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Abstract
Expert predictions of future returns are one source of information for educated 
stock portfolio decisions. Many models for the mathematical aggregation of expert 
predictions assume unbiased predictions, but in reality, human predictions tend to 
include biases, and experts’ competence may vary. We propose a Bayesian aggre-
gation model that includes a regularization process to eliminate the influence of 
experts who have not yet shown competence. The model also includes a debiasing 
process that fits a linear model to predicted and realized returns. We applied the 
proposed model to real experts’ stock return predictions of 177 companies in the 
S&P500 index in 37 industries. We assumed that the decision-maker allocates cap-
ital between the industry index and the most promising stock within the industry 
with the Kelly criterion. We also conducted a simulation study to learn the model’s 
performance in different conditions and with larger data. With both the real and sim-
ulated data, the proposed model generated higher capital growth than a model that 
ignores differences between experts. These results indicate the usefulness of regular-
izing incompetent experts. Compared to an index investor, the capital growth was 
almost identical with real data but got higher when applied only to industries that 
were estimated to have multiple competent experts. The simulation study confirmed 
that more than two competent experts are necessary for the outstanding performance 
of the presented model.
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1  Introduction

A portfolio is a collection of risky assets that a decision-maker (DM) selects to 
invest in. For an optimal portfolio allocation, the DM needs the probability dis-
tribution of future returns of the assets. Forecasting this distribution may rely 
on expert information from stock analysts. Analysts publish target prices, which 
are their predictions of stock prices after some investment horizon, typically 12 
months (Hao and Skinner 2023). Predictions on future returns are then obtained 
by comparing the target prices and the current prices. As these predictions usu-
ally differ between the analysts, the DM faces the challenge of forecasting future 
returns based on multiple expert predictions.

According to the efficient market hypothesis (Fama 1970), all relevant infor-
mation should be included already in the stock prices, but Grossman and Stiglitz 
(1980) argue that there has to be some compensation available for the investors 
who allocate resources in gathering information. The studies about the usefulness 
of analysts’ judgments to investors report inconsistent conclusions. Some studies 
(Barber et al 2001; Brav and Lehavy 2003; Womack 1996) found that updates in 
analyst judgments affected the stock prices within a couple of days, and prices 
showed a slow drift towards the direction of analyst judgment updates during the 
upcoming months. Boni and Womack (2006) and Da and Schaumburg (2011) 
observed that it is possible to make abnormal returns based on analyst target 
prices even without immediate reactions by investing in the companies with the 
highest expectations within industries. However, Cvitanic et al (2006) found that 
in 1993–2003, the average of analysts’ judgments did not appear to be very valu-
able, but the usefulness increased when many analysts were analyzing a stock. In 
addition, Bradshaw et al (2013) found analyst target prices only weakly informa-
tive in 2000–2009 as the prediction error was very high. Clement (1999) claimed 
that there are substantial differences between analysts’ abilities due to experience, 
size of the employer (i.e. company’s resources) and the number of stocks they 
are following (i.e. the more they have to pay attention to different stocks, the less 
accurate their predictions are).

Human judgements and predictions are prone to biases (Tversky and Kah-
neman 1974). In a laboratory stock market experiment (Anderson and Sunder 
1995), professional traders were less prone to known human biases than students. 
Regarding actual market observations, McNichols and O’Brien (1997) showed 
a systematic positive bias in stock analyst predictions and discussed a motiva-
tion to analyze and publish favourable judgments on stocks and not publish if 
judgments change to a negative direction. According to Bradshaw et  al (2013), 
in 2000–2009, target prices indicated on average 15% higher returns than the 
realizations. These findings support the idea that biases and differences between 
experts should be handled during the modelling process.

In addition to systematic bias in forecasted future returns, random variation 
in forecasts is a source of bias in portfolio decisions, often referred to as opti-
mizer’s curse (see Smith and Winkler 2006). More specifically, stocks with the 
highest (lowest) return forecasts tend to have positive (negative) random errors 
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in the forecast, even though random errors of all assets are expected to sum up to 
zero. Because only the stocks with the highest return potential (which tends to be 
partly caused by positive random error) are selected for a portfolio, the optimiz-
er’s curse leads to a systemically lower portfolio performance than was expected 
at the decision time. Thus, more accurate forecasts are valuable.

The traditional stock portfolio model with expert predictions, the Black-Lit-
terman model (Black and Litterman 1992), assumes that all expert predictions 
are well calibrated without systematic biases, and a DM must quantify the com-
petence of each expert a priori manually. Later, the Black-Litterman model was 
generalized by Chen and Lim (2020), who included the possibility for system-
atic additive bias in expert predictions. However, the generalized Black-Litterman 
model does not consider systematic over/under-reactions of the experts, i.e., it 
assumes that the regression coefficient of the predicted returns and actual returns 
equals one. Black-Litterman models are based on the assumption of normally dis-
tributed stock returns. However, a normal distribution has shown to be a weakly 
performing model with fat-tailed stock prices (see, e.g., Hu and Kercheval 2010).

In this paper, we focus on improving the following gaps in the existing models: 

1)	 crude assumptions about expert biases,
2)	 challenges in quantifying the informativeness of different experts and
3)	 strict assumptions about stock return distribution.

We introduce a Bayesian model for aggregating (i.e. combining) experts’ predic-
tions to support stock portfolio decisions. We call the model a selective Bayesian 
expert debiasing (SBEDE) portfolio model. The core of the SBEDE model is a 
linear regression fit between an expert’s past predictions and reality. The SBEDE 
model can be used when multiple experts produce point predictions of future 
returns and data about the historical accuracy of the experts is available. Com-
pared to earlier portfolio models, a more flexible debiasing process and an auto-
matic selection of competent experts are the main improvements. The SBEDE 
model includes an automatic regularization process that eliminates the influence 
of experts who have not yet proved their competence. The process is executed 
with a horseshoe prior distribution (Carvalho and Polson 2010; Piironen and 
Vehtari 2017). This is a major improvement compared to manually quantifying 
confidence towards different experts like in the Black-Litterman model or doing a 
separate expert classification study like with the Cooke’s method (Cooke 1991).

The SBEDE model has debiasing elements similar to recently published expert 
models for various forecasting purposes but not specifically stock markets. These 
are the BIN (Bias, Information, Noise) model by Satopää et al (2021) for a binary 
target variable and the model by Merkle et al (2020) (Merkle model) for a con-
tinuous target variable. SBEDE includes parameters for systematic bias (’shifting 
bias’ in the Merkle model), responsiveness to reality (’information’ in the BIN 
model and ’scaling bias’ in the Merkle model) and inaccuracy (’noise’ in the BIN 
model and ’incompetence’ in the Merkle model). One can consider SBEDE as 
an extension of the Merkle model for portfolio optimization purposes with the 
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following additions: 1) horseshoe prior or hierarchical structure for parameters 
for avoiding identification or overfitting problems with a limited amount of data, 
2) correlations between experts and 3) formulation that allows fat-tailed unpre-
dictable shocks.

As experts tend to have a poor performance in predicting fat-tailed economical 
fluctuations (Makridakis and Taleb 2009), we estimate experts’ abilities to predict 
an expected value of a return distribution and treat the modeling of unpredictable 
shocks as a separate problem. One benefit of the proposed SBEDE model is that it 
can be applied together with many different asset pricing models. For demonstra-
tion purposes, we apply SBEDE with an asset pricing model that allows fat-tailed 
t-distributed random shocks.

The contributions of the paper are:

•	 proposing a novel expert prediction aggregation model SBEDE that includes 
automated expert selection by regularizing the influence of the experts without 
convincing history and a flexible debiasing process,

•	 as a proof of concept, showing the potential of the SBEDE model with real data 
of Standard and Poor’s 500 (S&P500) companies, considering forecasting accu-
racy and decision-making performance and

•	 conducting a simulation study for better understanding of the conditions where 
the SBEDE model is useful.

Our application uses stock analyst target prices for 177 companies in the S&P500 
index in 37 industries. For simplicity, we assume that the DM is risk-neutral for 
short-term volatility and aims to maximize the expected capital growth rate in the 
long term. This strategy is called the Kelly criterion (Kelly 1956; Thorp 1971; Peters 
2011). Nevertheless, the SBEDE model could also be applied together with other 
investment strategies, e.g. “mean-variance" (Markowitz 1952) as we do for compari-
son in the simulation study.

