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ABSTRACT Clearly arranged visualizations are needed in multiobjective optimization problems with a
large number of objective functions, when a large number of Pareto optimal outcome vectors (vectors of
objective function values) must be compared during the decision making processes. This paper contributes
to visualizing such outcome vectors independent of how they have been generated. Parallel coordinate
plots are a widely used visualization technique to represent different outcome vectors.We propose a novel
visualization technique called SCORE bands to be used with parallel coordinate plots to support the decision
maker in simultaneously identifying patterns in outcome vectors and correlations among the objective
functions in a meaningful way. To do so, amongst others, we change the ordering of objective functions
and modify the distances among them in parallel coordinate plots. SCORE bands also have interactive
capabilities allowing the decisionmaker to first study general trends among the outcome vectors as bands and
then zoom-in and move about different groups of outcome vectors of interest. The novelty of our approach
lies in proposing a visually appealing way to support the decision maker in dealing with large amounts of
information. We demonstrate the benefits of SCORE bands with different examples.

INDEX TERMS Multiple criteria optimization, interactive visualization, correlated objectives, parallel
coordinate plots, Pareto optimality.

I. INTRODUCTION
The aim of multiobjective optimization methods is to
support a domain expert, to be referred to as a decision
maker (DM), in finding the best balance among conflicting
objective functions. Many methods generate so-called Pareto
optimal solutions and corresponding outcome vectors (i.e.,
vectors of objective function values), where no objective
function can be improved without impairing at least one
of the others. Different methods generate varying amounts
of Pareto optimal solutions. Typically, the corresponding
outcome vectors are to be compared by a DM. The task

The associate editor coordinating the review of this manuscript and

approving it for publication was Walter Didimo .

of comparison gets more demanding when the numbers of
objective functions and outcome vectors increase.

Carefully selected visualizations can help a DM in gaining
insight in different trade-offs among outcome vectors. Means
of visualization for multiobjective optimization purposes
are surveyed, e.g., in Gettinger, et al. [13], Korhonen and
Wallenius [24], Lotov andMiettinen [29],Miettinen [33], and
Woodruff et al. [50]. Examples of popular visualization tech-
niques are parallel coordinate plots also known as value paths
in Cohon [7],and Heinrich and Weiskopf [17], spider web
charts, scatterplot matrices, petal diagrams, star coordinate
plots and glyphs. Further techniques include heatmaps [19],
knowCube [44], interactive decision maps [28], the pros-
ection method [45], PaletteViZ [43], 3D-RadVis [22], and
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barycentric RadViz [47]. There are also, e.g., Andrews
plots [1] and Chernoff faces [5] from the early visualization
days of multivariate data but they are, unfortunately, of little
help in the display of trade-off information which is the focus
of this paper.

As discussed e.g., in Fonseca, Antunes, Lacour, et al.
[12], visualizations can be applied for various purposes
in multiobjective optimization ranging from following the
progress of the solution process to visualizing uncertainty
and to identifying information to be visualized. Here
we focus on visualizing Pareto optimal outcome vectors.
Recent developments in visualization methods include open-
source building blocks for implementing parallel coordinate
plots [38] and the needs encountered in specific application
domains, e.g., [3], [11], [14], [27], [32], and [6]. In many
studies, parallel coordinate plots have been found useful in
visualizing outcome vectors supported by, e.g, clustering [4],
[51]. In parallel coordinate plots, objective functions are
typically represented by vertical axes and outcome vectors
are represented by polylines. Naturally, the order of the axes
affects the interpretability since trade-offs in the objective
functions that are next to each other are easier to inspect.
Even though Ankerst et al. [2] is not about multiobjective
optimization, the measures of similarity proposed could be
used to order objective functions in a parallel coordinate
plot. An approach for deriving the order of the axes using
Spearman’s rank correlation was proposed in Zhen et al.
[52]. Another approach is presented in Huang and Siraj
[21], which orders the axes to minimize the number of
‘‘cross-overs’’ of polylines of different outcome vectors,
thus minimizing the complexity of the visualization. In both
Ankerst et al. [2] and Zhen et al. [52], the axes are equidistant,
as they are also in Huang and Siraj [21] and Smedberg and
Bandaru [42]. Additionally, the approach of Huang and Siraj
[21] is only applicable to visualize datasets with a small
number of outcome vectors due to expensive underlying
calculations.

In this paper, we propose means for supporting a
DM in understanding the information contained in any
collection of Pareto optimal outcome vectors. Our aim
is to show both correlation among objective functions
and clusters in outcome vectors so that it is easier
to digest major insights. Roughly speaking, we visually
cluster both objective functions and outcome vectors.
We propose to use Pearson correlation coefficients of
all objective function pairs to calculate the order of the
objective functions. Moreover, we visualize the correlation
information by changing the distance between neighboring
axes based upon the value of the Pearson correlation coeffi-
cients of the corresponding objective functions. Thus, we not
only determine the order in which the objective functions
should be displayed but illustrate correlation information
visually. This is particularly helpful when the number of
objective functions is above three. While the ideas behind
this research are reported in Dächert et al. [9] (applying
different clustering tools), this is the full development of the

initiatives outlined in that piece (including the idea about
modifying the distances between axes in a parallel coordinate
plot, which does not appear elsewhere other than in
Dächert et al. [9]).

When the number of outcome vectors is high, one can
filter out undesired ones as, e.g., in knowCube [44]. But if
one wants to understand better what kinds of trade-offs are
represented in the data available, as we do in this paper,
clustering can be applied to first show the bigger trends
among the objective functions [31], [35], [53]. Then the DM
can be given the ability to zoom in on clusters of special
interest to examine individual outcome vectorsmore closely.
In support of this kind of analysis, we propose the use of
SCORE band visualizations.

Overall, our novel contribution to visualize Pareto optimal
outcome vectors with modified parallel coordinate plots is
three-fold: (i) to order the objective functions (to visually
group similar objective functions in a manner beneficial to a
DM), (ii) to reflect correlation among the objective functions
by varying the distances between the axes in the visualization,
and (iii) to apply SCORE bands to visualize outcome vectors
in a visually pleasing way by showing major trends. SCORE
bands differs from other state-of-the-art methods in various
ways. Unlikemost visualizations that are based on the parallel
coordinate plot, SCORE bands has an explicit focus on
decision making, requiring us to both utilize existing ideas
as well as come up with new innovations to support the goal
of decision-making. Secondly, unlike most visualizations
aimed at aiding decision making, SCORE bands scales
well to a large number of outcome vectors, enabling its
usage with, for example, evolutionary approaches, which
generate a large number of outcome vectors. Finally,
unlike most previously mentioned visualizations, we have
implemented the new visualization technique in an open-
source Python package and make it available freely via
the DESDEO framework [34] (https://desdeo.it.jyu.fi). This
enables researchers and DMs to utilize SCORE bands
with ease.

When especially compared against parallel coordinate
plots, SCORE band visualization adopts a so-called ‘‘max-
imum effect for minimum means’’ approach [8], [18].
According to Ware [48], ‘‘the ultimate goal of interactive
visualization design is to optimize applications so that
they help us perform cognitive work more efficiently.’’
We have carefully considered the costs and benefits of
utilizing SCORE bands as a decision-making tool, as com-
pared to parallel coordinate plots. We provide great ben-
efits to the DM by providing correlation and clustering
information. We keep the costs low by providing the
information in an easy-to-digest manner, saving the DM’s
time. SCORE bands visualization minimizes the cognitive
load on the DM while supporting the DM in analyzing
the data.

We do not care how the set of outcome vectors to be
visualized has been generated (e.g., by using scalarization-
based or evolutionary approaches) as long as the vectors
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do not dominate one another.1 The new visualizations can
support the DM during a solution process to get an overall
understanding or focus on outcome vectors of interest,
provide preferences as well as identify a final, most preferred
outcome vector. Thus, the proposed visualizations can be
used with different multiobjective optimization methods.

