
Sini Annamaa

CHATBOTS IN SOFTWARE RELEASE OPTIMIZA-
TION: CASE STUDY

JYVÄSKYLÄN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2024

ABSTRACT

Annamaa, Sini
Chatbots in Software Release Optimization: Case Study
Jyväskylä: University of Jyväskylä, 2024, 84 pp.
Information Systems, Master’s thesis
Supervisors: Marttiin, Pentti & Vakkala-Malinen, Suvi

The optimization of software release processes presents a challenge for today’s
organizations, especially those using Agile methodologies like the Scaled Agile
Framework (SAFe). This thesis investigates the potential of Large Language
Model (LLM)--based chatbots in enhancing software release processes within a
case organization. Given the growing interest in AI tools such as LLM chatbots,
this study investigates a relevant topic. However, the lack of peer-reviewed stud-
ies on chatbot applications in software release management highlights the im-
portance of this study. This study aims to explore how an LLM-based chatbot can
improve software release processes and identify the key features required for its
effective implementation. The study begins with a literature review that exam-
ines software release processes through the perspective of Agile methods, release
management, and chatbot functionality. The empirical part of the research was
conducted within a case organization to determine the software requirements for
an LLM-based chatbot. The findings indicate that LLM-based chatbots could op-
timize software release processes, as they can streamline tasks, automate repeti-
tive actions, and enhance information sharing. However, successful implemen-
tation depends on addressing user needs and ensuring smooth integration with
existing tools. By applying LLMs, organizations can adopt chatbot solutions
without disturbing software release processes.

Keywords: agile, software release management, large language models, chatbot,
case study

TIIVISTELMÄ

Annamaa, Sini
Chatbotit ohjelmistojen julkaisemisen optimoinnissa: Tapaustutkimus
Jyväskylä: Jyväskylän yliopisto, 2024, 84 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaajat: Marttiin, Pentti & Vakkala-Malinen, Suvi

Ohjelmistojen julkaisuprosessien optimointi on haasteellista nykypäivän organi-
saatioille, erityisesti niille, jotka käyttävät ketteriä menetelmiä, kuten Scaled
Agile Frameworkia (SAFe). Tässä tutkielmassa tutkitaan suuriin kielimalleihin
(LLM) perustuvien chatbottien potentiaalia ohjelmistojen julkaisuprosessien te-
hostamisessa case-organisaatiossa. Kun otetaan huomioon kasvava kiinnostus
tekoälytyökaluja, kuten LLM-chatbotteja, kohtaan, tämä tutkimus tutkii ajankoh-
taista aihetta. Vertaisarvioitujen tutkimusten puute chatbottien soveltamisesta
ohjelmistojen julkaisunhallinnassa korostaakin tämän tutkimuksen tärkeyttä.
Tutkimuksen tavoitteena on tutkia, miten LLM-pohjainen chatbot voi parantaa
ohjelmistojen julkaisuprosesseja, ja tunnistaa sen tehokkaan käyttöönoton edel-
lyttämät keskeiset ominaisuudet. Tutkimus alkaa kirjallisuuskatsauksella, jossa
tarkastellaan ohjelmistojen julkaisuprosesseja ketterien menetelmien, julkaisun-
hallinnan ja chatbotin toiminnallisuuden näkökulmasta. Tutkimuksen empiiri-
nen osa suoritettiin case-organisaatiossa LLM-pohjaisen chatbotin ohjelmisto-
vaatimusten määrittämiseksi. Tulokset osoittavat, että LLM-pohjaiset chatbotit
voivat optimoida ohjelmistojulkaisuprosesseja, koska ne pystyvät virtaviivaista-
maan tehtäviä, automatisoimaan toistuvia toimintoja ja tehostamaan tiedon jaka-
mista. Onnistunut käyttöönotto riippuu kuitenkin käyttäjien tarpeiden huomioi-
misesta ja sujuvan integroinnin varmistamisesta olemassa olevien työkalujen
kanssa. Soveltamalla LLM:iä organisaatiot voivat ottaa käyttöön chatbot-ratkai-
suja häiritsemättä ohjelmistojen julkaisuprosesseja.

Asiasanat: agile, ohjelmistojen julkaisuhallinta, suuret kielimallit, chatbotti,
tapaustutkimus

FIGURES

FIGURE 1 The Values of Agile Manifesto .. 11
FIGURE 2 The Framework of Scrum ... 13
FIGURE 3 The Roles and Their Relationships in Scrum 14
FIGURE 4 The Kanban Board ... 15
FIGURE 5 Core Competencies of SAFe 6.0 Framework 17
FIGURE 6 The Levels, Roles, and Activities in SAFe 18
FIGURE 7 Chatbot Components .. 30
FIGURE 8 The DSRM Process .. 38
FIGURE 9 Design Science Research Framework ... 40
FIGURE 10 Design Science Research Contribution Types 41
FIGURE 11 The Balanced Scorecard .. 42

TABLES

TABLE 1 The Twelve Principles of Agile Software Development 12
TABLE 2 Release Management Process Cycle ... 22
TABLE 3 DevOps Lifecycle ... 24
TABLE 4 Three Dimensions of Agile Product Delivery 26
TABLE 5 The Timeline of the DSR Project .. 45
TABLE 6 Overview of Survey Statements .. 49
TABLE 7 Overview of Survey Results ... 52
TABLE 8 Software Requirements for an LLMs Chatbot 54

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
FIGURES AND TABLES

1 INTRODUCTION ... 7

2 AGILE SOFTWARE DEVELOPMENT .. 10
2.1 Agile Methodology .. 10

2.1.1 Scrum ... 13
2.1.2 Kanban ... 15
2.1.3 Scaled Agile Framework ... 16

2.2 Challenges ... 19

3 SOFTWARE RELEASE MANAGEMENT ... 21
3.1 Overview of Release Processes .. 21

3.1.1 DevOps .. 23
3.1.2 ITIL ... 25

3.2 Agile Product Delivery ... 26

4 LLMS AND CHATBOTS IN SOFTWARE RELEASE MANAGEMENT 28
4.1 Overview of LLMs ... 28
4.2 Chatbots in Software Development and Project Management 29
4.3 Best Practices for Chatbot Design .. 30

5 SUMMARY OF LITERATURE REVIEW ... 33

6 RESEARCH SETTING .. 35
6.1 Research Questions .. 35
6.2 Case Description .. 36
6.3 Design Science Research Methodology .. 37
6.4 Balanced Scorecard Framework .. 42

7 CASE STUDY ... 44
7.1 DSR Project ... 44
7.2 Problem Identification... 46
7.3 Objectives of the Solution ... 47
7.4 Design and Development ... 47
7.5 Data Collection ... 48
7.6 Data Analysis, Validity and Reliability .. 50
7.7 Results and Evaluation ... 51

8 DISCUSSION ... 56
8.1 Reflection on Research Questions ... 56

8.2 Implications and Future Research ... 57
8.3 Evaluation of Research Quality ... 58
8.4 Limitations .. 59

9 CONCLUSION .. 60

REFERENCES .. 62

APPENDIX 1 THE EMAIL FOR THE SURVEY ... 71

APPENDIX 2 THE STRUCTURE OF THE SURVEY ... 72

APPENDIX 3 THE RESULTS OF THE SURVEY ... 77

Artificial Intelligence (AI) is becoming common daily in today's ever-changing
technological landscape. Abbass (2021, p. 94) states, “AI is everywhere, touching
and blending with everything in our life, including all fields of science.” This
statement underlines the broad role of AI in transforming various areas of peo-
ple's lives. The emergence of Generative Pre-trained Transformer (GPT) models
has marked a milestone that has spurred the development and adaptation of gen-
erative AI tools across industries and academia (Stokel-Walker & Van Noorden,
2023).

Agile methodologies have transformed software development and in-
creased the demand for faster and more efficient software delivery (Putta et al.,
2018). Frameworks, such as the Scaled Agile Framework (SAFe), have embraced
this demand and introduced new product delivery concepts that have adapted
to the evolving practices (Scaled Agile Framework, 2024b). This shift has led to
innovative approaches to software release and management, including introduc-
ing frameworks such as DevOps.

AI-based tools are playing an important role in software development.
Large Language Models (LLMs), which are advanced AI-based language pro-
cessing tools, have gained attention because they can be utilized in versatile ways
from chatbots to task automation (Chang et al., 2024). For instance, LLMs are cen-
tral to the design of chatbot systems that assist in improving collaboration and
productivity (Cīrule & Bērziša, 2019).

This study aims to investigate the potential of an LLM-based chatbot for the
optimization of software release processes. The study aims to understand how
such chatbots can streamline workflow in both the development and release
phases and to identify the software requirements for their effective implementa-
tion. The study answers the following research questions:

RQ1: How can an LLM chatbot optimize software release?

RQ2: What are the software requirements for an LLM chatbot in software release
processes?

1 INTRODUCTION

8

This study combines a literature review and a case study, conducted with the
help of Design Science Research (DSR) and the Balanced Scorecard (BSC), to ad-
dress the research questions. The study explores the potential of LLM chatbots
and aims to provide insights into how software release processes can be opti-
mized through such a chatbot in a case study organization.

The literature review follows the guidelines presented by Templier and
Paré (2015), for guiding and evaluating literature reviews in the information sys-
tems literature, to ensure a thorough assessment of existing research. The review
is used to synthesize insights from scientific articles, books, and conferences re-
trieved from databases such as IEEE Xplore, JYKDOK, Google Scholar, Sci-
enceDirect, and Scopus. Terms used to search for the literature included Agile,
Scrum, Kanban, SAFe, LLMs, chatbot, software development, software release, DevOps,
and ITIL.

When gathering the literature, the number of references and their impact
on the field has been considered. In addition, the literature must be relevant to
the research and support answering the research questions. In total, hundreds of
literatures were found from which 114 were selected for this thesis. The literature
chosen for the review has been verified with the help of the Publication Forum,
operating under the Federation of Finnish Learned Societies. The forum is a clas-
sification and rating system that supports the quality assessment of research find-
ings. It uses a four-level classification, where the number zero indicates that the
scientific journal does not meet the needed criteria and the number three is the
highest level (Federation of Finnish Learned Societies, 2022). Selected literature
must meet at least level one of the Publication Forum rating systems. This in-
creases trust and ensures that literature has been chosen from high-quality peer-
reviewed sources. However, this could have left out important information. The
Publication Forum's rating is not absolute, as the rating does not consider, for
example, the societal impact of the research being evaluated, leading to the pos-
sibility of exclusion of relevant literature. However, six pieces of gray literature
have been included to address the limited number of peer-reviewed sources on
this emerging topic, especially when opening the technologies behind chatbots.

The literature review aims to answer the first research question, which ex-
amines how LLM-based chatbots can optimize software releases. The results of
this review suggest that chatbots can automate repetitive tasks, streamline infor-
mation sharing, and facilitate team communication. They can also improve Con-
tinuous Delivery (CD) and DevOps processes through efficient software deploy-
ment and management.

The empirical study aims to answer the second research question with the
help of the DSR methodology. This involves problem identification, definition of
solution objectives, chatbot design and development, and collection and analysis
of data. The BSC framework is used to assess the impact of the chatbot, focusing
on functional requirements and non-functional requirements. Based on the re-
sults, the most valued features for the chatbot were information sharing and in-
ternal process optimization, whereas the least valued features were automation,
learning, and financial aspects. These suggest that the primary need for a chatbot

9

is to serve as a reliable and integrative tool for information access and manage-
ment, rather than as a new tool for instance for project management or task au-
tomation.

The structure of the study is as follows. After the introduction, the study’s
literature review is from Chapters 2 to 5. Chapter 2 consists of Agile and SAFe
methodologies in software development. Chapter 3 consists of software release
through release management, DevOps, and ITIL, as well as Agile Product deliv-
ery. The literature review in Chapter 4 is about Large Language Models, chatbots
in software development and project management, and the best practices for
chatbot design. Lastly, Chapter 5 summarizes the literature review.

Chapter 6 consists of the research setting. Based on the literature review
chapters, this chapter presents the research questions. It also discusses the organ-
ization in which the case will be conducted. Lastly, this Chapter introduces the
Design Science Research (DSR) methodology and the Balanced Scorecard (BSC)
framework chosen for the study. Chapter 7 presents the case study by following
the DSR phases. The structure of the Chapter is the following: problem identifi-
cation, solution objectives, design and development, data collection, data analy-
sis, validity, and reliability, as well as results and evaluation.

Chapter 8 is the discussion part of the study. In this, the research questions
are brought up again and the hypothesis related to them. It will also give impli-
cations and future research possibilities. Lastly in the Chapter, the limitations of
the study will be discussed. Chapter 9 concludes the thesis. It wraps up the re-
search and brings up the most important notes. This is done by summarizing the
study and its findings.

10

This chapter gives an overview of Agile software development. It introduces Ag-
ile methodology and its subsets Scrum, Kanban, and SAFe. The chapter con-
cludes with an overview of challenges related to Agile software development.

2.1 Agile Methodology

Agile methodology is a software development and project management ap-
proach. It is based on the Agile Manifesto introduced by Beck and others (2001).
It was developed as a response to the limitations of the Waterfall model, which
struggled with the dynamic and iterative nature of the latest software develop-
ment (Thesing et al., 2021). Through iterative development and team collabora-
tion, Agile emphasizes adaptability to evolving customer needs.

Agile methodologies are impactful. Due to their flexibility, adaptiveness,
customer-centricity, and emphasis on continuous improvement, they can en-
hance software projects (Aouni et al., 2024). The core values of the Agile Mani-
festo emphasize individuals and interactions over processes and tools and work-
ing software over comprehensive documentation (Figure 1). Šmite and others
(2021) suggest that the values enable teams to address problems quickly while
promoting creativity and maintaining a user-centric approach. However, the ef-
fectiveness of Agile methods depends on their implementation, as challenges
such as customer engagement and team coordination can weaken its principles
(Thesing et al., 2021).

2 AGILE SOFTWARE DEVELOPMENT

11

FIGURE 1 The Values of Agile Manifesto (adapted from Beck et al., 2001)

In addition, the Agile Manifesto introduced the Twelve Principles of Agile Soft-
ware Development (Beck et al., 2001). The principles were designed to guide
teams in their daily tasks. They provide a framework for the operationalization
of Agile values and the promotion of a people-centric and flexible approach to
software environments.

Table 1 presents the principles and their descriptions. The principles high-
light the importance of iterative processes, sustainable development practices,
and customer satisfaction. For instance, the second principle of welcoming
changing requirements even in the later stages of development illustrates the
flexibility that characterizes Agile as distinct from traditional methods, like Wa-
terfall. Even though these principles are widely accepted, their implementation
is not without difficulties. There has been criticism that some principles can be
difficult to implement in remote or distributed teams (Šmite et al., 2021). Further-
more, the tenth principle can require a significant cultural shift, which can cause
resistance in organizations moving to Agile ways of working.

12

TABLE 1 The Twelve Principles of Agile Software Development (adapted from Beck et
al., 2001)

Principle Number Principle Description by Beck and others (2001)

Principle 1 Customer satisfaction through early and continuous delivery of
valuable software.

Principle 2 Welcome changing requirements, even when they are late in devel-
opment. Agile processes harness change for the customer's compet-
itive advantage.

Principle 3 Deliver working software frequently, with a preference for shorter
timescales.

Principle 4 Collaboration between businesspeople and developers is key
throughout the project.

Principle 5 Build projects around motivated individuals, providing them with
the support they need and trusting them to get the job done.

Principle 6 Face-to-face conversation is the most effective form of communica-
tion.

Principle 7 Working software is the primary measure of progress.
Principle 8 Sustainable development, where developers, sponsors, and users

should be able to maintain a constant pace indefinitely.
Principle 9 Continuous attention to technical excellence and good design en-

hances agility.
Principle 10 Simplicity, the art of maximizing the amount of work not done—is

essential.
Principle 11 The best architecture, requirements, and designs emerge from self-

organizing teams.
Principle 12 At regular intervals, the team reflects on how to become more effec-

tive and adjusts its behavior accordingly.