We measure the benefit of the SBEDE model for decision-making with realized 
capital growth of optimized portfolios during the year. For the sake of the model 
comparison, the portfolio decisions are made separately for 37 industries. In the 
application, we compare our model’s performance to an index investor’s (who allo-
cates capital equally to every stock within an industry) performance. If the efficient 
market hypothesis (Fama 1970) is correct, portfolio decisions based on analyst tar-
get prices should not add any value compared to an index investor. For studying the 
value of modelling differences between analysts, we also compare the performance 
of the model to a simplified Bayesian model, called an exchangeable expert (EE) 
model, where all experts are assumed to be equally competent.

The rest of the paper is organized as follows: we first introduce notations, the 
background of expert prediction aggregation methods and details of Kelly portfolio 
optimization in Sect. 2. After that, we introduce our SBEDE model and a separate 
asset price model in Sect. 3. In Sect. 4, we describe our practical application and 
the data used. We present the empirical results in Sect. 5 and the simulation results 
in Sect. 6. The results are discussed in Sect. 7 and the conclusions are presented in 
Sect. 8.
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2 � Background

This section introduces notations and our assumptions about portfolio optimi-
zation. It also presents earlier expert prediction aggregation methods and Kelly 
portfolio optimization.

2.1 � Notations

We consider a DM that allocates capital between N stocks in one industry that 
are followed by J stock analysts (experts). We assume that the DM aims to invest 
in the most promising (the highest expected capital growth rate) stock within the 
industry but can add diversification by allocating part of the capital to the indus-
try index, which weighs all N stocks within the industry equally. By selecting 
only one stock, DM does not have to model a correlation structure between indi-
vidual stocks, and index funds are economical tools for diversification in practice. 
Point predictions of future returns are derived from experts’ target prices.

Historical data are available from time points t ∈ {1, 2,… ,H} that present ends 
of quarters. A quarter, i.e., a period between consecutive time points (t;t + 1] , is 
denoted by its starting point t within brackets as [t]. We assume that at time point 
H, a DM forecasts stock returns for a one-year horizon, including four quarters. 
This multiple-period return is denoted by a subscript [H,H + 4] , including the 
starting and ending points. The DM utilizes information from target prices from 
an expert j ( j ∈ {1, 2,… , J} ) for a stock i (i ∈ {1, 2,… ,N}) , available at the time 
point H, denoted by TargetPriceij(H) . The target prices are assumed to be predic-
tions of the stock prices at the time point H + 4 . All stock returns are transferred 
to a logarithmic scale. Table 1 shows the notations used within this study.

Table 1   Notations and their definitions used in this paper

Notation Definition

xi[t,t+4] log
(

MarketPricei(t+4)

MarketPricei(t)

)

 , return of stock i, based on price change during (t;t + 4]

�i[t,t+4] E(xi[t,t+4]) , expected return for period (t;t + 4] with the information available at the time point t
yi[t] The total return of stock i including price change and the dividend during time period [t]
y0[t] The total return of industry index during time period [t]
wi The weight in the portfolio for stock i(i ∈ {1, 2,… ,N})

w0 The weight in the portfolio for the related industry index
H The time point when a decision on the weights wi of the different assets in the portfolio is 

made
Mij[t,t+4] log(TargetPriceij(t)∕MarketPricei(t)) , expert j’s point prediction of xi[t,t+4] , i.e. target price 

implied expected return
bij The systematic additive bias of expert j analyzing stock i, so that �

i[t,t+4] = 0 implies 
E(Mji[t,t+4]) = bij
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2.2 � Expert prediction aggregation

Here, we briefly summarize earlier multiple expert aggregation models and find-
ings that are the most relevant to our model but are not specifically designed for 
stock markets. Clemen and Winkler (1999) reviewed expert prediction aggre-
gation methods in risk analysis and concluded that the best forecasts had been 
achieved by combining judgments from multiple experts. According to them, 
weighting every expert’s predictions equally in the aggregate forecast tended to 
perform quite well. Later, Cooke and Goossens (2008) reviewed results from 45 
expert panels in different areas and showed a clear advantage of setting a higher 
weight to experts who have performed well in the past. They used Cooke’s 
method (Cooke 1991), where the experts’ weights are based on seed questions 
and a scoring rule. However, the method was criticized by O’Hagan et al (2006) 
because it does not take into account the correlations between the experts.

The predictions from different experts may be correlated because of the same 
information sources and experts can read each other’s analyses. Clemen and 
Winkler (1985) studied the effect of correlated experts and later experimented 
in practice (Winkler and Clemen 2004) that after a couple of good experts, the 
value of adding new predictions for the same problem diminishes. Jaspersen 
(2022) demonstrated that the averaging of the predictions may put too much 
weight on some widely used information source and introduced a method for 
sophisticated weighting of the experts.

The main tool for aggregating multiple experts’ predictions is the multivariate 
normal model (see, e.g., Clemen and Winkler 1985)

where M[H] is a vector of experts’ point predictions of an unknown value of the tar-
get variable x[H] . A covariance matrix Σ includes experts’ individual variances and 
covariances between experts. The experts’ performance in predicting target variable 
values earlier in history, [x[1],… , x[H−1]] , can be used for estimating the parameters 
in this model.

The methods mentioned above do not consider systematic biases or model 
different characteristics of the experts. On the contrary Merkle et al (2020) pre-
sented a model for the characteristics of different experts, influenced by Cultural 
Consensus Theory (Batchelder and Romney 1988), as

where bj stands for expert’s individual systematic bias, �j for individual "scaling 
bias" and �2

j
 for individual variance. The model does not consider correlations 

between experts.

(1)M[H] ∼ MVN(x[H],Σ),

(2)M[H] ∼ N(bj + �jx[H], �
2
j
),



A Bayesian model for portfolio decisions based on debiased…

2.3 � Kelly portfolio optimization

In this paper, the DM optimizes the portfolio using the Kelly criterion as an 
objective function. The Kelly criterion (Kelly 1956) maximizes investor’s long-
term logarithmic growth rate

where V is the investor’s capital, H is the decision time, and T is the number of 
time points in the investment horizon. Later, Breiman (1961) and Thorp (1971) 
showed that the recipe for reaching this criterion with repeated investment deci-
sions is to maximize the expected value of logarithmic capital at the next time point 
E[log(V(H+1))].

The Kelly criterion is especially relevant with an infinite investment horizon 
(relevant assumption, e.g., for foundations). The strategy based on E[log(V(H+1))] 
recipe also has good properties in the shorter term, such as avoiding losing the 
whole capital in bankruptcy or minimizing time to reach some preassigned goal 
for capital size (see, e.g., Thorp 1971). Because an investor’s capital growth is not 
an ergodic process, Peters (2011) suggests using the Kelly criterion as an invest-
ment object instead of the arithmetic mean of the future scenario distribution for 
the portfolio. The main disadvantage of the Kelly criterion is that, in the short-
term, it is a too volatile strategy for a risk-averse investor (MacLean et al 2011). 
However, if the logarithmic utility function describes investor’s risk preferences, 
the Kelly criterion is optimal also as a short-term strategy (Thorp 1971).

In this paper, a portfolio consists of two risky assets, namely an index fund 
and one individual stock i and the portfolio is assumed to be updated once a 
year. As presented earlier, next year’s unknown total returns (including divi-
dends) of these assets are denoted by y0[H,H+4]) and yi[H,H+4]) , respectively, and 
the vector of these returns is y[H,H+4] . Decision variables are weights w0 and wi . 
Because w0 + wi = 1 , we have w0 = 1 − wi . The decision of the value for wi is 
based on maximizing the expected value of logarithmic capital with a one-year 
investment horizon (recipe for maximizing long-term capital growth). We have 
log(V(H+4)(wi)) = log(V(H)) + g[H,H+4]) , where g[H,H+4]) is a logarithmic growth rate 
during the next year. As the current capital V(H) is deterministic, we have to maxi-
mize the expected value for

3 � Proposed models

Next, we introduce the main contribution of this study, the SBEDE model for 
stock portfolio optimization. To study the value of modeling the differences 
between experts, we also introduce the simplified version, the EE model, where 
all experts are assumed to be similar.

lim
T→∞

1

T
log

V(H+T)

V(H)

,

(3)g[H,H+4](wi, y[H,H+4]) = log[wie
yi[H,H+4] + (1 − wi)e

y0[H,H+4] ].



