid has several unusual properties com­

pared to a normal fluid; they are briefly reviewed in this subsection using 

the two-fluid picture. A more detailed and correct description is presented 

in the next subsection, which provides the description on the microscopic 

level. A pure superfluid has no viscosity, which allows it to pass through 
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Figure 1.2: Superfluid (p
8

/ p) and normal fluid fractions (p
n

/ p). Reproduced 
from reference [13]. 

tiny holes and capillaries without any friction, i. e., without dissipating en­

ergy [13]. It has zero entropy and infinite thermal conductivity [13], which 

means that the superfluid fraction is always at zero temperature, whereas, at 

finite temperatures, the normal fraction contains all the heat of the system. 

This allows, for example, temperature waves (the second sound), which are 

able to transfer heat without altering the total density [13]. 

In the thermomechanical effect a superfluid flow is created by heating a cap­

illary inserted in liquid helium [ 13]. The diameter of the capillary is so small 

that only the superfluid fraction can flow through it. When the capillary is 

heated, the amount of normal fraction increases inside the capillary. As a 

consequence, the imbalance between the liquid inside the capillary and the 

surrounding liquid causes a flow of the superfluid into the heated capillary. 

Continuous heating creates a continuous flow and the superfluid fraction flows 

through the capillary. As a result the heated capillary acts as a thermome­

chanical pump (Figure 1.3), which is also known as the fountain pump. 

Vortices are visible evidence of the underlying quantum nature of the super­

fluid. When a superfluid is rotated faster than a given critical velocity, a 

vortex may form with a certain minimum angular velocity. If the rotation 

speed is increased, the angular velocity of the vortex remains constant, until 

another vortex appears. Although the angular velocity of the first vortex 

may change, the circulation ("amount of rotation") remains unchanged and 

the new vortex has the same circulation as the first one. By increasing ro­

tation even further, more vortices with the same circulation are introduced. 

This behaviour is explained by the superfluid's quantum nature. The super­

fluid acts as a single quantum mechanical entity and a rotating superfluid can 

only accommodate energy in amounts equal to the size of a vortex circulation 
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POROUS-_..;_....-� 
SUBSTANCE •••• •. .,J ��./• 

BULK SUPERFWID 

Figure 1.3: Thermomechanical pump for superfluid 4He known as the foun­
tain pump. Reproduced from reference [13]. 

quantum [13]. 

1.1.2 Microscopic view 

In order to properly explain the macroscopic properties of superfluid helium, 
one must examine the quantum mechanics of the system. The superfluid 
phase is a Bose-Einstein condensate, which can be considered as composed 
of two fractions [4, 15]. The part of the system which is in the ground state 
corresponds to the superfluid (condensate) fraction, and the excited states 
are represented as the normal fraction of the two-fluid model. As the helium 
atoms are bosons, the total wavefunction of the system must be symmetric 
and atoms cannot be distinguished from each other. Therefore, every atom 
contributes to both superfluid and normal fluid, and no phase separation 
exists. The Bose-Einstein condensation happens despite the strong repulsive 
interaction at short distances, since "the motion of one atom through the 
others is not opposed by a potential barrier, because the others may move 
out of the way" [4]. The motion in the configuration space happens along 
trajectories of low kinetic energy and negligible potential barriers. In other 
words, the zero point motion of the atoms ( 0 2. 7 A) is sufficient to keep 
the atoms far enough (~3.6A) from each other so that the atoms can move 
easily past each other [5]. lllustratively, the hard balls must be able to pass 
each other without colliding and without a major readjustment of the other 
balls. The motion of the other atoms just increases the effective inertia 
of the moving atom. The atoms delocalize, which allows for condensation, 
aml lhus lhe grouu<l slale wavefundion spans over lhe whole liqui<l. The 
corresponding density is uniform throughout the system, but it has zero-
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point fluctuations analogous to the vacuum electromagnetic field, with the 
exception that only longitudinal modes are allowed [5]. 

The elementary excitations of superfluid helium are the key to understanding 
the two-fluid model. The excitations are divided into two types: phonons and 
rotons. The phonons are long wavelength compressional waves, i. e., sound 
waves, where each atom is slightly displaced to form a periodic, long wave­
length modulation in the density (Figure 1.4a). Phonons exist in normal 
fluids, whereas rotons do not. According to Feynman "the roton is a kind of 
quantum-mechanical analog of a microscopic vortex ring, of diameter about 
equal to the atomic spacing" [6] (Figure 1.4b), which is completely delocal­
ized. In contrast to the behavior of a phonon, a roton leaves the density 
unchanged in scales larger than the interatomic distance. However, it needs 
a finite energy to be excited, whereas the energy of a phonon is proportional 
to the square of the momentum, and thus the energy approaches zero as the 
wavelength approaches infinity [5]. The phonons and rotons are the only pos­
sible (elementary) excitations that can be thermally created. Because of the 
finite excitation energy of the rotons, there is not enough thermal energy for 
the creation of appreciably many rotons just above the absolute zero (below 
~1 K) [5]. 

Figure 1.4: Illustrative sketch of a) a phonon and b) a roton wave packet. 
Arrows, current; greyscale bar, density. 

Before considering the theory of superfluidity in detail, a few remarks should 
be made regarding the peculiar excitation spectrum, the dispersion relation. 
The spectrum of the elementary excitations (Figure 1.5) can be derived from 
data obtained in the inelastic neutron scattering experiments [16]. Initially, 
the energy rises linearly in the region that corresponds to phonons. The 
rotons are found near momentum q = 2 A-1

, where the dispersion relation 
has its minimum, called the roton minimum. Note that at the roton minimum 
and at the maximum of the spectrum, called the maxon, the group velocity is 
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equal to zero, i.e., a wave packet at these points does not move even though it 

has a non-zero momentum. Between the maxon and the roton minimum, the 

group velocity is negative, i.e., a wave packet moves to the opposite direction 

relative to the momentum. 

16 

12 

8 
Ill 

4 

0 

q / /l
1 

Figure 1.5: Dispersion relation of bulk superfluid 4He. Reproduced from 
reference [13]. 

One manifestation of superfluidity is observed when an object is dragged 

slowly in the superfluid: it drifts without friction [13]. In the microscopic 

view, an object moving through the liquid can only feel friction if it can 

dissipate energy [5]. The only way to dissipate energy in superfluid is to 

create excitations in the liquid. However, the conservation of energy and 

momentum prevents an object moving with a constant velocity from creating 

phonons and rotons when its velocity is below a certain critical velocity [5]. 

The critical velocity of phonons is the velocity of the (first) sound, 239 m/s, 

whereas for the rotons the critical velocity is significantly lower, ~59 m/s [13]. 

Therefore, below the critical velocity ( of the rotons), if no excitations are 

present, i.e., the temperature is zero, the object does not have any way 

to lose its energy and thus it cannot feel any friction [5]. However, at a 

finite temperature, there exist thermal excitations (e.g. phonons and rotons), 

which can scatter from the object and cause it to lose some of itR energy [fi]. 

This energy loss can be arbitrarily small. Illustratively, the object can be 

regarded as moving in a gas of thermal excitations with non-zero viscosity, 

which corresponds to the normal fluid in the two-fluid model. 

Another consequence of superfluidity is a superfluid flow through a capillary. 

In this case, the thermal excitations are not able to work their way through 
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the long, narrow capillary [5], because the modes of the bulk are weakly 
coupled to the modes in the capillary, and thus the excitations are mainly 
reflected back. However, because the ground state wavefunction just adapts 
to the shape of the capillary while remaining essentially unchanged in other 
respects, the coupling is strong for the superfluid fraction. As the superfluid 
fraction can flow through the capillary, whereas the normal fraction cannot, 
only a superfluid flow is observed. 

If the temperature at one end of the capillary is higher than at the other 
end, the average amount and the average momentum of thermal phonons are 
greater at the hotter end than at the colder end. This causes a higher pressure 
at the hotter end, as the pressure is created by phonons colliding with the 
walls of a container [5]. This pressure difference causes a superfluid flow from 
the hot to the cold end, which is the explanation for the thermomechanical 
effect. 

Finally, the quantum mechanics of vortices are briefly described. A vortex is 
a circulation of the fluid around a line inside the superfluid. The wavefunc­
tion of the superfluid wraps around the line in such a way that the phase 
changes by a non-zero integer multiple of 21r in one cycle around the line. 
The multiplier, i. e., the quantum number of the vortex, must be an inte­
ger to satisfy the continuity requirement of the wavefunction, and non-zero 
to y ield the circulation. The circulation of a (simply connected) superfluid 
with a uniform density is prevented by the Bose statistic, as the circulation 
reduces to the permutation of atoms [6]. Thus, the minimum energy solu­
tion for circulating superfluid is obtained when the density vanishes on the 
vortex line (and superfluid becomes multiply connected) [8]. The superfluid 
can circulate around the vortex line with a constant angular velocity, as the 
divergence of the kinetic energy in the core is canceled by the vanishing den­
sity. In the classical picture, the centrifugal forces are pushing the atoms out 
of the core. 

A vortex line cannot have a loose end inside the liquid due to continuity, but 
it can terminate on the walls of the container, on impurities, or it can form 
a loop (Figure 1.6). A vortex ring can form if a vortex line, or a part of it, 
creates a closed loop and the loop detaches from a wall, from an impurity, or 
from the rest of the vortex line. This offers a novel way to create excitations in 
the superfluid. The energy of a vortex ring E

v is approximately proportional 
to radius of the vortex ring R ( Ev ex R ln �) and is greater than the energy of 
a phonon or a roton [8]. A vortex ring also carries higher momentum, which 
is proportional to the area of the ring (ex R2 ) [8]. Thus a large vortex can 
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absorb more momentum relative to its energy than a small one, and as large 

objects (e.g. impurity or capillary) can create large vortices, they have lower 

critical velocities than small objects. Because the conservation of energy and 

momentum is more easily satisfied by a vortex than a phonon or a roton, 

the vortices have lower critical velocities than phonons and rotons. In some 

sense, the roton can be regarded as the smallest possible vortex with a radius 

of the order of the atomic spacing [8]. 

As discussed earlier, when a superfluid is rotated, an array of vortices is ob­

served. In an equilibrium, the number of vortices depends on the rotation 

speed and each of the vortices has the same minimum circulation corre­

sponding to one circulation quantum. The array of small vortices allows a 

more favourable velo<..:ity <li:;tribution than, for example, one large vortex in 

a highly excited state, and the total energy is lower despite the increased 

number of holes in the liquid [8]. 

b) c) 

Figure 1.6: Sketches of different kind of vortices: a) a vortex line attached to 
a wall, b) a vortex line attached to an impurity atom, and c) a vortex ring. 

1.2 Atomic scale impurities 

The present understanding of the microscopic properties of superfluid he­

lium is mainly based on inelastic neutron scattering experiments [16], which 

provide information about correlations in the liquid. However, these exper­

iments probe only the homogeneous bulk liquid. As the presence of atomic 

scale impurities introduces microscopic inhomogeneities in the liquid, they 

can provide information on the microscopic properties of the inhomogeneous 

superfluid. In addition to being microscopic probes in the superfluid, the 

impurities themselves can be studied in great detail, as the superfluid offers 

a homogeneous, ultra-cold and gentle matrix for spectroscopic studies [17]. 

The major obstacle in introducing impurities into bulk superfluid helium 

is the very low equilibrium solubility and rapid clustering of the atoms and 
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molecules. This is why the first studies were carried out using intrinsic impu­
rities, such as helium ions (He+), excited helium atoms (He*) and molecules
(He;), and excess electrons [17], which will be discussed in more detail later.
In more recent experiments metal atoms and small metal clusters have been
successfully introduced into superfluid by 1) first dragging ions into the liquid
by an electric field and then neutralizing them or 2) by pulsed laser ablation
of a metal target either just above the helium surface or immersed in the
helium [17]. Similar techniques have also been applied to hydrogen to obtain
hydrogen molecules [18].

The development of the helium droplet technique has been the most success­
ful in solving the problem of how to introduce chemical species into liquid
helium, as virtually any atom or molecule can be picked up by a droplet (Fig­
ure 1.7) [17]. The droplets are created by expanding cold helium gas through
a nozzle. As the gas expands, it cools down and, consequently, the atoms
begin to cluster. After the clusters have grown to larger droplets, they are
cooled further down to 0.4 K by evaporation of helium atoms. In a pickup
cell, an impurity is captured by the droplet in a collision between the gaseous
impurity atom and the droplet. The excess energy which remains after the
collision quickly evaporates more helium atoms, and the droplet cools back
to 0.4 K. Typical droplets used in the experiments consist of between 103 

and 105 helium atoms. The droplets are sufficiently small and cold so that
thermal phonons are not appreciably populated, and primarily only surfaces
modes, ripplons, are thermally excited [19].

0 

0 

�
CLUSTERING EVAPORATIVE PICK-UP EVAPORATIVE 

NOZZLE SCIMMER COOLING CHAMBER COOLING DETECTION 

Figure 1.7: Schematic diagram of a helium droplet experiment.

In the experiments, different metals (e.g. Li, Na, K, Rb, Cs, Mg, Ca, Sr,
Ag, Al) and their clusters, small molecules ( e.g. SF 6, OCS, NH3 , HF) and
organic molecules ( e.g. glyoxal, polyaromatics, indoles, and porphyrines)
have been studied in helium droplets [20]. Most of these are captured in­
side the droplet; however, for example, alkali metals attach to the surface
of the droplet. To study optical spectra of these droplets two techniques
are mainly used: the beam depletion technique and the laser-induced fluo-
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rescence method [17]. When an atom or molecule (chromophore) is excited 

by light, a rapid energy transfer from the chromophore to the surrounding 

liquid occurs and evaporation takes place, i.e., the droplet is depleted. In 

the beam depletion approach, the depleted droplet is ionized and detected 

by a mass spectrometer. The laser-induced fluorescence method can provide 

a significantly better signal-to-noise ratio if the fluorescence quantum yield 

of the impurity is sufficiently high. 

Impurities embedded in helium have a wide range of salvation structures from 

frozen solvent layers to large cavities. If the impurity-helium interaction is 

strongly repulsive, as in the case of an excess electron or a negative ion, a 

cavity ("bubble") is formed inside the liquid with the impurity residing at the 

center (Figure 1.8a) [17]. If the interaction is attractive, helium atoms are 

packed tightly around the impurity and solvation shells are formed (Figure 

1.8b) [17]. The solvation shells remain in the liquid phase unless the attrac­

tion is large. In this case, some helium atoms might be "frozen" by forming 

a complex with the impurity [20]. 

Figure 1.8: Illustrative view of an impurity a) "bubble", and b) "snowball". 
Greyscale background, helium density. 

Electronic excitation of an impurity is coupled to the surrounding liquid. If 

this coupling is weak, the main feature shown in the spectrum is the zero 

phonon line (ZPL), whir.h mrresponds to the exr.itation of the (solvaterl) im­

purity alone. It is typically sharp and slightly shifted ( ~10-100 cm-1) to blue

or to red, depending on the helium-impurity interaction [20]. A simultane­

ous excitation of the impurity and helium yields a phonon wing on the blue 

side of the zero phonon line, i. e., higher in the energy. A common feature of 

most phonon wings is a broad maximum around 8 K, which is considered as 

evidence of the superfluidity [20]. If the droplets are in the superfluid state, 

the density of states has a maximum at the roton minimum, at 8.65 K in the 

bulk and slightly less in droplets. Furthermore, if the transition probability 

is assumed to be smooth, the increased density of states produces a maxi­

mum at the corresponding energy. If the coupling between an impurity and 

helium is strong, as in the case of, for example, some aromatic molecules, it 
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has been suggested that impurity-helium complexes or solid solvent layers 

are responsible for specific features below 8 K [20]. 