The rest of this paper is structured as follows. In Section II,
we introduce main concepts and notation, and give an
overview of related literature on parallel coordinate plots.
We propose our new ways of visualizing sets of Pareto
optimal outcome vectors, culminating in SCORE bands,
in Section III. We give examples in Section IV as well as
discuss different way of utilizing the new visualizations.
Finally, we conclude in Section V.

II. PROBLEM FORMULATION AND RELATED LITERATURE
We consider multiobjective optimization problems

min{f (x) = (f1(x), . . . , fk (x)) : x ∈ X} (MOP)

with k ≥ 2 real-valued objective functions fi : X → R,
i = 1, . . . , k and a feasible set X . The objective functions
may represent, for example, economical and ecological goals,
or the cost and the quality of a decision vector. Using the
fact that maximization problems can be reformulated as
equivalent minimization problems, we assume throughout
this paper that all objective functions are to be minimized.
Accordingly, we assume that a rational DM prefers smaller
objective function values over larger objective function values
in all objective functions. This is reflected in the concept of
Pareto optimality. Pareto optimality can be best detected by
comparing outcome vectors of feasible decision vectors in
the k-dimensional objective space Rk : An outcome vector
z1 = f (x1) dominates z2 = f (x2) in Rk if and only if z1i ≤ z2i
for all i = 1, . . . , k and z1 ̸= z2. Then a feasible decision
vector x ∈ X is a Pareto optimal decision vector (not to be
confused with its image, a Pareto optimal outcome vector) if
and only if there is no other feasible decision vector x̄ ∈ X
such that f (x̄) dominates f (x). Corresponding to the set of all
Pareto optimal decision vectors, i.e., the Pareto set, we have
their respective images in the objective space constituting a
Pareto front, i.e., the set of all Pareto optimal outcome vectors
of problem (MOP).

To support the DM in the selection of the most preferred
outcome vector, a clearly arranged graphic presentation of
a representative subset of the Pareto front is crucial. This
is particularly true when the number of objective functions
increases, i.e., when k is (considerably) larger than 2 or 3.
Indeed, while for biobjective problems the Pareto front can
be visualized in a 2-dimensional scatter plot that immediately
shows the trade-offs between the two objective functions, this
is no longer true for higher-dimensional problems. Already
in a three-objective case, a direct visualization of the Pareto

1In general, the data to be visualized do not need to specifically come from
a multiobjective optimization problem. The data can come from any multiple
criteria decision making problem.

front in the objective space is difficult,2 and it is generally not
useful at all in the case of more than 3 objective functions.
At the same time, optimization problems with an increasing
number of objective functions are becoming more and more
relevant and popular in practical applications, and hence there
is a growing need for efficient and meaningful presentations
of Pareto optimal outcome vectors.

We focus on visualizations of a finite set of Pareto optimal
outcome vectors or outcome vectors that do not dominate
each other (i.e., nondominated vectors) on parallel coordinate
plots (see, e.g., Cohon [7], Inselberg and Dimsdale [23],
and Wegman [49]). As mentioned, each objective function
is associated with a (vertical) axis that represents the range
of possible function values, while each outcome vector is
represented by its values on these axes and connected by
a polyline known as a value path. Early implementations
of parallel coordinate plots (see, e.g., Korhonen and Laakso
[25], [26]) have generally ordered the axes in the plot in
the same order as the objective functions in the problem
definition. See Figure 1 for an illustration.

In the following, we provide a brief review on the related
literature on parallel coordinate plots. Interpreting parallel
coordinate plots visualizing a large number of (nondomi-
nated) outcome vectors can be challenging due to multiple
issues. The first issue is the visualization of correlation
information. The interpretation of correlation is paramount
in decision making in multiobjective optimization problems
as correlations represent trade-offs among the objective
functions. In parallel coordinate plots, correlations are not
observed directly. Instead, the information is presented
implicitly via the value paths. If two highly correlated
objective functions are placed next to each other in a plot, the
value paths between the corresponding axes have a parallel
relationship to each other. Instead, if the objective functions
are negatively correlated, the value paths intersect between
the two axes. While the correlation information about
neighboring objective functions can be implicitly judged,
correlation information about non-neighboring objective
functions is lost in the visualization. Therefore, the order
of objective functions in the plot plays a vital role in
helping a DM interpret the insight within the outcome
vectors. An approach for deriving the order of the axes using
Spearman’s rank correlation was proposed in Zhen et al. [52].
Another issue is that of the overcrowding of value paths.

Visualizing many value paths in the same space makes it
difficult to follow any single value path. One way to solve
this problem is to identify clusters of outcome vectors.
The clustering information can then be visualized in the
parallel coordinate plot to make interpretation easier. The
simplest way to present this information is to color value
paths belonging to different clusters differently. While this
technique makes identifying clusters of outcome vectors

2Visualization in the form of 3-dimensional scatter plots can be useful to
the DM if they can interact with (rotate, pan, and zoom) the plot. A non-
interactive, i.e., static version of the same visualization can be challenging to
interpret.
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easier, it does not reduce the visual clutter that arises due to
the many value paths.

Another way to reduce visual clutter is to change the
way outcome vectors are visualized. Parallel coordinate plots
with bundling [31], [54] are a prime example. Instead of
representing outcome vectors as polylines, these visualization
techniques bundle together value paths that belong to the
same cluster. This is achieved by curving the value paths
inwards (towards the value path of the cluster centroid)
between each pair of neighboring objective axes. Such
bundles are easy to distinguish, making the interpretation of
clusters easier. However, bundling can make the interpreta-
tion of correlation information, represented by the amount
of crossing over of the value paths, more challenging [16].
McDonnell and Mueller [31] present an alternative way
to represent clusters in parallel coordinate plots. Instead
of visualizing individual outcome vectors, they visualize
the whole cluster as a semi-transparent band, where the
thickness of the band represents the standard deviation of
the outcome vector belonging to the cluster. However, this
visualization technique also hides correlation information,
making decision making challenging.

In the following section, we introduce SCORE bands and
show how they address the challenges mentioned above.

III. SCORE BANDS: SIMULTANEOUS CLUSTERING AND
CORRELATED OBJECTIVE VISUALIZATION VIA BANDS
In this section, we describe the algorithm by which SCORE
bands and their visualizations are constructed so as to enable
the re-imagination of the concept of a parallel coordinate
plot of this paper. The purpose is to support decision making
in multiobjective optimization with visualizations of sets
of Pareto optimal (or nondominated) outcome vectors in
order to highlight key information contained in them while
minimizing clutter that might otherwise distract from the
decision making process. Bear in mind that while the goal of
a visualization is to tailor it to the needs of a given DM, the
algorithm may have to process many Pareto optimal outcome
vectors. Possessing parameters designed to be easy to operate
(to adapt to the needs of the problem at hand and the DM by
e.g. an analyst supporting a DM), the algorithm consists of
four steps:

1) Outcome vector clustering: Find clusters in the
outcome vectors. This information helps the DM
understand the distribution of outcome vectors in the
objective space.

2) Axis ordering: Calculate an optimal ordering for the
objective function axes of the parallel coordinate plot
visualization. This helps visualizing information about
the relationships between different objective functions,
such as trade-offs or correlations.

3) Inter-axis spacing: Expand or contract the space
between the objective function axes to highlight or sup-
press the relationship between neighboring objective
functions in the parallel coordinate plot. This usage
of the inter-axes space can help the DM focus on

relationships among the outcome vectors or objective
functions that they find important.

4) Visualization via bands: Visualize the information
extracted in the previous three steps in an effective,
visually accessible, and pleasing manner. Instead of
visualizing individual outcome vectors, only visualize
the clusters of outcome vectors using bands by default.
Enable the DM to show/hide the bands or value paths
of individual outcome vectors in an interactive manner.

Other simple visualizations can be presented to aDMalong
with SCORE bands. They can provide additional insight into
the problem and make it easier to understand SCORE band
visualizations.