	 R. Heikkinen et al.

3.1 � Arrangement

As mentioned earlier, we assume that the experts set their target prices based on 
expected price changes within a one-year investment horizon. Dividends are not 
included but are considered separately in the portfolio optimization phase. We 
also assume that the experts update their judgments at least once a quarter, as 
companies tend to report quarterly. We use quarterly measured data, where the 
target variable is the return during four quarters. We model the returns with a 
modification of the single index asset model (see, Elton et  al 2014), where the 
time dependence of annual returns, measured quarterly, is modeled with unpre-
dictable quarterly shocks. The effect of these shocks is assumed to be similar to 
each company within an industry. The shocks are modeled by a t-distribution 
(probably fat-tailed) as suggested by Hu and Kercheval (2010) and Praetz (1972).

The asset and expert models are connected with the annual expected return 
�[t,t+3] , and one may use any asset price model where a parameter comparable to 
�[t,t+3] is present. For example, one can use CAPM (Capital Asset Pricing Model; 
Sharpe 1964) for modelling �[t,t+3] with a risk-free rate and stock’s sensitivity to 
the market risk premium. We are only interested in the experts’ ability to predict 
future returns and not in the features of stocks that CAPM estimates.

The challenge with a flexible expert model is that estimating a high number of 
parameters in the model needs a lot of data. However, it is common that there is 
little data available about past expert predictions. The first tool to solve a small 
data challenge is a hierarchical structure of the parameters, so that information 
about the experts’ characteristics is shared. This structure reduces overfitting 
when data about individuals is limited (Gelman et al 2013). Hartley and French 
(2021) used a hierarchical model for estimating experts’ biases, but instead of 
point predictions, they modeled judgements given as quantiles. The second tool 
for avoiding overfitting is to regularize regression parameters towards zero if 
there is not much evidence of deviating from zero (see James et al 2021). Regu-
larization is advantageous if it is known that only a proportion of the experts are 
competent enough, but we cannot identify them a priori.

3.2 � Asset model

With quarterly measured data, the annual (four quarters) return of asset i in one 
selected industry starting at the beginning of a time point t is modeled as a sum 
of predictable expected value and four unpredictable shocks. The model is formu-
lated as

(4)
x
i[t,t+4] = �

i[t,t+4] +

t+3
∑

k=t

(�[k] + �
i[k]), where i ∈ 1, 2,… , I and t ∈ 1, 2,… ,H

�[t] ∼ t�0
(0,�0) and �i[t] ∼ t�(0,�i

),
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where �[t] stands for an unpredictable industry shock for the considered industry and 
�i[t] is an asset-specific shock at the quarter t. Asset-specific scale parameters �i have 
a hierarchical structure

where �∗ is an average scale across assets, and the random effect coefficients ci 
have an expected value of one and variance �2 . The gamma distribution is selected 
because it is flexible with positive support ( ci > 0 ). With this selection, �2 follows 
an inverse gamma distribution, which has a history as a justifiable distribution for 
heterogeneous variance (see Praetz 1972). Degrees of freedom parameters, �0 for 
industry shocks and � for asset-specific shocks, define the fat-tailness of a total 
return distribution. Prior distributions are needed for parameters �i[t,t+4] , �0 , �∗ , �0 , � 
and � . Our selections for this study’s application will be introduced in Sect. 4.2 and 
Appendix B.

3.3 � Selective Bayesian expert debiasing model

By definition, experts cannot predict unpredictable shocks. In addition, a multivari-
ate normal model for return predictions would not be justified if the prediction errors 
include fat-tailed shocks. Thus, unpredictable shocks are not included in the expert 
model, and the connection between the asset model and the expert model is based on 
the latent expected annual return �i[t] (see (4)). This is one difference compared to 
the Black-Litterman model, the multivariate normal aggregation model (1) and the 
Merkle model (2), where the expected values of the expert predictions are functions 
of xi[t,t+4] . Here we introduce the full SBEDE model as

where parameters � , bi and Σ are explained below.
The SBEDE model has a parameter vector � to model experts’ responsiveness to 

reality. The responsiveness parameters �j in the vector � can be used for classifying 
experts as follows: over-responsive if 𝜙j ≫ 1 , balanced if �j ≈ 1 , under-responsive 
if 0 ≪ 𝜙j ≪ 1 , uninformative if �j ≈ 0 and contra-indicative if 𝜙j ≪ 0 . This for-
mulation allows us to ignore uninformative experts in future predictions by using a 
regularizing prior. For this purpose, a horseshoe prior (Piironen and Vehtari 2017) is 
used for the responsiveness parameter as

where C+ is a half-Cauchy distribution and � is a global shrinkage factor. A 
prior distribution for � has to be set based on expectations about the number of 

�i =
�∗

√

ci
, ci ∼ Gamma

�

1

�2
,
1

�2

�

,

Mi[t,t+4] ∼ MVN(bi + ��i[t,t+4],Σ),

�j|�j, � ∼ N(0, �2�2
j
)

�j ∼ C+(0, 1), j ∈ 1,… , J,
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informative experts ( �j differs significantly from zero). The details are demonstrated 
in Appendix B.

For biases bij in vector bi we set a prior distribution bij ∼ N(�, �2) where � is 
the average bias across all experts and all assets and � is a prior view of the stand-
ard deviation. Based on earlier studies (e.g., McNichols and O’Brien 1997), � is 
probably something positive, but the DM can use his expertise to set a prior for it. 
The prior distribution selections for our application are introduced in Sect. 4.2 and 
Appendix B.

The covariance matrix

includes inaccuracy parameters (standard deviation of a noise, �j ) for each expert j, 
and Ω is the correlation matrix of the experts. In addition, parameters �j have a hier-
archical structure as

where �∗ is an average inaccuracy and the random effect coefficients dj have an 
expected value 1 and a variance �2 . Parameters �∗ and Ω need prior distributions.

For illustration purposes, Fig.  1 shows simulated return predictions from an 
expert with b = 0.1 , � = 0.5 and � = 0.075 (solid line). One interpretation for the 
bias b is “expert’s expected return prediction when the real expected return is zero". 
Because the expert is not balanced ( � ≠ 1 ), the SBEDE model with the responsive 
parameter is needed for debiasing. A directed acyclic graph in Fig. 2 summarizes 
the structure of the SBEDE model. The key elements of the experts’ return predic-
tions for stock i, predictable reality �i[H,H+4] , additive biases bi , responsivenesses � , 
in-accuracies � and correlations between experts Ω , are at the third row in the figure.

3.4 � Exchangeable expert model

For estimating the value of modeling differences between experts, we introduce a 
simplified model, where all experts are assumed to be similar. We assume the same 
systematic bias, sensitivity and inaccuracy for all experts, i.e., bij ∶= bi (all experts 
have the same bias when analyzing company i), �j ∶= �∗ and �j = �∗ (compare with 
(5)) for all j ∈ 1, 2,… , J. We also assume that there is one common correlation 
coefficient � between all expert. The model is formulated as

where

Σ =

⎡

⎢

⎢

⎣

�1 0 0

0 ⋱ 0

0 0 �J

⎤

⎥

⎥

⎦

Ω

⎡

⎢

⎢

⎣

�1 0 0

0 ⋱ 0

0 0 �J

⎤

⎥

⎥

⎦

(5)�j =
�∗

√

dj

, dj ∼ Gamma
�

1

�2
,
1

�2

�

,

Mi[t,t+4] ∼ MVN(bi + �∗�i[t,t+4],Σ),
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Fig. 1   Illustration of the advantages of the SBEDE model compared to the Black-Litterman models. The 
dots represent simulated pairs of expected returns (not observable in reality) and the predicted returns 
of an expert. The solid line is the expert’s personal “regression line” (the SBEDE model estimates), and 
the dashed line is the “regression line” of a perfectly calibrated expert (as the original Black-Litterman 
model assumes) that is rare in reality. The dotted line estimates the additive bias but assumes the regres-
sion coefficient of one (generalized Black-Litterman model estimates)

Fig. 2   A directed acyclic graph for visualizing parameters in the SBEDE model. Circles are unknown 
parameters, and boxes are hyperparameters whose values the DM has to set (white background) or 
observed data (grey background). The abbreviation HP refers to the hyperparameters of the parameter in 
parentheses. They depend on prior distribution selections. Parameter �

i[H,H+4] is modeled with a separate 
asset model
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Instead of a horseshoe prior, the prior distribution has to be set only for the com-
mon responsiveness �∗ , and the correlation matrix includes only one stochastic 
parameter � . The prior distributions used in our application are presented in Appen-
dix B.