Agile development follows an iterative cycle. In it, projects are divided into
smaller increments or sprints, lasting anywhere from one to four weeks (Fagara-
san et al., 2021). During each sprint, development teams focus on delivering func-
tional software, allowing frequent adaption and evaluation (Rodríguez et al.,
2019). Also, Fagarasan and others (2021) highlight that it also allows teams to
identify and resolve bugs or usability issues early in the development process,
contributing to producing higher-quality software that meets user needs. Agile
also promotes better communication, coordination, and decision-making within
development teams through its focus on cross-functional collaboration and reg-
ular internal reviews (Schmidt, 2016). Moreover, Rodríguez and others (2019)
point out Agile’s adaptability, which makes it particularly suited to fast-paced
environments where requirements evolve frequently.

Still, the approach does not come without its challenges. Gandomani and
Nafchi (2016), point out that the simultaneous workflow can lead to duplication
of tasks or mismatches between teams, weakening the collaboration and capabil-
ity that Agile aims to foster. Also, the lack of definitive deadlines can delay pro-
ject delivery and disrupt the expectations of stakeholders (Schmidt, 2016). The
challenges suggest that even if the Agile approach facilitates collaboration and
responsiveness, it requires careful management to avoid any inability.

13

Despite the challenges, Agile has not lost its popularity in the field as it
meets the needs of today’s software development. It supports iterative workflow,
stakeholder collaboration, and adaptability, which are essential in the manage-
ment of dynamic project environments. This makes Agile an ideal candidate for
integration with tools such as AI-based chatbots that can improve communica-
tion and task coordination in iterative workflows.

The flexibility of Agile has also led to the development of specialized sub-
sets, designed to meet specific needs of project management. These methods and
scalable Agile frame models are extreme programming (XP), Scrum of Scrums
and Large Scale Scrum (LESS). Nowadays the most used are Scrum, Kanban, and
the Scaled Agile Framework (SAFe). These methodologies, which retain the core
values and principles of Agile, are discussed in the following sections.

2.1.1 Scrum

The first Agile method to be looked at in this study is Scrum, a management
framework designed to improve the effectiveness of teams in delivering projects.
Originally introduced in 1995, it provides both a structured and flexible approach
to managing complex problems through defined roles, artifacts, and ceremonies
(Schwaber & Sutherland, 2020). Scrum emphasizes processes where decisions are
guided by experimentation, observation, and learning from experience
(Sachdeva, 2016).

Scrum relies on self-organizing teams. To achieve these teams, it follows
defined core elements, described in the Scrum Guide (Schwaber & Sutherland,
2020). Figure 2 illustrates the framework of Scrum, showcasing its incremental
nature that supports continuous development and delivery.

FIGURE 2 The Framework of Scrum (adapted from Sachdeva, 2016, p. 16793)

Scrum outlines three primary roles: Scrum Master, Product Owner, and Devel-
oper (Figure 3). These roles are coequal and responsible for delivering high-qual-
ity, phased solutions within the Scrum Framework. The Scrum Master facilitates
and coaches the team, ensuring it implements and follows the Scrum framework
properly (Nilsson Tengstrand et al., 2021). The Product Owner acts as a bridge
between the stakeholders and the development team by defining the product vi-
sion, gathering, and prioritizing requirements, and managing the product

14

backlog (Berntzen et al., 2019). Developers are part of a cross-functional and self-
organized team, with all the skills needed to create and deliver a product, which
plans, implements, and evaluates work to achieve goals and ensure continuous
improvement (Sachdeva, 2016). These roles ensure that Scrum teams work cohe-
sively but independently while balancing project vision, technical execution, and
team collaboration (Nilsson Tengstrand et al., 2021). When the responsibilities
are defined clearly, Scrum allows flexibility and accountability needed for itera-
tive development and continuous delivery.

FIGURE 3 The Roles and Their Relationships in Scrum (adapted from Sachdeva, 2016, p.
16794)

Scrum contains four key artifacts that guide the development process and en-
hance team collaboration: product backlog, release plan, sprint backlog, and
burn-down charts. Product Backlog is the list of requirements for the developed
product in a user story format. The Release Plan describes the release goal, the
item with the highest priority, the risks, and the functionality and overall features
of the product. The content of the Sprint Backlog comes from the Sprint Planning
Meetings, and it is both owned and modified by the team. It includes the tasks
for each Sprint, as well as estimated and assigned tasks. Lastly, Burn-down
Charts are visual artifacts to motivate the team. It is often a graph showing the
amount of remaining work from the Sprint Backlog. (Jacobson et al., 2022).

Scrum also incorporates four core ceremonies that structure the iterative
sprint process: sprint planning, daily scrum, sprint review, and sprint retrospec-
tive. Sprint planning is a meeting where the iteration is planned by first deter-
mining the aim of the Sprint and how the product increment will be built. Sprint
review is also a meeting where the development teams present and discuss the
work done in the sprint. Sprint retrospective is a discussion where the whole
team evaluates the finished work. In daily scrum meetings, each team member
explains their tasks for the day and if any obstacles are stopping them from exe-
cuting them. (Sachdeva, 2016).

Scrum offers several benefits for software release processes. Paasivaara
and others (2009) note its ability to increase transparency in distributed projects,

15

early problem detection, promote the sharing of knowledge, and encourage in-
formal communication between teams. These benefits are useful in Agile soft-
ware development, where adaptability and responsiveness are critical.

However, Scrum also has its downsides. For instance, Marchenko and
Abrahamsson (2008) point out that the excessive focus on Scrum practices by
Scrum Masters can decrease team productivity. In addition, unclear management
and expectations can weaken the key principles of Scrum, communication, and
transparency (Paasivaara et al., 2009). Marchenko and Abrahamsson (2008) also
bring up the risks of excessive overly individualistic and managerial interference,
which can compromise the autonomy of self-organized teams and disrupt the
iterative feedback loop that is central to Scrum’s success.

Scrum provides an iterative and collaborative framework for software de-
velopment, facilitating cross-functional collaboration between teams. However,
as the literature suggests, optimizing the implementation of Scrum could im-
prove the effectiveness of managing software release processes.

2.1.2 Kanban

Kanban, the second Agile method presented in this study, offers a simpler and
more visual approach when compared to Scrum. It is widely used in DevOps and
Agile software development, described in later chapters. Kanban was originally
developed by Toyota in the 1940s and was applied to software development in
2004, providing a versatile framework for improving and managing team
productivity (Wakode et al., 2015).

The core of Kanban is the Kanban board (Figure 4), a visual tool showing
work items and their progression through workflow. The board usually consists
of defined columns representing the different stages of the workflow, like back-
log, test and released. Kniberg and Skarin (2010) describe that the visual repre-
sentation allows team members to keep track of the current tasks and facilitate
smooth transitions between steps. Also, Kanban supports the automation of
workflow by providing a clear overview of both incomplete and completed tasks
(Wakode et al., 2015).

FIGURE 4 The Kanban Board (adapted from Kniberg & Skarin, 2010, p. 42)

Similarly to Agile, Kanban is based on six key practices: visualizing workflow,
limiting work in progress, measuring and managing flow, clarifying process
practices, introducing feedback loops, and promoting collaborative

16

improvement (Ahmad et al., 2013). These enable on-demand delivery, where
tasks are completed on demand, in distinction to time-limited approaches like
Scrum, where work schedules are determined by predefined sprints and events
(Anderson, 2010).

In addition, Kanban also follows four guiding principles that correspond
to the philosophy of the Agile Manifesto. The first principle, starting with what
you are doing, emphasizes identifying and leveraging existing processes and
identifying areas for improvement. The second principle encourages incremental
and evolutionary improvement, which aligns with the emphasis on continuous
development and adaptation in Agile. The third principle is to respect existing
roles, responsibilities, and processes, thereby facilitating incremental and seam-
less improvements. Lastly, Kanban encourages leadership at all levels, empha-
sizing the importance of ownership in organizations. (Ahmad et al., 2013).

Kanban offers several advantages. Visualization through tools, such as the
Kanban board, gives stakeholders and development teams a clearer understand-
ing of task progress and workflows. Dennehy and Conboy (2017) highlight that
this visual clarity increases productivity and facilitates problem-solving, improv-
ing communication and coordination between teams and stakeholders. Also,
Kanban’s independence from heavy documentation allows frequent iteration
and rapid implementation of changes, making it well-suited for dynamic devel-
opment environments (Alaidaros et al., 2018).

Nevertheless, Kanban also faces challenges, in its limited scope as an in-
dependent framework. Ahmad and others (2013) indicate that Kanban does not
inherently support project outputs but requires complementary practices or
frameworks to ensure successful project management. This places Kanban as a
workflow tracking tool, rather than a comprehensive project management
method. Similarly, Alaidaros and others (2018) argue that Kanban lacks the
needed mechanism for detailed progress monitoring, further supporting its role
as a complementary rather than an independent method.

Overall, Kanban executes well for visually representing workflows and
facilitating coordination between teams. Its flexibility and focus on continuous
improvement make it a valuable tool for improving productivity and responsive-
ness. Still, Kanban’s reliance on complementary frameworks points out its role as
a support method rather than a complete project management solution. This re-
flects its primary strengths to visualize and optimize processes in Agile method-
ologies.

2.1.3 Scaled Agile Framework

The last subset of Agile discussed in this thesis is the Scaled Agile Framework
(SAFe). It is designed primarily for large organizations to effectively scale Agile
practices across the enterprise while maintaining responsiveness and flexibility,
the core principles of Agile (Putta et al., 2018). According to Alqudah and Razali
(2016), SAFe emphasizes collaboration, alignment, and delivery at all levels of
the organization, and addresses the complexity of cross-functional projects with-
out having to compromise Agile’s core values.

17

SAFe is built on seven core competencies that organizations use to deliver
customer-centric, cross-organizational solutions. The competencies are Lean
Portfolio Management, Organizational Agility, Continuous Learning Culture,
Lean-Agile Leadership, Agile Product Delivery, and Enterprise Solution Deliv-
ery. These competencies are illustrated and described in Figure 5, to highlight
their role in applying SAFe to organizations. As Putta and others (2018) brought
up, customer centricity is the fundamental element on which all SAFe competen-
cies are based.

FIGURE 5 Core Competencies of SAFe 6.0 Framework (adapted from Scaled Agile Frame-
work, 2024b)

In addition to the competencies driving organizational agility, SAFe includes lay-
ers to ensure the scalability of the framework at different organizational levels:
team, program, large solution, and portfolio. Nilsson Tengstrand and others
(2021) mention that these layers are crucial to adapting and scaling Agile prac-
tices to the needs of large enterprises, ensuring the alignment and facilitation of
collaboration at each level. The roles associated with each layer are illustrated in
Figure 6 and discussed in detail below.

18

FIGURE 6 The Levels, Roles, and Activities in SAFe (adapted from Nilsson Tengstrand et
al., 2021, p. 159)

At the Team level, development teams apply Agile practices through frameworks
such as Kanban and Scrum. The teams use the frameworks to manage tasks and
workflow and follow the roles and processes defined in the chosen methodology.
(Duncan, 2018). In Figure 6 the illustrated team level gives an example of a de-
velopment team following Scrum.

The program level introduces the Agile Release Train (ART). It is a cross-
functional team where development teams work together on the same solution.
ART teams share a common vision, roadmap, and a set of capabilities. A key role
at the program level is played by the Release Train Engineer (RTE), who oversees
the progress of ART. They facilitate collaboration, manage risks, and ensure that
ART remains aligned with business objectives. (Nilsson Tengstrand et al., 2021).

At the Large Solution level, the focus is on managing and coordinating mul-
tiple ART activities and value streams. The level often relates to release manage-
ment, where the Solution Train Engineer (STE) synchronizes the work of ARTs
to ensure team alignment. The role of the STE is to manage dependencies and
maintain cohesion between ARTs using a financial framework to prioritize initi-
atives and deliver value efficiently. (Duncan, 2018).

The portfolio level ensures the alignment of Agile and strategic objectives.
Program Portfolio Management (PPM) is responsible for monitoring resource al-
location and budget management to achieve business objectives. PPM also en-
sures that the work of ARTs and development teams is aligned with the broader
organizational strategy, optimizing the value delivered to the business. (Nilsson
Tengstrand et al., 2021).

19

SAFe uses a variety of Agile practices, such as iterative development and
continuous delivery. Theobald and Schmitt (2020) note that SAFe places a strong
emphasis on continuous delivery, but more on a structured and controlled ap-
proach. One of SAFe’s key events is Program Increment (PI) Planning occurring
every 8-12 weeks, in which all teams of each ART work together to define goals
and identify dependencies, ensuring that the teams are aligned with the shared
goals before moving forward (Putta et al., 2019). This is a crucial event to better
foster shared understanding and coordinate efforts across teams.

SAFe is particularly useful for large enterprises because it allows Agile to
be scaled at multiple levels. According to Putta and others (2018), it enables align-
ment between business units and development teams, facilitating collaboration
across organizational levels, improving risk management, and speeding time to
market. This makes SAFe especially suitable for larger organizations, needing to
scale Agile beyond the team level.

However, the implementation of SAFe does not come without its own chal-
lenges. Dikert and others (2016) highlight that the implementation of SAFe re-
quires significant cultural and organizational changes, often needing the alloca-
tion of resources and commitment of management. This change can lead to addi-
tional costs and potential resistance at organizations’ different levels, hindering
the implementation. As in any Agile framework, employees are the cornerstone
of SAFe’s success, making their engagement critical to overcoming these chal-
lenges.

In summary, SAFe provides a comprehensive and structured approach to
scaling Agile practices in larger organizations. Its emphasis on alignment, con-
tinuous delivery, and communication across organizational levels makes it a val-
uable methodology for organizations looking to scale Agile practices into large
enterprises. While its implementation may require significant resources and face
cultural resistance, SAFe holds its place as one of the most used Agile methods
in today’s software development.

2.2 Challenges

Scaling Agile practices in organizations poses its own challenges. Research sug-
gests that success in scaling Agile practices depends on effective coordination
and communication at different levels of the organization (Putta et al., 2018; The-
obald & Schmitt, 2020). Without frequent updates and established communica-
tion channels, bottlenecks can occur that hinder the pipeline of software devel-
opment.

Resistance to change is one of the most common challenges when adopting
Agile practices. The time-consuming nature of adapting to a new set of processes
can cause resistance, particularly if employees do not agree with the proposed
changes (Kalenda et al., 2018). Resistance can occur at any organizational level,
but it is particularly complex at higher levels with the decision-making power.

20

Moe (2013) brings up that resistance at this higher level can create barriers when
moving to Agile methods, further leading to delays or disruptions.

From a psychological perspective, the challenges of adopting Agile meth-
ods stem from the strong emphasis on openness. While Agile transparency pro-
motes collaboration and accountability, some employees may view it as a tool to
control or criticize their performance. Conboy and others (2011) identified a fear
among developers of transparency, implying that some may perceive it as a
threat to their professional competence. Similarly, Kalenda and others (2018) ar-
gue that relying on Agile development in self-organized teams and increased in-
dividual accountability can overwhelm some employees, especially if responsi-
bilities accumulate over time.

Agile methods also face obstacles in decentralized working environments,
which are common in today’s working life after the impact of COVID-19. Studies
show that the team members' physical separation can erode interpersonal rela-
tionships, reducing team cohesion and hindering effective communication
(Paasivaara et al., 2013; Vallon et al., 2013). The lack of face-to-face interaction can
make it difficult for the flow of information to the right stakeholders, weakening
the transparency on which Agile methods rely.

Quality assurance (QA) can also face problems when adopting Agile prac-
tices. Vallon and others (2013) describe a case where the introduction of Agile
quality led to the degradation of software quality. In this case, increased work-
load, and pressure to meet deadlines were the main identified factors contrib-
uting to the negligence of testing and debugging, resulting in technical debt. Val-
lon and others (2013) also brought up that in extreme cases, teams have falsified
reports to cover up neglected QA practices, such as untested features or uncor-
rected tests. Such failures in QA not only compromise the stability of the produc-
tion environment but can also weaken the confidence of customers, potentially
damaging the organization’s reputation.