In Subsections III-A through III-D, we describe the compo-
nents of the aforementioned algorithm. We also demonstrate
the advantage of using the components individually with a
dataset of 1036 outcome vectors generated from the DTLZ7
problem [10] with 3 objective functions. The dataset, to be
referred to as (3-DTLZ7) is visualized in Figure 1a as a
3-D scatter plot and in Figure 1b as a parallel coordinate
plot. Note that the SCORE band algorithm can be used to
visualize outcome vectors related to problems with, at least
theoretically, any number of objective functions, but we only
use a three-objective problem here to describe the algorithm.
We compare the results against some standard visualization
techniques.

A. OUTCOME VECTOR CLUSTERING
Clustering can be a very useful tool for a DM. Clustering
can highlight patterns in the objective space by identifying
groups of outcome vectors that are close to each other
(i.e., in a cluster) and far from outcome vectors in other
groups. In Figure 1a, the 3D scatter plot clearly shows that
the outcome vectors are distributed among four clusters.
However, as seen in Figure 1b, the cluster information is
harder to detect in the parallel coordinate plot. While the
four clusters are clearly distinguishable with regard to the
first two axes, they are not nearly as distinguishable with
regard to the third. However, this problem is alleviated by
giving colors to the individual outcome vectors according
to their cluster. Figure 2 demonstrates the effectiveness
of this in the parallel coordinate plot shown. It now
becomes trivial to distinguish the four clusters, even in
the case of the third objective function. The spread of
each cluster is visible along each axis. We can cluster
outcome vectors based upon their components using a wide
variety of clustering algorithms. We mention some of them
in Appendix B.

B. AXIS ORDERING
The order of the objective functions in a parallel coordinate
plot can make a significant difference in interpretation.
An axis in a parallel coordinate plot can have at most two
neighboring axes. Hence, the relationship of an objective
function to its neighbors is very prominent visually. The
crossing over of the value paths of individual outcome vectors
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FIGURE 1. Dataset (3-DTLZ7) visualized using two techniques.

FIGURE 2. Dataset (3-DTLZ7) plotted in a parallel coordinate plot and colored according to
clustering information.

between neighboring axes signifies a negative correlation.
If instead, the value paths are primarily parallel to each
other, a DM can conclude that the two neighboring objective
functions are highly positively correlated. Finally, a chaotic
tangle of value paths signifies a lack of correlation between
neighboring objective functions. In static visualizations,
i.e., plots that a user cannot interact with or change, this
information comes at the cost of a lack of information
about non-neighboring objective function pairs. Dynamic
visualizations can help a DM solve this problem by allowing
a manual reordering of the axes in real-time, but it may be
time-consuming to find the most informative order. However,
static visualizations are still necessary for certain media
where dynamic visualizations are impossible, such as in print.
Hence, methods to most informatively order the axes in a

parallel coordinate plot to highlight information relevant to
a DM are still required.

As mentioned earlier, many techniques to find an order
of objective functions have been proposed in the literature.
However, we found the order proposed by such meth-
ods suboptimal for usage in SCORE band visualizations.
We therefore propose a new way to find a good order for the
objective functions.

We derive the order of the objective functions (represented
by a permutation π ) by solving a travelling salesperson
problem TSP(ci,j), where ci,j ∈ R is a measure of the
distance between two objective functions. The ordering is
given by a permutation π of the set {1, 2, . . . , k}, where
k is the number of objective functions, such that fπi is the
ith objective function to be placed as an axis in a parallel
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FIGURE 3. Dataset (3-DTLZ7)plotted in a parallel coordinate plot, colored according to the clustering information, and with axes ordered
according to Metric 2, i.e., the absolute values of the Pearson correlation coefficients.

coordinate plot.3 We provide two options for the distance
metric. In the first option, referred to as Metric 1 in the
following, ci,j = −ρ(fi, fj), where ρ(fi, fj) is the Pearson
correlation coefficient between fi and fj. By using this metric,
objective functions that are positively correlated are placed
closer to each other. Alternatively, we can use the absolute
value of the Pearson correlation coefficients instead: ci,j =

−|ρ(fi, fj)|. This second option is referred to as Metric 2.
Metric 2 highlights both positive and negative correlations. In
either case, the Pearson correlation coefficients are calculated
using of all the outcome vectors that are to be visualized.

Figure 3 shows the effectiveness of using the axis-ordering
method described above on the (3-DTLZ7) dataset. The
second metric, which highlights both positive and negative
correlations, was used to generate the figure. One can
immediately notice the visual symmetry in the figure across
the f3 axis. The symmetry corresponds to a similar symmetry
seen in the 3D scatter plot visualization (Figure 1a) around
the f3 axis. On the other hand, the standard parallel coordinate
plot (Figure 1b) obscures this symmetry to some extent.

In static visualizations, the axis-ordering method can help
the DM gain insight into the problem swiftly. In dynamic
visualizations, the method can provide a default first view,
which can then be altered by a DM interactively as desired.

C. INTER-AXIS SPACING
A standard parallel coordinate plot dedicates an equal
amount of space to each neighboring objective function
axis pair. However, in reality, the information that a DM
can gather from inter-axis spacing can vary significantly
between different objective function pairs. For example, some

3Note that TSP(ci,j) is not to minimize the total distance of a round-trip of
the objective functions. Instead, it is only to find the shortest path that visits
each objective function once.

objective function pairs may be highly correlated, whereas
others may be hardly correlated at all. Thus, we can encode
relevant information by altering the spacing between axes.
For example, by varying the relative distances between the
objective function axes, we can visually show objective
function clusters: objective functions that behave similarly
are placed closer to each other, whereas objective functions
that behave dissimilarly are placed farther apart.

We provide two different methods for calculating relative
distances between neighboring axes (disti = dist(fπi , fπi+1 )):

Method 1: disti = 1 − ρ(fπi , fπi+1 ) + δ

for all i = 1, . . . , k − 1

Method 2: disti =
1

|ρ(fπi , fπi+1 )|+1
+ δ

for all i = 1, . . . , k − 1,

where δ is an analyst-provided distance parameter4 which
increases the minimum distance between the axes. Based
on our experiments, we recommend Method 1 be used with
Metric 1 (to calculate the axes order), and Method 2 be used
with Metric 2. These relative distances can be multiplied by
a scaling factor to fit a desired width, for example, the width
of a monitor or a page.

Axis ordering and inter-axis spacing work in tandem to
help the DM study the correlations among the objective
functions. The first makes it possible to depict a high/low
correlation (neighboring objective functions have a high
correlation, whereas non-neighboring objective functions
have a lower correlation). The second adds a measure of

4Depending upon the correlation values, a small value of δ may lead
some objective functions to be placed too closely together, making the
visualization difficult to interpret. In such cases, the analyst can increase δ to
desirable levels. Setting a very large value (> 20) for δ will lead to equidistant
objective function axes.
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FIGURE 4. Dataset (3-DTLZ7) plotted as a SCORE band visualization.

the degree of correlation (highly correlated neighboring
objective functions are placed closer to each other compared
to neighboring objective functions with a lower correlation).
Note that due to the symmetrical nature of the DTLZ7
problem, this aspect of SCORE band visualizations cannot be
recognized in Figure 3. However, we present more problems
in the later sections of the paper, which demonstrate the utility
of varying inter-axis spacing.

D. VISUALIZATION VIA BANDS
As mentioned, parallel coordinate plot visualizations tend to
grow complicated and cluttered with an increasing number
of objective functions and outcome vectors. As the number
of objective functions increases, the outcome vector value
paths cross-over more often due to the trade-offs among
the different objective functions. On the other hand, adding
more outcome vectors to the plot increases the complexity
by simply increasing the density of information in the
visualization. Together, this can result in visualizations that
are difficult to understand even with the helpful features
described in the previous subsections.