4 � Application to S&P500 data

To demonstrate the models presented in Sect. 3, we apply them with real data. The 
aim is to compare the performances of the models to each other and to an index 
investor’s performance. First, we describe the data used. After that, we present prior 
distributions and other practical selections for Bayesian modeling, and, finally, 
define the optimization process for portfolio decisions.

4.1 � Data

We collected historical stock market prices and experts’ target prices of compa-
nies listed in the S&P500 index on 2021–09-30 from the Refinitiv-Eikon database1 
(Institutional Brokers’ Estimate System, IBES). Individual experts’ target price data 
was very sparse before the mid-2010s, and that caused limitations to the time scale 
of the analysis. As mentioned earlier, we assume that experts usually update their 
judgments at least once a quarter. Nevertheless, some experts had long periods with-
out any updates (or without sending the updates to the database), and we decided 
to consider target prices on idle periods as missing data. The presented Bayesian 
models have many parameters, and for reliable estimation, there should be multiple 
observations across stocks and experts. All these considerations lead to the follow-
ing data collecting and filtering process before analysis. 

1.	 Set a date for t = 1 : 2013–12-31 (beginning of the relevant history).
2.	 Set a date for H = 29 : 2020–12-31 (decision time, so that performance in the year 

2021 is used for comparing models).
3.	 Exclude target prices of idle experts. Definition of an idle expert j at a time point 

t for the company i is the following:

•	 time lapsed after expert j’s last update of company i is more than 185 days (2 
quarters + flexibility for release delays) and time until the next update is more 
than 185 days (2 quarters + flexibility for release delays)
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1  Refinitiv-Eikon Datastream, 2022.
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•	 or time lapsed after expert j’s last update of company i is more than 370 days 
(a year + flexibility for release delays).

4.	 Exclude companies that do not have full stock price history and at least one non-
idle expert target price starting from t = 1.

5.	 Collect quarterly data of stock prices and non-idle expert target prices from the 
time t = 1 until t = H and stock prices at t = H + 4 (a year after the decision for 
measuring performance). These time points define the ends of the quarter.

6.	 Set the minimum sample size for a company+expert-specific target price history: 
16 (= 4 years), and exclude target histories where a number of qualified observa-
tions is less.

7.	 Set the minimum number for qualified experts in decision date: min(Ji(H)) = 3 , 
and exclude companies with Ji(H) < 3 . (There needs to be multiple experts so that 
prediction aggregation and estimating differences between experts make sense.)

8.	 Set the minimum number of companies in one industry: min(N) = 3 , and exclude 
industries where N < min(N) . (There needs to be multiple companies in the 
industry index to have options for decision-making and to get diversification by 
investing in the index.)

Because of limited data, we did not set the thresholds in steps 6–8 higher than what 
is necessary for making a sensible analysis.

The classification of companies into industries is based on the Global Industry 
Classification Standard2 sub-industries. After filtering, 177 companies in 37 indus-
tries were left for analysis. The industries are listed in Table 5 in Appendix A with 
the number of qualified companies and experts, followed by descriptive statistics of 
them in Table 6. The industry index returns are calculated as an equally weighted 
mean of all stocks in the industry qualified for analysis. For the 177 companies left 
for the analysis, we also collected the dividend histories from Nasdaq (2022) for 
forecasting returns with dividends yi[t,t+4] in the optimization phase in Sect. 4.3. Div-
idends are ignored in modelling experts’ predictions because target prices do not 
include dividends. The relation between target prices and dividends is analyzed fur-
ther by Hao and Skinner (2023).

4.2 � Bayesian modelling

We applied the SBEDE and the EE models, introduced in Sect.  3, with data pre-
sented in Sect.  4.1. We combined these models with an asset model specified 
in Sect.  3.2. Next, we present the steps to estimate a posterior distribution of the 
parameters.

A prior for expected return is expressed as �i[t,t+4] ∼ N(r(t) + 0.04, 0.12) , where 
r(t) is the risk-free rate (52 weeks US treasury bill rate) at the time point t. The point 
estimate for a current risk premium, 0.04, is based on the average difference between 
the S&P500 index returns (without dividends) and short-term interest rates from 

2  https://​www.​msci.​com/​our-​solut​ions/​index​es/​gics.

https://www.msci.com/our-solutions/indexes/gics
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2000 to 2020. In addition, 0.12 describes our prior uncertainty and variation between 
industries. We also tested the model with different selections for this parameter (see 
Sect. 5.3). In a real modeling situation, a DM with knowledge of a specific indus-
try can use a more informative prior distribution to reduce the optimizer’s curse, 
as mentioned in the introduction. Other prior distribution selections and details of 
applying the MCMC algorithm for fitting the models are presented in Appendix B.

We also tried to fit the Merkle model as a reference model, but it had significant 
convergence problems (20 of 37 industries did not meet the convergence criteria), 
possibly due to the sparsity of the data. Thus, we left it out of the analysis.

The result of the modelling is S = 60000 simulated values from the posterior dis-
tribution of each parameter in the model. The most interesting parameters for the 
decision-making process are next year returns x[H,H+4] and responsiveness parame-
ters � . As an example of regularizing experts, Fig. 3 illustrates the historical perfor-
mance of the selected different types of experts in one industry and how the perfor-
mance affects the estimated posterior distribution of � . Figure shows three experts 
analyzing five companies. The posterior distributions show that Expert 3 has enough 
evidence to be labelled informative but under-responsive as �3 is estimated to be 
around 0.6–0.8. Based on regression lines in the scatter plot, the expert has per-
formed well in analyzing both companies (Company 2 and Company 6). Expert 2 
can most likely be labelled as uninformative ( �j ≈ 0 ), but there is a small probabil-
ity of being informative based on the heavy tail of the posterior distribution. Based 
on regression lines, after excluding positive systematic bias, Expert 2 has performed 
tolerable in analyzing Company 1 but not in Company 3. Expert 10 can be clearly 
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Fig. 3   Historical performance (predictions versus realized returns) of three experts chosen for the illus-
tration and posterior distributions of responsiveness parameters for one example industry. On the left, 
each facet represents the performance of one expert (realized returns include also unpredictable shocks). 
Different greyscales and shapes present companies. Regression lines are fitted for each company. Poste-
rior distributions for responsiveness parameters � based on the SBEDE model are on the right
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labelled as uninformative based on the posterior distribution of �10 . At first look, 
an increasing regression line suggests a good performance of Expert 10. However, 
this line is influenced by a single outlying observation. The asset model considers 
extreme returns mainly as t-distributed unpredictable shocks.

4.3 � Optimization process

In the asset model presented in Sect. 3.2, we have modeled the dependency between 
stocks with the industry shock parameter common to all stocks within the industry 
in question. We did not model pairwise dependencies because the aim is to allocate 
capital between two assets: one stock with high expectations and an industry index 
(equally weighted mean return). The DM of the study has to optimize the proportion 
of capital invested in the most attractive stock and how much to diversify capital to 
the industry index.

Since the expert target prices do not include dividends, the DM adds last year’s 
dividends as dividend estimates for the following year. The portfolio will be updated 
once a year; thus, we are considering only the next year’s returns. Taxes and trading 
or holding costs are ignored for simplification. Following the Kelly criterion (3) as 
the investment strategy, the optimization problem is defined as follows: 

and

where the vector of unknown future returns is

The equality constraint (6b) ensures that only one stock will be selected for the port-
folio. Thus, the sums in (7) include only one element that differs from zero.