Overall, Agile software development has become essential due to its way of
enabling adaptation to changing requirements and economic conditions, while
promoting collaboration and openness. Its challenges should not be underesti-
mated. Agile development is not a one-size-fits-all solution and it requires careful
planning and risk mitigation to overcome its challenges. As software delivery has
been accelerated through Agile development, customers are increasingly expect-
ing updates and value-based releases. To meet this rising demand, organizations
have adopted software release management practices to complement Agile meth-
odologies.

21

The objective of software release management is to ensure stability and quality.
Sometimes this objective cannot be achieved at the required level, thus creating
situations where assistive tools are needed, hence providing a footing for LLMs
chatbot incorporation into software release. This chapter introduces and defines
software release management and its supporting frameworks, DevOps and ITIL.
The chapter aims to establish a context for release management within Agile soft-
ware development through Agile product delivery.

3.1 Overview of Release Processes

Software release management, often called release management in short, is a
technique used to plan, manage, and control software releases through various
phases. It aims to improve the speed, quality, and efficiency of software delivery,
thereby increasing the likelihood of a successful and stable release (Heikkilä et
al., 2017). This method is essential for balancing the need for fast deliveries in
complex environments where multiple teams work on the same solution (Samer,
2016).

Release management can be executed through different methodologies, the
most famous ones being Agile or Waterfall. Each method represents its own phi-
losophy and approach to managing software release processes. The Agile
method promotes adaptability and flexibility through its incremental processes,
allowing both iterative development and continuous delivery of software
(Thesing et al., 2021). The Waterfall method promotes sequential and linear ap-
proaches where each phase must be completed before the next one begins, mak-
ing the method effective for projects with static and well-defined requirements
(Schaefer et al., 2012). Due to its rigid nature, the Waterfall method is less adapt-
able to changes and is not suitable for projects with changing requirements,
which is why Agile is preferred over it in today’s software release management
(Thesing et al., 2021).

3 SOFTWARE RELEASE MANAGEMENT

22

Still, it is good to note that the original Waterfall model by Royce (1970) was
not strictly linear, as it included feedback mechanism allowing earlier steps to be
revisited. This is often an overlooked aspect in discussions where the method is
considered rigid. Also, McConnell (1996) describes several methods designed for
different project contexts. These include strategies, which divide systems accord-
ing to priorities or requirements, and iterative approaches, allowing refinement
of steps early on. Yet, the comparison between Agile and Waterfall model is still
common and often based on oversimplified comparisons. Such descriptions can
easily ignore the flexibility of the model and overstate the current dominance of
Agility. By recognizing these organizations can choose the best approach suiting
best their needs.

Agile release management is guided through an iterative process cycle, en-
suring the delivery of quality software by continuous improvement. This cycle
consists of the following steps: planning, building, testing, preparation, and de-
ploying, described in detail in Table 2. In these stages, Agile release management
prioritizes documentation, coordination, and repeatability to ensure the effi-
ciency and streamlining of the software release processes (Kajko-Mattsson &
Yulong, 2005).

TABLE 2 Release Management Process Cycle (adapted from Kajko-Mattsson & Yulong,
2005, p. 851)

Phase Objective

1. Planning Scope definition, stakeholder alignment, and risk management.

2. Building Version control, Continuous Integration (CI), and quality control.

3. Testing Testing strategies and automation.

4. Preparing Documentation and readiness, and environment setup.

5. Deploying Deployment models, and monitoring and post-release testing.

Release management ensures high-quality and stable software releases through
a structured approach, avoiding disruptions in the production environment. It
aims to minimize the risks associated with errors and instability and ensure a
smooth experience for end-users (Heikkilä et al., 2017). A successful release is one
in which end-users do not encounter difficulties, strengthening the software’s
trust. This structured approach seeks to optimize the efficiency of software deliv-
ery by managing resources, avoiding delays, and standardizing processes, fur-
ther improving consistency (Schaefer et al., 2012). With Agile values, release
management plays an important role in today’s software development practices.

Agile release management leverages DevOps practices, especially continu-
ous integration (CI) and continuous delivery (CD), in supporting frequent and
reliable releases. CI automates code changes from multiple sources into a single
software (Ståhl & Bosch, 2014; Virmani, 2015). CD builds, tests, and deploys soft-
ware in smaller cycles, improving the quality of software (Samer, 2016; Zhao et
al., 2017). Together, these practices create the CI/CD pipeline, which is critical
for Agile release management. This pipeline automates repetitive tasks, such as

23

testing, application orchestration, and deployment, ensuring seamless coordina-
tion of quality control and delivery (Virmani, 2015). In the context of Agile, the
CI/CD pipeline bridges the gap between operations and development, contrib-
uting to faster and safer releases (Samer, 2016).

Dependency management is a critical challenge in Agile release manage-
ment. As software is often dependent on numerous dependencies, release man-
agers must coordinate them to ensure the systems stay operational even after the
release (Heikkilä et al., 2017). Studies have identified that a single application can
have several dependencies (Dietrich et al., 2022; Zhao et al., 2017), underlining
the complexity of ensuring compatibility and stability. The challenge of depend-
encies is further emphasized when teams collaborate on the same solution. Effec-
tive coordination requires alignment of development and release schedules,
which need to handle consecutive or simultaneous releases and prevent disturb-
ances in services (Heikkilä et al., 2017). Weak coordination can lead to system
failures, further affecting negatively user experience.

Release management plays an essential role in delivering reliable, high-
quality, and secure software in Agile environments. Through its structured pro-
cesses, it ensures stability while considering both technical and business require-
ments. Still, the challenges of maintaining speed and quality highlight the need
for supporting tools and strategies to help in managing these complexities. Next,
two widely used frameworks supporting software release management, DevOps
and ITIL, are introduced.

3.1.1 DevOps

DevOps is a philosophy and practice, which integrates both software develop-
ment and IT functions into a cohesive, automated, and collaborative workflow
(Ebert et al., 2016). The term DevOps is a combination of words development and
operations, reflecting the integration of these two disciplines. Through its em-
phasis on team empowerment, automation, and cross-functional communication,
DevOps has become an ideal framework for managing releases in Agile environ-
ments (Banica et al., 2017).

DevOps follows four principles, collaboration and communication, auto-
mation, continuous integration (CI), and continuous delivery (CD), as well as
monitoring and feedback, which enhance its effectiveness and adaptability in Ag-
ile contexts. Collaboration and communication facilitate a cross-functional cul-
ture between operations and development teams, promoting shared responsibil-
ity for product quality and performance. Automation acts as the cornerstone of
DevOps, driving faster processes for development and deployment, minimizing
human errors, and improving consistency. CI ensures early detection of integra-
tion problems through frequent integration of code into a shared repository,
while CD automates the deployment and supports iterative releases. Monitoring
and feedback provide actionable feedback and enable proactive problem identi-
fication and resolution, ensuring software performance and reliability. Together
these four principles promote faster and quality releases while focusing on con-
tinuous improvement and responsiveness. (Ebert et al., 2016).

24

DevOps lifecycle consists of eight phases: planning, coding, building, test-
ing, releasing, deploying, operating, and monitoring. These phases ensure a
smooth flow from the design of the software to the end-user experience. The ob-
jectives of each phase are presented in Table 3. According to Alnafessah and oth-
ers (2021), this lifecycle is similar to the traditional software development lifecy-
cle but differs from it with its highly automated and continuous release process.

TABLE 3 DevOps Lifecycle (adapted from Alnafessah et al., 2021, p. 3)

Phase Objective

1. Planning Scoping out new features and functions based on user feedback and
cases.

2. Coding Coding and building new features on user stories and work items in
the backlog.

3. Building The new code is integrated into the existing code, then tested and
packaged for release and deployment.

4. Testing Ensuring that the new application meets the set of standards and re-
quirements.

5. Releasing Runtime to deploy, check quality and compliance, and run security
tests.

6. Deploying The solution is deployed to the production environment for end-users
to access.

7. Operating Monitoring performance, behavior, and availability of the features.
This ensures that the feature provides value for end-users.

8. Monitoring Feedback gathering from stakeholders on functions, features, perfor-
mance, and business value.

DevOps offers benefits to organizations, especially in the context of Agile release
management and development. DevOps promotes shorter cycles of releases, sup-
porting frequent deliveries that meet the needed requirements (Faustino et al.,
2022). Also, the use of CI/CD pipelines ensures that the code changes are tested
and functional, improving the overall reliability of the software (Ståhl & Bosch,
2014). DevOps improves efficiency and productivity through its enhancement of
closer communication between development and operations teams (Aouni et al.,
2024). Through its proactive approach to ensure compliance with standards,
DevOps minimizes vulnerabilities and reduces risk in the early stages (Faustino
et al., 2022). Through its automation, it improves resource allocation and scala-
bility by reducing manual workload and saving both time and money (Aouni et
al., 2024).

On the other hand, DevOps comes with its own challenges. Switching to
DevOps can be challenging for teams who are not used to collaborative and cross-
functional workflows (Leite et al., 2019). To enable effective DevOps practices,
organizations may need to invest in new tools, automation technologies, and
cloud platforms, which can be both costly and time-consuming (Shahin et al.,
2016). To effectively use DevOps, teams should update their set of skills, which
require additional resources from the organization (Leite et al., 2019; Shahin et
al., 2016).

25

In conclusion, DevOps meets today’s technological environment. While
there are challenges that need to be considered, such as costs, infrastructure, and
organizational changes, the benefits can be seen as outweighing the challenges.
In release management, DevOps enables teams to adopt Agile approaches. In the
following section, ITIL is being looked at from the point of view of improving IT
services and supporting release management.

3.1.2 ITIL

ITIL (Information Technology Infrastructure Library) is a set of practices for IT
service management (ITSM). It was developed by the Central Computing and
Telecommunications Agency (CCTA) in the 1980s. Its most recent iteration is ITIL
4, released in 2019 (Obwegeser et al., 2019). ITIL aligns IT services with organiza-
tions’ business objectives.

Compared to the previous iterations, ITIL 4 integrates with current ap-
proaches, such as Agile and DevOps. It adopts an iterative, holistic, and value-
driven approach to ITSM, making it more suitable for fast-paced Agile environ-
ments, allowing organizations to respond effectively to customer needs and pres-
sures from competition (Agutter, 2020).

ITIL 4 organizes ITSM with the help of four dimensions, forming a balanced
view. The first dimension is organizations and people, which focuses on the com-
petence, roles, responsibilities, and culture needed for value deliverance. The sec-
ond dimension is information and technology, emphasizing the data, technolo-
gies, and tools required to support services. The third is the dimension of part-
ners and suppliers, which underlines the dependencies and relationships be-
tween external entities and organizations involved in delivering services. The last
dimension is value streams and processes, focusing on processes, activities, and
workflows creating and delivering value. (Obwegeser et al., 2019).

ITIL provides a structured framework, offering benefits for the ITSM. It pro-
vides practices that enable reliable and predictable IT delivery. It also provides
risk management strategies, reducing the possibility of disruptions in services
and overall improving system performance. ITIL improves user satisfaction and
service relevance through the alignment of IT services with both business and
customer needs. In addition, it helps organizations to reduce operational costs
without having to compromise on quality while keeping itself adaptable to
changing requirements. (Marrone & Kolbe, 2010).

ITIL provides a structured approach to managing IT services. With ITIL 4,
it has become relevant for organizations due to its integration of Agile principles.
As new iterations are formed, the relevance of ITIL can be expected to grow and
further provide organizations with tools to deliver valuable IT services. The next
section provides details about Agile Product Delivery and its relevance to soft-
ware release management.

26

3.2 Agile Product Delivery

Agile Product Delivery (ADP) is one of the core competencies of SAFe, employ-
ing efficient, fast, and incremental delivery. It ensures that development teams
can respond effectively to feedback, adapt to changes, and deliver constant value
(Knaster & Leffingwell, 2020). Similarly to Agile, ADP emphasizes customer sat-
isfaction through frequent software delivery.

ADP consists of three key dimensions: customer centricity and design
thinking, development on cadence and release on demand, and DevOps and con-
tinuous delivery pipeline (CDP), where each dimension plays a critical part in
ensuring successful product delivery. A detailed description of each dimension
can be found in Table 4. These dimensions ensure that organizations can deliver
quality products while maintaining adaptability to market needs (Cvejič, 2022).

TABLE 4 Three Dimensions of Agile Product Delivery (adapted from Scaled Agile Frame-
work, 2024a)

Dimension Description

Customer Centricity and
Design Thinking

Aims to put customers at the center of every decision. By
applying design thinking, it ensures that the solution is
sustainable, feasible, and viable.

Development on Cadence,
Release on Demand

Helps manage product development by releasing so that
customers get what they want when they need it.

DevOps and the Continuous
Delivery Pipeline (CDP)

Creates the foundation, enabling organizations to release
at any time to meet market and customer demand.

ADP provides several benefits that align with today’s software delivery practices.
It helps in reducing the time to market through shorter release cycles, further
allowing organizations to deliver features and updates fast. Loops of regular cus-
tomer feedback ensure that the product meets user needs, increasing customer
satisfaction. ADP also promotes flexibility, enabling quick responses to change
requirements and promoting collaboration through cross-functional teamwork.
(Knaster & Leffingwell, 2020).

While both ADP and release management share the common goal of the
delivery of quality products, there are some differences. ADP promotes iterative
development and continuous improvement, while release management empha-
sizes planning, coordination, and software deployment. The key activities of
ADP enable customer-centric development and speedy delivery while release
management’s focus is on governance, ensuring stability and risk mitigation.
(Heikkilä et al., 2010).

Still, the integration of ADP into release management can enhance both
methods. Together they reduce risks through frequent and smaller releases
which ensures better stability and reliability. They also improve quality through
continuous testing and iterations. In addition, the integration of ADP into release
management enhances customer responsiveness by responding to customer
feedback and deploying changes without compromising quality. (Samer, 2016).

27

In summary, the nature of ADP and release management allows organi-
zations to achieve balanced agility and control. This is seen valuable, especially
in regulated environments where rapid deployment must be balanced with in-
tense requirements. Together, they support a customer-centric, competitive, and
efficient approach.

In this chapter, software release management, DevOps, ITIL, and Agile
Product Delivery were introduced. The Chapter looked at the frameworks and
methodologies essential to successful software deployment. Despite their differ-
ences, these frameworks and methodologies contribute to a bigger goal of deliv-
ering high-quality solutions in both structured and customer-centered ways. This
effective management does not require only firm IT management but also adap-
tive product delivery processes.

The following chapter looks at the role of Large Language Models (LLMs)
and chatbots in assisting release management practices. It investigates how these
tools can address the challenges and complexities of today’s software delivery
environments.

28

Large Language Models (LLMs) based chatbots could be a feasible solution to
tackle the common challenges related to software release processes. This chapter
introduces Large Language Models in the context of software development and
investigates how chatbots are already utilized in project management. The chap-
ter concludes with the best practices for a chatbot design to get insights into what
to consider when designing your own chatbot.

4.1 Overview of LLMs

Large Language Models (LLMs) are advanced language models. They use deep
learning techniques, are trained in vast amounts of data, and can produce, ana-
lyze, and understand human language (Chang et al., 2024). LLMs architecture,
based on the deep learning architecture called the Transformer introduced by
Vaswani and others (2017), allows them to process input text as numerical repre-
sentation named tokens, and contextualize the relationship between them, ensur-
ing both high performance and efficient training.

LLMs are suitable for a wide range of natural language tasks. As Brown and
others (2020) highlight, these models can translate content between languages as
well as produce, complete, condense, and analyze texts. These features allow
LLMs to perform tasks that previously required human intervention (Vaswani et
al., 2017).

Through automating and streamlining key processes, LLM programs have
contributed to software development. Sridhara and others (2023) point out that
some notable LLM applications in software development are related to code gen-
eration, bug fixing, documentation, code/database queries, testing, and valida-
tion. These applications bring several benefits. According to Chang and others
(2024), LLMs improve efficiency, support learning, reduce errors, and improve
collaboration between stakeholders.

4 LLMS AND CHATBOTS IN SOFTWARE RELEASE
MANAGEMENT

29

Despite their potential, adopting LLM programs brings their own chal-
lenges. They can misinterpret contexts leading to inaccurate results, generate
code with security vulnerabilities, and output nonrelevant or inaccurate answers
if the training data is outdated or biased (Xu et al., 2023). Incorporation of LLMs
can also require significant resources, which may be impossible for some organ-
izations to allocate (Chang et al., 2024).