One way to resolve this issue is to plot simplified
abstractions rather than all individual outcome vectors. For
example, instead of plotting all outcome vectors as individual
value paths, the clusters (as identified in Subsection III-A)
can be plotted as bands as the basic unit of visualization.
In Figure 4, we showcase this idea by plotting the (3-DTLZ7)
dataset. We call the result a SCORE band visualization. Each
band exemplifies the pattern of the trade-offs followed by the
outcome vectors of the corresponding cluster while keeping
the visualization simple. The width of the band at any axis
represents the spread of corresponding objective function
values achieved by the outcome vectors belonging to the

cluster. The height, width, and shape of the bands can be
calculated in various ways.

We propose that the center of a band (on each axis)
be placed on the median value achieved by the outcome
vectors belonging to that cluster. To determine the width of
each of the bands along each axis, we can use a statistical
measure of spread, such as standard deviation, interquartile
range, or confidence interval. We use an interquartile range
achieved by the outcome vectors in each cluster for each
objective function to generate the bands in Figure 4, referred
to as ‘‘50% bands’’5 in the legend. Once we have the
height (cluster median) and width (cluster interquartile range)
at each axis, we draw the band by interpolating between
the axes. A traditional parallel coordinate plot does this
by linear interpolation, leading to polyline value paths for
each outcome vector. However, we have found that using
spline interpolation leads to a more aesthetically pleasing
visualization without extraneous information.6 We color the
bands according to clustering information and make them
translucent to make it easier to distinguish between the
different clusters and follow their patterns.

Note that a SCORE band visualization is meant to be the
first or default visualization to be used in a decision making
process. No single view is able to tell all relevant information,
hence, a DM must be able to affect the appearance in
an interactive manner to decide whether they want to see
more or less details. The bands make it easy for a DM to

5The term ‘‘50% bands’’ refers to the fact that the interquartile range
contains 50% of the objective vectors. Note that we use the term ‘‘solutions’’
in the legend of the visualization instead of ‘‘outcome vectors’’ for
compactness, and use the available space to show the number of outcome
vectors in each cluster.

6Our implementation uses a Catmull-Rom spline interpolation.
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FIGURE 5. Visualizing the (AD1) dataset using a parallel coordinate plot.

FIGURE 6. Visualizing the (AD1) dataset using SCORE band visualization.

identify patterns in the outcome vectors and the distances
between axes communicate correlation information. As we
have shown, it may otherwise be challenging to gain insight
and find essential information from a large amount of data.
SCORE bands provide support in analyzing outcome vectors
gradually: observing main trends first and then deciding how
to proceed and concentrating on outcome vectors that are of
interest.

For example, the DM can study SCORE bands one by
one, eliminate bands that are not acceptable or identify a
band or some bands of interest and concentrate on them
to see individual outcome vectors corresponding to selected
SCORE bands. As an example, the DM can select one
SCORE band as a region of interest and selectively visualize
and filter out outcome vectors in it until a most preferred
solution is found.
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FIGURE 7. Visualizing the (AD2) dataset using a parallel coordinate plot.

Alternatively, based upon the insight gained, a DM can,
for example, give their preferences for the next step of
an interactive decision making process. Depending on the
interactive method employed, the preference information can
be as little as one SCORE band. Or the DM can provide
preferences for clusters of objective functions as opposed to
all objective functions. SCORE bands can also be used before
an interactive decision making process to give an overview
of a pre-generated rough representation of Pareto optimal
outcome vectors. It is then easier for the DM to provide
preferences when an overview of achievable outcome vectors
is known.

We have implemented SCORE band visualization as
an open-source Python package and will make the code
available. The package creates interactive visualizations
which support both SCORE bands and traditional parallel
coordinate plots for studying individual outcome vectors.
In the interactive visualization, a DM can show or hide
various bands or clusters of outcome vectors corresponding
to the bands by interacting with the legend of the plot. For
example, in Figure 4, the legend entries for outcome vectors
(‘‘Solutions: Cluster 1’’ – ‘‘Solutions: Cluster 4’’) appear
translucent compared to the legend entries for the four bands.
This signifies that individual outcome vectors are hidden.
A DM can make those outcome vectors visible by clicking
on the corresponding legend entries. Additionally, the DM
can also hide one or more of the bands by clicking on their
legend entries. We denote all parameter settings that control
the appearance and behavior of SCORE band visualization

and their default values in Appendix B. Note that a DM is
not expected to change these settings; an analyst assisting the
DM can do so, if required.

IV. CASE STUDIES
In this section, we demonstrate the usage of SCORE band
visualizations with a variety of datasets (i.e., sets of outcome
vectors). These include generated datasets, datasets obtained
from multiobjective optimization benchmark problems, and
real-life multiobjective optimization problems. We share
all the datasets at https://doi.org/10.5281/zenodo.14025276.
We showcase how the various parameters of the SCORE band
visualizations can be changed to highlight different aspects
of the explored datasets. We also show how supporting
visualizations can help a DM understand the SCORE band
visualizations and the data.

A. ARTIFICIAL DATASETS
We begin by visualizing a small artificial dataset (AD1)
consisting of 11 outcome vectors with six components with
a known correlation structure described in Appendix A. We
visualize (AD1) using a standard parallel coordinate plot
in Figure 5. The figure shows that there are vectors in
clusters, but the exact number of clusters is not immediately
clear. Additionally, as parallel coordinate plots are not
designed to display information related to the correlation
of the objective functions, that information is lost in this
visualization.
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FIGURE 8. Visualizations of the (AD2) dataset.

Figure 6 visualizes Dataset (AD1) using SCORE bands.
We used Variational Bayesian Gaussian mixture to calculate
the outcome vector clusters and Method 1 to determine inter-
axis spacing. The three clusters of outcome vectors can
be seen as three bands of different colors. The clusters of
objective functions are also clearly visible in the pairs: (f2,
f1), (f3, f4), (f6, f5). The objective functions that are closer
to each other (f1 and f2, for example) have a very low degree

of ‘‘crossing over’’ of bands, signifying a high correlation.
On the other hand, the bands ‘‘cross over’’ much larger
(vertical) distances when the neighboring objective functions
are farther apart (such as f1 and f3), signifying a negative
correlation.

The second dataset (AD2) mentioned in Appendix A
has three clusters of objective functions with high in-group
correlations (consisting of 2, 3 and 4 objective functions,
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FIGURE 9. SCORE band visualization of the (3-DTLZ5) dataset using DBSCAN as the clustering algorithm (the band is hidden and
just individual outcome vectors are shown).

respectively). While creating the dataset, we ordered the
objective functions such that consecutive objective functions
(for example, f1 and f2, or f5 and f6) are negatively correlated.
As seen in Figure 7, such datasets can be particularly
challenging to interpret using a standard parallel coordinate
plot.

We visualize the dataset (AD2) using SCORE bands in
Figures 8a and 8b. We used the same parameter values
for the visualization as for (AD1). Figure 8a shows the
dataset in the form of bands of clustered outcome vectors,
whereas Figure 8b hides the bands and shows the outcome
vectors directly. The three clusters of objective functions
are clearly visible (with 4, 2 and 3 objective functions
forming the three clusters). Asmentioned earlier, neighboring
objective functions that are placed closer to each other have
high correlations. As a consequence of this, a DM can simul-
taneously improve objective functions belonging to such
clusters without much compromise. We see this in Figure 8b
with objective functions f5, f3, and f7. Most of the outcome
vectors (especially those belonging to cluster 2 (black)) have
value paths that are nearly parallel to each other, withminimal
crossing over. We can improve these three objective functions
simultaneously (at the cost of other objective functions).
Hence, by ordering and spacing axes according to Pearson
correlation coefficients, we simplify the decision making
process.

Figure 8b is further simplified by considering the bands
in Figure 8a. As (AD2) did not have clustered outcome
vectors, the clusters and bands created for Figure 8a may
be misleading. Some DMs may still prefer Figure 8a as a
starting point for decision making. The bands provide simple
abstractions for the patterns followed by groups of outcome

vectors (regardless of whether the clusters genuinely exist
or not). Once a DM identifies a region of interest using the
bands, we can hide the bands and show individual outcome
vectors. We discuss this aspect further in the following
subsection.