As mentioned in Sect.  4.2, there are S = 60000 simulations of x[H,H+4] 
based on a Bayesian model. A simulated realization of x[H,H+4] from round s is 
denoted by x̃s

[H,H+4]
 . The DM adds dividend estimates to obtain ỹs

[H,H+4]
 , where 

ỹs
i[H,H+4]

= log(e
x̃s
i[H,H+4] + Di[H−4,H]) and Di[H−4,H] is a dividend percentage of stock 

(6a)maximize Eg[H,H+4](w1,… ,wN , y[H,H+4])

(6b)subject to wiwk = 0, for all i ≠ k

(6c)
N
∑

i=1

wi ≤ 1

(6d)w1,… ,wN ≥ 0

(7)g[H,H+4](w1,… ,w
N
, y[H,H+4]) = log

[ N
∑
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w
i
e
y
i[H,H+4] +

(

1 −

N
∑

i=1

w
i

)

e
y0[H,H+4]

]

,

y[H,H+4] = [y0[H,H+4], y1[H,H+4],… , yN[H,H+4]].
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i during the latest period prior decision making. The expected value in (6a) can be 
calculated based on these simulations as (see Gelman et al 2013)

The optimization process was conducted with a hybrid of two methods to find a 
global optimum. 

1.	 Global step: Initial solutions are searched with the differential evolution method 
(Ardia et al 2011), which has been designed for global optimization.

2.	 Local step: Final solutions are found with the L-BFGS-B method (Byrd et al 
1995) using solutions of step 1) as initial values. L-BFGS-B is a local method but 
faster (compared to differential evolution) and can guarantee local optimality.

This optimization process was repeated with all 37 industries using information 
available at the end of the year 2020. Both models, SBEDE and EE, were utilized 
separately; thus, the process was repeated 74 times.

5 � Empirical results

We measure the performance of the forecasts and the decisions made on 2020–12-
31 with the real stock returns during 2021. The decisions are presented in Table 9 in 
Appendix C. We compare the forecasting accuracy of the models in Sect. 5.1 and the 
performance of the allocation decision in Sect. 5.2. We do sensitivity analyses and 
compare the performance in Sect. 5.3. Finally, we discuss these results in Sect. 7.

5.1 � Forecasting accuracy

In this section, we compare the future return forecasting accuracy in 37 industries 
based on (1) the SBEDE model, (2) the EE model, and (3) the median of experts’ 
return predictions, which is called a raw consensus forecast. The performance of 
the models is quantified with a mean absolute error (MAE), measuring the accu-
racy of the point forecast, and a coverage probability (CP), measuring how well the 
posterior distributions quantify uncertainty. Here, xi[H,H+4] is a realized logarithmic 
annual return (without dividends) of company i starting at the time point H, x̃q

i[H,H+4]
 

is a qth quantile of an estimated posterior distribution, and I is an indicator function 
with values 0 and 1. The performance metrics are defined as 

1)	 MAE, where posterior median x̃0.5
i[H,H+4]

 is used as a point forecast of the parameter 
xi[H,H+4] . The absolute error AE is defined as |x̃0.5

i[H,H+4]
− xi[H,H+4]| . The mean is 

taken over AEs of all 177 companies in 37 industries. Here, a smaller value is 
better.

2)	 CP, where coverages C are defined as 

Eg[H,H+4](w1,… ,wN , y[H,H+4]) ≈
1

S

S
∑

s=1

g[H,H+4]

(

w1,… ,wN , ỹ
s
[H,H+4]

)

.
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 The average is taken over coverages of all 177 companies in 37 industries, and, 
e.g., CP 90 measures the proportion of the estimated 90% Bayesian credible 
intervals that covered the actual observations. If CP 90 markedly differs from 
90%, this is a sign of failed estimation of uncertainty.

Table  2 summarizes the forecasting accuracy of the SBEDE models and the 
raw consensus. It shows that the MAE of the point forecasts (posterior medians or 
median of the raw forecasts) of the SBEDE and EE models are almost identical and 
worse than the raw consensus. As overall market returns strongly influence MAE, 
the table also shows MAE Premium, which is based on predicted returns over the 
index (predicted with the same method). Based on this metric, SBEDE is the most 
accurate, and the raw consensus is the least accurate. Both SBEDE and EE mod-
els quantified uncertainty equally well. All CP values are slightly negatively biased, 
indicating more extreme realizations than expected based on the models. Uncer-
tainty quantification is not applicable to raw consensus. Overall, differences in fore-
casting accuracy are small.

5.2 � Decision performance

Instead of accurate stock price forecasting, the investor’s main objective in this 
study is to maximize the capital growth rate. We compare the performance of the 
allocation decisions for 37 industries based on 1) the SBEDE model, 2) the EE 
model and 3) an index investor who ignores expert target prices and shares capital 
equally among all companies within the industry (Index). Boxplots in Fig. 4 show 
the capital growth performance of the models and the index investor in 37 indus-
tries. The results are presented as basis points (BPS), where 100 BPS equals a 1% 
growth rate. Averages are calculated as geometric mean (GMean) as they describe 

C50 = I[xi[H,H+4] ∈ (x̃0.25
i[H,H+4]

, x̃0.75
i[H,H+4]

)],

C68 = I[xi[H,H+4] ∈ (x̃0.16
i[H,H+4]

, x̃0.84
i[H,H+4]

)],

C90 = I[xi[H,H+4] ∈ (x̃0.05
i[H,H+4]

, x̃0.95
i[H,H+4]

)]and

C95 = I[xi[H,H+4] ∈ (x̃0.025
i[H,H+4]

, x̃0.975
i[H,H+4]

)].

Table 2   Forecasting accuracy of the SBEDE model, the EE model and raw consensus median of expert 
predictions (Raw) with S&P500 data

MAE, MAE Premiun (for predicted returns over the index) and 50%, 68%, 90% and 95% coverage prob-
abilities

Method MAE MAE Premium CP 50 CP 68 CP 90 CP 95

1 SBEDE 0.249 0.142 0.407 0.605 0.859 0.921
2 EE 0.251 0.147 0.424 0.599 0.831 0.915
3 Raw 0.233 0.152
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the multiplicative nature of capital growth. On average, the SBEDE model offered 
higher growth rate than the EE model but slightly lower than Index. The variation 
between industries was lower with Index compared to the SBEDE and EE models.

The growth rates that exceed the Index’s growth rates are called premium growth 
rates. On average, the SBEDE model generated -30 BPS and the EE model -365 
BPS premium growth rates. Compared to these averages, premium growth rates had 
high standard deviations between industries, 2204 BPS for the SBEDE model and 
2250 BPS for the EE model.

As mentioned in the introduction, uncertainty in future returns may cause disap-
pointing portfolio performance, known as the optimizer’s curse. Here optimizer’s 
curse is measured with expected and realized premium growth rates. Table 3 shows 
average growth rates with different models and compares them with Index. It also 
shows the models’ average expected growth rates at the decision time. The realized 
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Fig. 4   Observed capital growth rates (BPS) in 37 industries during the experiment year 2021 (S&P500 
data) with SBEDE and EE models and Index. Standard boxplots show geometric mean values between 
the lower quartile and the median lines

Table 3   Realized average portfolio growth rates (GMean G), return premiums, premium expectations, 
and realized optimizer’s curse (OC) measured as BPS, with S&P500 data

Method GMean G GMean G Index Premium Premium Exp OC

1 SBEDE 2253 2282 −30 743 −773
2 EE 1918 2282 −365 805 −1170



A Bayesian model for portfolio decisions based on debiased…

optimizer’s curse is the difference between average premium expectations and aver-
age premium realizations. The EE model caused a 1170 BPS disappointment to 
expectations, while SBEDE’s disappointment was milder, 773 BPS.

To understand the role of the chance in these results, we conducted a Bayesian 
analysis for the advantage of SBEDE compared to EE and Index. The premium log-
arithmic growth rates (later referred to as premium for short) in industry l between 
models during the time period [H,H + 4] are

We assume that the

where �1 and �2 are SBEDE’s mean premium over EE and Index, respectively. Fig-
ure 5 shows the estimated posterior distributions for the mean premiums using unin-
formative prior distributions. We conclude that there is 89% and 47% probability 
that SBEDE has a positive premium over EE and Index, respectively, if we apply 
these models to an additional industry.