The vibrational bands in the IR-spectra of solvated impurities show only 

small changes with respect to the gas phase. The shifts are order of mag­

nitude smaller (~1-10 cm-1) than typical shifts of the electronic transi­

tions [19, 20]. As no splitting of the degeneracies have been observed, it 

has been assumed that the superfluid does not affect the symmetry of the 

vibrations, i.e., that the superfluid adapts to the symmetry of the molecule. 

A rotation structure is also observed for some molecules, which is not typical 

for liquid solvents [19]. Rotational constants of the light molecules, such as 

HF and H2O, are equal to the gas phase values, whereas for slightly larger 

molecules, such as SF 6 and OCS, the rotation is somewhat hindered and the 

effective moment of inertia is increased approximately three-fold [19]. It has 

been proposed that the fraction of normal fluid is increased in the first sol­

vation shell, which leads to a higher effective moment of inertia as normal 

fluid is dragged by the rotor [21]. 

Liquid helium offers an interesting opportunity to study chemical reactions 

at very low temperatures. In contrast to studies at higher temperatures, the 

reactions are not activated by thermal excitations, but instead the quantum 

mechanics, e.g., tunneling, and long-range dipole-dipole (van der Waals') 

forces play an important role [20]. For example, the van der Waals' forces 

define how reactants approach each other, and thus dictate which reactions 

are likely to happen. This is in contrast to higher temperature conditions 

where the orientation of the reactants is thermally averaged. A selective 

recombination of alkali atoms to di- and trimers in liquid helium has been 

demonstrated [20]. Also a reaction between Ba and N2O to form BaO* 

and N2 , providing a strong chemiluminescence as BaO* relaxes, has been 

studied [20]. In the future, helium droplets might be used as ultra cold 

nanoreactors. 

Finally, a short comparison of the advantages and disadvantages between 

bulk and droplet experiments is made. As stated earlier, the droplets are su­

perior in the sense that almost any species can be introduced in the droplets, 

whereas the advantages of the bulk are in the accessibility of a wide pressure 

and temperature range [17]. The droplet experiments may also suffer from 

unwanted boundary effects because of the microscopic size of the droplets. 

These two media are complementary to each other. 



12 CHAPTER 1. INTRODUCTION 

1.2.1 Electron bubbles 

An excess electron in liquid helium deserves a more detailed inspection due 

to its extraordinary nature. Electrons can be introduced in helium by a dis­

charge tip, or by an a or ,6-source immersed into helium, and they can then 

be dragged in a chosen direction by a static electric field for excitation and 

detection [22, 23]. In the early experiments, Levine and Sanders noticed that 

the mobility of the excess electrons is decreased by a factor of 103 to 104 in 

liquid helium as compared to the gas phase [24]. This can be explained by 

the formation of an electron bubble in the liquid phase. In the gas phase, an 

excess electron is in a delocalized plane-wave state, but because the density 

increases, it localizes inside a cavity and its motion is hindered as the elec­

tron must "push" helium out of its way. The cavity is formed as the strong 

repulsion between the excess electron and electrons of helium favors the lo­

calization of the former, and the reduction in the potential energy is able to 

outweigh increase in the kinetic energy. 

In its ground state, the electron bubble resembles an electron in a spherical 

square-well of a depth of ~1.0 eV. However, the spherical shape is a result of 

a delicate balance between the electron and the liquid. If the excess electron 

is excited to its first excited state, the wavefunction forms a nodal plane. As 

the electron density is no longer spherical, the liquid begins to adapt to the 

new shape. As a result, the shape of the bubble transforms from a sphere 

to a peanut (two slightly overlapping spheres). The strong coupling between 

the electron and helium leads to a unique bubble shape for each electronic 

state of the bubble in contrast to atoms or molecules, in which the nuclei 

dictate the shapes of the electronic wavefunctions. 

Even though an excess electron was one of the first impurities inserted into 

liquid helium, some experimental observations still remain unexplained. Ihas 

and Sanders [22] measured the time-of-flight for the electron bubbles in a 

static electric field and observed the so called "exotic ions" in addition to 

the electron bubbles in their ground state. The exotic ions were found to be 

faster than the ground state electron bubbles, which indicates either a smaller 

cross-section or a greater charge for the exotic ions. It has been suggested 

that the exotic ions could be, for example, excited one-electron bubbles or 

bubbles containing two electrons. 



Chapter 2 

Density functional theory 

In the traditional wavefunction based quantum mechanics, one usually seeks 

for the lowest eigenvalue of the Hamiltonian operator and the corresponding 

multidimensional wavefunction with the proper symmetry: symmetric for 

bosons and antisymmetric for fermions. The dimension, i. e.
, 

the degrees of 

freedom, of the wavefunction depends on the number of particles N in the 

system and, in a general case, it is three times the number of particles. If a 

system is composed of more than one particle, the Hamiltonian operator is 

a functional of the wavefunction, i.e.
, 

the eigenvalue problem depends on its 

result. In principle, one must seek for a solution of a 3N-dimensional nonlin­

ear eigenvalue problem, which is, in practice, impossible to solve, excluding 

a few special cases. Even after such approximations as the Hartree-Fock, 

one still has to solve a 3N-dimensional eigenvalue problem, which becomes 

increasingly difficult as the number of particles grows. Quickly, after the 

number of particles exceeds a few hundred or thousand, the solution is out of 

reach even for modern supercomputers. The main advantages of the wave­

function based approaches are that the Hamiltonian is exactly known and 

the results can be refined systematically. 

The density functional theory is based on the fact that all physical observ­

ables of a system can be extracted from the density of the system. In other 

words, all physical observables are functionals of the density. As the density 

is a function of three variables, e.g., the three spatial coordinates, instead of 

three variables per particle, it is much easier to work with the density than 

with the wavefunction as soon as the number of particles increases beyond 

a few. As the dimension of the problem does not, in principle, depend on 

the number of particles in a system, it makes the density functional theory 

especially suitable for large systems with many particles. The disadvantage 

13 
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of the density functional theory is that the exact forms for the functionals 
arc not known and one muct find rcaconably good approximation□ for thcGc, 
usually at least for the energy functional. Fortunately, sufficiently accurate 
approximations do exist for many systems. 

2 .1 Foundations of density functional theory 

The first developments towards the density functional theory were made by 
Thomas [25] and Fermi [26,27], but the first proof that the density is sufficient 
to provide the ground state properties of a system was derived by Hohen­
berg and Kohn [28]. The proof was later refined by Levy [29]. In Levy's 
constrained search, one searches for the wavefunction which minimizes the 
total energy, excluding the external energy, for each possible density. The 
wavefunction is searched over all possible wavefunctions yielding the given 
density: 

(2.1) 

where T is the kinetic energy operator and ½nt is the potential energy opera­
tor excluding the external potential. In the next stage, the external potential 
v(r) is included and a search is made over all possible densities, which yield 
the correct number of particles, N: 

(2.2) 

This can be performed as the external potential depends only on the den­
sity and ignores any details of the wavefunction. The functional F[p] is an 
universal functional of the density, i.e., it depends only on the density and 
searches over all possible wavefunctions yielding the given density. Now, if 
the functional F[p] is known, it is sufficient to search only over all densi­
ties instead of all wavefunctions. The problem is that the functional is not 
exactly known; however, many useful approximations have been developed, 
some of which are briefly reviewed later in this chapter. 

ln a way similar to Hohenberg's and Kohn's proof for time-independent prob­
lems, Runge and Gross [30] developed a proof for time-dependent problems. 
It proves by reductio ad absurdum that two time-dependent potentials v(r, t) 

and v'(r, t), which differ by more than a purely time-dependent function c(t), 

cannot prodm:e the 8ame time-dependent den8ity p(r, t) from the same initial 
density p(r, 0) = n0(r). Later Kohl and Dreizler [31] introduced a proof which 
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was based on a constrained search. They used the time-evolution operator of 
the system to propagate wavefunctions back in time and then utilized Levy's 
constrained search to find the wavefunction corresponding to the system's 
ground state. To sketch the proof, let us start with a density p(r, t) at time t,
which has been propagating from the ground state density p0 (r) = p(r, t = 0) 
under a time-dependent potential v(r, t). Because the time-dependent case 
has only a stationary condition for the action, but does not have a minimum 
condition, like the minimum energy principle of the time-independent case, 
the problem must be transformed to a time-independent problem in order 
to use the constrained search. This is done by applying the inverse of the 
system's time propagation operator to the set of all possible wavefunctions 
1/Jp

(r,t), which yield the density p(r,t) at time t:

(2.3) 

where U(t) is the time propagation operator from time zero to time t. Now, 
the wavefunction, which minimizes the energy at time zero, must be the 
ground state wavefunction and thus correspond to the density p(r, t) at time 
t. The density functional K[p] searches this wavefunction:

K[p] = min (1/J(r, t)IK(t)11/J(r, t)) 
,t,(r,t)-->p(r,t) 

(2.4) 

where 
K(t) = U(t) [t + v + v(r, t = o)] (Jt(t). (2.5) 

The functional K[p] is not universal as it still depends on the system through 
the external potential v(r, t). However, time-dependent problems are initial 
value problems whereas time-independent problems are boundary value prob­
lems [32]. Therefore, the solution of a time-independent problem depends on 
the external potential, the number of particles, and the possible boundary 
conditions of the domain, whereas the time-dependent solution depends on 
the initial state and the external potential. Thus the density functionals for 
time-dependent systems are, in principle, bound to a fixed initial state. For 
example, the same molecule with different bond lengths might have differ­
ent time-dependent density functionals. In practice, it is found that many 
approximations work well with a wide variety of different systems [32]. 
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2.2 Electronic systeins 

Electronic systems are fermionic and require that the wavefunction is anti­
symmetric, i. e., no two electrons can have exactly the same quantum state. 
This is why the constrained searches in the previous section should restrict 
t.hP. RP.arr.h t.n nntisymmetrir. N-part.idP. w;wP.f1mdinns yiP.lrling t.hP. givP.n rlP.n­
sity. The antisymmetry requirement makes it more difficult to design good
approximations for functionals, especially for the kinetic energy. The basic
scheme to overcome this problem is to use an approach developed by Kohn
and Sham [33]. In this approach the total energy functional is divided to the
kinetic energy, electron-electron interaction and external potential energy
functionals:

E[p] = T[p] + ½e [P] + J v(r)p(r) d3r. (2.6) 

Further on, the kinetic energy functional for non-interacting electrons T
8 
[p] 

and the Coulomb repulsion including self-interaction J[p] is added and sub­
tracted from the energy functional, which is then rewritten as 

(2.7) 

where the exchange-correlation functional is defined as 

(2.8) 

and 
(2.9) 

Then the kinetic energy for non-interacting electrons can be calculated using 
so called Kohn-Sham (KS) orbitals <fJk : 

(2.10) 

The Kohn-Sham orbitals are just a set of auxiliary orthonormal functions 
yielding the density 

p
= I:1</Jkl2 (2.11) 

k 

and do not have a physical meaning in the interacting system [34]. The 
Coulomb repulsion including self-interaction J[p] an<l the exchange-correlation 
Exc [P] can be directly evaluated from the density and, in principle, does not 
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require the Kohn-Sham orbitals. All functionals are now simple except the 

exchange-correlation functional Exc [P], which includes all the complicated 

terms and is unknown. 

A few approximations for the exchange-correlation are reviewed in the next 

subsection, but before that let us assume that the exchange-correlation func­

tional is known. Then the Kohn-Sham orbitals can be solved from the fol­

lowing differential equations 

(2.12) 

where the effective potential is 

(2.13) 

and the Kohn-Sham orbitals are required to be orthonormal 

(2.14) 

The exchange-correlation potential V
xc(r) is obtained from the exchange­

correlation functional by taking the functional derivative with respect to the 

density 

(2.15) 

The obtained orbital equations are one-particle Schrodinger equations with 

effective potentials, which are relatively easy to solve, at least when compared 

to a many-body Schrodinger equation. 

2.2.1 Exchange-correlation 

The exchange-correlation functional accounts for all quantum mechanical 

many-body effects of the system: the exchange and the correlation in the 

kinetic and potential energy. It should also remove the self-interaction in 

the Coulomb repulsion. The exact form of the functional is unknown and 

it must be approximated. For the electronic system, the simplest modern 

approximation for the exchange-correlation functional is the local density 

approximation (LDA) [34]. At each point the functional is approximated by 

the functional of a homogeneous electron gas with the density equal to the 

local density of the system at this point. The exchange-correlation functional 
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of the local density approximation is 

(2.16) 

where c:�[>A(p) = c:;j/0(p) is the energy per particle of the homogeneous

electron gas (HEG). If the system is spin polarized, the polarization should 

be taken into account using the local spin density approximation (LSDA). 

The LSDA exchange-correlation functional is 

(2.17) 

where ( = (Pa - p13)/ p is the spin polarization parameter. 

To evaluate the functionals, the exchange and correlation parts can be sep­

arated. The exchange functional of a homogeneous electron gas is exactly 

known, whereas the correlation is not, but a very accurate approximation 

was developed by Yosko, Wilk, and Nusair [35] based on the quantum Monte 
Carlo calculations of Ceperley and Adler [36]. For details of the functional 

see Appendix A.l. Because of the locality of the functionals, they are ac­

curate only for systems where the density changes smoothly, i.e., the local 

density is close to the density of the surroundings. The local spin density 

approximation is still frequently used in solid state physics, whereas it is 

usually insufficient for quantum chemistry. 

The local density and spin density approximations can, of course, be im­

proved. The generalized gradient approximations (GGA) include gradients 

of the spin densities and are thus no longer strictly local, but include some 

finite range contribution [34]. The meta and hyper-GGAs go even further 

including Laplacians of the spin densities, Kohn-Sham orbital kinetic energy 

densities, and even the exact exchange (hyper-GGA) terms [34]. These per­

form generally better than the strictly local approximations and are sufficient 

for many quantum chemical applications, but are also increasingly complex. 

The density functionals, at least LSDA and GGAs, work generally better 

for a large number of particles. If a system has only a few electrons, the 

cancellation of the self-interaction in the Coulomb repulsion by the exchange­

correlation functional is poor and it becomes the major source of error. In this 

case, a simple cure is to remove the self-interaction as proposed by Perdew 

and Zunger [37]. In this procedure, the self-interaction of each occupied 
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orbital is subtracted from the (LSDA) functional of the whole system 

E%[
0[pc,, p13] = EffDA[Pc" p13] - L ( J[l<l>kl 2]) + EffDA[l<l>kl2 , ol) · (2.18)

k 

The standard interpretation of the spin density functional theory provides 
the ground state density p(r), the total energy E[p], and the spin magneti­
zation density m( r) = n1 ( r) - n 1 ( f'). For the LSDA and GG A functionals, 
this interpretation implies unphysical spin densities for some systems. For 
example, in stretched homonuclear molecules, which dissociate to open shell 
atoms, more spin-up density is localized on one of the atoms and more spin­
down on the other, instead of the correct unpolarized situation. Perdew et

al. presented an alternative interpretation for the spin density functional 
theory [38], in which, instead of the spin magnetization density, the on-top 
electron pair-density is obtained. The on-top electron pair-density is an even 
function of the two variables n1 ( f') and n 1 ( f'), which are no longer regarded as 
the spin densities, but are auxiliary variables just as the Kohn-Sham orbitals 
are. This interpretation does not encounter the spin symmetry dilemma; 
however, the energy functional is the same as with the standard interpreta­
tion. Thus the alternative interpretation is a justification for the use of the 
unrestricted Kohn-Sham formalism in all systems. 