The (AD2) dataset also showcases how SCORE bands
tackle global and local correlations (or trade-offs). The axes
are ordered and spaced using global Pearson correlation
coefficients, and therefore only reflect the global trade-offs.
This leads to the behavior in Figure 8bwhere outcome vectors
that, e.g., attain a high value for one of the objective functions
(f2) also attain a high value for the other objective functions
in the same cluster (f9, f6, and f4). As mentioned earlier,
this leads to value paths being predominantly parallel to each
other.

However, if local correlations do not follow the global
patterns, the value paths may still intersect each other
between closely placed (hence highly correlated) axes. This
can be seen in Figure 8b in the second cluster of axes (f1
and f8). The corresponding objective functions are highly
correlated on a global scale: the black cluster attains high
values for both objective functions, the green cluster attains
average values, whereas the blue cluster attains a low value
for both objective functions. However, within each cluster,
there is a large amount of crossing over. For example, the
outcome vectors in the green cluster with low values for the
objective function f1 achieve a high value for the objective
function f8.

SCORE bands get around this issue by allowing the DM
to conduct decision making in steps. First, they can look at
the visualization with bands, Figure 8a, and identify their
region of interest at a global scale. Instead of focusing on nine
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FIGURE 10. SCORE band visualization of the (3-DTLZ5) dataset using Gaussian mixture models as the clustering algorithm.

FIGURE 11. SCORE band visualization of the (GAA) dataset using DBSCAN as the clustering algorithm.
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FIGURE 12. SCORE bands of the (GAA) dataset using Gaussian mixture models as the clustering algorithm.

objective functions and hundreds of outcome vectors, they
can focus on three clusters of objective functions (shown by
spacing between axes), and three clusters of outcome vectors
(shown via coloured bands). Once they have identified a band
of interest, they can visualize outcome vectors only within
that band, hiding everything else. Then, they can focus on
the local trade-offs and choose the most preferred outcome
vector.

B. BENCHMARK DATASET
We show the effectiveness of using clustering algorithms
even with datasets in which no real clusters exist using
the DTLZ5 benchmark problem with a degenerate Pareto
front. We consider 3 objective functions and denote the
set of 1000 Pareto optimal outcome vectors by (3-DTLZ5).
Figures 9 and 10 show (3-DTLZ5) as SCORE band visu-
alizations. For generating Figure 9, we used the DBSCAN
algorithm to generate the outcome vector clusters. As there
are no clusters in the dataset, the visualization puts all
outcome vectors in a single cluster. Hence, the resulting
singular band does not provide much information to the DM,
and it is necessary to display individual outcome vectors,
instead.

Figure 10, on the other hand, uses Gaussian mixture
models for clustering. The algorithm forcibly breaks the
dataset down into many clusters of similar sizes. These
clusters group outcome vectors that are close to each other in

objective space, and individual clusters lie adjacent to other
clusters along the degenerate curve of the Pareto front. These
clusters are created randomly, and running the clustering
algorithm multiple times returns slightly different groupings
(both in the number and members of clusters). While the
individual clusters have no real significance, they provide a
simpler way of understanding patterns in the dataset. Instead
of focusing on hundreds or thousands of outcome vectors
as in Figure 9, a DM can focus on a much smaller number
of bands. Information about the trade-offs and correlations
can easily be understood by following the paths of the
bands and comparing the relative distances between the axes,
respectively. It is also easier to compare a small number
of bands to discover a region of interest than doing the
same in a plot with thousands of outcome vectors. When
a DM finds such a region, they can focus on the outcome
vectors belonging to the clusters in the region and hide all
other outcome vectors/bands, effectively ‘‘zooming’’ into the
region of interest.

C. REAL-LIFE DATA-BASED PROBLEMS
To demonstrate the usage of SCORE band visualizations in
real-life problems, we use the general aviation aircraft design
(GAA) problem [40]. We use 709 Pareto optimal outcome
vectors for the problem obtained inMazumdar et al. [30] with
eleven objective functions. We visualize this (GAA) dataset
using SCORE bands in Figures 11 and 12 and present a

VOLUME 12, 2024 164383



B. S. Saini et al.: SCORE Band Visualizations: Supporting DMs in Comparing High-Dimensional Outcome Vectors

FIGURE 13. Pearson correlation coefficient values between the objective
functions in the (GAA) dataset.

FIGURE 14. 3-variable instance (AD1) whose 6 objective functions are
clustered into 3 batches of 2 each.

supporting visualization in Figure 13 in the form of a heatmap
of pairwise Pearson correlation coefficients of the problem’s
eleven objective functions.

Figure 11 uses DBSCAN as the clustering algorithm for
(GAA), whereas Figure 12 uses Gaussian mixture models.
In both figures, it is immediately apparent that there are
three groups of objective functions: two groups with high
in-group correlations ({f1, f2, f3, f5, f6} and {f7, f8, f9})
and a third group with lower in-group correlations ({f4, f10,
f11}). We can verify this property by looking at the pairwise
correlations in Figure 13 that shows a heatmap of the Pearson
correlation coefficient values among the different objective
functions. Note that the Pearson correlation coefficients can
also help explain the order of objective functions in a SCORE
band visualization and, in turn, may enable a DM to manually

decide the order of objective functions in parallel coordinate
plots.

Furthermore, by following the value paths of one of
the bands (for example, the gray band for ‘‘Cluster 4’’ in
Figure 11, which has the lowest f2 objective function value),
it is clear that there is no or minimal in-group trade-off
between the objective functions of the first two groups.
On the other hand, there are significant out-group trade-offs
between the objective functions of the same two groups. Such
a behavior in the data makes the decision making process
significantly simpler as instead of focusing on the trade-offs
among eleven objective functions, a DM can focus on the first
two groups and the remaining three objective functions.

Even though Figures 11 and 12 visualize the same dataset,
they look significantly different because of the behavior of
the corresponding clustering algorithms. Using the DBSCAN
algorithm results in a very simplified plot, which reduces
the time taken by a DM to visually gather the information
needed to understand simple patterns in the data. However,
this simplicity hides the outcome vectors that can clearly
be seen in Figure 12. While this is a major downside
in static visualizations, we solve this problem by making
the plots interactive and enabling the DM to visualize all
outcome vectors from one or more clusters at any time. In
this way, the DM can iteratively narrow down the search
for a most preferred SCORE band – and finally to a most
preferred outcome vector – using the available information on
correlated and independent objective functions, respectively.
If, for example, a small value in objective function f5 is
important to the DM, one can observe that this comes with
small objective function values in the correlated objective
functions f2, f6, f3, f1 and also f4, however, at the cost of
large objective function values in the objective functions
f9, f7, f8 that are in conflict with this preference. Clusters 7 or
9 may be the most preferred clusters in this case. Then, the
DM can zoom-in on the desired SCORE band and focus on
its corresponding outcome vectors (instead of comparing all
outcome vectors at the same time).

We cannot predict the behavior of the clustering algo-
rithms, as the results are dependent on both the nature of the
objective functions and the distribution of outcome vectors
to be visualized (discovered by the optimization algorithm).
Hence, we recommend that a DM should be presented with at
least two different SCORE band visualizations using different
clustering algorithms.

V. CONCLUSION
In this paper, we have proposed SCORE band visualizations
as a novel way of presenting the outcome vectors of a
multiobjective optimization problem with many objective
functions to a decision maker. The proposed technique
explicitly addresses the case of many objective functions in
which it becomes difficult for the decision maker to process
the outcome vectors generated. While different methods
generate varying amounts of outcome vectors, the task of
evaluating this information, all other things equal, only
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gets more demanding as the number of objective functions
increases.