5.3 � Sensitivity analysis

Many prior distribution selections need some expert knowledge from a DM. In ideal 
conditions, prior distributions are selected based on knowledge of the particular 
industry. We did not have that information available and used the same prior dis-
tributions for all industries based on general knowledge of the stock markets. Espe-
cially, the prior selection

Δ1l = gSBEDE
[H,H+4]l

− gEE
[H,H+4]l

Δ2l = gSBEDE
[H,H+4]l

− gIndex
[H,H+4]l

.

Δ1l ∼ N(�1, �
2
Δ1
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Fig. 5   Posterior distributions for the mean premium parameters � . The areas on the positive side describe 
the probability of SBEDE having an advantage against EE ( �1 ) and Index ( �2)
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is critical as the standard deviation defines how much we allow predictable differences 
between stocks. To understand the results’ sensitivity to this selection, we calculated aver-
age growth rates and optimizer’s curse for alternative standard deviations (std) 0.05 and 
0.2. We found (see Tables 10 and  11 in Appendix D) that the optimizer’s curse reduced 
from −773 to −290 for SBEDE and from −1179 to −513 for EE with very restrictive std 
= 0.05. With std = 0.2, the curse increased to − 1473 and − 1787 for SBEDE and EE, 
respectively. The average growth rates of SBEDE were close to the index investor, and EE 
had the lowest growth with both of these alternative std selections. In addition, with std 
= 0.2, the decisions were courageous, as in almost all industries and with both methods, 
the weight of the selected stock was 1, indicating no diversification to the index. Stock 
selections and weights in the portfolio with all tested prior selections and both models are 
shown in Table 9 in Appendix C.

One benefit of the SBEDE model is the ability to label experts as informative 
and uninformative based on the parameters � . We label the expert j as informative 
if the absolute value of the median of the posterior distribution of �j is larger than 
0.2, as defined in Sect. 4.2. With this criterion, 190 of 384 experts were labelled as 
informative. If some industry does not have informative experts, an advantage over 
Index is not expected. We re-calculated premium performances based on the indus-
tries where the number of informative experts meets a specific minimum require-
ment. Table 4 shows, for example, that with 16 industries with at least four informa-
tive experts, SBEDE offered a 543 BPS higher growth rate than Index. By repeating 
the Bayesian analysis for the advantage in Sect. 5.2 but only for these 16 industries, 
we get a 79% probability that SBEDE has a positive premium over Index.

6 � Simulation study

As the available real data was limited and sparse, we conducted a simulation study 
to understand better the SBEDE model’s performance in different conditions and 
with larger data. In the study, we are altering the following conditions:

�i[t,t+4] ∼ N(r(t) + 0.04, 0.12)

Table 4   Minimum number 
of informative experts, the 
methods, number of industries 
and premium growth rates over 
Index (S&P500 data)

Minimum Method Industries Premium

0 SBEDE 37 −30
0 EE 37 −365
1 SBEDE 31 −131
1 EE 31 −296
2 SBEDE 24 32
2 EE 24 45
3 SBEDE 18 353
3 EE 18 197
4 SBEDE 16 543
4 EE 16 91
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•	 number of historical data to fit model: nt = 20 (5 years) and nt = 40 (10 years)
•	 number of experts: J = 4 and J = 8.

We fixed the number of assets to 5 and assumed that half of the experts are uninformative 
( � = 0) and half balanced ( � = 1 ). We simulated 500 data sets, including asset returns 
and expert predictions, for each of the 4 (nt, J) conditions. More detailed assumptions and 
selected hyperparameter values for simulation are presented in Appendix E.

In addition to the SBEDE and EE models, we use the Merkle model, discussed 
earlier in this paper, as an alternative benchmark model. As many elements are the 
same as in the SBEDE model, we use the same prior distributions, presented in 
Appendix B with the following exceptions. Instead of horseshoe prior

which is similar to EE model (see Appendix B) but allows more variation because 
�j :s are not assumed to be identical. Inaccuracies ( �j ) do not have a hierarchical 
structure, and the prior is the same weakly informative one as used in Merkle et al 
(2020), namely Inv-Gamma(0.1,0.1). The model assumes independence between 
experts; thus, we set the correlation parameter � to zero. We also modified the model 
to fit better in the environment of fat-tailed shocks. We modified Equation (2) to a 
form M[H] ∼ N(bj + �j�[H], �

2
j
) , where the expected value of a prediction is now a 

function of the expected value of a return.
In addition to the Kelly criterion, we tested two other investment objects to see if 

different personal preferences of DM affect the results. The first alternative object is 
the Sharpe ratio. (Sharpe 1994)

where the expected value E(x) and variance Var(x) are estimated based on the corre-
sponding posterior distribution. The second alternative object is the expected utility 
of a risk-averse investor. In the mean-variance utility framework (Levy and Markow-
itz 1979), the objective to maximise is

where RRA​ is a DM’s relative risk aversion level (Pulley 1981). Decisions made by 
the Kelly criterion are described by RRA = 1 . However, for comparison, we select 
RRA = 3 , which relates to higher risk aversion that is typical in most countries 
(Gandelman and Hernandez-Murillo 2015).

Figure  6 shows the accuracy of the point forecasts for each method in each 
condition. With all conditions and both metrics (MAE and MAE Premium), 
SBEDE has the best accuracy, but the differences to the benchmark models are 
small. Coverage probabilities are reported in Tables 13, 14, 15, 16 in Appendix E. 
In summary, the SBEDE and EE models have more accurate CP values than the 
Merkle model in every condition.

�j ∼ N(0, 1), j ∈ 1,… , J,

(8)SR =
E(x)

√

Var(x)
,

U = E(x) −
RRA

2
Var(x),
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Figure 7 shows decision performance metrics for all three objectives in all four 
conditions. Compared to forecasting accuracy, there is more variability in deci-
sion performance. The main finding is SBEDE’s outperformance always when 
there are eight experts ( J = 8 ), including four informative ones. In addition, 
SBEDE’s performance increases when ten years of data are available. With the 
Kelly criterion, SBEDE offers the best capital growth rate in each condition but 
only with a small margin when J = 4 . Another interesting finding is that methods’ 
ranking based on forecasting accuracy is not always the same as the ranking based 
on decision performance. Index does not perform very well in this comparison.

7 � Discussion

The real data application and the simulation study demonstrated the benefits of 
Bayesian models in expert prediction aggregation for portfolio decision support. 
The hierarchical structure and regularizing horseshoe prior distribution enables 
fitting a model with a high number of parameters with limited data. Applying 
informative prior distributions based on a DM’s knowledge decreases the impact 
of outliers in the data and reduces the optimizer’s curse. MCMC methods enable 
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Fig. 6   Forecasting accuracy for return point forecasts of different methods in the simulation study. MAE 
= Mean Absolute Error. Different numbers of historical data as columns and numbers of experts as rows
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SHARPE = Sharpe-ratio (realized Sharpe-ratio), C. U3 = Utility with risk aversion coefficient 3 (real-
ized average utility). Different numbers of historical data as columns and numbers of experts as rows 
within each panel
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the use of various probability distributions, including those not defined in a closed 
form. For example, we did not have to assume normally distributed future returns. 
In addition, parameter uncertainty is naturally included in the return predictions.

In the real data results, SBEDE and the simpler EE model were equally accu-
rate with the point forecasts. However, the SBEDE model showed a better capital 
growth performance. The average difference of 335 BPS in growth rates between 
the models and 89% probability of SBEDE’s advantage over EE, combined with 
the simulation results, indicate some benefits of regularizing uninformative 
experts. In addition, SBEDE’s over-performance against the Merkle model (fore-
casting and decision making) in all conditions with eight experts indicates the 
usefulness of lowering over-fitting by the horseshoe prior, hierarchical parameter 
structure and considering correlations between experts.

The SBEDE model offered, on average, almost identical capital growth during 
the experiment year with 37 industries compared with the index investor. However, 
in the 18 industries where at least three experts were labelled as informative, the 
SBEDE model generated a 353 BPS premium growth. When at least four experts are 
required to be informative, the premium growth was 543 in 16 industries. There is 
over 20% probability that this advantage is caused by chance. The simulation study 
also supported the conclusion that the SBEDE model needs more than two compe-
tent experts for outstanding performance. We focused on the capital growth rate, but 
the simulation study result also holds with alternative investment objectives.