Through its vast options and implementation possibilities, LLMs have
proven to be revolutionary in various fields. In software development, they can
streamline processes, improve collaboration, and foster new innovations. While
there are still challenges that need to be addressed, their potential to increase ef-
ficiency and transform workflows is unquestionable.

Besides software development, LLMs play a crucial role in the development
of conversational AI, like chatbots. These will be introduced in the following sec-
tion, focusing on their application in software development and project manage-
ment.

4.2 Chatbots in Software Development and Project Management

Chatbots are computer programs that mimic human conversation with technol-
ogies, like LLMs and natural language processing (NLP), becoming increasingly
common tools in improving communication, automating routine tasks, and in-
creasing efficiency (Cīrule & Bērziša, 2019). Their integration into business tools
is increasing, which has transformed the role of chatbots from a simpler query
handler to an agent capable of managing complex workflows (Stanica et al.,
2018).

Chatbots are valuable for both software development and project manage-
ment, where tools like Jira, Trello, and Slack can be integrated. According to
Bodea and others (2020), these integrations enable functionalities, such as auto-
mation of routine tasks, enhancement of workflows, management of project and
development pipelines, and facilitation of planning and collaboration. These in-
tegrations offer several opportunities. Chatbots can free up time for developers
and project managers through task automation, improve communication by
sharing real-time information between stakeholders, reduce cognitive load thus
improving productivity, and streamline bug reporting and task sharing further
reducing human errors (Cīrule & Bērziša, 2019).

As conversational AI technologies keep evolving, so can chatbots become
more capable and integral parts of development pipelines. In the future, chatbots
can be seen more in adapting project planning, personalizing task recommenda-
tions based on employees’ workload and performance, and predicting insight for
project managers through intelligent analytics (Bodea et al., 2020). Further sup-
porting the idea that the integration of chatbots into software development and
project management can be expected.

Through versatile implementations, chatbots are evolving to essential com-
ponents, rather than simple conversational tools. As technology matures, the

30

potential of chatbots can further transform the ways of working and blend into
Agile and DevOps environments. Although, it should be noted that the applica-
tion of chatbots in software development and project management is still an
emerging field, explaining the briefness of this chapter. However, as LLM tech-
nologies are adopted and integrated into workflows, more research and case
studies can be anticipated to rise, further bringing more insight into the topic.

The following section reviews the best practices for chatbot development,
underlining factors such as usability, design, and integration into existing work-
flows.

4.3 Best Practices for Chatbot Design

Developing a chatbot is a complex process. It requires both advanced technical
and programming skills, as well as an understanding of user needs and behavior
(Setiaji & Wibowo, 2016). There is no one-size-fits-all approach as a variety of
methods can be applied. Still, chatbots usually consist of three main components:
classifier, graphmaster, and responder (Figure 7).

FIGURE 7 Chatbot Components (adapted from Abdul-Kader & Woods, 2015, p. 73)

Responder acts between the user and chatbot. It manages the flow of data by
relaying user input into the classifier and delivering the output back to the user.
The classifier normalizes and processes the user’s input. It filters the data, de-
composes the input into components, and translates it to graphmaster, playing a
crucial role in processing and interpreting user queries. Graphmaster organizes
content and uses pattern-matching algorithms to identify the most suitable re-
sponse to user queries. It ensures that the chatbot’s output matches its pro-
grammed knowledge base. These components work together in processing user
input and generating responses, allowing chatbots to perform a wide range of
tasks. Developers can further tailor the design of the chatbot to meet specific

31

functionalities and user expectations and requirements. (Abdul-Kader & Woods,
2015).

Even if there are numerous ways to develop a chatbot there are some gen-
eral best practices in the field. The best practices for developing a chatbot include
various techniques. The techniques are parsing, pattern matching, AIML, chat
script, SQL and relational database, Markov Chain, language tricks, and ontolo-
gies (Setiaji & Wibowo, 2016).

Parsing analyzes the input text and manipulates it with several natural lan-
guage processing (NLP) functions. Pattern matching defines and applies regular
expressions to identify patterns in user input. AIML (Artificial Intelligence
Markup Language) is a rule-based description language. Its main task is to pro-
vide automated responses to users’ questions. Chat script helps when no match
can be found in AIML. It builds a sensible default answer by concentrating on
the best syntax. It gives sets of functionalities such as facts, logical and/or, and
variable concepts. (Singh & Beniwal, 2022).

SQL and Relational Database (RDB) help the chatbot remember previous
conversations by building a database for the chatbot, making the conversation
more meaningful and continuous. Markov Chain ensures that the response of the
chatbot is more applicable probabilistically and, consequently, more correct. Lan-
guage tricks are phrases, paragraphs, and sentences in chatbots that add variety
to the knowledge base and make it more convincing. The language tricks are used
to satisfy a specific purpose and provide alternative answers to questions. Ontol-
ogies compute the relation between concepts, such as synonyms, hyponyms, and
other relations. (Setiaji & Wibowo, 2016).

The success of a chatbot does not solely rest on the technical side of the bot.
When designing and integrating a new chatbot the intuitiveness of user interac-
tion plays a crucial role (Hill et al., 2015). This means that when developing a
chatbot it requires an approach that considers both the functionality as well as
the users.

When thinking about intuitive user interaction, the user-centered design
(UCD) can be utilized. Firstly, it’s crucial to understand the users by identifying
target users and their needs. Secondly, the chatbot's personality and tone need to
be defined. For example, the chatbot should be conversational but not too casual.
Thirdly, the chatbot should be easy to use and not create a cognitive overload
with hard navigation or too much information. Fourthly, the chatbot should be-
have consistently, for instance, in its language and response times. (Bahja et al.,
2020).

To provide value for users, there should be context awareness, meaning that
the chatbot should be able to retain the context of the conversation, reducing the
need for repetitive questions or clarifications from the users. In addition, it
should recognize when it does not understand the input correctly or when it does
not have any answer to it. In this case, it should be able to ask the user to, for
example, reformulate their given input or clarify what information they are miss-
ing. (Haugeland et al., 2022).

32

The chatbot should also be able to automate tasks (Sridhara et al., 2023). For
it to optimize the workflow inside an organization, the chatbot should be able to
help in creating Jira tickets and generate sprint reports. It should also be able to
interpret various query types (Hill et al., 2015). Also, chatbots could help in the
approval process. If the chatbot could help in retrieving the approval status it
could help with the deployment of a new software version.

The main idea behind a successful chatbot lies in the integration of other
tools. For it to be useful and value-adding the chatbot should have seamless in-
tegration with existing tools such as Jira and Confluence. This way users could
interact and retrieve information from these tools through chatbot. This can be
seen as one of the biggest possibilities that the chatbot could provide, as it can
reduce the need for manual navigation. (Cīrule & Bērziša, 2019).

Overall, the best practices for chatbot design and integration need both
technical and user aspects. It is important to prioritize the technical side for the
chatbot to be successfully integrated but also the user experience is a vital part in
the design of it. With the configuration of the internal tools, the chatbot could
add value to streamlining the release process and software development.

In short, LLMs and chatbots in software development are becoming essen-
tial. As LLM-based chatbots are recognized as more useful tools, many organiza-
tions can leverage them in a versatile way. This can be either in project manage-
ment, software development processes, or even by creating a solution of their
own. With all of this, it cannot be denied the impact that AI-based tools will have
in the future for many fields in software development.

Although chatbot development and integration is growing, it is still a rele-
vantly under-researched topic, compared to other areas such as Agile or DevOps.
Much of the available literature focuses on technical components or broader ap-
plications of such conversational AI, whereas there are significant gaps in studies
from software development contexts or organizational case studies. Therefore,
this chapter gave an overview of key aspects of best practices and techniques,
while remaining in a limited scope.

This chapter concludes the literature review of the thesis. The review started
with Agile and SAFe methodologies that gave ground for software release. Soft-
ware release follows processes, which are defined in every organization. Soft-
ware releases can, for instance, follow an Agile way of releasing which was in-
troduced through Agile Product Delivery. Software release should also be man-
agement, which was then closer looked at through ITIL and DevOps. In the last
chapter of the literature review LLMs and chatbots were introduced. With these
topics, the literature review can answer the study’s first research question and
help in the empirical research of the study. The summary of the literature review
is introduced in the following chapter.

33

The literature review looked at the crossroads of Agile, DevOps, and ITIL in soft-
ware release management, highlighting the challenges and shortcomings of tra-
ditional release processes. It examined the role of LLM-based chatbots in opti-
mizing these processes, providing a basis for addressing the study’s first research
question: How can an LLM chatbot optimize software release?

The literature suggests that software release management often struggles to
adapt to the rapid pace of Agile development. Teams struggle to maintain con-
sistency between iterations, while release managers struggle with overwhelming
workloads and scattered communication. These challenges are particularly acute
in large organizations where multiple teams work on the project, often struggling
with inefficient flow of communication. Frameworks, such as ITIL, Agile, and
DevOps offer their own solutions, but they are not always sufficient to bridge the
gaps in highly dynamic environments.

The review identified the potential of chatbots in addressing these chal-
lenges. Chatbots can improve productivity and reduce bottlenecks in software
solution management, by automating repetitive tasks, streamlining workflow,
and facilitating communication. In particular, the chatbots could help teams by
automating routine queries and tasks, ensuring smooth coordination of the team
by acting as a central for sharing real-time updates, and improving deployment
processes by providing insights and communicating key events to relevant stake-
holders. These allow LLM chatbots to create value and not replace human pro-
fessionals by guiding team efforts to more meaningful and productive work.

While the potential is considerable, there are also critical aspects to the in-
tegration of LLM chatbots. To avoid misunderstandings, chatbots need to inter-
pret inputs accurately and preserve the context of the conversation. The scope
and identification of sensitive data during the development and release manage-
ment requires solid security measures. Also, to maintain trust between team
members, the scope of the chatbot should be carefully defined to avoid any du-
plicative roles.

Empirical studies are necessary to validate these claims and to gain insights
into the implementation of chatbots. Still, the literature indicates that LLM

5 SUMMARY OF LITERATURE REVIEW

34

chatbots can optimize software release processes. However, its success depends
on thoughtful implementation, regular monitoring, and clear boundaries to en-
sure that value is added without disruptions.

As digitalization continues to proceed, the integration of LLM chatbots into
software release management is a growing area to research. While the current
literature supports a promising outlook, it remains limited. The insights of this
literature review provide a foundation for the empirical research of this study.
By combining both theoretical background and real-world applications, the fol-
lowing chapters explore and validate the practical potential of LLM chatbots in
optimizing software release processes.

35

This chapter describes the research question, case organization, and methodol-
ogy of the study. It presents the research method used and justifies the choice
and the steps taken.

6.1 Research Questions

The research questions have been formulated in the context of a case study and
focused on the potential application of LLMs in software release processes. The
objective of the research is to explore the optimization potential of an LLM chat-
bot in the area and to identify the software requirements needed to implement it.
The research questions and hypothesis are as follows:

RQ1: How can an LLM chatbot optimize software release?

Hypothesis: LLM chatbot can optimize software release by enhancing communica-
tion between teams and stakeholders.

RQ2: What are the software requirements for an LLM chatbot in software re-
lease processes?

Hypothesis: The software requirements for an LLM Chatbot include features espe-
cially related to project management, information sharing, and task automation.

The objective of this study is to investigate how an LLM chatbot can optimize
software release management and to identify the essential features and require-
ments of such a chatbot. This objective is addressed by answering the research
question. The first question is answered by the literature review, providing the-
oretical insights into the potential optimization. The second question is answered
through an empirical study which includes a survey in a case organization.

6 RESEARCH SETTING

36

6.2 Case Description

Nowadays, AI is the language of the generation. This makes the need to catch up
on the continuous development necessary for an organization to stay relevant.
According to Abbas (2021), the interest in AI solutions has skyrocketed within
organizations, with AI-related projects increasing across sectors as companies
aim to leverage their potential. One area of focus is the management of software
solutions. Organizations are seeking faster and more efficient release processes
to deliver quality software. This drive has led to the development and research
of AI-based solutions for Agile software release processes, aiming to optimize
both speed and quality (Perkusich et al., 2020).

One of these kinds of organizations is the study’s case organization, oper-
ating in the financial sector and creating technological solutions for both B2B
(business-to-business) and B2C (business-to-consumer) businesses. The organi-
zation is part of an international large-scale company serving customers primar-
ily across the Nordic countries. The chosen case organization consists of thou-
sands of full-time employees working in various Agile Release Trains (ARTs).
This facilitates cross-functional teamwork in delivering customed technical solu-
tions to customers.

The case organization’s management of its software solutions has been
growing more complex due to the increasing number of employees and solutions
being developed. This has made it challenging to deploy SAFe frameworks as
effectively as in the past. A key problem identified relates to the availability of
information. Although the organization has extensive documentation and proto-
cols, accessing and effectively using this information has become more difficult
over time.

The main factors contributing to this problem are silent information and
quantity and distribution of information. Silent information collected by long-
standing employees is difficult to document or share, particularly in fast-chang-
ing environments with frequent staff turnover and changing requirements. It is
also challenging for workers to find the right information at the right time. This
lack of easily accessible information creates inefficiencies in the releasing process,
which could be overcome by an AI-based solution, such as a chatbot. This ap-
proach contrasts with concerns about AI creating barriers to accessing infor-
mation or replacing human roles. Instead, the chatbot would make the release
processes more seamless and efficient improving information accessibility and
transparency.

To address these challenges, a team within the organization developed a
Proof of Concept (PoC) for an LLM-based chatbot. A PoC is evidence demon-
strating that a product, business proposal, or idea is feasible (Banerjee et al., 2017).
It was designed to assist the release management process by integrating with ex-
isting databases and tools, effectively retrieving, and presenting relevant infor-
mation. The team behind the chatbot aims to identify features and functionalities
that the chatbot could support for more effective software release processes.

37

This thesis intends to produce workable software requirements for the chat-
bot’s development team, guiding future iterations. By optimizing the release pro-
cess with AI, the organization can better manage the release of its digital products.
The empirical research is conducted iteratively in collaboration with the chatbot
development team, ensuring consistency between results and practical applica-
tion. The case organization has provided the resources needed to support the re-
search, providing a well-established framework for exploring the potential of
LLM chatbots for optimizing software release processes.

6.3 Design Science Research Methodology

The study’s second research question focuses on the design and validation of
chatbot, acting as the study’s’ artifact, and its software requirements. This artifact
is a response to an underlying phenomenon of the growing challenges faced by
organizations in managing fast and complex software release cycles. The chal-
lenges arise for example from fragmented information, silent knowledge, and in-
effective communication and task management during releases. This study ex-
amines the challenges and explores whether they can be addressed by an LLM-
based chatbot.

Design Science Research (DSR) was chosen as the research method. This is
because, unlike traditional qualitative case studies, seeking to describe or explain
phenomena, DSR is well suited to solving problems through the creation and
validation of practical artifacts. In this study’s context, the artifact is the chatbot.

DSR is a research methodology, focusing on the development and valida-
tion of knowledge in the field of information systems (IS) (Peffers et al., 2007). It
provides a structured framework for solving practical problems through a con-
structive and iterative process (Hevner et al., 2004). DSR was chosen because it
enables the combination of theoretical research and the creation of solutions. In
addition, it contributes to the understanding of how AI-based tools can address
broad challenges in managing software.

The DSR consists of six phases: problem identification, definition of the ob-
jective of a solution, design and development, demonstration, evaluation, and
communication, illustrated in Figure 8, and described below. According to
Peffers and others (2007), the process iterates mainly between phases two (defi-
nition of the objectives of a solution) and five (evaluation), ensuring that the so-
lution is aligned and refined with the identified problem and resulting in a usable
artifact.

38

FIGURE 8 The DSRM Process (adapted from Peffers et al. 2007, p. 54)

The first phase of DSR is problem identification which identifies and defines the
problem to be solved. This is done by asking supporting questions, such as “What
would solve the problem?” and “Is this a valid problem, or does routine design solve it?”
(Hevner et al., 2004). The expected outcome of this phase is to identify research
problems and justifications as well as create a research plan.