Finally, a remark about the exchange-correlation functionals for time-dependent 
electronic systems follows. If the time-dependent external potential changes 
so slowly that the electronic system will remain relaxed at all times, i.e., the 
system changes adiabatically, one can use the functionals for time-independent 
systems without modifications [32]. If LDA is used in time-dependent den­
sity functional theory, it is called the adiabatic local density approximation 
(ALDA) and it has been used successfully in many applications. For non­
adiabatic processes more advanced functionals must be found. 

2.3 Superfluid 4He

The first attempts to model superfluid helium using density functional ap­
proach was developed by Gross [39,40] and Pitaevskii [41]. As the superfluid 
4He is a bosonic system and all the particles are in the same quantum state, 
the non-interacting kinetic energy can be obtained directly from the density. 
In the Gross-Pitaevskii (GP) functional, everything else is included in one 
non-linear interaction term, which is directly proportional to the square of 
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the local density: 

(2.19) 

If the total energy is shifted by -Np = -N gp0, where {l is the energy per 
particle in the ground state, then 

(2.20) 

From the above equation, it can been seen that the energy increases if the 
density is non-uniform or it differs from the ground state density p0. The 
functional has been successfully used to model, for example, vortices in su­
µerflui<l [42], LuL iL has iLs re::;trictiorn,. A::; the functional is local, it can be 
applied only to systems where the density varies slowly. In addition, as it 
does not yield a surface tension and produces incorrect surface structures, it 
is unsuitable for atomic scale systems. 

Many functionals [43-46] have been developed to improve the Gross-Pitaevskii 
functional, of which one of the most advanced is the Orsay-Trento (OT) func­
tional [46]. It is a phenomenological functional, i.e., each term is based on 
a physical phenomenon, which determines the form of a term, but the pa­
rameters in the term are determined by fitting to experimental data. The 
Orsay-Trento energy functional for time-independent systems is 

EOT [p] = J lv\/p{J-512 d3r 

+ � J J p(r1)Vz(lr1 - rzl)p(fz) d3r1 d3r2 

+ � J p(r)(p(r))2 d3r + � J p(r)(p(r))3 d3r 

- 4
: O:s J J F(lr1 - r2l)x 

( p(r1 )) - - ( p(r2)
)1 - -- 'v p(r1) · 'v p(r2) 1 - - -

Pas Pas 
(2.21) 

The first term in (2.21) is the same non-interacting kinetic energy as in 
the Gross-Pitaevskii functional. The second term is a finite-range pair­
interaction, in which the Lennard-Jones pair-potential is screened at close 
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(2.22) 

with the screening distance h = 2.1903 A., hard-core radius a = 2.556 A. and 
well-depth c = 10.22 K (Figure 2.1). 

150 

0 2 4 6 8 

RIA 

Figure 2.1: Lennard-Jones pair-potential, which is screened at close distances 
to remove self-interaction. 

The short range many-body correlations are accounted for by the third and 
fourth terms of Eq. (2.21), which are a kind of three- and four-body contact­
interactions, respectively, 

� j p(f')(75(f'))2 d3r = � j j j J(lf1 - rSl)J(lf1 - r':il)J(lrS - r3l)x 

p(r1)75(i'S)75(f:i) d3r1 d3r2 d3r3 , (2.23) 

and 

� J p(r)(p(r))3 d3r 

= � j j j j J(lf1 - rSl)J(lr1 - r:il)J(lr1 - r'.il) x 

b(lrS - r':il)J(lrS - r'.il)J(lr':i - r'.il)x (2-24)

p(r1)75(iS)75(f:i)75(r'.i) d3r1 d3r2 d3r3 d3r4, 

where the spherical average of the density 

(2.25) 
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takes the average of the density inside the screening distance h. The parame­
ten; h, c2 = 2.411857>< 104 KA 6 and c0 = 1.8584!)6 >< 106 KA9 arc determined 
from the experimental values of the density, the energy per particle and the 
compressibility of a uniform system at zero pressure. 

The last term in Eq. (2.21) provides a non-local correction to the kinetic 
energy and its parameters are fixed to reproduce the static linear response 
function. The static response function x(q), which describes the system's 
response to a small external periodic perturbation, is obtained by taking 
the second functional derivative of the energy functional with respect to the 
density in the momentum space (momentum p = liq): 

where ½(q) and :f:Ih(q) are Fourier transforms of ½(r) and Ilh(r), respectively. 
The last line of Eq. (2.26) corresponds to the non-local correction to the 
kinetic energy, in which terms involving the wavenumber q fix the shape of 
the static response function (Figure 2.2) and the terms involving density p
give the correct pressure dependence. The values for parameters are a8 

54.31 A3
, Pos = 0.04 A and l = 1 A. The function F(r) is a Gaussian 

(2.27) 

and p(r) is the density smoothed by the Gaussian F(r) 

(2.28) 

This term, the non-local correction to the kinetic energy, contributes mostly 
to the properties of the functional when the density varies on the interatomic 
length scale. 

The proper treatment of the time-dependent systems requires that the func­
tional can reproduce the dispersion relation in the momentum range acces­
sible by the system. The Orsay-Trento functional reproduces the dispersion 
relation correctly in the initial phonon branch and it also reproduces the 
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Figure 2.2: Static response function for superfluid 4He. Reproduced from 
[46]. Crosses, experimental data; solid line, the Orsay-Trento functional. 

maxon and the roton minimum qualitatively, but these are shifted by more 

than 5 K up in energy. This shift appears due to the lack of a backflow in 

the functional. The backflow reduces the energy of the maxon-roton region 

by introducing new currents, which, for example, allow the rotons to satisfy 

the mass conservation law without variations in the density (Figure 2.3). 

a) b) 

/'
/,1,. .-f{{;

·-..

Figure 2.3: Sketch of a roton wave packet a) without backflow and b) with 
backflow. Dashed line, current; Greyscale background, density. 

The backflow is included into the Orsay-Trento functional by two velocity 

dependent terms 

I �mp(r)liJ(r)l2 d3
r - ; I I Vi(lr - r2l)p(r)p(r2) lv(r) - v(rS)l2 d3

r d3
r2, 

(2.29) 
which are the diagonal terms of the most general quadratic form for the 

backflow [46]. The first term is just the hydrodynamic kinetic energy, whereas 

the second term is the nonlocal current-current interaction. The current-
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current interaction potential Vi(r) has been parametrized as 

V ( ) ( + 2) -a1r2 + ( + 2) -a2r2 

J r = 1'11 ,'12r e 1'21 1'22r e , (2.30) 

where I'll= -19.7544, 121 = -0.2395, 112 = 12.5616 A-2, 122 = 0.0312 A-2, 

a:1 = 1.023 A-1, and a:2 = 0.14912 A-1 have been fixed to reproduce the
dispersion relation: 

2 !i2q2 { [ A A ] } 
[tiw(q)] = 

mlx(q)I
1 - p Vi(0) - VJ(q) (2.31) 

where VJ (q) is the Fourier transform of VJ(r). The backflow term vanishes 
for the ground state and it does not contribute to the static response. Thus 
no modifications are required for the other terms and the backflow must be 
included only for time-dependent systems. 



Chapter 3 

Quantum Monte Carlo methods 

The quantum Monte Carlo methods are based on the statistical sampling of 

the 3N-dimensional space. Instead of trying to solve the Schrodinger equa­

tion of a many-body system, the expectation values of the desired operators 

are evaluated using the random sampling of the 3N-dimensional space in a 

fashion closely related to the Monte Carlo integration. Actually, the varia­

tional Monte Carlo is just one way of performing the Monte Carlo integration 

for the expectation values of a trial wavefunction. 

3.1 Variational Monte Carlo 

The variational Monte Carlo (VMC) method itself does not optimize the trial 

wavefunction; it just provides the expectation value of an operator, usually 

the energy, corresponding to the given trial wavefunction. The optimization 

of the trial wavefunction has to be done by other means. The VMC method 

just produces a set of random samples from the trial wavefunction for the 

Monte Carlo integration of the expectation value. In its simplest form, it 

takes an average of the local values J(Ri ) at random points R
i , which are

uniformly distributed over space: 

(3.1) 

This chapter is essentially based on reference [47). 

25 
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which is for the energy 

E _ (1/Jrllil1/Jr)
VMC -

(1/Jrl1/Jr) 
M 

= ;I L (1/!r(Ri) IHl1/Jr( R;)) + 0( vM)

l M 
=ML EL(Ri)l1/!r(Ri)l2 + O(vM), 

where the local energy is 

(3.2) 

(3.3) 

1/! r (R) is the trial wavefunction, and Ri = ot), M_i
), ... ,�))is a random vector 

with an uniform distribution in space. The error is reduced quite slowly 
0( '1Af) as the number of samples is increased, however, the error does not 
depend on the degrees of freedom in the system, which makes the method 
useful for a large number of particles. 

However, the uniform sampling is quite inefficient, as the whole infinite space 
is sampled uniformly, but the major contribution to the expectation value 
arises only from the areas where the trial wavefunction has a significant 
amplitude. An obvious solution is to use a weighted random distribution 
instead of a uniform one to increase the average weight l1/Jr(R)l2 and thus 
increase the efficiency. If one could produce a random distribution weighted 
by ll)!r (R)l2, each sample would have an optimal, -i.e., equal, contribution to 
lhe energy exµedaliou value 

(3.4) 

where Qi is a random vector with distribution l1/Jr(R)l2 . This is exactly what 
can be done using the Metropolis-sampling. 

3.1.1 Metropolis-sampling 

One way to produce a random sample from a distribution f (R) is to use 
the concept of random walking. A walker, which is a configuration of all 
particles (not a particle itself) in a system, is moved from one configuration 
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Qi to another configuration Qi+1 with some probability G( Qi+l, Qi). To 
produce the distribution f(R) the probability G(Qi+1, Q;) must be chosen in 
such a way that, when the distribution f (R) is reached, an equal number of 
walkers move from Qi to Qi+1 as moves from Qi+1 to Qi 

(3.5) 

In the Metropolis-sampling the probability is chosen to be unity if the 
new configuration is more probable than the old, and else it is the ratio 
J(QH1)/ f(Qi), i.e., the probability is 

(3.6) 

This defines the probability for moving from Qi to Qi+1, however; it does 
not define how the move is performed, i.e., how Qi+1 is chosen, which will 
be discussed in the next section. 

There are two requirements for the random walk to produce an equilibrium 
distribution. From all configurations Q there must be a possible route to all 
other configurations R, i.e., G(R, Q) > 0 for all Q and R, which includes the 
possibility to stay at the current configuration Q, i.e., G(Q, Q) > 0 for all Q. 
Otherwise, the walkers may not sample one or more separated regions of the 
configuration space as there is no continuous path from one region to another. 
Moreover, the walkers may remain in a correlated cyclic motion infinitely, if 
there is "friction", i.e., a possibility to stay at the current configuration (see 
figure 3.1). 

b) 

�-�-J1 
Figure 3.1: Illustrations of systems possessing improper random walks: a) 
unconnected regions and b) a cyclic system without "friction". 

3.1.2 Importance sampling 

The simplest way to generate moves for a walker tied a given probability 
G(Qi+l, Qi) is, to first introduce a move with a uniform distribution inside 
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some finite range o, and then accept it with a probability G(Qi+1, Qi)- If the 
move is accepted, the new position for the walker is QHl· If it is not, the 
walker remains in its old position, i. e., the new position Qi+ 1 is equal to the 
old position Qi . This is still not very efficient because many of the moves will 
hP. towar<l:=, nndP.sirn<l <lirP.dions an<l will not hP. ac:c:P.pt.P.<l. To improvP. thP. 
acceptance ratio, one must guide the walkers towards directions where the 
amplitude of the wavefunction increases. This is called importance sampling. 

In the importance sampling, steps to different configurations are associated 
with unequal transition probabilities. The total probability for a move is 
the product of the transition probability T( Qi+ 1, Qi) and the acceptance 
probability A( Qi+1, Qi) 

(3.7) 

The transition probability can be derived from the time-dependent Schrodinger 
equation of an auxiliary system, in which the ground state is equal to the 
trial wavefunction 'l/Jr (see Appendix A.2). The result of this derivation is a 
diffusion equation for a time-dependent distribution f(R, T) 

where FQ((R) = 2��ck�) is the quantum force guiding walkers towards re­
gions where the trial wavefunction has a large amplitude. As the imaginary 
time T approaches infinity, the distribution approaches the density of the 
trial wavefunction f (R, T -+ oo) -+ l'l/Jr(R) 1 2

. If the time step OT is small, the 
quantum force is essentially unchanged between the initial and final configu­
rations; then, to satisfy the diffusion equation (3.8), the new configurations 
are obtained by 

R(T + oT) = R(T) + DFQ(R(T))oT + x(D, oT), (3.9) 

where x(D, OT) is a random Gaussian vector with a zero mean and a variance 
of 2DOT. The corresponding transition probability is 

T(Qi+l, Qi ; OT)= 

(41rDOT)-3Nl2 exp [- ( Qi+! -Qi - DoTFQ('l/Jr(Q))r /4DoT]' (3.10) 

where Qi = R(T) and Qi+ 1 = R(T + OT). 
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However, when the time step OT is finite, the quantum force is not exactly
unchanged and thus the diffusion equation (3.8) is not exactly reproduced
by the random walk of Eq. (3.9). This can be corrected by the Metropolis­
sampling for the acceptance probability

(3.11)

which rejects some of the proposed moves to restore the correct total proba­
bility G(Qi+l, Qi)-

To summarize, in the importance sampled variational Monte Carlo, a sam­
pling step begins by an introduction of a possible change in the configuration
by a guided random vector. The Metropolis-sampling gives the acceptance
probability, and the move is either accepted and the walker is moved to this
new configuration, or the move is rejected and the walker stays in the old
configuration. Finally, the local value of an observable is evaluated in the
current position. The sampling procedure is repeated, usually for a set of
walkers, until an equilibrium distribution is reached and enough samples are
recorded for an accurate estimate for the expectation value. The cost to pay
for the importance sampling is that one has to evaluate the quantum force in
each visited configuration; however, the overall efficiency usually increases.