Actually, SBEDE outperfomerd Index in the simulation study in every condition, 
but the model used to simulate data does not account for all variability and uncer-
tainties of real life. Thus, the simulation results of all tested models are expected to 
be too optimistic and real-life performances are expected to be closer to Index.

The sensitivity analysis also demonstrated that the DM can manage the optimiz-
er’s curse by adjusting the prior distribution of return expectations. The average 
optimizer’s curse of the SBEDE model was reduced from -773 BPS to -290 BPS 
by modifying the standard deviation of return expectations from 0.1 to 0.05. How-
ever, we think that 0.05 is too restrictive for a general use for all industries and 
ideally this selection should be made based on prior knowledge of each industry.

The results are in line with earlier studies. Clement (1999) argued that there 
are differences between experts, and likewise, the regularization of uninformative 
experts offered higher capital growth compared to the EE model in our appli-
cation. Cvitanic et  al (2006) found average expert judgment not very useful in 
stock markets, and now we saw a weak performance of the EE model. In addi-
tion, reduction of optimizer’s curse with more informative prior selection was 
predicted by Smith and Winkler (2006).

Taleb (2020) compared differences in forecasting accuracy of a binary event 
and actual returns, claiming that the models that generate accurate forecasts do not 
necessarily generate high returns. Our simulation study, a similar phenomenon was 
observed with a continuous target variable (stock returns). For example, in some con-
ditions the EE model’s decision performance was better than the Merkle model even 
though it has worse accuracy in point forecasts. Also with the real data, SBEDE’s 
edge against EE in forecasting accuracy was negligible compared to decision per-
formance. This emphasizes that in addition to point forecasts, estimating the whole 
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return distribution well and the investment objective matters when making portfolio 
decisions. Making accurate point forecasts is rarely the main objective of the DM.

8 � Conclusions

We studied how biased and correlated expert predictions with different levels of 
expertise can be modeled with a hierarchical Bayesian model and a horseshoe prior 
for responsiveness to reality. The strength of the proposed SBEDE model is that it 
automatically debiases and regularizes experts without separate background studies 
of different experts. The expert model is designed to be combined with a separate 
asset pricing model and investment strategy. The aim of the model is to make better 
investment decisions and this study studied parallel forecasting and decision perfor-
mance, and disappointments caused by the optimizer’s curse.

In the real data application, the portfolio decisions based on SBEDE generated 
higher growth rates compared to the EE model. In addition, SBEDE outperformed all 
the benchmark models in the simulation study when there was four competent experts. 
This indicates the usefulness of regularizing uninformative experts with a horseshoe 
prior distribution.

With real data, SBEDE had a positive premium growth over the index when applied 
only to industries that were estimated to have multiple competent experts, but we can-
not generalize these results to future periods. The simulation study showed outstand-
ing performance for SBEDE but studies with more real data are needed to gather evi-
dence about the sustained premium of the SBEDE model. Also, transaction costs and 
taxes reduce the benefits of stock selections and should be considered in future studies.

The main weakness of the SBEDE model is the need for a decent amount (we used 
16 observations as a threshold) of historical data from the earlier predictions of each 
expert. As most companies had at most 5–7 years of systematically collected expert 
data available, we were able to conduct the real data analysis only at one time period.

In portfolio decisions, the SBEDE model has to be accompanied with a reasona-
ble model for unpredictable shocks. That is a challenge with fat-tailed stock returns, 
and there may be better options than the used symmetric t-distribution. Because of 
the low number of collected expert target price data, it was not reasonable to model 
experts’ learning process, but this is a potential direction for future research.

For simplicity, we conducted investment decisions at the end of a quarter, which 
may not be optimal timing. An interesting question for a future study would be: 
Could SBEDE’s performance be improved by timing decisions immediately after 
informative experts update their target prices?

The sensitivity analysis demonstrated that the DM’s prior selections affect the opti-
mizer’s curse. Seeking higher performance and reducing the curse with more informative 
prior distributions based on industry-wise prior information is an interesting direction 
of future development. With more data and better insights from the DM as informative 
prior distributions, the SBEDE model has much potential in decision-making for com-
bining and presenting information from historical stock price data, expert predictions 
and the DM’s prior knowledge. The SBEDE model turned out to be usable and could be 
cautiously applied to real investment decisions keeping the limitations in mind.
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Appendix A

See Tables 5, 6.

Table 5   Industries in analyses, 
and numbers of qualified 
companies (N) and experts (J)

Industry N J

1 Air Freight & Logistics 4 10
2 Airlines 4 4
3 Apparel Retail 4 7
4 Apparel, Accessories & Luxury Goods 7 10
5 Application Software 7 22
6 Biotechnology 6 16
7 Casinos & Gaming 4 4
8 Communications Equipment 3 6
9 Data Processing & Outsourced Services 6 12
10 Diversified Banks 6 12
11 Electric Utilities 9 5
12 General Merchandise Stores 3 10
13 Health Care Distributors 6 14
14 Health Care Equipment 12 19
15 Hotels, Resorts & Cruise Lines 5 8
16 Industrial Machinery 3 5
17 Integrated Oil & Gas 3 10
18 Interactive Home Entertainment 3 9
19 Interactive Media & Services 3 19
20 Internet & Direct Marketing Retail 4 19
21 Life & Health Insurance 3 4
22 Managed Health Care 4 5
23 Movies & Entertainment 3 20
24 Multi-Utilities 6 6
25 Oil & Gas Equipment & Services 4 7
26 Oil & Gas Exploration & Production 9 19
27 Oil & Gas Refining & Marketing 3 6
28 Oil & Gas Storage & Transportation 3 7
29 Pharmaceuticals 3 9
30 Property & Casualty Insurance 4 7
31 Railroads 3 10
32 Restaurants 5 9
33 Retail REITs 3 3
34 Semiconductors 10 16
35 Specialized REITs 4 9
36 Specialty Stores 5 10
37 Systems Software 3 16
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Table 6   Industries and companies with means and standard deviations of returns (x) and expert predic-
tions (M) for the period for training the models

Industry Company ID x̄ sd(x) M̄ sd(M)

Air Freight & Logistics 1 0.054 0.154 0.047 0.112
Air Freight & Logistics 2 0.105 0.091 0.048 0.093
Air Freight & Logistics 3 0.035 0.287 0.154 0.103
Air Freight & Logistics 4 0.042 0.132 0.063 0.084
Airlines 1 −0.028 0.351 0.201 0.108
Airlines 2 −0.021 0.320 0.234 0.100
Airlines 3 0.062 0.306 0.097 0.206
Airlines 4 −0.037 0.450 0.185 0.149
Apparel Retail 1 −0.160 0.426 0.319 0.166
Apparel Retail 2 −0.179 0.378 0.062 0.124
Apparel Retail 3 0.157 0.161 0.077 0.090
Apparel Retail 4 0.100 0.128 0.091 0.073
Apparel, Accessories & Luxury Goods 1 −0.095 0.294 0.221 0.187
Apparel, Accessories & Luxury Goods 2 0.162 0.171 0.063 0.124
Apparel, Accessories & Luxury Goods 3 −0.127 0.365 0.155 0.101
Apparel, Accessories & Luxury Goods 4 −0.124 0.290 0.059 0.136
Apparel, Accessories & Luxury Goods 5 −0.148 0.342 0.119 0.190
Apparel, Accessories & Luxury Goods 6 −0.150 0.442 −0.037 0.297
Apparel, Accessories & Luxury Goods 7 0.018 0.233 0.111 0.118
Application Software 1 0.298 0.169 0.098 0.095
Application Software 2 0.291 0.176 0.076 0.083
Application Software 3 0.196 0.189 0.185 0.093
Application Software 4 0.212 0.149 −0.027 0.116
Application Software 5 0.058 0.122 0.102 0.097
Application Software 6 0.254 0.163 0.122 0.085
Application Software 7 0.216 0.196 −0.005 0.124
Biotechnology 1 0.099 0.121 0.145 0.110
Biotechnology 2 −0.004 0.231 0.206 0.130
Biotechnology 3 −0.032 0.184 0.189 0.136
Biotechnology 4 0.083 0.385 0.177 0.172
Biotechnology 5 0.091 0.323 0.136 0.149
Biotechnology 6 0.175 0.316 0.131 0.238
Casinos & Gaming 1 −0.069 0.265 0.170 0.123
Casinos & Gaming 2 −0.040 0.288 0.231 0.108
Casinos & Gaming 3 0.185 0.506 0.214 0.244
Casinos & Gaming 4 −0.152 0.490 0.091 0.237
Communications Equipment 1 0.093 0.164 0.087 0.129
Communications Equipment 2 0.037 0.231 0.097 0.117
Communications Equipment 3 −0.016 0.134 0.056 0.135
Data Processing & Outsourced Services 1 0.144 0.084 0.110 0.085
Data Processing & Outsourced Services 2 0.193 0.112 0.006 0.115
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Table 6   (continued)