The second phase dives into the definition of the objectives of a solution.
The phase should create specifications of the targeted solution in line with the
chosen theoretical baseline (Peffers et al., 2007). This is executed by studying the
focus and scope of the perceived problem, and by implementing knowledge from
relevant theoretical sources.

The third phase is the design and development of the solution. The result
of the phase is an artifact which is a solution to the presented problem. According
to Hevner and others (2004), this phase specifies the knowledge applied and jus-
tifies the choices. The artifacts are often derived from previous research and state-
of-the-art practices of industries.

The fourth phase, demonstration, tests the solution. The idea is to test the
solution in the designed environment to see if it is feasible there (Peffers et al.,
2007). The outcome should be knowledge and evidence of the viability of the so-
lution. Also, the artifact is portrayed within its context, demonstrating its func-
tionalities in the intended environment.

The fifth phase is often seen as one of the most important phases in DSR
as it evaluates the solution. The solution is evaluated on how it performs and
how it works with the specifications. The assessment of the designed and built
solution is done with different metrics, benchmarks, or techniques (Hevner et al.,
2004).

The sixth phase of DSR is communication. It can be a report, paper, presen-
tation, or press release (Peffers et al., 2007). This phase presents the results, the
final solution, and the insights gained at each step. This phase is important as it
enables a broad knowledge base on design science.

In this master’s thesis, empirical research is based on the DSR. It aims to
guide the creation of software requirements for a chatbot that addresses the chal-
lenges of software release management. This research contributes to the field of
information systems (IS) research by expanding knowledge of how LLM-based
tools can help in solving bottlenecks in software release processes.

While the study cannot implement all the phases in the ideal depth within
the constraints of a master’s thesis, it prioritizes the creation, presentation, and
evaluation of software requirements to better ensure usable results. Partial im-
plementation of DSR is common (Stange et al., 2022), which can be seen

39

particularly in academia at the master’s and doctoral levels, due to time and re-
source constraints. By applying DSR in a critical way, the study answers the re-
search problem while acknowledging the methodological limitations of its scope,
rather than creating a fully deployed and validated artifact.

The reason DSR was chosen as the methodology for this study is based on
its focus on solving business problems by developing technology-based solutions.
It was considered more suitable than alternative methodologies such as Action
Design Research (ADR), which according to Sein and others (2011), emphasizes
a collaborative, change-oriented approach where iterative design is deeply em-
bedded in the organizational environment. Although ADR could theoretically fit
into the context of the research, it was not selected as the method because it fo-
cuses on organizational changes rather than problem-solving. For this study,
DSR’s narrower focus on the design and validation of a functional artifact makes
it a more suitable method for exploring and addressing the problem of optimiz-
ing software release management.

Prior to the study, the organization had already developed a Proof of Con-
cept (PoC) for the chatbot. Thus, this study’s focus is on the evaluation phase,
aiming to define the requirements for future iterations of the solution. The em-
pirical study is based on a scientific framework presented by Hevner and others
(2004) called the DSR framework.

The DSR framework is derived from real-world scenarios, in which peo-
ple’s environment, organizations, and technology form the basis for exploring
both business and organizational needs. The knowledge base serves as a reposi-
tory of best practices and established insights that future IS research can draw
from. The IS research process focuses on developing and evaluating artifacts and
theories, addressing the identified needs. (Hevner et al. 2004). This framework is
presented in Figure 9.

40

FIGURE 9 Design Science Research Framework (adapted from Hevner et al. 2004, p. 80)

The contribution of this research to the knowledge base is presented next. The
knowledge base is structured around specific inputs. These inputs developed
through the DSR can be classified into three levels based on their nature and ma-
turity.

Level one comprises the implementation of artifacts, such as applied pro-
cesses or software products, delivering concrete, complete, and mature outputs.
Level two includes design theories, such as principles, frameworks, methods,
models, and design principles, thus delivering often a balanced knowledge of
both abstract and concrete. The third level represents well-developed theories,
resulting in specific and limited knowledge with the lowest level of maturity.
(Gregor & Hevner, 2013). The levels are illustrated in Figure 10.

41

FIGURE 10 Design Science Research Contribution Types (adapted from Gregor & Hevner,
2013, p. 342)

When revisiting the research question and research objective, the second research
question corresponds to the second level of the DSR contribution types. This is
suitable because the research aims to investigate the use of a chatbot and develop
its software requirements, which are neither design theories nor a fully devel-
oped product or process. The second level characterizes the research outcome to
be neither fully abstract nor specific while being in between mature and imma-
ture development stages.

The DSR framework studies information technology (IT) artifacts, which
in this study is the IT artifact being the chatbot. According to March and Smith
(1995), these artifacts can be divided into four types: constructs, models, methods,
and instantiations. Based on this division the study’s artifact type is instantiation
type. This is because the chatbot is a concrete implementation of a solution de-
signed to optimize software release processes, showcasing how an LLM-based
tool can function in practice.

In the demonstration phase, the software requirements are presented with
the framework on which the artifact is based. In addition, the workflow and the
decision-making processes leading to the results are presented. In the communi-
cation phase, the study results are publicly shared. The thesis will be published
in the research repository JYX-library managed by the University of Jyväskylä.
This ensures that the thesis will be publicly accessible in a digital format.

42

6.4 Balanced Scorecard Framework

Organizations leveraging Agile often evaluate the value they create (Hartmann
& Dymond, 2006). The Balanced Scorecard (BSC) was created for this reason. In-
troduced by Kaplan and Norton in 1992, it serves as a metric measurement of
strategic management performance. It helps organizations monitor and measure
both success and past performance, identify and improve internal operations, as-
sign priority, and provide feedback for better decision-making (Kaplan, 2009).

The scorecard consists of four perspectives: customer relationship, fi-
nances, education and growth, and internal processes (Figure 11). The frame-
work divides organizational performance into these perspectives, allowing or-
ganizations to gain a comprehensive view of their business. The BSC links the
perspectives to the organization’s vision and strategy (Kaplan, 2009). In the
framework success in one aspect drives improvement in others, creating a cumu-
lative positive effect.

FIGURE 11 The Balanced Scorecard (adapted from Kaplan & Norton, 1992, p. 72)

The customer relationship perspective evaluates customer satisfaction and reten-
tion, market share, and customer loyalty (Nørreklit, 2003). Its objective is to un-
derstand how effectively the organization serves its customers. The financial as-
pect focuses on profitability, revenue, cost management, and return on invest-
ment (Kaplan, 2009). The third perspective, education, and growth, emphasizes
organizational improvement and employee development. It emphasizes learning
and skill development as a drive for employee satisfaction (Nørreklit, 2003). The
fourth perspective, internal processes, investigates the efficiency and

43

effectiveness of internal operations focusing on functional activities, process
alignment, and automation (Kaplan, 2009).

The BSC helps companies align their organizational structure with strate-
gic objectives. It provides insights into financial performance while assessing the
quality of the organization’s services and the efficiency of its operations. In short,
the BSC enables streamlined strategic reporting while supporting a business-ori-
ented approach to managing performance. (Nørreklit, 2003).

On the other hand, BSC comes with its own disadvantages. It does not
consider possible external factors such as competitors, nor does it consider risk
analysis or time consideration. BSC has also been criticized for its way of focusing
too much on internal processes and for the lack of clarity in implementation.
(Chavan, 2009).

The BSC framework was chosen for this study because it meets the re-
search objectives. As the study’s aim is to optimize organization’s internal pro-
cesses, it was seen appropriate to focus the framework on internal processes. This
allows the framework to address the organizational aspects, central to the study.

The BSC is used in this study in two different ways: data collection and
evaluation. In the data collection, the BSC framework guided the structure and
context of the survey, ensuring its consistency with the study’s objectives. In the
evaluation, the framework was used to evaluate the survey’s results and to de-
velop the software requirements for the chatbot. The software requirements are
divided into two categories: functional and non-functional requirements. Func-
tional requirements are the tasks that the solution should perform whereas the
non-functional requirements are the qualities that the solution should have (Dab-
bagh et al., 2015).

With this, the research setting chapter is concluded. It provided an over-
view of the study and presented the utilized method and framework. The chapter
introduced research questions and case study design, providing a detailed de-
scription of the background of the study, including the IT artifact. The following
chapter describes the case study in detail.

44

This chapter describes the study’s empirical research, focusing on the evaluation
of an existing Proof of Concept (PoC) chatbot. Its objective is to answer the second
research question, investigating the software requirements of the chatbot. The
research process is structured and guided by the phases of Design Science Re-
search (DSR), outlined in the previous chapter.

7.1 DSR Project

This section outlines the use of DSR in this study. The methodology was followed
to ensure consistency with the research objectives and the needs of the case or-
ganization. The DSR helped to address the research questions and create soft-
ware requirements for the chatbot. Table 5 presents the main steps of the DSR
project in chronological order. It highlights the overlapping phases of design and
development and demonstrates further underlining the iterative nature of the
study.

7 CASE STUDY

45

TABLE 5 The Timeline of the DSR Project

Schedule (2024) DSR Phase Activity

June and July Problem
identification

Meetings and stakeholder interviews to iden-
tify challenges in the release process.

August and
September

Definition of the ob-
jectives of a solution

Definition of chatbot’s objectives.

September and
October

Design, develop-
ment, and demon-
stration

Development of the PoC of the chatbot and
presentation to relevant stakeholders for feed-
back.

October and
November

Evaluation Construction and distribution of the survey to
collect data for the empirical study. Analyza-
tion, and validation of survey responses from
which iterated software requirements.

December Communication Documentation of the findings in the form of
a master’s thesis throughout the whole time-
line. Presentation of key findings to the case
organization. Publishing the thesis internally
inside the organization and publicly to the
JYX library.

The problem identification phase started in June and continued until July. During
this time, meetings and informal interviews were held to understand the chal-
lenges associated with the current release processes. These highlighted the key
bottlenecks such as micromanagement and ineffective communication.

The solution objectives were defined in August and September. This is
when the concept of a chatbot solution evolved, and its objectives were defined.
Based on this the second research question was also identified.

In September and October, the design and development, and the demon-
stration phases were carried out simultaneously. The chatbot's Proof of Concept
(PoC) was developed and presented to relevant stakeholders, whose feedback
provided insights into refining the solution. This feedback also helped in devel-
oping the survey for the empirical study.

The evaluation phase took place in October and November. The PoC was
evaluated through a survey from which the study’s data was collected, analyzed,
and validated. These findings contributed to the formulation of the software re-
quirements for the chatbot.

Lastly, the communication phase takes place in December. The results of
the DSR project are presented to the case organization in a hybrid meeting that
can be attended both offline and online. This is to ensure the reachability of as
many stakeholders as possible. The meeting focuses on presenting the key find-
ings of the DSR project and the study. The master’s thesis will be shared within
the organization to promote the practical application of the research. This is to
support future chatbot iterations and to encourage wider use of the results. In
addition, the thesis will be made publicly available in the JYX library. This is to
improve its accessibility to a wider audience and contribute to the academic field.

The DSR method proved to be a suitable approach in addressing the iden-
tified problem and in answering the research question. Its iterative nature

46

ensured that the software requirements were developed through continuous re-
finement and incorporated feedback from stakeholders. The following sections
examine empirical research in detail. These sections bring insights into how the
results of the survey and stakeholder engagement were used to develop and eval-
uate software requirements for the chatbot.

7.2 Problem Identification

The problem identification phase is the first step in the DSR process. This in-
volved meetings and informal interviews with stakeholders to identify the chal-
lenges facing the release processes in the case organization. Factors such as com-
municating status updates and deadlines between project teams in Agile Release
Trains (ARTs) were identified to be challenging. This is due to the rapid growth
in the size of ARTs, making the current processes become stressful and time-con-
suming. It was discovered that employees found it challenging to identify who
to contact, which processes to follow or to keep up to date with the progress of
the project. This lack of communication has contributed to a culture of microman-
agement and interruptions to work, disrupting the workflows.

Also, one identified challenge was related to the daily flood of Microsoft
Teams messages and emails, especially for those working closely in the later
stages of the release processes. These inquiries about status updates and pipeline
processes were identified to be distracting employees from their core tasks.

To address these challenges, a team within the organization participated in
a hackathon, an event in which individuals collaborate intensively for days to
solve problems or explore new opportunities (Komssi et al., 2015). During this
event, the team produced the idea of developing a chatbot leveraging on Large
Language Models (LLMs) to assist employees with release processes. The chatbot
was seen as an assistant to help streamline information retrieval and communi-
cation. During the hackathon, the team successfully developed a Proof of Con-
cept (PoC) for the chatbot. Following this, a question was raised about how to
further develop the chatbot and determine the features needed to make it both
successful and useful in optimizing the release processes.

A planning meeting was held to define a roadmap for the chatbot’s devel-
opment. In it, the team decided that the first step would be to define the software
requirements for the chatbot. This shaped the second research question of the
study: what are the software requirements for an LLM chatbot in software release
processes? In the following section, the objectives behind the solution are dis-
cussed.

47

7.3 Objectives of the Solution

The second phase of DSR is the definition of the solution's objectives. The objec-
tive of this empirical research is to answer the second research question. By an-
swering the second research questions the study aims to help the team behind
the chatbot understand what features they should consider for future increments
of the chatbot. This is achieved by creating software requirements for a chatbot
that assists employees in the release processes inside the case organization.

Insights from the literature review suggest that chatbots can automate tasks
and streamline communication between stakeholders. For smoother communi-
cation and user experience, integration with existing tools such as Jira and Con-
fluence is crucial. Based on the meetings with the chatbot’s development team
and gathered stakeholder feedback, the chatbot should also answer other priori-
ties as well. It should optimize the release processes by helping with problem-
solving, identifying obstacles, and reducing time-consuming, non-value-adding
tasks for employees. The chatbot's role should be a digital assistant, improving
communication between ARTs and supporting employees in navigating the re-
lease processes efficiently. The next section details the design and development
of this solution.

7.4 Design and Development

The third phase of DSR is design and development. As the PoC for the chatbot
has been already created, this phase presents the solution in general terms. For
confidentiality reasons, detailed descriptions of the design, specific implementa-
tions, and used data will not be disclosed. Instead, the focus will be on the pub-
licly available, open-source tools and technologies that were used when building
the chatbot to provide an overview of its development process.

The chatbot is based on LLMs and uses widely adopted open-source tools
such as LangChain, Ollama, Python, and Streamlit. These tools were selected by
the development team through an evaluation, highlighting their relevance to the
development of an LLM-based chatbot.

LangChain is a software library designed for applications leveraging LLMs.
It facilitates answering questions by connecting integrated data sources and re-
trieving relevant information (Topsakal & Akinci, 2023). Its ability to integrate
real-time data and interact conversationally with other systems made it suitable
for the chatbot.

Ollama is an LLM model that allows local deployment without a server. It
supports multimodal models and allows them to be executed directly on the
user’s machine (Gruber & Weber, 2024). The team chose Ollama because it of-
fered a practical and efficient way to deploy the chatbot locally without having
to set up any additional infrastructure.

48

Python is a programming language, commonly used for software develop-
ment, task automation, and data analysis. Its flexibility and familiarity among
developers played key reasons for its adaptation. In chatbot development, Py-
thon allows rule-based customization, such as specifying the length and tone of
the response (Raj, 2019).

Streamlit is a python library, widely used in machine learning and data sci-
ence. It converts data scripts into interactive web applications (Akkem et al.,
2023). For the chatbot, Streamlit offered simple integration with other tools and
provided chat elements.

The goal of the design and development of the chatbot was to create a con-
versational tool that can assist users in their daily tasks. By focusing on open-
source tools and technologies, the aim was to make use of proven solutions that
are publicly available. The following section describes how data was collected for
this study.

7.5 Data Collection

The fourth phase of DSR is the demonstration, which according to Peffers and
others (2007), is used to gather knowledge and evidence about the solution. In
this study, this phase was utilized for data collection to better understand end-
user needs and gather insights to shape software requirements for the Chabot.