3.2 Diffusion Monte Carlo 

The variational Monte Carlo can be used only to evaluate the expectation
values of the trial wavefunction and the optimization of the wavefunction
must be done by other means. The diffusion Monte Carlo can be considered
as an improvement to the variational Monte Carlo as it uses the available
knowledge about the system, i.e., the Hamiltonian, to improve the expecta­
tion value. The partial differential equation, similar to the diffusion equation
of the variational Monte Carlo, can be derived by using two different systems:
the system under examination and an auxiliary system with the trial wave­
function as its ground state wavefunction (see Appendix A.2). The resulting
equation is

81��,T) = vv2J(R,T) - DV. [!(R,T)FQ(R)]

+ (Er - EL(R))J(R, T), (3.12)
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where the distribution f(R, T) = cp(R, T)?/Jr(R) and Er is the ground state
energy of the auxiliary oyotem. The firot two termo on tho right-hand side of
Eq. (3.12) are equal to the right-hand side of the VMC diffusion equation,
Eq. (3.8). The third term on the right-hand side corresponds to branch­
ing, and wherever it is above zero, the distribution will e;row in t,imP, anrl
wherever it is below zero, the distribution is decaying. These two processes,
diffusion and branching, are competing and, as a result, as the imaginary time
T approaches infinity, the distribution approaches the product of the ground
state wavefunction and the trial wavefunction, f ( R, T ---+ oo) ---+ c/>0 ( R)?/Jr ( R).
Since the distribution now includes the ground state wavefunction, the ex­
pectation value of the energy is the ground state energy

(3.13)

To include the branching into the random walk, the differential equation
(3.12) is solved in two stages. In the first stage, only the first two terms of
the rie;ht-hand side are accounted for by a random movP Pq1rn.l to thr. VMC
move. In the second stage, a differential equation, which includes only the
branching term, is solved:

of
��' T) = (Er - EL(?/Jr(R))J(R, T)

==;, f(R, T +OT)= f(R, T) exp[-(EL(?/Jr(R)) - Er)OT]. (3.14)

The exponential term can be regarded as the probability of a walker to stay
alive. If the probability is larger than unity, then the fraction above unity is
the walker's probability to create a copy of itself, i.e., to branch. In practice,
it is more appropriate to use the average of the local energy before and after
the move

J(Q,H, TI Jr) , f(Q, r) exp { - [ EL(,t,r(Q,)) \ EL(,t,r(Q,H)) -
E

r] Or},

(3.15)
because it reduces the order of error in expectation values when the time
step OT is finite. The source of the error is the inexact solution of the partial
differential equation (3.12), as it is solved in two stages.

To summarize, the diffusion Monte Carlo provides, directly without opti­
mization, the ground state energy as well as improved approximations for
other expectation values, but it has a time step bias. The sampling step
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of the diffusion Monte Carlo is otherwise equal to that of variational Monte 

Carlo, but the branching can kill the walker or breed new walkers. Typically, 

the variational Monte Carlo is used in the optimization of the trial wavefunc­

tion, and the final results are then obtained from a diffusion Monte Carlo 

calculation with the optimized trial wavefunction. 



Chapter 4 

Numerical implementation 

This chapter* describes the numerical implementation of computer programs 

developed in this work. The first program was designed to model both time­

independent and time-dependent systems using the density functional theory. 

Currently, the local spin density functional [34] for electronic systems and 

the Orsay-Trento functional [46] for superfluid 4He are implemented in the 

program, which is easily extendable for other functionals.  In the first section 

4.1, a method for time-dependent systems is described, which is then modified 

in the second section 4.2 for time-independent systems. The last section 

4.3 introduces the main design considerations of a variational and diffusion 

Monte Carlo program. 

4.1 Time-dependent density functional theory 

- semi-implicit time propagation

The numerical solution of a time-dependent problem by the density func­

tional theory requires a solution for a set of coupled, non-linear partial dif-

*This chapter is mainly based on papers II and IV.
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ferential equations, i. e., time-dependent Kohn-Sham equations 

( 4.1) 

. 8'l/Jn(r', t) , 
[ ] (

-
) in 

Bt 
=H'l/J1,'l/J2, ... 'l/Jn'l/Jn r, t . 

To discretize these equations for the computer implementation, a basis set 

needs to be defined. A basis composed of Gaussian functions, which is ex­

tensively used in quantum chemistry, is not the best choice for all problems. 

The Gaussian basis works well when orbitals can be reproduced relatively ac­

curately with a limited number of basis functions. In principle, the Gaussian 

basis could be used to represent any orbital, but in practice, finite precision 

(computer) arithmetics causes numerical instabilities when an extensive set 

of nearly linearly dependent Gaussians is used. This was observed in the 

present studies, for example, when two electrons occupied the same cavity 

in superfluid helium. The instabilities caused by the linear dependency do 

not occur with orthogonal bases (or bases with weak support) like a plane 

wave basis or an equidistant, real-space, Cartesian grid. It is noteworthy that 

these are actually the same basis in different spaces: momentum and spatial 

spaces, respectively. These bases can reproduce virtually any wavefunction 

if sufficiently many basis functions are used. In addition to flexibility, the 

grid bases have an advantage that these lead to sparse matrices and a simple, 

efficient parallel execution is easy to achieve. The drawback is that a huge 

number of basis functions is usually needed. 

4.1.1 Semi-implicit propagators 

The next important choice after the basis is how to propagate the wavefunc­

tions as the effective Hamiltonian is coupled and non-linear. The simplest 

choice would assume the Hamiltonian to be essentially unchanged during an 

iteration step and use the explicit Euler propagation: 

However, this propagator is unconditionally unstable and therefore of only 

limited use. The implicit Euler is unconditionally stable in a linear case, but 
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not necessarily in a non-linear case as one can not form the Hamiltonian at 
the end of the iteration step, at time t + l:::..t. Again, the first approximation
would be to assume that the Hamiltonian is essentially unchanged and use 
the Hamiltonian at the beginning of the iteration step, at time t:

( i 
2 ) -1 + r,,H[1/J1(t), 1/Jz(t), ... , 'lj;n(t)]l:::..t + O(l:::..t ) 'lj;(t + l:::..t) = 1/J(t). (4.3) 

Now, the approximation of the Hamiltonian can be improved by utilizing 
the new wavefunctions ;/J(t + 6.t) obtained in the current iteration. The old
wavefunctions are propagated again employing the improved approximation 
of the Hamiltonian: 

( 1 + i H['lj;1 (t), ... , 1/Jn(t)]l:::..t + 0(6.t2)) ;/J(t + l:::..t) = 'lj;(t)
. (4.4) 

( 1 + � H[;/J1 ( t + 6.t ), ... , ;/Jn( t + 6.t)]6.t + 0(6.t2)) 'lj;(t + 6.t) = 'lj;(t).

This semi-implicit scheme is in fact a kind of a predictor-corrector scheme 
or a self-consistent field iteration with only one iteration step. The predictor 
step uses a Hamiltonian evaluated from first-order accurate wavefunctions, 
'ljJ(t) = 'ljJ(t + 6.t) + 0(6.t), whereas the corrector step uses a Hamiltonian
evaluated from second-order accurate wavefunctions, ;/J(t+l:::..t) = 'ljJ(t+l:::..t)+
O(l:::..t2). Any further corrector steps would not improve the order of accuracy 
of the wavefunction used in the evaluation of the Hamiltonian. Thus, it is 
more efficient to reduce the time step rather than increase the number of 
corrector steps. 

The accuracy of the time propagation can be further improved by using a 
semi-implicit Crank-Nicolson propagator 

( 1 + � H['lj;1 (t), ... , 1/Jn( t)]6.t + 0(6.t2 )) ;/J( t + 6.t)

= (1- �H['lj;1 (t), ... ,'lj;n(t)]6.t) 1/J(t)

( 1 + � H[t + 6.t/2]6.t + 0(6.t3)) 1/J(t + 6.t)

= ( 1 - �H[t + l:::..t/2]6.t) 'lj;(t),

( 4.5) 
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where the Hamiltonian in the middle of the step is approximated by 

If the nonlinear Hamiltonian itself is accurate to at least the second-order 
when evaluated using second-order accurate wavefunctions, then the method 
is also second-order accurate (see Appendix A.3). Even if it is not, but the 
error is relatively small, it is nearly second-order accurate and thus superior 
to the Euler methods, at least in practice. 

4.1.2 Operator splitting 

The semi-implicit propagators introduced above lead to a set of linearized 
matrix equations. If the real-space grid basis is used, the Laplacians and 
possible gradients in the Hamiltonian must be approximated. This can be 
done using, for example, the second-order finite difference approximation, 
which is for the Laplacian 

"2"''( ) = 'lf;(x - 6, y, z) - 2'1j;(x, y, z) + 'lf;(x + 6, y, z)
v 'P x,y,z 

62 

'lf;(x, y - 6, z) - 21j;(x, y, z) + 'lj;(x, y + 6, z)
+ 

62 

'lf;(x, y, z - 6) - 21j;(x, y, z) + 'lj;(x, y, z + 6) 
+ 

62 

and for the gradient 

"·'·( ) 
_ 'lf;(x + 6, y, z) - 'lj;(x - 6, y, z) 

A 

v<px,y,z -
26 ex 

'lf;(x, y + 6, z) - 'lj;(x, y - 6, z) 
+

26
ey 

'lf;(x, y, z + 6) - 'lj;(x, y, z 
- 6)

+
26 ez 

+ 0(62) (4.7)

The resulting Hamiltonian matrix is sparse and could be solved, for example, 
by applying sparse matrix techniques like the conjugate gradient method, but 
it is more efficient to exploit the operator splitting method. The operator 
splitting method is used to separate strongly non-diagonal parts ( e.g. kinetic 
energy terms) and diagonal or weakly non-diagonal parts ( e.g. the potential 
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terms). This is done by first formally solving the time-dependent Schri:idinger 
equation: 

===} 'lj;(t + 6.t) = exp[-iH6t/!t]'lj;(t) (4.9) 

and then separating the kinetic and potential terms of the operator 

exp[-iH 6t/!t] = exp[-iT6t/2/t] exp[-iV 6.t/n] exp[-iT 6.t/2/t] + 0(6t3). 
(4.10) 

Furthermore, the operator splitting allows one to evaluate each Cartesian 
component of the kinetic energy operator separately: 

and 

exp[-iT6t/!t] = exp[-i'I'x6t/!t] exp[-i'I'y6t/!t] exp[-i'fz6t/li] (4.11) 

exp[-iH 6.t/n] = exp[-i'I'x6t/2/t] exp[-i'I'y6t/2!t] exp[-i'fz6t/2/t] 

x exp[-iV 6t/!t] 
x exp[-i'fz6t/2/t] exp[-i1\6t/2/t] exp[-i'I'x6t/2/t] 
+ 0(6t3),

( 4.12) 

as the components commute with each other. Now, the solution can be 
obtained by solving the following set of equations: 

'lj;(1l(t + 6.t) = exp[-i'I'x6t/21i]'lj;(t) 

'lj;(2l(t + 6.t) = exp[-i'I'y6t/21i]'lj;(1l(t + 6.t) 

'lj;(3l(t + 6.t) = exp[-i'fz6t/21i]'lj;(2l(t + 6.t) 

'lj;(4l(t + 6.t) = exp[-iV 6t/1i]'lj;(3l(t + 6.t) (4.13) 

'lj;(5l(t + 6.t) = exp[-i'fz6t/21i]'lj;<4l(t + 6.t) 

'lj;(6l(t + 6.t) = exp[-i'I'y6t/21i]'lj;<5l(t + 6.t) 

'l/J(t + 6.t) = exp[-i'I'x6t/21i]'lj;(6l(t + 6.t), 

which are transformed back to corresponding time-dependent Schri:idinger 
equations and solved one after another using the propagators of the previ­
ous section, e.g., the (semi-implicit) Crank-Nicolson. Note that it is not 
necessary to use the semi-implicit propagation for other than the potential 
propagation, as the kinetic energy equations are linear. 



38 CHAPTER 4. NUMERICAL IMPLEMENTATION 

After the operator splitting, all matrices of the operators Tx, T
y
, Tz and 

fr arc otructurcd. The kinetic energy opcratorc corrccpond to tridiagonal 
matrices, or banded matrices, if a higher order finite difference approximation 
is used, which can be solved extremely efficiently compared to a general 
sparse matrix. If the potential is real and depends only on the density, the 
potential propagation changes only the phase of the wavefunction, but not 
the density. In this case, the potential matrix is effectively diagonal and the 
semi-implicit treatment is unnecessary. However, if the potential has weak 
off-diagonal terms, e.g., gradients or Laplacians with small prefactors, or has 
a small imaginary part, the semi-implicit scheme must be employed to solve 
the equation accurately. For example, the semi-implicit propagation must 
be employed for the Orsay-Trento potential. In the case, if the off-diagonal 
or imaginary part:; are not :;mall, Lhe semi-implicit :;cherne might not be 
enough. However, these systems are out of the scope of this thesis. The total 
computational cost for solving the linearized equations with N points per 
axis on 3D real-space grid reduces from O ( ( N3) yf( N2)) = 0 ( N4) of the 
iterative solvers [48], to O (N3), when using the operator splitting (and the 
potential has already been calculated, which is described in 4.1.4). 

4.1.3 Exponential propagators 

While the potential is effectively diagonal or nearly diagonal in the spatial 
space, the kinetic energy operator is diagonal in the momentum space, i. e., 
it is a local multiplication proportional to the square of the wave vector: 

( 4.14) 

where 
(4.15) 

is the Fourier transform of 1/J(r). The evaluation of the Laplacian in the 
momentum space is superior to the finite difference approximation, as it is 
exact for all plane waves representable by the grid. By applying the operator 
splitting, the kinetic and the potential propagation are separated, which 
allows one to choose the optimal space for the both operators: the momentum 
space for the kinetic operator and the spatial space for the potential. The 
operator splitted formal solution, Eq. (4.10), can be used in its exponential 
form and the Fourier transform is used to switch between the momentum 
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and the spatial representations: 

;jJ(1)(f, t + 6t) = exp[-iT6t/2n],JJ(k, t)

'1/J(1l(r, t + 6t) = F-1 [,;fJ(ll(f, t + 6t)l 

'1j;(2l(r, t + 6t) = exp[-iV 6t/n]'!j;(l)(r, t + 6t)

,JJ(2l(f, t + 6t) = F['1/J(2l(r, t + 6t)] 

,JJ(f, t + 6t) = exp[-ii'6t/2nJ,JJ(2l(f, t + 6t).
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(4.16) 

Again the semi-implicit propagation can be used for the potential term when 
necessary. 

A few remarks which be made. The exponential form is only reasonable for 
diagonal matrices, because a diagonal matrix remains diagonal in exponen­
tiation, in ·contrast to any non-diagonal matrix, which would be filled in. In 
the case of a diagonal operator, the exponential propagators are exact, but 
even in a nearly diagonal case the improvement can be significant, as the 
off-diagonal elements are small. Moreover, even though the individual prop­
agators may be exact, the total propagator is still second-order accurate in 
time, because of the operator splitting. Note that even though a single step 
has 0(6t3 ) accuracy, the repeated application reduces the total order by one 
to 0(6t2 ), and thus the propagator is called second-order accurate. The com­
putational cost is not significantly increased as the Fourier transforms and 
inverse Fourier transforms can be performed with O(N3 log N) operations by 
the fast Fourier transform (FFT) technique. In fact, the fast Fourier trans­
forms can be performed using a highly optimized numerical library, which 
was found to be somewhat faster than the author's implementation of the 
Crank-Nicolson scheme. 

4.1.4 Non-local potential 

Computationally the most intensive part of the propagation is the evaluation 
of the non-local potential. Typically, the potential includes local parts, for 
example, an external potential, and convolutions, for example, finite (or infi­
nite) range pair-potential. The local parts are clearly easy to evaluate since 
they lie on the diagonal of the potential matrix. The convolutions are more 
complicated as they are non-local in the spatial space and would require a 
total of O(N6 ) operations, if evaluated as three dimensional integrals over 
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N3 points for each N3 points of the grid 

[p*U](x, Y, z) = J J J p(x', y', z')U(lx-x'I, ly-y'I, lz-z'I) dx' dy' dz'. (4.17)

Fortunately, the convolutions are local products in the momentum space 

(4.18) 

and again, the Fourier transform can be used to transform the functions to 
the momentum space, and the inverse transform to transform the convolution 
back to the spatial space: 

f5(k) = F[p(r)J 

U(k) = F[U(r)] 

[p * U](r) = F- 1 [p(k)U(k)]. 

This reduces the computational cost from O(N6) to O(N3 log N).