Already in the three-objective case, a direct visualization
of outcome vectors in the objective space is difficult, and it is
generally not useful at all in cases ofmore than three objective
functions. Hence, there is a growing need for economical and
meaningful presentations of Pareto optimal or nondominated
outcome vectors.

SCORE bands support decision making by identifying
patterns in the information and breaking it down into
digestible components to make it easier to gain major
insights. The decision maker can easily grasp correlated
objective functions since they are arranged next to each other.
Moreover, in contrast to common techniques, we vary the
distance among objective functions to transmit the degrees of
correlation. By visually grouping together highly correlated
objective functions, we make it easy to identify objective
functions that behave similar to each other. By representing
clusters as simple-to-distinguish bands and hiding individual
outcome vectors by default, we reduce the cognitive burden
on a DM. Instead of requiring a DM to choose an outcome
vector from many in a cluttered plot, we present a visually
simple plot, and ask them to choose a band from a small
number of bands. Once they select a band, they can make
the outcome vectors belonging to the same cluster visible
by interacting with the plot, and finally choose their most
preferred outcome vector.

Our aim is to provide assistance by means of an intelligent
way of visualization which is applicable to problems pos-
sessing multiple conflicting objective functions. Our future
research directions include integrating SCORE bands in an
interactive decision making process. This will allow us to
utilize these visualizations to provide preference information
to interactive algorithms such as those implemented in the
DESDEO software framework. This will enable us to conduct
case studies (with, for example, students and real-world
decision makers) and analyze how decision makers use this
tool to solve real-world problems.

APPENDIX A
GENERATION OF TEST CASES – STRUCTURED DATASETS
WITH PARTIALLY CORRELATED OBJECTIVE FUNCTIONS
We suggest two instances of multiobjective linear program-
ming problems (MOLPs) with known partial correlations in
order to validate – and illustrate – SCORE bands visualiza-
tions. Since the construction can be easily generalized, such
instances can be used as test cases for other visualization
methods as well. Towards this end, we consider MOLPs of
the form

min{f (x) − Cx : x ∈ {Ax ≤ b, 0 ≤ x ≤ u}}, (AD)

where C ∈ Rk×n is the coefficient matrix for the objective
functions, A ∈ Rm×n the constraint matrix, b ∈ Rm the right-
hand side vector, and u ∈ Rn the vector of upper bounds
on the variable values. The problems are designed so that
they naturally induce clusters of similar objective functions

TABLE 1. Objective and constraint coefficients of the 3-variable,
6-objective instance of (AD).

and of similar outcome vectors. The first instance of problem
(AD) has three variables and six objective functions with the
instance’s coefficients specified in Table 1. A graph of the
problem is given in Figure 14.
This instance (AD) has 11 Pareto optimal extreme points

{x1, . . . , x11}. In Figure 14, they are indicated by dots.
We denote the corresponding outcome vectors by (AD1). The
vectors −ci, i = 1, . . . , 6, in the graph illustrate the negative
gradient directions of the objective functions, indicating the
directions of optimization. Note that while their directions are
accurate, their lengths are merely suggestive because of the
differences in scale.

As seen, the six objective functions are clustered into three
batches of two each, with−c1 and−c2 pointing almost down
the x1-axis, −c3 and −c4 pointing almost up the x2-axis, and
−c5 and −c6 pointing along the x3-axis. This suggests that
an appropriate clustering of the objective functions would be
in the groups {f1, f2}, {f3, f4}, and {f5, f6}, while the 11 Pareto
optimal extreme points should be clustered according to their
geometrical closeness on the polyhedral feasible set, i.e.,
in the groups {x1, . . . , x5}, {x6, x7, x8} and {x9, x10, x11}.
Our second instance of problem (AD) has nine objective

functions. The corresponding dataset (AD2) has 141 Pareto
optimal outcome vectors.

APPENDIX B
CONTROLLING THE APPEARANCE OF SCORE BANDS
We have implemented the SCORE band visualization and a
graphical user interface (GUI) tool to help create the plots
from data as a part of the open-source interactive multiob-
jective optimization framework DESDEO [34]. To enable
interactive visualizations (as mentioned above), various
customization options are needed (by an analyst supporting a
DM) to tailor SCORE band visualizations to different needs
(through the GUI):

• Outcome vector clustering: Different clustering algo-
rithms are DBSCAN (default), Bayesian Gaussian
mixture models, K-Means, spectral clustering, Ward
hierarchical clustering, and agglomerative clustering.
Providing the number of clusters is necessary for all
algorithms except DBSCAN and Bayesian Gaussian
mixture models. We have used the scikit-learn
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FIGURE 15. A GUI application to analyze datasets using SCORE bands. The GUI provides support for uploading datasets, allows the analyst to
customize the visualization parameters, displays the SCORE bands as well as supporting visualizations, and allows the analyst/DM to export
the visualization as an image file.

package to train these models [36]. We also allow the
analyst to provide clustering information directly to the
tool, allowing them to use clustering algorithms of their
choice.

• Axis ordering: Whether to use the absolute value of the
Pearson correlation coefficient as a distance metric or
not. By default, Metric 1 is used.

• Inter-axis spacing: Distance function to be used (Method
1 is used by default) and the distance parameter δ

(default value = 0.4).
• Visualization via bands: Display individual outcome
vectors, cluster medians, and/or SCORE bands in the
plot. Each of the three options can be disabled for each
cluster independently. By default, only the bands are
visualized. Unlike the other options which are meant
for analysts, a DM can use this option to show/hide
information interactively as desired as a part of the
decision making process.

We use the Plotly package [37] to implement the
SCORE band visualizations and the related Dash [20]
package to create a web-based GUI. Data can be imported
into the GUI. The visualization can then be created without
further input. Alternatively, the GUI provides a form to
change the various parameters of a SCORE band visu-
alization. We show the GUI implemented in Figure 15.
Additionally, we use the NumPy [15] and Pandas [39]
Python packages for data handling. We use the SciPy
Python package [46] to extract statistical information (such

as Pearson correlation coefficients) from the data. Finally,
we use the tsp_solver2 package to solve the TSP
problem using a greedy algorithm [41].
While we provide default hyperparameter settings,

it should be recognized that no such default can be
optimal for all datasets to be visualized. For example, the
figures generated to discuss the case studies use slightly
different hyperparameters (as reported). The hyperparameters
were chosen based on visual inspection of the results.
Consequently, an analyst assisting the DM plays an important
role. To help analysts with this task (apart from providing
good defaults for the hyperparameters), we have devoted
special focus on optimizing the provided implementation.
Each time an analyst changes the parameters, they can see
the results within a few seconds, even for datasets with a large
number of objective functions and outcome vectors.

ACKNOWLEDGMENT
The authors would like to thank Dr. Johanna Silvennoinen
for helping with research related to the field of cognitive
science and Dr. Giovanni Misitano for providing feedback
during the writing process. The idea of this research was
developed at the Dagstuhl Seminar 20031 (Scalability in
Multiobjective Optimization). The research is related to the
thematic research area DEMO decision analytics utilizing
causal models and multiobjective optimization (jyu.fi/demo)
of the University of Jyvaskyla.

164386 VOLUME 12, 2024



B. S. Saini et al.: SCORE Band Visualizations: Supporting DMs in Comparing High-Dimensional Outcome Vectors

REFERENCES
[1] D. F. Andrews, ‘‘Plots of high-dimensional data,’’ Biometrics, vol. 28,

no. 1, pp. 125–136, 1972.
[2] M. Ankerst, S. Berchtold, and D. A. Keim, ‘‘Similarity clustering of

dimensions for an enhanced visualization of multidimensional data,’’ in
Proc. IEEE Symp. Inf. Visualizat., Jul. 1998, pp. 52–60.

[3] S. Bandaru, T. Aslam, A. H. C. Ng, and K. Deb, ‘‘Generalized higher-level
automated innovization with application to inventory management,’’ Eur.
J. Oper. Res., vol. 243, no. 2, pp. 480–496, Jun. 2015.