Data was collected through a Forms Survey, which can be found in depth
in Appendix 2. The survey was developed in collaboration with the case organi-
zation to ensure its relevance and comprehensiveness. On average, the survey
took five minutes to complete, and it was designed to collect anonymous feed-
back from stakeholders involved in the software release processes.

The survey consists of three sections. The first section defined the roles of
the participants in the organization, giving context to their responses. The second
section had 14 statements, which participants were asked to rate from “strongly
disagree” to “strongly agree” on a five-point Likert scale. A five-point Likert scale
is a rating system, which allows respondents to express opinions with five op-
tions, from strong agreement to strong disagreement, including a neutral option,
and enabling nuance feedback (Joshi et al., 2015). The third section was an open-
ended question, allowing participants to add additional comments or sugges-
tions.

The second section’s 14 statements were designed to reflect the four aspects
of the Balanced Scorecard (BSC) framework, addressing aspects of chatbot usa-
bility and its potential to optimize release processes. The first three statements
were related to the customer relationship perspective, the statements four to six
were based on internal processes. Statements seven and eight were about educa-
tion and growth and statement number nine was about financial perspective. The
last statements of the survey were additional usability and experience-related
general statements. Table 6 gives an overview of these statements, describing
what was asked and how they correlate with different aspects.

49

TABLE 6 Overview of Survey Statements

Statement Aspect

1. If a chatbot could automate routine tasks (e.g., gathering
information) it could assist you in your daily work?

Customer Relationship

2. If a chatbot could provide automatic updates or share rele-
vant information it could improve collaboration between
your team and others?

Customer Relationship

3. If a chatbot could provide updates on project status (e.g.,
release progress, bug tracking), do you believe this could
improve your ability to stay informed?

Customer Relationship

4. A chatbot that communicates important release infor-
mation to stakeholders could reduce the need for manual
reports. Do you think this would improve your communi-
cation efficiency?

Internal Process

5. If a chatbot could help detect and suggest solutions to bot-
tlenecks in the release progress, would this improve the
speed and efficiency of releases?

Internal Process

6. Imagine a chatbot that can instantly retrieve the latest pro-
ject information (e.g., issue statuses, release readiness).
Would this help streamline your work?

Internal Process

7. A chatbot could automatically generate release notes,
meeting summaries or status reports based on project data.
Would this automation make your role in the release pro-
cess more efficient?

Education and Growth

8. If chatbot could take over simple tasks (e.g., retrieving pro-
ject data), do you believe it would help your team focus on
more critical and value-adding activities?

Education and Growth

9. By offering quick answers, providing relevant information,
and identifying potential issues early, the chatbot could
help avoid delays in the release process. Do you think this
would reduce project costs?

Financial

10. If the chatbot could handle routine tasks, such as answer-
ing to common questions, would this help reduce the over-
all manual workload for your team?

Usability and
Experience

11. Imagine a chatbot that provides recommendations based
on historical data and past release performance. Do you
believe this would support better decisions-making in your
role?

Usability and
Experience

12. If a chatbot could take on routine queries and help with
quick information retrieval, would it reduce the mental ef-
fort required for simple tasks and free up your time for
more strategic work?

Usability and
Experience

13. A chatbot that supports your daily tasks by automating
processes and offering timely information could improve
both personal and team productivity. Do you think this
would positively affect your productivity?

Usability and
Experience

14. If the chatbot could help track patterns or learn from previ-
ous release cycles, do you think this would improve team
learning and the ability to optimize future releases?

Usability and
Experience

50

The participants were chosen randomly. An email (Appendix 1) was sent to 10
different mailing lists inside the case organization and to six individual employ-
ees who were outside of these lists. The email was sent on Monday 7th of October
2024 and the answering time for it was 5 business days, until Friday 11th of Oc-
tober 2024. In total, the email was sent to around 500 employees working with
the release processes inside the case organization. Altogether 51 people partici-
pated in the survey, making it around 10 percent participation rate. The roles of
the participants distributed as follows:

• 21 Developer

• 1 Architect

• 16 QA/QA lead/Test Analyst

• 4 Product Manager/Product Owner/Business Analyst

• 2 Application Provider/Application Owner/

• Technology Service Lead

• 1 Release Manager/Service Manager/Infrastructure Specialist/

• DevOps Engineer

• 4 RTE/STE/ Hub Lead

• 2 Scrum Master/Agile Coach

• 0 Risk Manager/Security Specialist

The roles for the survey were grouped as above to better analyze the data. The
grouping was done based on how much each role was related to each other. No
risk manager nor security specialist participated in the survey leaving this group
completely outside of the study. Next, how this data was analyzed and validated
is opened.

7.6 Data Analysis, Validity and Reliability

Through data analysis, raw data is structured and transformed to produce mean-
ingful results and conclusions. The software requirements for this study are
based on user needs, which require a systematic approach to analyzing the col-
lected data. Since the survey results consist mainly of quantitative data from Lik-
ert scale responses complemented by qualitative data from feedback in an open-
ended question, a mixed method was used to analyze the data.

Likert-scale responses were analyzed using descriptive statistics to identify
trends and patterns in stakeholder perceptions. This allows quantifying levels of
agreement for differing statements related to the functionality and impact of
chatbots on release processes. The results were supposed to be segmented by
participant role, allowing comparison between groups and a better understand-
ing of role-specific needs. But due to the small number of participants and the
vast differences on the size of the role groups this was not possible without

51

having to compromise the reliability of the results, thus excluding this from the
data analysis.

Although the main data set is quantitative, qualitative analysis was applied
to open the survey responses to obtain information. This feedback was essential
for contextualizing the quantitative results and refining the software require-
ments of the chatbot. For the qualitative data, inductive content analysis was cho-
sen to identify emerging themes from the texts. This does not rely on pre-defined
categories but allows patterns to emerge organically, further ensuring that the
data guides the conclusions.

In research, validity refers to how well and accurately a chosen method
measures what it is meant to measure. It determines the credibility and trustwor-
thiness of the findings. Following, reliability is the consistency of a measure. It
aims to provide information on whether the research will be repeated and, would
it provide the same results. If a test or a tool is valued as reliable it gives consistent
results over time or across different situations. (Yin, 2009).

The following steps were taken to ensure validity and reliability. The sur-
vey was designed to involve a wide range of roles involved in the release pro-
cesses to capture varying perspectives. The survey invitation was distributed to
over 500 stakeholders cross-organizationally, enabling participation from differ-
ent functional areas. The quantitative data analysis was conducted systematically,
while qualitative responses were coded and categorized in line with best prac-
tices in content analysis. The findings were contextualized with literature on
chatbot functionality and release management, increasing generalizability.

By combining both quantitative and qualitative approaches, the data anal-
ysis drew strengths of both types of data. Quantitative data provided measurable
insights into stakeholder preferences and needs, while qualitative feedback pro-
vided depth and context. Together, they provided information to determine the
functional and non-functional requirements. With these actions taken the study
aimed to maximize the generalizability and the validity of the results. Consider-
ing this, the following section discusses the evaluation process and results of the
research.

7.7 Results and Evaluation

The fifth phase in the DSR process evaluation assesses the effectiveness of the
solution and its relevance to the needs of the organization and user (Peffers et al.,
2007). In this study, the evaluation phase involves the analysis and validation of
the survey data. The Balanced Scorecard (BSC) framework presented in the pre-
vious chapter was used to classify and interpret the results. This ensures that the
analysis reflects both technical and organizational dimensions, providing useful
insights for formulating software requirements.

Data was collected through a survey, which included 14 Likert-scale state-
ments and an optional open-ended question. Table 7 provides an overview of
participants’ responses to the statements. A detailed breakdown of the responses

52

by group can be found in Appendix 3. Although there were small differences
between the groups, the sample size of some groups was too small to make reli-
able statistical comparisons. Therefore, to maintain reliability, the evaluation fo-
cuses on the pooled results.

TABLE 7 Overview of Survey Results

Statement Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

1. If a chatbot could automate
routine tasks (e.g., gathering
information) it could assist
you in your daily work?

1 - 12 20 18

2. If a chatbot could provide
automatic updates or share
relevant information it could
improve collaboration be-
tween your team and others?

- 2 8 29 12

3. If a chatbot could provide
updates on project status
(e.g., release progress, bug
tracking), do you believe this
could improve your ability to
stay informed?

- 1 14 22 14

4. A chatbot that communi-
cates important release infor-
mation to stakeholders could
reduce the need for manual
reports. Do you think this
would improve your com-
munication efficiency?

1 - 12 23 15

5. If a chatbot could automate
routine tasks (e.g., gathering
information) it could assist
you in your daily work?

- - 11 22 18

6. If a chatbot could provide
automatic updates or share
relevant information it could
improve collaboration be-
tween your team and others?

- 2 13 24 12

7. If a chatbot could provide
updates on project status
(e.g., release progress, bug
tracking), do you believe this
could improve your ability to
stay informed?

2 4 8 21 16

8. If a chatbot could help de-
tect and suggest solutions to
bottlenecks in the release
progress, would this improve
the speed and efficiency of
releases?

2 2 10 24 13

53

TABLE 7 (Continued)

Statement Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

9. A chatbot could automati-
cally generate release notes,
meeting summaries or status
reports based on project data.
Would this automation make
your role in the release pro-
cess more efficient?

1 2 17 19 12

10. By offering quick an-
swers, providing relevant in-
formation, and identifying
potential issues early, the
chatbot could help avoid de-
lays in the release process.
Do you think this would re-
duce project costs?

1 4 8 26 12

11. Imagine a chatbot that
provides recommendations
based on historical data and
past release performance. Do
you believe this would sup-
port better decisions-making
in your role?

2 1 16 23 9

12. If a chatbot could take on
routine queries and help with
quick information retrieval,
would it reduce the mental
effort required for simple
tasks and free up your time
for more strategic work?

1 1 13 26 10

13. A chatbot that supports
your daily tasks by automat-
ing processes and offering
timely information could im-
prove both personal and
team productivity. Do you
think this would positively
affect your productivity?

1 3 14 21 12

14. If the chatbot could help
track patterns or learn from
previous release cycles, do
you think this would im-
prove team learning and the
ability to optimize future re-
leases?

2 - 11 23 15

The results of the survey were generally positive, with most statements being
high or a very high level of agreement. However, some areas were highlighted
with a lower agreement level.

54

The statements related to internal processes (statements 4-6) received the
most positive feedback, with over 85 percent of respondents agreeing or strongly
agreeing. This suggests that stakeholders value the importance of improving the
efficiency and transparency of internal processes. Similarly, the statements re-
lated to customer relations (statements 1-3) also received positive responses,
highlighting the importance of improving communication and user engagement.

The statements related to education and growth (statements 7 and 8) re-
ceived the most negative feedback, with 12 percent of respondents disagreeing
and 8 percent strongly disagreeing. Also, the statement related to finance (state-
ment 9) received low neutral or negative feedback of 6 percent, indicating that
participants may not consider direct financial benefits as a primary objective of
the chatbot at this stage.

The statements on task automation (statements 10 and 13) received less pos-
itive feedback, with around 10 percent expressing negative opinions. The re-
sponses to the open question further supported this view, as some participants
stated that mere automation would not justify the use of a chatbot without thor-
ough integration with existing tools such as Jira and Confluence. Several partici-
pants also stressed the importance of information retrieval and solution sugges-
tions as critical functionalities for value creation. The identified functional and
non-functional requirements of the chatbot are presented in Table 8.

TABLE 8 Software Requirements for an LLMs Chatbot

Category Description

Functional Requirements

Real-Time Status Updates Provide real-time updates on release statuses as well
as enhance the retrieval and access of up-to-date infor-
mation.

Issue Tracking and Resolution Track and log issues reported by users and guide them
with suggestions to better resolve bottlenecks in the re-
lease processes.

Information Gathering and
Sharing

Gather and share information through already exist-
ing and used data sources, such as Jira and Conflu-
ence, to better support release processes and improve
cross-functional collaboration.

Non-Functional Requirements

Performance and Response Time The output should be fast and prompt to support
smooth interaction.

Reliability Retrieval of reliable information, with sources in-
cluded, to support the perceived trust for the chatbot
and not to share wrongful or made-up information.

Learning Learn from previous release cycles and through track-
ing patterns to better assist in the release processes.

An effort was made to capture different perspectives by sending the survey to
500 stakeholders and by structuring the survey in a clear and meaningful way.
The results were compared with the qualitative feedback from the open question

55

to confirm quantitative trends. Requirements were mapped against best practices
in chatbot development and release management to ensure theoretical and prac-
tical relevance.

The open question provided valuable qualitative insights that comple-
mented the quantitative results. Key themes related to the importance of inte-
grating chatbots with existing tools such as Jira and Confluence were frequently
highlighted. Several participants stressed the importance of needing the chatbot
to provide workable solutions to bottlenecks. Also, participants hoped that the
chatbot would facilitate smoother communication between teams.

These findings influenced the design of the functional and non-functional
requirements, ensuring that the solution meets user expectations. By utilizing the
BSC framework and analyzing both quantitative and qualitative data, the evalu-
ation phase identified requirements for future chatbot iterations. In the next
chapter, these findings are combined with the insights from the literature review
to answer the research questions and hypotheses.

56

In this chapter the results of the study are analyzed and compared with previous
literature to provide an understanding of the findings. It discussed how this
study aligns with existing research, focusing on the broader role of LLM-based
chatbots in optimizing software release processes.

8.1 Reflection on Research Questions

This section examines the research questions in the context of the empirical re-
sults and the literature review. By analyzing the results, their consistency or dif-
ferences are discussed from previous studies. This provides an understanding of
the impact of LLM chatbot development on software release processes. The first
research question is reflected solely based on the literature review of the thesis
while the second research question is reflected based on both literature and em-
pirical evidence.

RQ1: How can an LLM chatbot optimize software release?

Hypothesis: An LLM chatbot can optimize software release by enhancing commu-
nication between teams and stakeholders.

The literature supports the hypothesis that chatbots can serve as effective com-
munication and knowledge management tools in DevOps and Continuous De-
livery (CD) frameworks (Knaster & Leffingwell, 2020). It indicates that real-time
status updates and knowledge retrieval capabilities can contribute to reducing
delays and bottlenecks in software releases (Schaefer et al., 2012). However, au-
tomation can reduce repetitive tasks (Virmani, 2015), but if poorly implemented
it can even disrupt workflows or increase complexity (Chang et al., 2024). In ad-
dition, some studies emphasize automation as the cornerstone of chatbot optimi-
zation (Bodea et al., 2020; Cīrule & Bērziša, 2019). These findings suggest that for

8 DISCUSSION

57

organizations with existing automation tools, the value of a chatbot is to act as a
central for real-time information sharing and support.

RQ2: What are the software requirements for an LLM chatbot in software re-
lease processes?

Hypothesis: The software requirements for an LLM Chatbot include features espe-
cially related to project management, information sharing, and task automation.

Based on empirical results the primary requirement for a chatbot was related to
information-related functionalities. Statements regarding the ability to retrieve
and share information from existing tools received strong positive feedback. Par-
ticipants appreciated features such as real-time status updates and problem-solv-
ing guides. However, the requirements for project management and task auto-
mation were not as strongly emphasized and the related statements received
lower positive responses or were the most neutral ones. After diving into the
open-question responses, it was confirmed that participants emphasize reliability
and integration over new project management features.

The role of LLMs in optimizing project management and task automation
was widely discussed in the literature review. It brought up that LLMs can re-
duce project management costs through task automation and by providing infor-
mation on resource allocation (Cīrule & Bērziša, 2019). However, the empirical
study’s results indicate that stakeholders involved in the release processes can
perceive the information management to be greater than the introduction of new
project management tools.

Furthermore, the requirements for solid integration were emphasized in the
research, supporting the idea that the adoption of a chatbot depends on its ability
to seamlessly integrate existing workflows and tools. This suggests that while
there is potential for both project management and task automation features,
their success depends on whether the chatbot meets the need for reliable and ac-
cessible information-sharing capabilities. These generalized assumptions related
to project management and task automation in the literature highlight the im-
portance of contextual factors when determining user needs.