( 4.19) 

The Fourier transform implies periodic boundary conditions, which are not 
required by the finite difference approximation. In periodic systems, this is 
clearly an advantage, whereas in non-periodic systems the simulation box 
must be taken sufficiently large and some potentials might need a cut-off to 
avoid unphysical periodic effects. 

4.1.5 Linearly weighted average 

If the potential terms are evaluated only at the grid points, all parts of the 
potential must be smooth, or otherwise the results can depend strongly on a 
small change in the grid. For example, if the potential is extremely repulsive 
within a very short range but slightly attractive elsewhere, an improper choice 
of the grid could make the potential totally attractive (Figure 4.1). One way 
to fix this problem could be to take an average of the potential inside a grid 
cell. However, this can still produce an apparent dependence on a small 
change, when a sharp feature is near the edge of a grid cell (Figure 4.1). In 
order to map a function on a grid in such a way that it is not sensitive to 
small changes, a linearly weighted average of a function can be taken 

, 1:�: f(x')w(lx - x'I, �) dx'
J(x) 

= 1:�: w(lx - x'I, �) dx'
( 4.20) 
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where 

w(lx - x'I, �) 
= 1- Ix

� 
x'I
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( 4.21) 

and � is the grid spacing. The linearly weighted average provides a smooth 

transition from a grid to another (Figure 4.1), while the characteristics of 

the function remain and a smooth function is not significantly altered in 

the averaging. The method also provides better accuracy for convolution 

integrals than the cell averaging, when the density varies smoothly (as it 

should for accurate results). 
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Figure 4.1: The effect of small changes in the grid, when the screened 
Lennard-Jones pair-potential of the Orsay-Trento functional is sampled in 
different ways. Circles, no averaging; diamonds, cell averaging; triangles, 
linearly weighted average; Dashed and dotted lines, guides to the eye. 

The linearly weighted average was originally required for the convolution 

terms in the Orsay-Trento potential. For example, the screened Lennard­

Jones pair-potential has a very sharp, repulsive feature near the screening 

distance, but when it is convoluted with a smooth density, the result is a 

smooth potential. The idea was to "move" the smoothness of the density 

to the pair-potential by assuming the density to be linear between the grid 
points, and then transferring the linear interpolation from the density to the 
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pair-potential: 

( 4.22) 

which leads to the linearly weighted average of the pair-potential. 

The integrals required for averaging in (4.20) must, in general, be performed 

numerically. The integration can be carried out using a constant number 
of quadrature points for each grid point; however, in the most cases, the 

function is mostly smooth and has only one or a few sharp features. If a 
constant number of points would be used, the accurate integration of the 

sharp feature requires a large number of points, whereas elsewhere a smaller 

number of points is sufficient, and thus a large amount of computation time 

is wasted. However, a simple adaptive integration can save considerable 
amount of time, especially in a three dimensional case. First, two sets of 

quadrature points are chosen: a set with a minimum number of points per 

axis, nmin, and another set with (nmin + 1) points per axis. Then the linearly 

weighted integral for each grid point is evaluated for the both sets, and as 

the sets have no common points, and have different weights and step-sizes, it 
is very probable that the numerical results differ when the integral is not well 

approximated by the current quadrature points. When the integrals differ, 

the number of points is doubled at this grid point and the integrals are re­

evaluated, until the difference is below the given threshold. The saving of 

computation time can be significant; for example, if in a three-dimensional 
case a sharp feature needs Hi points per axis and elsewhere only 4 points 

per axis are required, the computational effort is reduced by approximately 

a factor of (16/4)3 = 64. The numerical integration is computationally very 

demanding, but usually it needs to be done only once in the beginning, as the 

linearly weighted averages are required from functions which are not changed 

during the iteration. 
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4.1.6 Parallel execution 
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The current implementation of the code can be executed in parallel on sym­

metric multiprocessing (SMP) computers. The fast Fourier transforms are 

calculated using a threaded version of the FFTW 2.1.5 library [49]. All other 

multidimensional loops over the grid are parallelized through the OpenMP 

1.0 application program interface [50]. A multidimensional loop has the out­

ermost, middle and innermost loops: 

for each x 

for each y 

for each z 

grid(x,y,z) = ... 

Originally, the outermost loop was split into parallel tasks each containing 

one pass through the middle loop, but the tasks were not of suitable size 

for an optimal load balancing. To increase the computational efficiency, the 

outermost and middle loops were combined into one large loop, which was 

then split into parallel tasks each containing one pass through the innermost 

loop. Typically, this reduces the size of a parallel task by a few orders of 

magnitude, e.g., by a factor of hundred. 

The smaller tasks alone do not lead to the desired increase of the parallel 

efficiency, but these have to be combined with a dynamic load balancing. The 

dynamic load balancing assigns a set of parallel tasks to each processor, and 

as soon as a processor finishes the current set, a new set of tasks is assigned 

until none are left. Initially, the sets are large, but become smaller as the 

number of unassigned tasks is reduced; for example, the set sizes might be 

10,9,5,4,2,1 and 1. 

4.2 Time-independent density functional theory 

- imaginary time propagation

The time-dependent Schrodinger ( or Kohn-Sham) equation allows one to 

solve the corresponding time-independent equation [51]. The key idea is 

to use the imaginary time T instead of the real time t, which transforms 

the time-dependent Schrodinger equation into a diffusion equation (kinetic 
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energy) with source and sink terms (potential energy) 

ino'l/J(t) = H'l/J(t)at 
t_.,.-iT -n8��) = H'l/J(T). ( 4.23) 

This is in fact similar to what is done in the diffusion Monte Carlo. If the 

wavefunction 'lf;( T) is expanded as a function of the eigenstates </>i, it is easy 

to see that all excited states decay faster than the ground state 

(4.24) 

The same propagators as in the previous section with the real time, e.g.

the Crank-Nicolson or the exponential propagators, can be used to obtain 

the ground state. The first excited state is obtained by forcing it to be 

orthogonal with respect to the ground state. The following excited states are 

then orthogonalized with respect to all states equal to or below it in energy. 

The solution process begins by orthonormalizing the initial guesses, which 

can be, for example, random vectors. Then the orthonormalized wavefunc­

tions are propagated over one imaginary time step and orthonormalized 

again. This propagation-orthonormalization procedure is repeated until a 

convergence is obtained. The orthonormalization can be done using Gram­

Schmidt orthogonalization or by calculating the overlap matrix, diagonalizing 

it and then transforming the non-orthogonal wavefunctions by the eigenvec­

tors of the overlap matrix to orthonormal ones. In practice, the diagonaliza­

tion of the overlap matrix was found to be more accurate. 

In the imaginary time method, the time propagation can be made more 

efficient by ignoring the semi-implicit propagation and using a higher order 

operator splitting. The semi-implicit propagation is not necessary as the 

correct time propagation is not required and, for the last step, when the 

wavefunctions are converged, the Hamiltonian does not change and thus the 

propagation is already implicit. The operator splitting, in principle, can 

be done up to an arbitrary order by taking a proper combination of the 

exponential propagators 

(4.25) 

The problem is that some of the coefficient a, (3, 'Y, ... becomes positive, which 

causes an unstable propagation for finite imaginary time steps. Fortunately, 

a fourth-order propagator, which has all coefficients negative, can be formed 
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by including an additional exponential propagator with the commutator 

[V, [T, V]] = �1vv12
m 

(4.26) 

in it [52]. There are several forms for the total propagator, of which 

( 4.27) 

is used in the most recent code. 

The accuracy of the converged solution depends on two things: the selection 
of the propagator and the time step. The fourth-order propagators are com­
putationally more expensive per iteration than the second-order propagators, 
but they are more accurate, allowing the use of longer time steps and thus 
fewer iterations to reach the converged solution with comparable accuracy. 
When the time step is reduced to one half, the error of the second-order 
propagator reduces to (½)2 = ¼, whereas the error of fourth-order propaga­
tor reduces to (½)4 = �- If only the accuracy of the converged result is 
considered, the optimal time step would be infinitely small, but this would 
require infinitely many iterations to obtain the convergence . On the other 
hand, the fastest convergence is obtained with a large time step, which is still 
small enough to avoid the oscillation of the result. Thus, a balance between 
the convergence speed and accuracy of the result must be found. Again, an 
adaptive algorithm was found to be an effective and robust way to adjust the 
time step during the iteration procedure. 

The adaptive time step adjustment uses two measures to decide whether 
to use a shorter time step or not: the total energy of the system and the 
uncertainty of the energy. To reduce the time step, both measures must be 
smaller for a shorter time step than for the current one; this assures that 
the longer time step is used as long as possible. The condition involving the 
lower total energy is clear: If the longer time step yields a lower energy, there 
is no reason to reduce the time step. This requirement alone is sufficient for 
linear systems, but it was found insufficient for nonlinear systems, in which 
the energy does not necessarily decrease monotonically as the ground state 
is approached. Thus the uncertainty of the total energy 

( 4.28) 

is required to be smaller; this prevents a reduction of the time step when 
that would increase the variance of the energy. The variance of the energy 
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is zero for the exact solution and an increasing variance thus indicates a 

woroe oolution. Together the requiremento prefer longer time otepo. Thio 

is reasonable as a few extra iterations with longer time steps are not very 

expensive compared to a premature reduction of the time step, which leads 

to a catastrophic slowdown of the convergence. Note that (1.f1IH2 11.f1) can 

be calculated by applying the Hamiltonian once to both sides rather than 

applying the square of it to only one side. 

In order to decide whether the time step needs to be reduced or not, two 

separate propagations are made on each iteration using two different time 

steps: the "current" time step l::.T and a shorter time step xl::.T. If the shorter 

time step satisfies the required conditions, the shorter time step and the 

corresponding wavefunctions are used in the next iteration as the "current" 

time step and wavefunctions. Otherwise, the propagation with the shorter 

time step is ignored. The adaptive time step adjustment requires twice more 

effort per iteration than propagation with a constant time step, but the nearly 

optimal time step for each iteration outweighs the additional computational 

effort. 

The reduction factor x can be chosen to be a constant between zero and one; 

however, an adaptive procedure is again more efficient because the optimal 

factor changes as the iteration proceeds. In the current implementation, 

the adaptivity is obtained by squaring the factor x and thus reducing it 

further when the shorter time step was accepted, or by making the factor x 

larger by replacing it with its square root if the time step was not changed. 

In other words, if the time step was reduced in the last iteration, an even 

larger reduction is tried on the next iteration, and if it was not reduced, 

then the reduction was probably too large and a smaller reduction is tried. 

In practice, there should be upper and lower bounds for the factor X, for 

example, 0.1 � x � 0.9. 

The convergence properties depend also on the eigenvalue spectrum of the 

system. All energies must be above zero; otherwise the propagation becomes 

unstable as the eigenstates tend to grow rather than decay. Clusters of 

eigenvalues must be included or excluded as a whole into or out of the set 

of propagated wavefunctions, because the decay of the error depends on the 

separation between the states of interest and the rest of the spectrum. The 

error decays on every iteration by a factor of 

(4.29) 
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where k is the index for the highest state of interest and k + 1 is for the 

lowest state in the rest of the spectrum. If the states corresponding to k and 

k + 1 belong to the same cluster, the convergence becomes extremely slow as 

the energy difference 6.E is close to zero and thus the decay factor e-!::.E!::.T 

approaches unity. 

To decide when the convergence is reached, one needs a well-defined conver­

gence criterion. If the cluster sizes and the spacings of the eigenvalues are 

unknown, the upper bound of the error [53] must be used as the convergence 

criterion: 

(4.30) 

where 6.Eth is the threshold of the error. 

In practice, if the eigenvalue clusters are well separated, after few iterations 

all states other than the states of interest have decayed and the criterion in 

Eq. ( 4.30) is unnecessarily tight. Only the few lowest states in the rest of the 

spectrum still have a small contribution to the propagated wavefunctions, 

while the higher states have completely decayed. If upper bounds for the 

cluster size 9max and the minimum spacing 6.Emin of the relevant eigenvalue 

clusters, i.e., those of interest and the next few above, are known, it should 

be sufficient to require that 

( 4.31) 

Clearly, if the eigenvalues are not well separated, i. e., the spectrum is nearly 

continuous, the minimum spacing 6.Emin is very small and/ or the maximum 

cluster size is very large, the upper bound of the error, Eq. ( 4.30), should be 

used as the convergence criterion. 

Finally, it is interesting to express the imaginary time propagation in terms 

of the matrix algebra. The imaginary time propagation is equal to the or­

thogonal iteration for the matrix exp(-H6.T/n), or for its operator splitted 

approximation, if the operator splitting is exploited. The imaginary time 

propagation requires only O(N3 log N) operations to solve the eigenproblem, 

whereas, for example, the Lanczos method for Schrodinger equation requires 

O(N4 log N) operations [48]. The disadvantage of the imaginary time prop­

agation is that only a small number of states can be solved because the 

computational effort increases as the square of the number of states M, i.e., 

O(M2). However, this could be possibly improved by combining the Lanczos 

method with the imaginary time propagation. 
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4.3 Quantum Monte Carlo 

The implementation of the quantum Monte Carlo method is quite standard 

and based on codes presented in [47]. Both the variational and diffusion 

Monte Carlo implementations are guided, i. e., importance sampled, and the 

configurations are changed and accepted by one particle at a time rather than 

all particles together, which increases the acceptance probability and thus the 

"mobility" of the particles in the configuration space. The trial wavefunction 
is a product of one- and two-body wavefunctions 

( 4.32) 

and does not have to be normalized. The wavefunction, and the analytic 

gradients and Laplacians of each one- and two-body wavefunctions must be 

supplied by the user. 

The trial energy Er is adjusted in the diffusion Monte Carlo in order to 

keep the number of walkers reasonable. If it is not adjusted, or is adjusted 

too slowly, the number of walkers will either blow up or go to zero. On the 

other hand, if it is adjusted too tightly, it will bias the distributions and 

thus also the expectation values. To obtain a reasonable guess for the trial 

energy and the walker positions, a variational Monte Carlo run is carried out 

before the diffusion Monte Carlo. Then the diffusion Monte Carlo iteration 

just continues the VMC iteration and the trial energy is adjusted for each 

iteration to keep the number of walkers Ncur near the preferred one N'[)Tef by 

Ncur Eiter = Er - r;, In ---;v--.
pref 

( 4.33) 

If the number of walkers is below the preferred value, the trial energy for the 

next iteration Eiter is increased and more likely the number of walkers will 

increase on the next iteration. In the opposite case, the trial energy Eiter is 

decreased and the walkers are more likely to die. Initially, the factor r;, should 

be large and the trial energy for iteration depends strongly on the number 

of walkers. As the iteration proceeds the energy expectation value improves. 

After the user-defined number of iterations, the new energy expectation value 

is set as a goal trial energy E
9 

and the current trial energy Er is smoothly 

changed to the goal trial energy during the following iterations. At the same 

time, the factor r;, can be reduced in order to obtain a smaller bias. This 

trial energy adjustment is done on each user-defined iteration; it allows one 

to start with a bad guess for the trial energy while still avoiding a large bias 
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in the final result. 

The variational Monte Carlo is trivially parallelized by sharing the walkers 

equally between processors, whereas the diffusion Monte Carlo requires some 

load balancing. This is done by first gathering the number of walkers on 

each processor, then sorting the processors in a decreasing order respect to 

the current number of walkers, and finally balancing the load by moving a 

required number of walkers from a processor to the next one. 



Chapter 5 

Results and discussion 

In this chapter three different systems are examined to demonstrate the diver­

sity of problems solvable by the methods described in the previous chapters. 