[4] S. Cajot, N. Schüler, M. Peter, A. Koch, and F. Maréchal, ‘‘Interactive
optimization with parallel coordinates: Exploring multidimensional spaces
for decision support,’’ Frontiers ICT, vol. 5, p. 32, Jan. 2019.

[5] H. Chernoff, ‘‘The use of faces to represent points in K-dimensional space
graphically,’’ J. Amer. Stat. Assoc., vol. 68, no. 342, p. 361, Jun. 1973.

[6] L. Cibulski, T. May, J. Schmidt, and J. Kohlhammer, ‘‘COMPO*SED:
Composite parallel coordinates for co-dependent multi-attribute choices,’’
IEEE Trans. Vis. Comput. Graphics, vol. 29, no. 10, pp. 4047–4061,
Aug. 2022.

[7] J. L. Cohon, Multiobjective Programming and Planning. New York, NY,
USA: Academic, 1978.

[8] O. da Silva, N. Crilly, and P. Hekkert, ‘‘Maximum effect for minimum
means: The aesthetics of efficiency,’’ Design Issues, vol. 32, no. 1,
pp. 41–51, Jan. 2016.

[9] K. Dachert, K. Klamroth, K. Miettinen, and R. Steuer, ‘‘KaKaRaKe–
user-friendly visualization for multiobjective optimization with high-
dimensional objective vectors,’’ in Scalability in Multiobjective Opti-
mization, Report From Dagstuhl Seminar, C. Fonseca, K. Klamroth,
G. Rudolpth, and M. Wiecek, Eds. Dagstuhl: Dagstuhl Publishing, 2020,
pp. 97–103.

[10] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, ‘‘Scalable test problems
for evolutionary multiobjective optimization,’’ in Proc. Evol. Multiobjec-
tive Optim., A. Abraham, L. Jain, and R. Goldberg, Eds. London, U.K.:
Springer, 2005, pp. 105–145.

[11] Y. Fang, Q. Liu, M. Li, Y. Laili, and D. T. Pham, ‘‘Evolutionary
many-objective optimization for mixed-model disassembly line balancing
with multi-robotic workstations,’’ Eur. J. Oper. Res., vol. 276, no. 1,
pp. 160–174, Jul. 2019.

[12] C. M. Fonseca, C. A. Antunes, R. Lacour, K. Miettinen, P. M. Reed, and
T. Tusar, ‘‘Visualization in multiobjective optimization,’’ inUnderstanding
Complexity in Multiobjective Optimization, Report From Dagstuhl Sem-
inar 15031, S. Greco, K. Klamroth, J. Knowles, and G. Rudolph, Eds.
Dagstuhl: Dagstuhl Publishing, 2015, pp. 129–139.

[13] J. Gettinger, E. Kiesling, C. Stummer, and R. Vetschera, ‘‘A comparison
of representations for discrete multi-criteria decision problems,’’ Decis.
Support Syst., vol. 54, no. 2, pp. 976–985, Jan. 2013.

[14] A. Haara, J. Pykäläinen, A. Tolvanen, and M. Kurttila, ‘‘Use of interactive
data visualization in multi-objective forest planning,’’ J. Environ. Manage.,
vol. 210, pp. 71–86, Mar. 2018.

[15] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, and
R. Kern, ‘‘Array programming with NumPy,’’ Nature, vol. 585, no. 7825,
pp. 357–362, 2020.

[16] J. Heinrich, Y. Luo, A. E. Kirkpatrick, and D. Weiskopf, ‘‘Evaluation of a
bundling technique for parallel coordinates,’’ in Proc. Int. Conf. Comput.
Graph. Theory Appl. Int. Conf. Inf. Vis. Theory Appl. (GRAPP IVAPP),
P. Richard, M. Kraus, R. S. Laramee, and J. Braz, Eds., Setúbal, Portugal:
SciTePress, 2012, pp. 594–602.

[17] J. Heinrich and D. Weiskopf, ‘‘State of the art of parallel coordinates,’’
in Eurographics 2013—State of the Art Reports. The Eurographics
Association, 2013, pp. 95–116.

[18] P. Hekkert, ‘‘Design aesthetics: Principles of pleasure in design,’’ Psychol.
Sci., vol. 48, no. 2, pp. 157–172, 2006.

[19] J. Hettenhausen, A. Lewis, and S. Mostaghim, ‘‘Interactive multi-
objective particle swarm optimization with heatmap-visualization-based
user interface,’’ Eng. Optim., vol. 42, no. 2, pp. 119–139, Feb. 2010.

[20] S. Hossain, ‘‘Visualization of bioinformatics data with dash bio,’’ in Proc.
Python Sci. Conf., C. Calloway, D. Lippa, D. Niederhut, and D. Shupe,
Eds., 2019, pp. 126–133.

[21] H. Huang and S. Siraj, ‘‘Quantifying and reducing the complexity of
multi-line charts as a visual aid in multi-criteria decision-making,’’ Ann.
Operations Res., Jun. 2024, doi: 10.1007/s10479-024-06090-6.

[22] A. Ibrahim, S. Rahnamayan, M. V. Martin, and K. Deb, ‘‘3D-RadVis:
Visualization of Pareto front in many-objective optimization,’’ in Proc.
IEEE Congr. Evol. Comput. (CEC), 2016, pp. 736–745.

[23] A. Inselberg and B. Dimsdale, ‘‘Parallel coordinates for visualizing
multidimensional geometry,’’ in Proc. Comput. Graph., T. Kunii, Eds.
Tokyo: Springer, 1987, pp. 25–44.

[24] P. J. Korhonen and J. Wallenius, ‘‘Visualization in the multiple objective
decision-making framework,’’ in Multiobjective Optimization: Interactive
and Evolutionary Approaches, J. Branke, K. Deb, K. Miettinen, and
R. Slowinski, Eds., Berlin, Germany: Springer, 2008, pp. 195–212.

[25] P. J. Korhonen and J. Laakso, ‘‘A visual interactive method for solving the
multiple criteria problem,’’ Eur. J. Oper. Res., vol. 24, no. 2, pp. 277–287,
Feb. 1986.

[26] P. Korhonen and J. Laakso, ‘‘Solving generalized goal programming
problems using a visual interactive approach,’’ Eur. J. Oper. Res., vol. 26,
no. 3, pp. 355–363, Sep. 1986.

[27] J. Liu, T. Dwyer, K. Marriott, J. Millar, and A. Haworth, ‘‘Understanding
the relationship between interactive optimisation and visual analytics in the
context of prostate brachytherapy,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 24, no. 1, pp. 319–329, Jan. 2018.

[28] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision
Maps: Approximation and Visualization of Pareto Frontier. Boston, MA,
USA: Kluwer Academic, 2004.

[29] A. V. Lotov and K. Miettinen, ‘‘Visualizing the Pareto frontier,’’ in
Multiobjective Optimization: Interactive and Evolutionary Approaches,
J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Eds., Berlin, Germany:
Springer, 2008, pp. 213–243.

[30] A. Mazumdar, T. Chugh, J. Hakanen, and K. Miettinen, ‘‘An interac-
tive framework for offline data-driven multiobjective optimization,’’ in
Bioinspired Optimization Methods and Their Applications, B. Filipič,
E. Minisci, and M. Vasile, Eds., Cham, Switzerland: Springer, 2020,
pp. 97–109.

[31] K. T. McDonnell and K. Mueller, ‘‘Illustrative parallel coordinates,’’
Comput. Graph. Forum, vol. 27, no. 3, pp. 1031–1038, May 2008.

[32] D.Meignan, J.-M. Frayret, and G. Pesant, ‘‘Interactive planning system for
forest road location,’’ J. Heuristics, vol. 21, no. 6, pp. 789–817, Dec. 2015.

[33] K. Miettinen, ‘‘Survey of methods to visualize alternatives in multiple
criteria decision making problems,’’ OR Spectr., vol. 36, no. 1, pp. 3–37,
Jan. 2014.