8.2 Implications and Future Research

The results suggest that there are a wide range of potential implications for both
organizations and disciplines. The wider use of LLM in software release pro-
cesses is possible and there appears to be interest in this area. An LLM-based
chatbot could be a potential solution for optimizing release processes, particu-
larly for addressing bottlenecks. Overall, the results of the research indicate that
a chatbot could be a valuable tool for collecting, sharing, and suggesting infor-
mation from existing internal systems.

58

As this topic is still relatively new and under-researched, future studies
could go deeper into the potential of chatbots. Future research could investigate
the application of chatbots in Agile methodologies. This could provide insights
into improving Agile practices and assess whether AI-based tools could contrib-
ute to the development of these methods. In addition, the technical aspect of chat-
bot development could be further studied, helping identification of which LLM
tools are most effective in building successful chatbots for software release pro-
cesses.

8.3 Evaluation of Research Quality

In the context of Design Science Research (DSR), assessing the quality of research
involves evaluating both processes and results to ensure methodological accu-
racy and practical relevance. This study evaluated contributions such as survey
design and data collection principles. Yet, the analysis can be seen going beyond
these elements and focusing on the overall effectiveness and relevance of the ar-
tifact in solving the defined challenge.

In DSR reliability emphasizes consistent processes and results, although the
methods are iterative and context dependent. In their article Storey and others
(2017) present the Design Science Reliability Framework, highlighting key chal-
lenges such as researcher influence and reproducibility. From these considera-
tions and the techniques to improve the reliability of DSR by Hevner and others
(2004), the study followed strategies to improve reliability. It maintained trans-
parent documentation to ensure reproducibility and methodological clarity.
Through testing the artifact was initially evaluated to assess its consistency.
Lastly, the study used both qualitative and quantitative evaluation methods
when confirming the findings. With these techniques, the study aimed to ensure
that iterative development cycles did not compromise reliability.

In DSR validity ensures that the results meet the stated objectives and rep-
resent the studied phenomena. Larsen and others (2020) view validity as crucial
in DSR as it provides procedural models for justifying research claims and as-
sessing artifacts. The iterative approach of DSR allowed for continuous refine-
ment of both the artifact and the research processes, strengthening the validity of
the study.

According to Venable and others (2016), there are four types of validity ap-
plicable to DSR: construct, internal, external, and instantiation. In this study, the
construct validity was ensured by matching the characteristics of the artifact with
theoretical foundations and industry standards. Internal validity was assessed by
testing the components of the artifact against the needs of the case organization
to ensure that the results match the objectives. External validity was limited due
to the scope of a single case study, but the study addressed these by designing an
artifact that can be adapted to similar organizational contexts. Instantiation va-
lidity was demonstrated through practical implementation and measurable im-
provements in software release processes.

59

The artifact developed in this research is a solution designed to optimize
software release processes. This theoretical and practical focus bridges the gap
between academic principles and workable real-world solutions. The artifact was
evaluated for its utility and adaptability during the software development phase.

Compared to previous DSR studies, this study takes a holistic approach to
the design and evaluation of artifacts. While DSR projects often emphasize either
theoretical or practical aspects, this study aims to balance both. This is to contrib-
ute to the quality of the artifact and aim to ensure its applicability in a wider
context. It is good to note that the artifact was tested on a limited scale, inside one
case organization, which may limit its generalizability.

8.4 Limitations

There are limitations to exploring LLM-based solutions. For instance, according
to Gupta and others (2023), LLM-based applications such as ChatGPT have secu-
rity vulnerabilities, such as data leaks. These kinds of vulnerabilities may lead
organizations to prohibit the use of such applications.

The research does not also consider the possible ethical issues related to
LLM tools. As brought up by Mökander and others (2023), it is vital to ensure the
technical, legal, and ethical aspects while designing and developing an AI system.
This study did not emphasize the ethical side of the LLM chatbot design. This
could have left out important notes and factors that should have been taken more
into account while producing the software requirements.

The observations of the study are limited to one industry, the financial in-
dustry, only. In this industry, the development processes can differ when com-
pared to the traditional software industry, which is not considered in the results
of the study. Therefore, the results may not be feasible in other industries outside
of the financial industry.

The limitations are also related to the scope and the setting of the research.
A single case study provides insight into real-life occurrences, but it is not de-
scriptive enough to create a conclusive overview of the chosen topic. By adding
more case settings, the generalizability of the results could be improved.

It is also worth noting that the collected data can create limitations to the
results. Compared to the number of stakeholders who received the survey and
the number of final participants, the participation rate can be perceived as low.
Also, the developer group was big compared to other role groups, where some
had only one participant and some did not have any participants. Larger survey
samples with more differing groups of roles could enrich the study and provide
more insights, increasing the reliability of the results.

60

Software release processes are undergoing a change. Organizations leveraging
on Agile methodologies face challenges in scaling Agile practices cross-organiza-
tionally. These challenges arise from factors such as employee turnover and the
need to adapt to rapidly changing stakeholders’ needs. Therefore, optimizing
software release processes has become a much-discussed topic in various organ-
izations.

One solution is the integration of an LLM-based chatbot. With the growing
interest in AI-based solutions, organizations are increasingly looking into the
possibilities of developing their own both internal and external AI applications.
This trend is reflected in the increasing use of assistive chatbots, especially in
customer service.

This master’s thesis examines the possibilities of chatbots in software re-
lease processes. The study aimed to understand how a case organization could
leverage on an LLM-based chatbot to optimize their software release processes
and define the software requirements for the chatbot. The research aimed to an-
swer two research questions: “How can an LLM chatbot optimize software releasing?”
and “What are the software requirements for an LLM chatbot in software release pro-
cesses?”.

Both literature review and an empirical study were conducted for the thesis.
The literature search was based on scientific literature from databases such as
IEEE Xplore, JYKDOK, Google Scholar, ScienceDirect, and Scopus. When select-
ing the literature for the study the number of references and the impact on the
field of information systems was considered, while aiming to correspond at least
to level one of the Publication Forum’s classification scales. Considering the new-
ness of the topic, some gray literature was included to complement the under-
standing and definition of the topic.

The literature review focused on the first research question and investigated
how an LLM chatbot could optimize software releases. Based on the literature
review, an LLM chatbot could streamline release processes by automating repet-
itive tasks, sharing information, and improving communication between teams
and stakeholders. In addition, chatbots could support DevOps and continuous

9 CONCLUSION

61

delivery (CD) practices by assisting with software management and deployment
tasks.

The empirical study was conducted using the Design Science Research
(DSR) method, starting with the identification of the problem and the definition
of the solution goals. The development of the chatbot was described through the
design and development phase. The data for their study was collected through a
survey, followed by an analysis of the collected data, assessing its validity and
reliability. The study was evaluated using the Balanced Scorecard (BSC), assist-
ing in drawing conclusions from the results.

The empirical study answered the second research question. The identified
software requirements for an LLM-based chatbot were categorized into func-
tional and non-functional requirements. Functional requirements should facili-
tate access to and sharing of information from existing tools while ensuring reli-
able integration with internal systems. The non-functional requirements should
emphasize fast, accurate, and reliable answers as well as learning from user in-
teraction to improve answers over time. The results of the empirical study indi-
cate the importance of both requirement types in ensuring the effectiveness of the
chatbot in optimizing software release processes.

Both literature review and empirical study support the idea that software
release processes could be optimized. An AI-based solution, such as a chatbot,
could be one solution to address this need, given the advances and growing in-
terest in AI technologies. However, the development and deployment of such
solutions should consider both ethical and security aspects to avoid possible data
leaks or legal violations.

From a theoretical perspective, this research contributes to the emerging
field of combining LLM-based chatbot technologies and software release man-
agement. While Agile methods and AI applications have been widely studied,
little attention has been paid to their intersection in this context. This study aimed
to address this gap by proposing a structured framework for integrating LLM-
based tools into release processes, providing a baseline for future academic re-
search in this area.

From a practical perspective, the findings provide a useful starting point for
organizations considering AI solutions in optimizing software release workflows.
The software requirements specified in the study can serve as a basis for compa-
nies seeking to develop or deploy similar chatbot solutions. By identifying both
functional and non-functional requirements the study highlights how to ensure
smooth deployment and efficient performance in practice.

Future research is needed on this topic, as there is still a need for more in-
depth research. Future research could investigate the integration of chatbots into
software release processes and examine their applications in different industries.
In addition, the role of chatbots in Agile methodologies could be investigated
further by assessing chatbots' impact on improving Agile methodologies.

62

REFERENCES

Abbass, H. (2021). Editorial: What is Artificial Intelligence? IEEE Transactions on
Artificial Intelligence, 2(2), 94–95. https://doi.org/10.1109/tai.2021.3096243

Abdul-Kader, S. A., & Woods, J. (2015). Survey on chatbot design techniques in
speech conversation systems. International Journal of Advanced Computer
Science and Applications, 6(7). https://doi.org/10.14569/ijacsa.2015.060712

Agile product delivery. Scaled Agile Framework. (2024a, August 6).
https://scaledagileframework.com/agile-product-delivery/

Agutter, C. (2020). ITIL® 4 Essentials: Your essential guide for the ITIL 4 foundation
exam and beyond. IT Governance Publishing, 16-66.

Ahmad, M. O., Markkula, J., & Oivo, M. (2013). Kanban in software
development: A systematic literature review. 2013 39th Euromicro
Conference on Software Engineering and Advanced Applications, 9-16.
https://doi.org/10.1109/seaa.2013.28

Akkem, Y., Kumar, B. S., & Varanasi, A. (2023). STREAMLIT application for
Advanced Ensemble Learning Methods in crop recommendation systems
– a review and implementation. Indian Journal Of Science And Technology,
16(48), 4688–4702. https://doi.org/10.17485/ijst/v16i48.2850

Alaidaros, H., Omar, M., & Romli, R. (2018). Identification of criteria affecting
software project monitoring task of Agile Kanban method. AIP Conference
Proceedings, 2016, 020021. https://doi.org/10.1063/1.5055423

Alnafessah, A., Gias, A. U., Wang, R., Zhu, L., Casale, G., & Filieri, A. (2021).
Quality-aware DevOps research: Where do we stand? IEEE Access, 9,
44476–44489. https://doi.org/10.1109/access.2021.3064867

Alqudah, M., & Razali, R. (2016). A review of scaling agile methods in large
software development. International Journal on Advanced Science,
Engineering and Information Technology, 6(6), 828.
https://doi.org/10.18517/ijaseit.6.6.1374

Anderson, D. J. (2010). Kanban: successful evolutionary change for your technology
business. Blue hole press, 11-16.

Aouni, F. E., Moumane, K., Idri, A., Najib, M., & Jan, S. U. (2024). A systematic
literature review on Agile, Cloud, and DevOps Integration: Challenges,
benefits. Information and Software Technology, 177, 107569.
https://doi.org/10.1016/j.infsof.2024.107569

Bahja, M., Hammad, R., & Butt, G. (2020). A user-centric framework for
Educational Chatbots Design and development. Lecture Notes in Computer
Science, 32–43. https://doi.org/10.1007/978-3-030-60117-1_3

Banerjee, A., Banerji, R., Berry, J., Duflo, E., Kannan, H., Mukerji, S., Shotland,
M., & Walton, M. (2017). From proof of concept to scalable policies:

63

Challenges and solutions, with an application. Journal of Economic
Perspectives, 31(4), 73–102. https://doi.org/10.1257/jep.31.4.73

Banica, L., Radulescu, M., Rosca, D., & Hagiu, A. (2017). Is DevOps another
project management methodology? Informatica Economica, 21(3/2017), 39–
51. https://doi.org/10.12948/issn14531305/21.3.2017.04

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,
Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., &
Thomas, D. (2001). Manifesto for Agile Software Development.
https://agilemanifesto.org/

Berntzen, M., Moe, N. B., & Stray, V. (2019). The product owner in large-scale
agile: An empirical study through the lens of relational coordination
theory. Lecture Notes in Business Information Processing, 121–136.
https://doi.org/10.1007/978-3-030-19034-7_8

Bodea, C.-N., Dascalu, M.-I., & Hang, A. (2020). Chatbot-based training for
Project Management: Another way of corporate training or a must-have
tool for sustainable education? Lecture Notes in Management and Industrial
Engineering, 249–259. https://doi.org/10.1007/978-3-030-60139-3_17

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., . . . Amodei, D. (2020). Language Models are Few-Shot
Learners. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2005.14165

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang,
C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu, P. S., Yang, Q., & Xie, X.
(2024). A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3), 1–45.
https://doi.org/10.1145/3641289

Chavan, M. (2009). The balanced scorecard: A new challenge. Journal of
Management Development, 28(5), 393–406.
https://doi.org/10.1108/02621710910955930

Cīrule, D., & Bērziša, S. (2019). Use of chatbots in Project Management.
Communications in Computer and Information Science, 33–43.
https://doi.org/10.1007/978-3-030-30275-7_4

Cvejič, M. (2022). Evolution of agile practices during a M & A of a European
and a Chinese company. Open Journal of Business and Management, 10(05),
2378–2388. https://doi.org/10.4236/ojbm.2022.105118

Dabbagh, M., Lee, S. P., & Parizi, R. M. (2015). Functional and non-functional
requirements prioritization: Empirical evaluation of IPA, AHP-based, and

64

Ham-based approaches. Soft Computing, 20(11), 4497–4520.
https://doi.org/10.1007/s00500-015-1760-z

Dennehy, D., & Conboy, K. (2017). Going with the flow: An activity theory
analysis of flow techniques in software development. Journal of Systems
and Software, 133, 160–173. https://doi.org/10.1016/j.jss.2016.10.003

Dietrich, J., Rasheed, S., & Tahir, A. (2022). Flaky test sanitisation via on-the-fly
assumption inference for tests with network dependencies. 2022 IEEE 22nd
International Working Conference on Source Code Analysis and Manipulation
(SCAM), 264–275. https://doi.org/10.1109/scam55253.2022.00037

Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success
factors for large-scale agile transformations: A systematic literature
review. Journal of Systems and Software, 119, 87–108.
https://doi.org/10.1016/j.jss.2016.06.013

Duncan, S. (2018). Safe 4.0 distilled: Applying the Scaled Agile Framework for
Lean Software and Systems Engineering. 2017. Quality Management
Journal, 25(1), 66–66. https://doi.org/10.1080/10686967.2018.1404375

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE
Software, 33(3), 94–100. https://doi.org/10.1109/ms.2016.68

Fagarasan, C., Popa, O., Pisla, A., & Cristea, C. (2021). Agile, waterfall and
iterative approach in Information Technology Projects. IOP Conference
Series: Materials Science and Engineering, 1169(1), 012025.
https://doi.org/10.1088/1757-899x/1169/1/012025

Faustino, J., Adriano, D., Amaro, R., Pereira, R., & da Silva, M. M. (2022).
DevOps Benefits: A systematic literature review. Software: Practice and
Experience, 52(9), 1905–1926. https://doi.org/10.1002/spe.3096

Federation of Finnish Learned Societies. (2022, November 21). Publication Forum.
Publication forum. https://julkaisufoorumi.fi/en/publication-forum

Gandomani, T. J., & Nafchi, M. Z. (2016). Agile transition and adoption human-
related challenges and issues: A grounded theory approach. Computers in
Human Behavior, 62, 257–266. https://doi.org/10.1016/j.chb.2016.04.009

Gregor, S., & Hevner, A. (2013). Positioning and Presenting Design Science
Research for Maximum Impact. MIS Quarterly, 37, 337–356.
https://doi.org/10.25300/MISQ/2013/37.2.01

Gruber, J. B., & Weber, M. (2024). rollama: An R package for using generative
large language models through Ollama. arXiv preprint arXiv:2404.07654.