The first system consists of molecular hydrogen dissolved in superfluid 4He, 

where the solvation of triplet Rydberg states is explored using the bosonic 

density functional theory and the hybrid DFT�DMC method.  The second 

system represents the time-dependent case, where a solvated chemical impu­

rity is excited from an electronic state to another with a different symmetry. 

The spectrum is calculated from the time-evolution of the superfluid rather 

than from the linear-response theory. In the third system, the electronic and 

bosonic density functional methods are combined to explore the solvation of 

excess electrons in superfluid 4He. 

5.1 Solvation of triplet Rydberg states of molec­

ular hydrogen in superfluid 4He 

Solvation of molecular impurities in superfluid helium has been studied in 

both helium droplets and bulk helium [17]. From the experimental point 

of view, the approach based on droplets has been more successful in intro­

ducing chemical impurities into liquid helium for spectroscopic studies. The 

experiments with bulk superfluid suffer from very limited solubility and rapid 

clustering. Only a few molecules, H2 , He;, 02 , N2 , metal dimers and trimers, 

have been observed experimentally in bulk superfluid [17, 18], and of these 

02 and N2 were found to be clustered rather than isolated monomers [54]. 

Despite its problems, bulk superfluid is the more desirable medium for many 

51 
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experiments, as it has wider accessible temperature and pressure ranges than 
the droplet□ und there arc no boundary cffoctt: in the bulk. 

Experimentally He2 is a special case which can be created by bombarding the 
liquid by highly energetic particles [55] or by using strong laser field ioniza­
tion [56]. As a result of intrinsic excitations, metastable He2 triplet excimers 
are formed. The metal dimers and trimers can be produced by laser abla­
tion of a solid metal target embedded in the liquid [57]. After diffusion the 
ablated atoms recombine to dimers and trimers. A similar procedure can 
be applied to produce metastable Hz triplet excimers [18]. A solid hydro­
gen target is embedded into the liquid and is then irradiated by a proton 
beam. The proton beam excites ground state molecules to triplet excimers, 
which are ejected into the surrounding liquid. ln the He2 experiments, as 
well as in the metal dimer and trimer experiments, both the absorption 
and emission spectra were measured, whereas in the H2 experiments only 
the emission spectrum was recorded as it is easier to measure. However, in 
general emission is not as strongly coupled to the surrounding helium bath 
as absorption, because usually the electronic wavefunctions are contracted in 
emission, whereas they are expanded in absorption. An expanding wavefunc­
tion must do work against the surrounding liquid, which leads to a stronger 
coupling. In paper I, theoretical calculations were carried out to predict the 
emission and absorption spectra of the H2 triplet Rydberg states solvated in 
superfluid. The formation of possible H2 - nHe complexes was also discussed. 

In the gas phase, the first four triplet states of Hz are labeled as b3r:t (lsa
9 

lsau), c311u (lsa
9 

2p1ru), a3r:t (lsa
9 

2sa
9

) and e3r:t (lsa
9 

2sau)- The states 
c, a, and dare Rydberg states and correspond to the 2s 1 + 2p1 asymptotes. 
Based on the ab initio ICMRCI/d-aug-cc-pV6Z (internally contracted mul­
tireference configuration interaction with doubly augmented, correlation con­
sistent, polarized V6Z basis) calculations, it can be seen that the Rydberg 
states are bound, whereas the b state is dissociative producing two ground 
state hydrogen atoms (Figure 5.1). The transitions e ----+ a and a ----+ b are 
dipole allowed and provide a decay channel for the e and a states. The ra­
diative lifetime of 30.2 ns for the estate was obtained using the Fermi golden 
rule, and the requirerl Frank-Con<lon fa.dors were int.egrate<l from numeri­
cally solved vibrational wavefunctions of the e and a states. The c state is 
metastable as the transition c ----+ b is forbidden. 

The shapes of the Rydberg orbitals are shown in Figure 5.2 and can be used 
to qualitatively describe the interaction between a helium atom and the ex­
cimer. The ionic Ht core attracts the helium atom, but the Pauli repulsion 
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Figure 5.1: Potential energy curves for the first four triplet states of H2. 

between the Rydberg electron and the closed shell helium atom causes strong 
repulsion wherever there exists a significant Rydberg electron density. As a 
result, the interaction is attractive mainly on the nodal planes and repulsive 
elsewhere. The calculated H2-He potential energy curves (Figure 5.3) verify 
the qualitative analysis. The potential energy surface calculations were per­
formed in two geometries: collinear (L) and perpendicular (T) with respect 
to the molecular axis of H2. The interatomic separation of H2 was kept fixed 
and was chosen to be 1.047 A, the average of the e and a equilibrium dis­
tances, whereas the H2-He distance was varied. Because the DFT and DMC 
calculations involve many helium atoms, the interaction between the excimer 
and a helium atom should be pairwise additive in order to be usable for these 
calculations. To test this, an additional helium atom was placed symmetri­
cally with respect to the other. The calculations were repeated and it was 
verified that the interaction is pairwise additive as the three and four-atom 
calculations produced essentially the same H2-He potential energy curves. It 
was also verified that the ionic core (Ht) does not break if the helium atom 
approaches at close distances. 

In order to model the solvation structures of the excimers in bulk super­
fluid helium, the bosonic density functional theory with the Orsay-Paris [44] 
or the Orsay-Trento functional [46] was used for helium. For the e and a

states, the excimer was assumed to rotate freely, which averages the H2-He 
interaction to spherical symmetry (Figure 5.3c). In the experiments a rota­
tional structure was observed from several vibronic bands. The functionals 



54 CHAPTER 5. RESULTS AND DISCUSSION 

b C a e 

Figure 5.2: Orbital (HOMO) isosurfaces for the first four triplet states of H;. 
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Figure 5.3: Potential energy curves for H;-He a) in collinear (L) and b) in 
perpendicular geometries, and c) the spherical averages of H;-He potentials. 
Circles, a state; triangles, e state; squares, c state. 

are restricted to zero temperature but the finite temperature of the exper­

iments, 3.0-4.2 K, was simulated in an approximate way by adjusting the 

bulk density. The calculations for the freely rotating molecules exploited 

the spherical symmetry reducing the system to a one-dimensional problem, 

and the helium wavefunctions were optimized in a self-consistent way using 

the ARPACK eigenproblem library [58]. The helium density profiles (Figure 

5.4) were found to be essentially unchanged in the temperature range 0-2 K, 

i.e., below the ,\-point, as the bulk density remains nearly constant. Above

the ,\-point, the bubble edge is moving further away from the excimer and

it becomes more diffuse. This allows the electronic system to behave more

like LhaL iu Lhe gas phase, which can be seen in the emission (1e -+ :ia) and

absorption (3e ,- 3a) spectra (Figure 5.5) as the blue shift and linewidth

are reduced closer to the gas phase values at higher temperatures. By com­

paring the spectra, it can be seen that the absorption line is an order of
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magnitude more blue-shifted than the emission line and the linewidth is also 
much broader. The electronic spectra were simulated by an approximate ex­
pression of Anderson [59-61], which requires only the initial helium density 
PHe(r, 0) and the external potential of helium in the initial and final states 
½(r) and V1(f'), respectively: 

where 
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I(w) � J c(t)eiwt dt,
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Figure 5.4: Helium density profiles around freely rotating H;-He at different 
temperatures. Dotted, 4 K; Dashed: 3.4 K, Dot-dashed: 3 K, Solid: 0 K, 
1 K and 2 K. 
The c state is of special interest as it is metastable and could serve as an 
intermediate state in absorption experiments. The c state is doubly degener­
ate in the gas phase and thus the electron density has cylindrical symmetry 
around the molecular axis, which becomes averaged to spherical symmetry by 
free rotation. If the c state rotates freely, the salvation structure is otherwise 
similar to the a state, but the bubble edge is about 0.6 A closer to the center 
at zero temperature. However, if the degeneracy is broken and the free rota­
tion is quenched, one of the two degenerate orbitals is energetically favored 
relative to the other. As a result, the electron might occupy only the favored 
orbital as the liquid relaxes around it, thus further lowering the energy. In 
this case, the helium atoms reside in a strongly anisotropic potential, which 
is attractive near the nodal plane and repulsive elsewhere. To examine the 
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Figure 5.5: Emission (1e -+ 
3a) and absorption (3e .- 3a) spectra of H; 

solvated in liquid helium. Dotted, 4 K; Dashed: 3.4 K, Dot-dashed: 3 K, 
Solid: 0 K, 1 K and 2 K. 

solvation structure in this case, the 3D bosonic density functional method 

was applied, but it was found that the potential is too attractive for the 

DFT as excessive unphysical densities were found on the nodal plane. Thus 

the diffusion Monte Carlo method was applied to model the strongly bound 

part. The DMC calculations, which included the excimer and a few he­

lium atoms, showed that the minimum energy was reached with four helium 

atoms in the strongly bound region. Beyond four atoms the helium density 

began to leak to the surrounding region. A very accurate helium-helium 

pair-potential of Aziz et al. [11) was used in the DMC calculation. The den­

sity obtained from DMC was convoluted by the pair-potential, and it was 

used together with the original H;-He potential as the external potential for 

the DFT calculation. After the DFT calculation, the DMC calculation was 

repeated including the repulsion from the DFT density. The DMC-DFT cy­

cle was repeated several times to reach convergence for both densities. The 

resulting highly anisotropic salvation structure is presented in Figure 5.6. 

The two parts of the systems, the strongly bound (DMC) part and the rest 

of the system (DFT), can be treated separately, because there is no overlap 

in the corresponding densities. To summarize, if the breaking of degeneracy 

and quenching of the rotation would happen, H;-(He ).,, complexes may form, 

and thus the emission and absorption spectra would be heavily influenced by 

the penetration of the helium into the nodal plane. Otherwise, the c state is 

energetically slightly favored over the a state by the liquid. 
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Figure 5.6: Anisotropic solvation structure of 3c state. Left: The density 
profile in the nodal plane of the Rydberg orbital. Dotted line, DMC den­
sity. Solid line, DFT density. Right: A contour plot of the DFT density 
perpendicular to the nodal plane. Greyscale, density in units of the bulk 
density. 

5.2 Two-level anisotropic electronic system 1n 

superfluid 4He 

As discussed in the previous section, electronic spectroscopy of atoms and 

molecules (chromophores) in superfluid helium has been more successful in 

helium droplets than in bulk helium. As the chromophores are easily cap­

tured by droplets, a wide range of atoms and molecules has been experi­

mentally studied [20]. The experiments show that if the chromophore-liquid 

interaction is weak enough, the zero phonon line in the linear absorption 

spectrum is accompanied by a structured phonon sideband. This sideband 

has been interpreted to interrogate the dynamics of the superfluid around 

the chromophore during its excitation [62]. Typically, the sideband contains 

two broad maxima located approximately at 8 and 14 K on the blue side 

of the zero phonon line. The existence of these maxima has been used as 

an argument that the droplets are in the superfluid state, as the energies 

correspond to the energies of the maxon and the roton minimum, which are 

the turning points of the dispersion relation. At the turning points, density 

of states is high and the group velocity is zero, which allows the excitations 

to localize near the chromophores. Thus the coupling of the corresponding 

modes with the chromophore is stronger. 

Theoretical path-integral Monte Carlo calculations support the experimen-
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tal observations by predicting superfluidity of the droplets [63]. While the 
path integral Monte Carlo cannot be uced to predict tho linear absorption 
spectrum, the density functional theory can. In the previous DFT calcula­
tions [61], the chromophore-liquid interaction was assumed to be angularly 
isotropic, which allows an efficient solution of the problem by taking arlvan­
tage of the spherical symmetry and solving the problem in lD. The calcu­
latiomi were found to agree with the cxpcrimcntu an<l rcpru<luce<l Lhe Lwo 
maxima. However, to explore the effect of an anisotropic interaction, the 
density functional equations must be solved numerically in 3D. This is com­
putationally very expensive. The memory requirement scales cubically as 
the function of the droplet diameter and exceeds the capabilities of modern 
supercomputers even for relatively small droplets. Another issue is the time 
propagation needed for the calculation of the spectrum. The propagation 
time must be hundreds of picoseconds in order to obtain a good resolution 
in the spectrum, whereas the time step must be fairly short, only tens of 
femtoseconds, in order to obtain a good accuracy. This leads to thousands 
of iterations and thus to long run times even on supercomputers. 

In paper III, a hypothetical atom was used as an anisotropic impurity. Four 
different cases were simulated: 1) anisotropic ground state with isotropic 
excited state, 2) isotropic ground state with anisotropic excited state, 3) and 
4) are spherically averaged (isotropic) versions of 1) and 2), respectively.
The first case mimics a boron atom, in which the unpaired electron is on the
p2-orbital, but with a simplified interaction. In the case of the anisotropic
ground state, the xy-plane, the nodal plane of the Pz orbital, had a 25 K 
bound Morse interaction VM (r) between the liquid: 

(5.3) 

where De = 25 K, a = 1.5 A and re = 3.5 A, and the z-axis had an 
exponentially decaying and purely repulsive interaction 

(5.4) 

The potential was interpolated into the shape of interaction from a p2-type 
orbital: 

(5.5) 

The excited state was taken to have the repulsive interaction VR(r) in all 
directions, which resembles the interaction of ans-type orbital. In the second 
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case, the isotropic ground state had the Morse interaction in all directions 

and the excited state was the same as the anisotropic ground state of the 
first case. For the third and fourth cases, the anisotropic potential was 

replaced by an isotropic potential, which is the average of all directions: 

½so = ½Wx +Vy + Vz). 
The chromophore was assumed to have only two well-separated energy levels, 

the ground and the excited state, and the superfluid was assumed to behave 
adiabatically with respect to the electronic system. After the electronic exci­

tation the liquid bath begins to evolve. Due to the adiabatic approximation 

the liquid cannot produce transitions; however, it modulates the electronic 

energy levels of the chromophore. The modulation of the levels was recorded 
and transformed to the linear absorption spectrum. The first order polariza­

tion 

(5.6) 

can be used to obtain the linear absorption spectrum by Fourier transforming 

it to p(l) ( w, w') and setting w = w'. The zeroth and first order electronic

wavefunctions are 

(5.7) 

where H0(t') is the time-dependent electronic Hamiltonian including the bath 

interaction, and 

where H1 (t') = -µc:(w, t') corresponds to the interaction between the light

and the chromophore, µ is the transition dipole moment and E is the electric 

field. After substitution of the wavefunctions, the first order polarization 

becomes 

where 

p(ll(w, t) ex i 1t 

exp [-i i,t Eext(t")dt" - iwt'] dt' + c.c., (5.9) 

(5.10) 

PkeCf) and PHe(r, t) are the ground and excited state helium densities, re­
spectively, and Vg(r) and ½(r) are the corresponding chromophore-helium 

pair-potentials. The electronic part was removed as it is only a constant 
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offset in the resonance energy. Finally, the intensity of the linear absorption 
�vedrurn i� uLLaiueJ a� 

(5.11) 

Another possibility is to directly transform the modulation of the energy 
difference, Eq. (5.10). 

The droplet size used in the simulations was 200 helium atoms, and the 
chromophore was placed in the middle of the droplet. Before the time propa­
gation could be done, the ground state salvation structures had to be found. 
This was done using the imaginary time propagation combined with the 
Orsay-Trento functional. The resulting densities are shown in Figure 5.7. 
The spatial grid consisted of 256x256x256 points with a step size of 0.21 A 
(0.4 bohrs). The ground state of the first case with the anisotropic ground 
state shows significant anisotropy for the liquid. The first salvation layer in 
the xy-plane has a maximum, which is approximately three times the bulk 
density, whereas in the repul:Jive z-direction, the maximum is only slightly 
above the bulk density. In the corresponding isotropic case, the third case, 
the maximum is twice the bulk density. The second case with the anisotropic 
excited state and the corresponding isotropic case have the same isotropic 
ground state with the first layer maximum of two and half times the bulk 
density. 
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Figure 5.7: Ground state helium densities (black) and potential (grey). Left: 
Anisotropic ground state (case 1). Middle: Spherieally averaged anisotropic 
ground state (case 3). Right: Isotropic ground state (cases 2 and 4). Solid 
line, xy-plane; dashed, z-plane. 