[34] G. Misitano, B. S. Saini, B. Afsar, B. Shavazipour, and K. Miettinen,
‘‘DESDEO: The modular and open source framework for interactive mul-
tiobjective optimization,’’ IEEE Access, vol. 9, pp. 148277–148295, 2021.

[35] G. Palmas, M. Bachynskyi, A. Oulasvirta, H. P. Seidel, and T. Weinkauf,
‘‘An edge-bundling layout for interactive parallel coordinates,’’ in Proc.
IEEE Pacific Visualizat. Symp., Mar. 2014, pp. 57–64.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Nov. 2011.

[37] Collaborative Data Science, Plotly Technol., Montreal, QC, USA, 2015.
[Online]. Available: https://plot.ly

[38] W. J. Raseman, J. Jacobson, and J. R. Kasprzyk, ‘‘Parasol: An open
source, interactive parallel coordinates library for multi-objective decision
making,’’ Environ. Model. Softw., vol. 116, pp. 153–163, Jun. 2019.

[39] W. McKinney, ‘‘Data structures for statistical computing in Python,’’ in
Proc. 9th Python Science Conf., S. van derWalt and J.Millman, Eds., 2010,
pp. 56-61, doi: 10.25080/Majora-92bf1922-00a.

[40] R. A. Shah, P. M. Reed, and T. W. Simpson,Multi-Objective Evolutionary
Optimisation for Product Design and Manufacturing. London, U.K.:
Springer, 2011, pp. 137–159.

[41] D. Shintyakov. (2020). TSP-Solver. [Online]. Available: https://
github.com/dmishin/tsp-solver

[42] H. Smedberg and S. Bandaru, ‘‘Interactive knowledge discovery and
knowledge visualization for decision support in multi-objective optimiza-
tion,’’ Eur. J. Oper. Res., vol. 306, no. 3, pp. 1311–1329, May 2023.

[43] A. K. A. Talukder and K. Deb, ‘‘PaletteViz: A visualization method for
functional understanding of high-dimensional Pareto-optimal data-sets to
aid multi-criteria decision making,’’ IEEE Comput. Intell. Mag., vol. 15,
no. 2, pp. 36–48, May 2020.

[44] H. L. Trinkaus and T. Hanne, ‘‘KnowCube: A visual and interactive support
formulticriteria decisionmaking,’’Comput. Operations Res., vol. 32, no. 5,
pp. 1289–1309, May 2005.

VOLUME 12, 2024 164387

http://dx.doi.org/10.1007/s10479-024-06090-6
http://dx.doi.org/10.25080/Majora-92bf1922-00a


B. S. Saini et al.: SCORE Band Visualizations: Supporting DMs in Comparing High-Dimensional Outcome Vectors

[45] T. Tusar and B. Filipic, ‘‘Visualization of Pareto front approximations
in evolutionary multiobjective optimization: A critical review and the
prosection method,’’ IEEE Trans. Evol. Comput., vol. 19, no. 2,
pp. 225–245, Apr. 2015.

[46] P. Virtanen et al., ‘‘SciPy 1.0: Fundamental algorithms for scientific
computing in Python,’’ Nature Methods, vol. 17, pp. 261–272, Feb. 2020.

[47] D. J. Walker, RichardM. Everson, and J. E. Fieldsend, ‘‘Visualizing
mutually nondominating solution sets in many-objective optimization,’’
IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 165–184, Apr. 2013.

[48] C.Ware, Information Visualization: Perception for Design, SanDiego, CA,
USA: Morgan Kaufmann, 2013.

[49] E. J. Wegman, ‘‘Hyperdimensional data analysis using parallel coordi-
nates,’’ J. Amer. Stat. Assoc., vol. 85, no. 411, p. 664, Sep. 1990.

[50] M. J. Woodruff, P. M. Reed, and T. W. Simpson, ‘‘Many objective
visual analytics: Rethinking the design of complex engineered systems,’’
Structural Multidisciplinary Optim., vol. 48, no. 1, pp. 201–219, Jul. 2013.

[51] D. Yang, D. Di Stefano, M. Turrin, S. Sariyildiz, and Y. Sun, ‘‘Dynamic
and interactive re-formulation of multi-objective optimization problems
for conceptual architectural design exploration,’’ Autom. Construction,
vol. 118, Oct. 2020, Art. no. 103251.

[52] L. Zhen, M. Li, R. Cheng, D. Peng, and X. Yao, ‘‘Adjusting parallel coor-
dinates for investigating multi-objective search,’’ in Simulated Evolution
and Learning, Y. Shi, K. Tan, M. Zhang, K. Tang, X. Li, Q. Zhang, Y. Tan,
M. Middendorf, and Y. Jin, Eds., Cham, Switzerland: Springer, 2017,
pp. 224–235.

[53] H. Zhou, W. Cui, H. Qu, Y. Wu, X. Yuan, and W. Zhuo, ‘‘Splatting the
lines in parallel coordinates,’’ Comput. Graph. Forum, vol. 28, no. 3,
pp. 759–766, Jun. 2009.

[54] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen, ‘‘Visual clustering in par-
allel coordinates,’’ Comput. Graph. Forum, vol. 27, no. 3, pp. 1047–1054,
May 2008.

BHUPINDER S. SAINI received the M.Tech.
degree from Indian Institute of Technology
Kharagpur, in 2018, and the Ph.D. degree from the
University of Jyväskylä, in 2022. He is currently a
Postdoctoral Researcher with the Multiobjective
Optimization Group, University of Jyväskylä.
He was awarded theMCDMDoctoral Dissertation
Award, in 2024, by the International Society on
Multiple Criteria Decision Making. His research
interests include multiobjective optimization, data

visualization, data-driven optimization, and development of evolutionary
algorithms. He is also one of the primary contributors to the DESDEO
framework.

KAISA MIETTINEN received the Ph.D. degree
in mathematical information technology from the
University of Jyväskylä (JYU), Finland. She is
currently the Vice-Rector of the JYU and a
Professor in industrial optimization. She heads the
Research Group on Multiobjective Optimization
and is the Director of the thematic research area
decision analytics utilizing causal models andmul-
tiobjective optimization (DEMO, jyu.fi/demo).
With her group, she develops the open source

software framework DESDEO for interactive multiobjective optimization
methods (desdeo.it.jyu.fi). She has authored over 220 refereed journals,
proceedings, and collection articles; edited 20 proceedings, collections,
and special issues; and written a monograph on nonlinear multiobjective
optimization. Her research interests include theory, methods, applications,
software, and visualizations of nonlinear multiobjective optimization. She
is a member of the Finnish Academy of Science and Letters, Section of
Science. She received the Georg Cantor Award of the International Society
on Multiple Criteria Decision Making.

KATHRIN KLAMROTH received the Ph.D.
degree from the University of Braunschweig,
in 1994, and the Habilitation degree from the
University of Kaiserslautern, in 2002. She is
currently a Professor in mathematical optimization
with the University of Wuppertal, Germany.
Her research interests include multiobjective
optimization, spanning the bridge from modeling,
theoretical analysis to decision making tools and
algorithm development and testing, and covering

discrete and continuous problems.

RALPH E. STEUER received the bachelor’s degree
from Brown University, the master’s degree from
Cornell University, and the Ph.D. degree from
the University of North Carolina. He is currently
the Sanford Family Chair of Business with the
University of Georgia. He is the author of mul-
tiple criteria optimization: theory, computation,
and application and over 110 research articles.
His research interests include multiple-attribute
portfolio theory, efficient sets and surfaces, and

multiple criteria decision making.

KERSTIN DÄCHERT received the Ph.D. degree
in mathematics from the University of Wuppertal,
Germany. Since 2021, she has been an Associate
Professor in mathematics/operations research with
the University of Applied Sciences of Dresden,
Germany. Her research interests include the appli-
cations of operations research problems, in general
and the development of algorithms for multi-
objective optimization problems, in particular.

164388 VOLUME 12, 2024