Gupta, M., Akiri, C., Aryal, K., Parker, E., & Praharaj, L. (2023). From ChatGPT
to ThreatGPT: Impact of generative AI in cybersecurity and privacy. IEEE
Access, 11, 80218–80245. https://doi.org/10.1109/access.2023.3300381

65

Hartmann, D., & Dymond, R. (2006). Appropriate Agile Measurement: Using
metrics and diagnostics to deliver business value. Agile Development
Conference, AGILE 2006, 126–134. https://doi.org/10.1109/agile.2006.17

Haugeland, I. K., Følstad, A., Taylor, C., & Bjørkli, C. A. (2022). Understanding
the user experience of Customer Service Chatbots: An experimental study
of chatbot interaction design. International Journal of Human-Computer
Studies, 161, 102788. https://doi.org/10.1016/j.ijhcs.2022.102788

Heikkilä, V. T., Paasivaara, M., Lasssenius, C., Damian, D., & Engblom, C.
(2017). Managing the requirements flow from strategy to release in large-
scale agile development: A case study at Ericsson. Empirical Software
Engineering, 22(6), 2892–2936. https://doi.org/10.1007/s10664-016-9491-z

Heikkilä, V., Rautiainen, K., & Jansen, S. (2010). A revelatory case study on
scaling agile release planning. 2010 36th EUROMICRO Conference on
Software Engineering and Advanced Applications, 289–296.
https://doi.org/10.1109/seaa.2010.37

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in
information systems research. MIS Quarterly, 28(1), 75–105.
https://doi.org/10.2307/25148625

Hill, J., Randolph Ford, W., & Farreras, I. G. (2015). Real conversations with
artificial intelligence: A comparison between human–human online
conversations and human–chatbot conversations. Computers in Human
Behavior, 49, 245–250. https://doi.org/10.1016/j.chb.2015.02.026

Iden, J., & Eikebrokk, T. R. (2014). Using the ITIL process reference model for
realizing IT governance: An empirical investigation. Information Systems
Management, 31(1), 37–58. https://doi.org/10.1080/10580530.2014.854089

Jacobson, I., Sutherland, J., Kerr, B., & Buhnova, B. (2022). Better scrum through
essence. Software: Practice and Experience, 52(6), 1531–1540.
https://doi.org/10.1002/spe.3070

Joshi, A., Kale, S., Chandel, S., & Pal, D. (2015). Likert scale: Explored and
explained. British Journal of Applied Science & Technology, 7(4), 396–403.
https://doi.org/10.9734/bjast/2015/14975

Kajko-Mattsson, M., & Yulong, F. (2005). Outlining a Model of a Release
Management Process. Journal of Integrated Design and Process Science, 9(4),
13-25. doi:10.3233/JID-2005-9402

Kalenda, M., Hyna, P., & Rossi, B. (2018). Scaling agile in large organizations:
Practices, challenges, and success factors. Journal of Software: Evolution and
Process, 30(10). https://doi.org/10.1002/smr.1954

Kaplan, R. S. (2009). Conceptual Foundations of the balanced scorecard.
Handbooks of Management Accounting Research, 1253–1269.
https://doi.org/10.1016/s1751-3243(07)03003-9

66

Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard: measures that
drive performance. Harvard business review, 70, 71-79.

Knaster, R., & Leffingwell, D. (2020). Safe 5. 0 distilled achieving business agility
with the Scaled Agile Framework. Addison-Wesley Professional, 36-50.

Kniberg, H., & Skarin, M. (2010). Kanban and Scrum: Making the most of both.
C4Media, Inc, 1-49.

Komssi, M., Pichlis, D., Raatikainen, M., Kindstrom, K., & Jarvinen, J. (2015).
What are hackathons for? IEEE Software, 32(5), 60–67.
https://doi.org/10.1109/ms.2014.78

Larsen, K. R., Lukyanenko, R., Mueller, R. M., Storey, V. C., VanderMeer, D.,
Parsons, J., & Hovorka, D. S. (2020). Validity in design science research.
Lecture Notes in Computer Science, 272–282. https://doi.org/10.1007/978-3-
030-64823-7_25

Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2019). A survey of
DevOps Concepts and challenges. ACM Computing Surveys, 52(6), 1–35.
https://doi.org/10.1145/3359981

March, S. T., & Smith, G. F. (1995). Design and natural science research on
information technology. Decision Support Systems, 15(4), 251–266.
https://doi.org/10.1016/0167-9236(94)00041-2

Marchenko, A., & Abrahamsson, P. (2008). Scrum in a multiproject
environment: An ethnographically-inspired case study on the adoption
challenges. Agile 2008 Conference, 15–26.
https://doi.org/10.1109/agile.2008.77

Marrone, M., & Kolbe, L. M. (2010). Uncovering ITIL claims: It executives’
perception on benefits and business-IT alignment. Information Systems and
E-Business Management, 9(3), 363–380. https://doi.org/10.1007/s10257-
010-0131-7

McConnell, S. (1996). Rapid Development: Taming Wild Software
Schedules. Microsoft Press, 1-81.

Moe, N. B. (2013). Key challenges of improving agile teamwork. Lecture Notes in
Business Information Processing, 76–90. https://doi.org/10.1007/978-3-642-
38314-4_6

Mökander, J., Schuett, J., Kirk, H. R., & Floridi, L. (2023). Auditing large
language models: A three-layered approach. AI and Ethics.
https://doi.org/10.1007/s43681-023-00289-2

Nilsson Tengstrand, S., Tomaszewski, P., Borg, M., & Jabangwe, R. (2021) .
Challenges of adopting safe in the banking industry – a study two years
after its introduction. Lecture Notes in Business Information Processing, 157–
171. https://doi.org/10.1007/978-3-030-78098-2_10

67

Nørreklit, H. (2003). The balanced scorecard: What is the score? A rhetorical
analysis of the balanced scorecard. Accounting, Organizations and Society,
28(6), 591–619. https://doi.org/10.1016/s0361-3682(02)00097-1

Obwegeser, N., T. Nielsen, D., & M. Spandet, N. (2019). Continual process
improvement for ITIL Service Operations: A lean perspective. Information
Systems Management, 36(2), 141–167.
https://doi.org/10.1080/10580530.2019.1587576

Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2009). Using Scrum in
distributed agile development: A multiple case study. 2009 Fourth IEEE
International Conference on Global Software Engineering, 195–204.
https://doi.org/10.1109/icgse.2009.27

Paasivaara, M., Lassenius, C., Heikkila, V. T., Dikert, K., & Engblom, C. (2013).
Integrating global sites into the Lean and agile transformation at Ericsson.
2013 IEEE 8th International Conference on Global Software Engineering, 134–
143. https://doi.org/10.1109/icgse.2013.25

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
Management Information Systems, 24(3), 45–77.
https://doi.org/10.2753/mis0742-1222240302

Perkusich, M., Chaves e Silva, L., Costa, A., Ramos, F., Saraiva, R., Freire, A.,
Dilorenzo, E., Dantas, E., Santos, D., Gorgônio, K., Almeida, H., &
Perkusich, A. (2020). Intelligent software engineering in the context of
agile software development: A systematic literature review. Information
and Software Technology, 119, 106241.
https://doi.org/10.1016/j.infsof.2019.106241

Putta, A., Paasivaara, M., & Lassenius, C. (2018). Benefits and challenges of
adopting the Scaled Agile Framework (SAFE): Preliminary results from a
multivocal literature review. Lecture Notes in Computer Science, 334–351.
https://doi.org/10.1007/978-3-030-03673-7_24

Putta, A., Paasivaara, M., & Lassenius, C. (2019). How are agile release trains
formed in practice? A case study in a large Financial Corporation. Lecture
Notes in Business Information Processing, 154–170.
https://doi.org/10.1007/978-3-030-19034-7_10

Raj, S. (2019). Building Chatbots with python: Using natural language processing and
machine learning. Apress, 1-103.

Rodríguez, P., Mäntylä, M., Oivo, M., Lwakatare, L. E., Seppänen, P., & Kuvaja,
P. (2019). Advances in using agile and lean processes for software
development. Advances in Computers, 135–224.
https://doi.org/10.1016/bs.adcom.2018.03.014

Royce, W.W. (1970) Managing the Development of Large Software Systems.
Proceedings of IEEE WESCON, 26, 328-388.

68

Sachdeva, S. (2016). Scrum methodology. International Journal of Engineering And
Computer Science. https://doi.org/10.18535/ijecs/v5i6.11

Safe 6.0 framework. Scaled Agile Framework. (2024b, October 15).
https://scaledagileframework.com/#overview

Samer, M. (2016). Software Release Management Evolution-Comparative
Analysis across Agile and DevOps Continuous Delivery. International
Journal of Emerging Trends & Technology in Computer Science, 3, 2349-6495.

Schaefer, A., Reichenbach, M., & Fey, D. (2012). Continuous Integration and
automation for Devops. Lecture Notes in Electrical Engineering, 345–358.
https://doi.org/10.1007/978-94-007-4786-9_28

Schmidt, C. (2016). Agile Software Development Teams. Springer International
Publishing, 1-36.

Schwaber, K., & Sutherland, J. (2020). The 2020 Scrum GUIDE. Scrum Guide |
Scrum Guides. https://scrumguides.org/scrum-guide.html

Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action
design research. MIS Quarterly, 35(1), 37–56.
https://doi.org/10.2307/23043488

Setiaji, B., & Wibowo, F. W. (2016). Chatbot using a knowledge in database:
Human-to-machine conversation modeling. 2016 7th International
Conference on Intelligent Systems, Modelling and Simulation (ISMS).
https://doi.org/10.1109/isms.2016.53

Shahin, M., Babar, M. A., & Zhu, L. (2016). The intersection of continuous
deployment and architecting process. Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
1–10. https://doi.org/10.1145/2961111.2962587

Singh, S., & Beniwal, H. (2022). A survey on near-human conversational agents.
Journal of King Saud University - Computer and Information Sciences, 34(10),
8852–8866. https://doi.org/10.1016/j.jksuci.2021.10.013

Šmite, D., Moe, N. B., & Gonzalez-Huerta, J. (2021). Overcoming cultural
barriers to being agile in distributed teams. Information and Software
Technology, 138, 106612. https://doi.org/10.1016/j.infsof.2021.106612

Sridhara, G., G, R. H., & Mazumdar, S. (2023). ChatGPT: A Study on its Utility
for Ubiquitous Software Engineering Tasks. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2305.16837

Ståhl, D., & Bosch, J. (2014). Modeling continuous integration practice
differences in industry software development. Journal of Systems and
Software, 87, 48–59. https://doi.org/10.1016/j.jss.2013.08.032

Stange, R., Schiele, H., & Henseler, J. (2022). Advancing purchasing as a design
science: Publication guidelines to shift towards more relevant purchasing

69

research. Journal of Purchasing and Supply Management, 28(1), 100750.
https://doi.org/10.1016/j.pursup.2022.100750

Stanica, I., Dascalu, M.-I., Bodea, C. N., & Bogdan Moldoveanu, A. D. (2018). VR
job interview simulator: Where virtual reality meets artificial intelligence
for education. 2018 Zooming Innovation in Consumer Technologies Conference
(ZINC). https://doi.org/10.1109/zinc.2018.8448645

Stokel-Walker, C., & Van Noorden, R. (2023). What CHATGPT and Generative
AI mean for science. Nature, 614(7947), 214–216.
https://doi.org/10.1038/d41586-023-00340-6

Storey, V. C., Baskerville, R. L., & Kaul, M. (2017). Reliability in design science
research. 38th International Conference on Information Systems (ICIS 2017), 1,
1688–1705.

Templier, M., & Paré, G. (2015). A framework for guiding and evaluating
literature reviews. Communications of the Association for Information Systems,
37. https://doi.org/10.17705/1cais.03706

Theobald, S., & Schmitt, A. (2020). Dependencies of Agile Teams – an analysis
of the Scaled Agile Framework. Lecture Notes in Business Information
Processing, 219–226. https://doi.org/10.1007/978-3-030-58858-8_22

Thesing, T., Feldmann, C., & Burchardt, M. (2021). Agile Versus Waterfall
Project Management: Decision model for selecting the appropriate
approach to a project. Procedia Computer Science, 181, 746–756.
https://doi.org/10.1016/j.procs.2021.01.227

Topsakal, O., & Akinci, T. C. (2023). Creating large language model applications
utilizing LangChain: A primer on developing LLM Apps Fast.
International Conference on Applied Engineering and Natural Sciences, 1(1),
1050–1056. https://doi.org/10.59287/icaens.1127

Vallon, R., Strobl, S., Bernhart, M., & Grechenig, T. (2013). Inter-organizational
co-development with scrum: Experiences and lessons learned from a
distributed corporate development environment. Lecture Notes in Business
Information Processing, 150–164. https://doi.org/10.1007/978-3-642-38314-
4_11

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., &
Polosukhin, I. (2017). Attention is all you need. Advances in neural
information processing systems, 30. 31st Conference on Neural Information
Processing Systems. CA, USA: Long Beach.

Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: A framework for
evaluation in Design Science Research. European Journal of Information
Systems, 25(1), 77–89. https://doi.org/10.1057/ejis.2014.36

Virmani, M. (2015). Understanding DevOps & Bridging the gap from
continuous integration to continuous delivery. Fifth International Conference

70

on the Innovative Computing Technology (INTECH 2015).
https://doi.org/10.1109/intech.2015.7173368

Wakode, R. B., Raut, L. P., & Talmale, P. (2015). Overview on kanban
methodology and its implementation. IJSRD-International Journal for
Scientific Research & Development, 3(02), 2321-0613.

Xu, F., Lin, Q., Han, J., Zhao, T., Liu, J., & Cambria, E. (2023). Are large language
models really good logical reasoners? a comprehensive evaluation and
beyond. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2306.09841

Yin, R. K. (2009). Case study research: Design and methods. SAGE Publications, 40-
45.

Zhao, Y., Srebrenica, A., Zhou, Y., Filkov, V., & Vasilescu, B. (2017). The impact
of continuous integration on other software development practices: A
large-scale empirical study. 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), 60–71.
https://doi.org/10.1109/ase.2017.8115619

71

APPENDIX 1 THE EMAIL FOR THE SURVEY

Subject: Survey of Identifying Requirements for a Release Chatbot

“Hi,

I hope this email finds you well.

We’re conducting a study to gather insights into a new AI-powered release chat-
bot. The chatbot is intended to assist with various tasks, such as streamline com-
munication, automate repetitive tasks, and to provide real-time information.
Your input ensures that the chatbot can meet the needs to optimize the release
processes.

The survey collects feedback on how the chatbot could enhance your daily work
and interactions. No prior knowledge of AI nor chatbots are needed to participate.
The survey is straightforward and quick to answer. It is part of my master’s thesis,
which is being carried out within the organization.

Deadline: Please submit your responses by Friday 11.10.2024

Your participation will help develop a tool that could significantly enhance
productivity and efficiency within the release processes. We appreciate your time
and feedback.

Please note that all responses are completely anonymous, and your data won’t
be stored or shared. The results are used solely for research purposes to help de-
fine the software requirements of the chatbot.

In case of any questions please do not hesitate to contact me.
Thank you in advance.

Best Regards,
Sini Annamaa”

72

APPENDIX 2 THE STRUCTURE OF THE SURVEY

73

74

75

76

77

APPENDIX 3 THE RESULTS OF THE SURVEY

78

79

80

81

82

83

84

	1 Introduction
	2 Agile Software Development
	2.1 Agile Methodology
	2.1.1 Scrum
	2.1.2 Kanban
	2.1.3 Scaled Agile Framework

	2.2 Challenges

	3 Software Release Management
	3.1 Overview of Release Processes
	3.1.1 DevOps
	3.1.2 ITIL

	3.2 Agile Product Delivery

	4 LLMs and Chatbots in Software Release Management
	4.1 Overview of LLMs
	4.2 Chatbots in Software Development and Project Management
	4.3 Best Practices for Chatbot Design

	5 Summary of Literature Review
	6 Research setting
	6.1 Research Questions
	6.2 Case Description
	6.3 Design Science Research Methodology
	6.4 Balanced Scorecard Framework

	7 Case Study
	7.1 DSR Project
	7.2 Problem Identification
	7.3 Objectives of the Solution
	7.4 Design and Development
	7.5 Data Collection
	7.6 Data Analysis, Validity and Reliability
	7.7 Results and Evaluation

	8 Discussion
	8.1 Reflection on Research Questions
	8.2 Implications and Future Research
	8.3 Evaluation of Research Quality
	8.4 Limitations

	9 Conclusion
	References
	Appendix 1 The Email for the Survey
	Appendix 2 The Structure of the Survey
	Appendix 3 The Results of the Survey