The real-time propagation used the semi-implicit Crank-Nicubun propaga-
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tor and the Orsay-Trento functional with backflow terms included. Initially, 

the helium density was set equal to the ground state density. The elec­

tronic excitation was initiated at time zero, and helium was propagated in 

the excited state potential. The dynamics were then followed for the total 

simulation time of 140 ps with a time step of 10 fs. An imaginary poten­

tial was used as absorbing boundaries to prevent any evaporated liquid from 

entering the outer periodic boundary. Snapshots of the dynamics are shown 

in Figure 5.8. In the case of anisotropic ground state the initial anisotropy 

was quickly smoothed out and density waves were left bouncing between the 

chromophore and the droplet surface. The density waves had slightly higher 

amplitude in the xy-plane than along the z-axis, as more helium must be 

relocated from the neck of the P
z-orbital during the excitation. In the cor­

responding isotropic case there is no anisotropy and the density wave is a 

spherically symmetric standing-wave mode, S-mode. The frequency of the 

mode is approximately determined by the distance between the inner ( chro­

mophore) and outer ( droplet surface) edges of the density as the waves travel 

at the speed of sound. In the anisotropic excited state, the isotropic solva­

tion structure is quickly transformed to anisotropic one and again, a similar, 

long-term standing-wave motion occurs. 

2 4 6 
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8 2 4 6 

r/ A 
8 

Figure 5.8: Snapshots of the liquid evolution after excitation from anisotropic 
ground to isotropic excited state ( case 1). Left: At time 100 fs. Right: At 
time 1000 fs. Greyscale contours, density; arrows, momentum (piJ). 

In both cases, the linear absorption spectra obtained are practically identi­

cal for the anisotropic and isotropic systems (Figure 5.9). The only promi­

nent features in the spectra, along with the sharp zero phonon lines, are the 

standing-wave modes at 3.3 K for the anisotropic ground state and at 3.5 K 

for the anisotropic excited state. The overtones of the standing-wave motion 
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are not shown because they are above the cut-off energy. The cut-off en­

ergy is equal to the single particle binding energy, ~5 K, which i8 required 

for evaporation. However, the standing-wave modes are not observed in the 

experimental spectra, because at above zero temperatures such modes are 

subject to serious inhomogeneous broadening. If the chromophore is only 

weakly trapped, as in the present case, the chromophores are not located at 

the center of droplets, but rather have a distribution which depend8 on the 

trapping potential, droplet size, and temperature. Moreover, the size distri­

bution of the droplets causes an additional broadening in the experiments. 
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Figure 5.9: Top: Absorption spectrum for the anisotropic ground state. Bot­
tom: Absorption spectrum for the anisotropic excited state. Dashed black 
line, anisotropic; solid grey line, isotropic. 

It was observed that the two methods used to simulate the linear absorp­

tion spectrum, the expression (5.11) and the direct Fourier transform of the 

equation (5.10), did not produce significantly different spectra. The Fourier 

transform approach was found to give larger intensities at higher energies, 

which is actually an advantage, because the experiments use high laser in­

tensities. A high laser intensity saturates the zero phonon line and thus 

enhances the high-energy bands. 

To summarize, the anisotropy does not alter the linear absorption spectra for 

small droplets, and the maxon and the roton minimum are not shown in the 

HµecLra, which i8 µrul,ably Jue Lo boundary efiecLs. The droplet boundary 

is too close to the localized excitations, which are disturbed and thus decay 

quickly. Simulations for larger droplets and for bulk superfluid would possibly 

provide more interesting results. 
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5.3 One and two-electron bubbles in superfluid 
4He 

An excess electron in liquid helium has been the subject of extensive experi­
mental and theoretical studies [22-24, 64-69]. In the experiments, an excess 
electron is inserted into helium by a discharge tip, or by an a- or ;3-source 
immersed in the liquid [22, 23]. The electron can then be dragged by a static 
electric field in a chosen direction for excitation and detection. The excess 
electrons can be monitored either by the induced electric current [22], by 
exploding the bubble [23], or by optical spectroscopy [66]. The bubble can 
be exploded by applying a negative pressure to the bubble, which is attained 
by an acoustic wave. Below a critical pressure, the bubble becomes unstable 
against unlimited expansion, the electron delocalizes to a plane-wave state 
and the cavity begins to fill with helium. The delocalized electron is then 
detected by a He-Ne laser: The laser light is scattered by the delocalized 
electron and the scattered photons are collected by a photomultiplier. The 
bubbles in different quantum states have different critical pressures, which is 
used to distinguish them from each other. 

The earlier theoretical studies have mainly used the standard bubble model 
[64] or a spherically symmetric, one dimensional density functional theory
[67]. In the standard bubble model, the liquid is treated as a classical bubble
and the electron is approximated as a particle in a spherical square-well of a
depth of ~1.0 eV. The energy of the liquid is a sum of the classical surface
energy, which is the product of the surface tension 'Y and the surface area A,
and the possible volume energy, which is the product of the external pressure
P and the volume of the cavity V. The total energy of the system 

E = Ee + 'YA + PV (5.12) 

includes the kinetic energy of the electron Ee, which is s!�2 for the ground 
state. The standard bubble model was extended by Maris [70] to include 
non-spherical geometries by describing the bubble shape using a linear com­
bination of Legendre polynomials of even order 

R(0) = (5.13) 
L=0,2, ... ,Lrnax 

Maris et al. calculated the shapes and energies of the bubble for several 
different quantum states as well as the transition energies and radiative life-
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times [68, 71]. 

Maris also investigated the possibility of two electrons occupying the same 
bubble [68]. In a two-electron bubble the electrons repel each other and thus 
cause a greater internal pressure against the bubble wall. The electronic 
system was treated with a simple diffusion Monte Carlo method. It was 
found that the spherical sine;let bu bhle is stahlr>. wit.h t.hr>. rarlins nf �4 A; 
however, the bubble was unstable against small perturbations and would 
dissociate to two distinct one-electron bubbles. 

The classical treatment of the liquid assumes a step-function for the gas­
liquid interface, i. e., the interface is sharp, and the liquid density is zero 
inside and equal to the bulk density outside the bubble. The penetration of 
the electron into the liquid is also prevented by the model, and the value of 
the surface tension, which should be used in microscopic systems, is unclear. 
To address these problems in paper V, a theoretically more rigorous bosonic 
density functional theory was used for helium together with an electron­
helium pscudopotcntial of Jortncr et al. [72]. The Orsay-Trento density 
functional produces accurately the smooth, finite-width gas-liquid interface 
and, together with the pseudopotential, it allows the electron to penetrate 
into the liquid. 

The electron and liquid helium form a coupled, non-linear system, for which 
the time-dependent equations can be written as 

·t/'J'lfJHe(r, t) __ ___!!!__y'
2./, (- ) 

i at - 2MHe 
'f/He r, t 

+ Uor ['l/JHeJ'l/JHe (r, t) + J Uel-He (l r- f'2l)Pe1(fz, t)d3 r2' (5.14)

where Uor ['/j)He ] is the Orsay-Trento potential, and 

·tc o'l/Je1 (r, t) n
2 

n2.J, (- ) Ju (I- -1) (- )d3 in 
,::, 

= --2- v 'f/el r ,  t + el-He r - r2 PHe r2, t r2,
ut mel 

(5.15) 

where Ue1-He (r) is the electron-helium pseudopotential. The states were 
solved numerically using the imaginary time propagation for both equations 
simultaneously. On each iteration step, both the electron and helium wave­
functions were propagated once and then the electronic wavefunctions were 
orthonormalized. It was found more efficient to update the densities as fre­
quently as possible, i. e., on each iteration, rather than waiting until the 
wavefunctions are converged. 
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5.3.1 One-electron bubbles 

65 

The one-electron bubbles were calculated exploiting the operator splitting 
together with the exponential propagators in the imaginary time propaga­
tion. The grid was chosen to consist of 128x128x128 grid points with 0.8 A 

spacing, as essentially the same results were obtained with the considerably 
more expensive 256 x 256 x 256 points and 0.4 A spacing. The integrals re­
quired for linearly weighted averages were evaluated using steps as small as 
0.025 A. The system had periodic boundaries; however, the simulation box 
was chosen sufficiently large to eliminate the periodic effects. 

The solutions were sought for the three lowest states: 1S, lP and lD. The 
ground state of the one-electron bubble is the spherical 1S state (Figure 5.10 
and Figure 5.11). If the electron is excited from the ground state to its first 
excited state lP, it obeys the Frank-Condon principle, and initially, the he­
lium density remains spherical, whereas the electron wavefunction forms a 
nodal plane (Figure 5.11). Consequently, the electron density is no longer 
spherical, leading to an anisotropic external potential for the liquid. Helium 
adapts to the new potential, which, in turn, breaks the symmetry of the elec­
tron's external potential. The anisotropy increases until a balance is reached 
and the shape resembles a peanut i. e., two slightly overlapping spheres (Fig­
ure 5.10). Furthermore, in the equilibrium geometry of the second excited 
state lD, the electron wavefunction has two nodal planes in parallel (Fig­
ure 5.11) and the shape of the bubble is further elongated to three slightly 
overlapping spheres on a line instead of two (Figure 5.10). 

1S 1P 1D 

Figure 5.10: Isosurfaces of the helium densities for the first three states of 
one-electron bubbles. 

The energies of the electronic states for different equilibrium geometries are 
shown in Figure 5.12. A summary of the bubble properties together with 
the classical approximations for the surface energies are presented in Tables 
5.1 and 5.2. The 2R11 is the length of the bubble, 2RJ_ is the width, E101, 

Eel and EHe are the total, electronic and helium energies from the DFT 
calculation, respectively. The surface area Aiso corresponds to p = ½Pbulk 
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Figure 5.11: Isosurfaces of the first ten electron wavefunctions for the first 
three states of one-electron bubbles. 

helium isosurface. The classical surface energies ')'1A and ')'2A are given for 
two different surface tensions, 'Yi = 0.24 7 K/ A and ')'2 = 0.275 K/ A, and the 
effective surface tension is defined as 'Yeff = EHe/Aso · The transition dipole 
moments, required for oscillator strengths and radiative lifetimes (Table 5.2), 
were calculated by a numerical integration of (?ti�'.) li11?ti�i l). These results are 
in reasonable agreement with the results obtained by the classical bubble 
[68, 71]. 

H11 H1_ Btot l!Je1 }!,'He Aiso 'Y1A 'Y2A 'Yeff 
State [A] [A] [K] [K] [K] [A21 [K] [K] [K/A2]

lS 18 18 2110 1026 1084 4003 1101 989 0.2708 
lP 28 16 2883 1415 1468 5447 1498 1345 0.2695 
1D 37 15 3485 1722 1763 6560 1804 1620 0.2688 

olP 22 22 3168 1555 1613 5972 1642 1475 0.2701 

Table 5.1: Summary of results for the one-electron bubbles. Units are 
Angstroms and Kelvins. See text for the description of quantities. olP 
denotes the spherically symmetric lP state. 

Oscillator strength t::..E 
Transition Type / Radiative lifetime [meV] 
lS----+ lP E

9 
- E

u 
f = 0.95 111 

E
9 

- II
lP----+ 1D Eu -E

9 
f = 0.61 75 

lP----+ 1D Eu - II f = 0.64 135 
lP----+ lS Eu -E

9 
60 µs 35 

1D----+ lP E
9 

-Eu 40 µs 31 

Table 5.2: Oscillator strengths, transition lifetimes and energies for some 
transitions of the one-electron bubbles. 

The width of the lP and 1D bubbles is smaller than that of the lS bubble, 
which decreases the effective inertia of the bubble and thus the increcIBes Lhe 
velocity when <lragge<l. Therefore, the lP au<l 1D bubbles could explain the 
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Figure 5.12: Energies of the electronic states for different equilibrium geome­
tries for the one-electron bubbles 

exotic (fast) ions, but the radiative lifetimes, 60 µs and 40 µs, (Table 5.2) 

are too short compared to the timescales of the experiments, ~1 ms [22]. 

Ghosh and Maris carried out experiments for determining the lifetime of the 

lP state and obtained an estimate of 50 ns [73]. As it is significantly shorter 

than the radiative lifetime, they proposed that some non-radiative process 

must be responsible for destroying the lP state. However, in paper V, no 

plausible non-radiative process was found with a lifetime of the same order 

as the estimated lifetime of 50 ns. For example, the bubble dynamics leading 

from 1S to lP is expected to proceed in the picosecond timescale. Another 

possibility for explaining the short lifetime is that the lP state would have 

two different configurations separated by an energy barrier. In addition to 

the non-spherical lP state, a metastable spherically symmetric lP state, in 

which the p--orbitals remain degenerate, could exist. However, when the 

spherical lP state was propagated in real-time, it began spontaneously to 

relax towards the non-spherical state. 



68 CHAPTER 5. RESULTS AND DISCUSSION 

5.3.2 Two-electron bubbles 

When two electrons occupy the same bubble, the electron-electron interac­
tion must be included into the electronic equations: 

·1c8'l/Je1(f',t) __ n2 ,12/. (-·)1.n- - -- - v nd r,t. 
at 2mel 

+ Uee[Ped'l/Je1(r, t) + J Uel-He(lr- iSl)PHe(r2, t)d3
r2' (5.16)

where Uee [Peil is the Kohn-Sham potential. Initially, the restricted Kohn­
Sham scheme with the local density approximation (LDA) was employed for 
the singlet state, but it produced physically inconsistent results as the elec­
tron density was localized into many fractions inside the spherical bubble. 
The source for this behavior was the self-interaction in the functional. To 
eliminate it, the self-interaction correction (SIC) of Perdew and Zunger [37] 
was applied, which produced a smooth, spherically symmetric density. How­
ever, the restricted Kohn-Sham scheme was found to prevent the splitting 
of the bubble, because a single Slater-determinant cannot describe two elec­
trons localized inside two different bubbles. Thus, the unrestricted Kohn­
Sham method was applied, which is justified by the alternative interpretation 
of the spin-density functional theory given by Perdew et al. [38]. The unre­
stricted method requires the use of the spin-density functional and thus the 
local density approximation was replaced with the local spin-density approx­
imation (LSDA). The same SIC-UKS-LSDA method can also be applied to 
the triplet state. 

For the two-electron calculations, the grid had to be enlarged to consist of 
320 x 320 x 320 points and a cut-off was set for the Coulomb repulsion in order 
to prevent periodic effects for the electrons. The singlet state was found to 
be stable in the spherical geometry with the bubble radius of 33 A (Figure 
5.13). However, when a small non-spherical perturbation was applied, the 
subsequent imaginary time propagation led to the dissociation of the bubble 
to two one-electron bubbles. The "reaction path" of the dissociation process 
cannot be determined from the imaginary time propagation, and thus it was 
not possible to determine whether an energy barrier exists for the splitting. 
Even a very small barrier could prevent the splitting at low temperatures. 
Nevertheless, the results obtained for the singlet state are in agreement with 
the reimltR obtained by Maris [68] using a combination of the <liffu::;iou MouLe 
Carlo and the cla,<,sical bubble model. 
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The triplet state has not been considered before and it was anticipated that 

additional stabilization caused by the spin-spin exchange interaction could be 

achieved. However, the triplet state was found to be even more unstable than 

the singlet, as no stable geometries were found and the bubble dissociated 

without any perturbations. Based on these calculations, it can be concluded 

that neither the singlet nor the triplet states appear to be stable in bulk 

superfluid 4He. 
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Figure 5.13: The electron and helium densities for the spherical singlet two­

electron bubble. Dashed line, electron density multiplied by 1000; Solid line, 

helium density. 



Chapter 6 

Summary 

Atoms and molecules as well as excess electrons in superfluid 4He can be 

used to investigate the microscopic properties of an inhomogeneous super­

fluid. Moreover, superfluid helium offers a homogeneous, ultracold and gentle 

medium for spectroscopic studies. Experiments have been done in bulk he­

lium and in helium droplets; the droplet approach has been more successful in 

introducing different species into the liquid. The bulk experiments suffer from 

a low solubility and rapid clustering of the atoms and molecules. However, 

the bulk is usually more desirable as it has wider temperature and pressure 

ranges and it does not suffer from boundary effects. The earlier theoretical 

studies have mainly used the standard bubble model, the quantum Monte 

Carlo methods, or the one dimensional, spherically symmetric density func­

tional theory. The standard bubble model uses the classical surface tension 

and pressure work to describe the bubble; this is not necessarily justified for 

atomic scale systems. The value of the surface tension to be used is unclear 

and it is thus regarded as an adjustable parameter. The quantum Monte 

Carlo methods, for example, the diffusion or path-integral Monte Carlo, are 

probably the most accurate methods in describing small helium droplets, but 

they are computationally demanding and thus not suitable for large droplets 

and bulk superfluid. Moreover, the quantum Monte Carlo methods cannot 

model (true) time-dependent systems. 

In the density functional methods the properties of a system are described 

by the density alone, at least in principle. As the density is only a function 

of three variables, the corresponding equations are one-particle Schrodinger 

equations with effective potentials, and the dimension of the problem does 

not depend on the number of particles in the system. This is why the density 

functional theory is especially suitable for large problems with many particles. 

71 
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The problem is that the exact form of the effective potential is not known and 

must be approximated. However, accurate funct10nals have been developed 

for many different systems, such as superfluid helium or electronic systems 

in chemistry and solid state physics. 

The most advanced functional for the superfluid 41--le is the Orsay-Trento 

functional, which can be used to model both time-dependent and time­

independent systems. The functional is a phenomenological functional, in 

which each term is based on a physical phenomenon, but the coefficients for 

the terms are determined from the experiments. In the earlier studies, the 

Orsay-Trento and its predecessors have been used to model bulk superfluid 

as well as helium droplets and films. In studies where atomic scale impurities 

have been immersed in helium, Lhe systems have been assumed to be spher­

ically symmetric allowing for an efficient solution in 1-D. However, to study 

the effect of anisotropy, the systems must be solved fully in three dimensions. 

A fully three dimensional system is computationally very demanding and 

the design of its implementation becomes important. The current imple­

mentation developed in this work can be used for both time-dependent and 

time-independent systems. It utilizes the semi-implicit propagation to ac­

curately handle the non-linearity in the Kohn-Sham equations. The time 

propagation is accelerated using the operator splitting technique and two 

different propagators are available: the Crank-Nicolson and the exponential 

propagators. The non-linear potential includes finite-range interaction in a 

form of a convolution, which is efficiently evaluated using fast Fourier trans­

forms. The number of grid points can be reduced by taking the linearly 

weighted averages of the potential terms, i.e., effectively integrating the po­

tential terms with sharp features using greater accuracy than for the rest of 

the problem. The imaginary time propagation is employed instead of the 

standard self-consistent field approach to accelerate the convergence of the 

time-independent problems. Finally, the total execution time was reduced 

by an efficient parallel execution of loops and fast Fourier transform. 

Three different systems were simulated using the methods described in this 

thesis. In the first system, the first four triplet states of molecular hydro­

gen dissolved in superfluid 4He were studied. In the case of free rotation, the 

salvation structures and the related emission and absorption spectra were cal­

culated for several different temperatures using the bosonic density functional 

theory. At lower temperatures, stronger blue shifts and broader linewidths 

were ohsPrverl /ls the liq11irl is morP. rlPnse. ThP ahsorption lines were a factor 

of ten more blue-shifted than the corrn,ponding erniHHion lineH. Of Lhe IirHL 
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four triplet states, the c state is of special interest as it is metastable and 

could be used as an intermediate state for absorption experiments. In the 

gas phase, the c state is doubly degenerate and the free rotation averages it 

to a spherical symmetry. However, if the degeneracy of the c state is broken 

and the free rotation is quenched in the liquid, the helium atoms reside in 

a highly anisotropic potential. The hybrid DMC-DFT method was applied 

to the anisotropic system and it was found that H;-(He)n complexes might 

form; these would heavily influence the absorption and emission spectra. 

In the second case, the effect of anisotropy on the absorption spectrum of 

small helium droplets was examined. A hypothetical atom with only two 

well-separated electronic levels was placed in the center of a droplet and 

excited from the ground state to the excited state. The absorption spectra 

were calculated from the time-evolution of the system rather than from the 

linear-response theory. Both the effect of an anisotropic ground state and 

the effect of an anisotropic excited state were studied and compared to the 

corresponding isotropic cases. It was found that the absorption spectra of 

anisotropic and isotropic cases were essentially the same. In all spectra, the 

only prominent feature in addition to the zero phonon line was the standing­

wave mode, which arises from the waves bouncing between the chromophore 

and the droplet surface. However, this is not seen in the experimental spectra 

as the impurity is not trapped in the center of the droplet but rather has 

a distribution which depends on the trapping potential, droplet size and 

temperature. The maxon and roton maxima were not found in the spectra; 

this is probably due to boundary effects. The droplet boundary is too close 

to the localized excitations, which are disturbed and thus quickly decay. 

In the third system, the electronic and bosonic density functional methods 

were combined to study excess electrons in superfluid helium. The three first 

states of the one-electron bubbles were calculated. Each of the states has 

a unique shape which results from the delicate balance between the excess 

electron and helium. The properties obtained were compared to the classi­

cal bubble model, which was found to provide reasonably accurate results 

when a proper value is used for the classical surfaces tension. The singlet 

two-electron bubble was found to be stable in a spherical geometry; how­

ever, it was unstable against a small non-spherical perturbation. The triplet 

state was even more unstable as no stable geometries were found and the 

bubble dissociated without any perturbations. It was concluded that the 

two-electron bubbles appear to be unstable in superfluid 4He.



Appendix A 

Further information 

A. l The local spin-density approximation

The energy functional for the local spin-density approximation: 

EfcS
DA[Pa, Pt,]= J p(r)c::;;!DA(p(r), ((r)) d3r, (A.1)

where p(r) = Pa(r) + Pt,(r) is the total density, ((r) = (Pa(r) - Pt,(r))/p(r)
is the spin polarization parameter, and c::;;fDA(p(r), ((r)) is the energy per
particle. 

The exchange-correlation potential is obtained by taking the functional deriva­
tive with respect to spin-densities: 

and 

(A.3) 

The exchange and correlation parts can be evaluated separately: 

(A.4) 
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A.1.1 Exchange

The exchange energy per particle is 

where 

d C = 2. (1)1/3an x 4 rr 

A.1.2 Correlation

The correlation energy per particle is 

where 
o ) ( . Ao o 60 o) E ( P = q x, ,x0, ,c , 
1 ) ( • A

l l bl l)c ( p = q X, , Xo, , C , 

a(p) = q(x; A°' , x�, b°', c°'), 

!(() =
1 

((1 + ()4/3 + (1 _ ()4/3 _ 2)2(2113 
- 1) , 

{ 
x2 2b Q 

q(x; A, x0, b, c) = A ln 
X(x) 

+
Q 

arctan 
2x + b 

- � [1n (
x - xo)2 

X(x0) X(x) 
2(b+2xo) Q 

]} 
+ 

Q arctan 
2x + b , 

( ) 
1/6 

x = 4�P , X(x) = x2 +bx+c and Q = (4c-b2 ) 112 . 

A � b C 

c� 0.03109070 -0.10498 3.72744 12.9352 
c� 0.01554535 -0.32500 7.06042 18.0578 
a -0.01688686 -0.0047584 1.13107 13.0045 

(A.5) 

(A.6) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

Table A.l: Values of parameters A, x0 , b, and c in atomic units. 
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The derivative of the function q(x; A, x0, b, c) with respect to x has a simple 

form: 
8q(x; A, x0, b, c) 

= 2A c
(x 

- x0) - bxx0
Bx x(x 

-
x0)X(x) •

(A.13) 
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A.2 Alternative derivation of diffusion Monte 

Carlo 

We start with time-dependent Schodinger equation: 

in o1j;r, t) = _!f_ V21j;(i, t) + V['lj;(r, t)]7f;(i, t). (A.14) 
t 2m 

Multiply (A.14) by wavefunction cp(i, t), which is the ground state wavefunc­
tion of an auxiliary bosonic system, to obtain: 

inc/>(r, t) aw:, t)

= - 2h
2 

cp(i, t)V21j;(i, t) + cp(i, t)V[7f;(i, t)]7f;(i, t). (A.15)
·,n 

Insert E'cp(i, t) = in84>�? multiplied by 'lj;(i, t):

inc/>(r, t) o'l/J!, t) 
+ in7/J(r, t) Be/>�, t)

and rewrite: 

= _!f_cp(i, t)V27j;(i, t) + cp(i, t)V[7f;(i, t)]'l/J(r, t)2m 
+ E'1j;(i, t)cp(i, t) (A.16)

.hocp(i, t)'lj;(i, t)
i 

8t 

= - n
2 

V2 [cp(i, t)'lj;(i, t)] + 2.!f_ V · ['l/J(i, t)V cp(i, t)]2m 21n 

- !f_'lj;(i, t)V2cp(i, t) + cp(i, t)V[7f;(i, t)]'l/J(i, t)2m 

Denote f (i, t) = cp(i, t)1j;(i, t) and rewrite again:

in of�, t) = -DV2

f(r, t)

+ E'7f;(i, t)cp(i, t). (A.17)

+ nv · [PQ(i, t)f(i, t)j I (Fh(i, t) -1- R')J(i, t), (A.18)
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h D - r,,
2 F. (- t) - 2"ef>(r,t) d w ere -

2m, Q r, - ef>(r,t) an 

Replace the real-time t with the imaginary time T = it/n: 

of: r) = D'\/2 f(r, r)

- D'\J · [FQ(r, r)f(r, r)] - (EL(r, r) + E')f(r, r). (A.20)

Finally, shift the energy by replacing E' by Er = -E': 

of: r) = D'\/2 f(r, r)

- D'\J · [FQ(r, r)f(r, r)] - (EL(r, r) - Er)f(r, r). (A.21)

In the variational Monte Carlo cp(r, r) = 'if;(r, r) and the potential V['/f;(r, r)] 
is the potential of an auxiliary system, the ground state of which is cp(r, r).
EL(r, r) is just a constant and can be set to EL = Er: 

of: r) = D'\72 f(r, r) - D'\J · [FQ(r, r)f(r, r)], (A.22) 

where f(r, r) = [cp(r, r)l2 . 
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A.3 Accuracy of semi-implicit propagators

Non-linear Schrodinger equation: 

A.3.1 Non-linear explicit Euler

(A.23)

iii 'lf;(r, t + t:.�� - 'l/J(r, t) + o(t:.t) = H['l/J(r, t)]'l/J(r, t) (A.24)
'l/J(r, t + t:.t) = ( 1 - �H['l/J(r, t)]t:.t) 'l/J(r, t) + o(t:.t2). (A.25)

A.3.2 Non-linear semi-implicit Euler

Predictor step: 

iii 'l/J(r, t) -!t' t -t:.t) + o(t:.t) = H['l/J(r, t)]'l/J(r, t). (A.26)
Substitute H['l/J(r, t)] = H['l/J(r, t -l:.t) + O(i:::.t)]:
iii 'lj;(r, t) -!t' t - i:::.t) + O(l:.t) = H['lj;(r, t -i:::.t) + O(i:::.t)]'l/J(r, t). (A.27)

If
H['l/J(r, t - i:::.t) + O(i:::.t)] = H['l/J(r, t - i:::.t)] + O(l:.ta) (A.28)

where a;::: 1, then: 

( 1 + i H['l/J(r, t -t:.t)]t:.t) ,J;(r, t) = 'l/J(r, t - t:.t) + o(t:.t2). (A.29)

Corrector step: 

iii 'lj;(r, t) -!�r, t - i:::.t) + O(i:::.l) = H[·J(r, l) + O(i:::.t2 )j-ip(r, t) (A.30)

( 1 + * H[,(b(r, t)]i:::.t) ·if;(F, t) = ·tjJ(t, l - i:::.l) + O(i:::.l2) . (A.31)
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A.3.3 Non-linear semi-implicit Crank-Nicolson

Predictor step: 

in 
'1/J(r, t + f1t/2) 

-;_t
'l/J(r, t - l1t/2) + O(t1t2) = H['l/J(r, t)J'l/J(r, t). (A.32)

Substitute H['lj;(f', t)] = H['lf;(r, t - t1t/2) + O(t1t)] 
and 'lf;(r, t) = ½ ('lf;(f', t + t1t/2) + 'lj;(r, t - t1t/2) + O(l1t2)): 

If 

·1i 'lf;(r, t + t1t/2) - 'l/J(r, t - t1t/2) o(t1 2) i 

6t 
+ t 

=H['lj;(r, t - 6t/2) + 0(6t)] x 
1 (A.33) 
2 ('l/J(r, t + t1t/2) + 'l/J(r, t - t1t/2) + o(t1t2)) . 

H['lf;(r, t - t1t/2) + O(t1t)] = H['lj;(r, t - t1t/2)] + O(t1ta) (A.34) 

where a 2'. 1, then: 

( 
1 i 

) 
-1 + 2,i,H['lf;(f', t - t1t/2)]t1t 'lj;(r, t + t1t/2) 

= ( 1 - ��H['lj;(f', t - t1t/2)]t1t) 'lj;(r, t - t1t/2) + O(t1t2). (A.35)

Corrector step: 

Because 

and 

thus 

-
1 

2 H(t) = 2 (H['lf;(f', t + t1t/2)] + H['lj;(r, t - t1t/2)]) + O(t1t ) (A.38)
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If 
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H[tf;(r, t + l:it/2) + O(t:it2)] = H[tj;(r, t + flt/2)] + O(fltl>) (A.39) 

where a 2'. 2, then: 

( 1 + �*fI(t)t:it) tf;(f, t + l:it/2) 

( li- ) 3 = 1 - 2,i,H(t)t:it t/J(r, t - t:it/2) + o(t:it )

A.3.4 Example: Gross-Pitaevskii potential

Because 

V[t/J(r, t)] = glt/J(r, t)l2 

thus 

Vlt/J(r, t) + ot/J(r)O(t:it")J = glt/J(r, t) + otJ;(r)O(t:i'-')12 

= gl7f;(r, t)l2 
+ g (tj;(r, t)btj;*(r) + tj;*(r, t)btf;(r)) O(f:itC>) 

-� glbt/J(r)l20(6t2c,

) 

(A.40) 

(A.41) 

= glt/J(r, t)l2 
+ o(t:ita). (A.42) 
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