Industry Company ID x̄ sd(x) M̄ sd(M)

Data Processing & Outsourced Services 3 0.256 0.148 0.083 0.119
Data Processing & Outsourced Services 4 0.220 0.153 0.106 0.087
Data Processing & Outsourced Services 5 0.202 0.104 0.121 0.077
Data Processing & Outsourced Services 6 0.032 0.139 −0.005 0.117
Diversified Banks 1 0.066 0.252 0.148 0.120
Diversified Banks 2 −0.002 0.260 0.143 0.172
Diversified Banks 3 −0.038 0.378 0.061 0.108
Diversified Banks 4 0.085 0.178 0.094 0.083
Diversified Banks 5 −0.016 0.184 0.058 0.077
Diversified Banks 6 −0.099 0.264 0.046 0.109
Electric Utilities 1 0.073 0.127 0.020 0.075
Electric Utilities 2 0.017 0.102 0.064 0.080
Electric Utilities 3 0.026 0.099 0.027 0.068
Electric Utilities 4 0.049 0.139 −0.058 0.069
Electric Utilities 5 0.002 0.187 0.046 0.079
Electric Utilities 6 0.045 0.168 0.026 0.079
Electric Utilities 7 0.003 0.200 0.084 0.091
Electric Utilities 8 0.053 0.132 0.049 0.058
Electric Utilities 9 0.037 0.145 −0.007 0.079
General Merchandise Stores 1 0.187 0.167 0.097 0.080
General Merchandise Stores 2 0.080 0.208 0.074 0.104
General Merchandise Stores 3 0.124 0.248 0.063 0.125
Health Care Distributors 1 0.047 0.207 0.116 0.094
Health Care Distributors 2 0.023 0.176 0.064 0.198
Health Care Distributors 3 −0.054 0.176 0.134 0.090
Health Care Distributors 4 0.038 0.144 0.248 0.151
Health Care Distributors 5 −0.026 0.188 0.105 0.121
Health Care Distributors 6 0.106 0.153 0.009 0.079
Health Care Equipment 1 0.131 0.158 0.129 0.135
Health Care Equipment 2 0.355 0.574 0.121 0.187
Health Care Equipment 3 0.140 0.160 0.092 0.085
Health Care Equipment 4 0.115 0.118 0.068 0.072
Health Care Equipment 5 0.163 0.182 0.117 0.091
Health Care Equipment 6 0.353 0.424 0.140 0.154
Health Care Equipment 7 0.269 0.193 0.087 0.092
Health Care Equipment 8 0.136 0.206 0.086 0.098
Health Care Equipment 9 0.075 0.109 0.117 0.062
Health Care Equipment 10 0.138 0.134 0.071 0.075
Health Care Equipment 11 0.193 0.118 0.092 0.075
Health Care Equipment 12 0.035 0.158 0.127 0.111
Hotels, Resorts & Cruise Lines 1 −0.139 0.465 0.156 0.145
Hotels, Resorts & Cruise Lines 2 0.085 0.213 0.273 0.246
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Table 6   (continued)

Industry Company ID x̄ sd(x) M̄ sd(M)

Hotels, Resorts & Cruise Lines 3 0.074 0.294 0.049 0.131
Hotels, Resorts & Cruise Lines 4 −0.113 0.556 0.186 0.140
Hotels, Resorts & Cruise Lines 5 −0.009 0.441 0.173 0.130
Industrial Machinery 1 0.116 0.156 0.002 0.108
Industrial Machinery 2 0.066 0.225 0.051 0.137
Industrial Machinery 3 0.116 0.192 0.072 0.101
Integrated Oil & Gas 1 −0.071 0.229 0.108 0.100
Integrated Oil & Gas 2 −0.114 0.296 0.115 0.172
Integrated Oil & Gas 3 −0.146 0.247 0.001 0.138
Interactive Home Entertainment 1 0.212 0.318 0.136 0.128
Interactive Home Entertainment 2 0.227 0.284 0.106 0.148
Interactive Home Entertainment 3 0.319 0.246 0.091 0.153
Interactive Media & Services 1 0.202 0.173 0.168 0.151
Interactive Media & Services 2 0.147 0.135 0.156 0.091
Interactive Media & Services 3 −0.051 0.468 −0.053 0.273
Internet & Direct Marketing Retail 1 0.332 0.257 0.158 0.113
Internet & Direct Marketing Retail 2 0.055 0.159 0.138 0.084
Internet & Direct Marketing Retail 3 0.108 0.184 0.324 0.412
Internet & Direct Marketing Retail 3 0.016 0.275 0.128 0.123
Life & Health Insurance 1 0.029 0.186 0.022 0.094
Life & Health Insurance 2 0.066 0.151 −0.025 0.087
Life & Health Insurance 3 −0.109 0.328 0.043 0.191
Managed Health Care 1 0.151 0.209 0.168 0.133
Managed Health Care 2 0.118 0.216 0.172 0.144
Managed Health Care 3 0.187 0.186 0.106 0.128
Managed Health Care 4 0.209 0.137 0.129 0.087
Movies & Entertainment 1 0.066 0.149 0.070 0.111
Movies & Entertainment 2 0.335 0.324 −0.007 0.327
Movies & Entertainment 3 −0.146 0.320 0.175 0.136
Multi-Utilities 1 0.115 0.105 0.025 0.066
Multi-Utilities 2 0.061 0.146 0.200 0.058
Multi-Utilities 3 0.099 0.107 0.050 0.069
Multi-Utilities 4 0.021 0.183 0.108 0.079
Multi-Utilities 5 0.164 0.096 0.063 0.073
Multi-Utilities 6 0.051 0.161 0.000 0.064
Oil & Gas Equipment & Services 1 −0.181 0.292 0.378 0.221
Oil & Gas Equipment & Services 2 −0.261 0.402 0.226 0.191
Oil & Gas Equipment & Services 3 −0.306 0.363 0.062 0.177
Oil & Gas Equipment & Services 4 −0.285 0.331 0.183 0.130
Oil & Gas Exploration & Production 1 −0.367 0.514 0.110 0.195
Oil & Gas Exploration & Production 2 −0.121 0.327 0.137 0.160
Oil & Gas Exploration & Production 3 −0.117 0.202 0.189 0.161
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Table 6   (continued)

Industry Company ID x̄ sd(x) M̄ sd(M)

Oil & Gas Exploration & Production 4 −0.303 0.468 0.301 0.201
Oil & Gas Exploration & Production 5 −0.138 0.357 0.205 0.157
Oil & Gas Exploration & Production 6 −0.113 0.484 0.225 0.155
Oil & Gas Exploration & Production 7 −0.329 0.550 0.300 0.236
Oil & Gas Exploration & Production 8 −0.311 0.520 0.147 0.135
Oil & Gas Exploration & Production 9 −0.127 0.294 0.282 0.172
Oil & Gas Refining & Marketing 1 −0.045 0.348 0.229 0.151
Oil & Gas Refining & Marketing 2 −0.041 0.245 0.112 0.119
Oil & Gas Refining & Marketing 3 0.002 0.332 0.099 0.132
Oil & Gas Storage & Transportation 1 −0.153 0.370 0.189 0.168
Oil & Gas Storage & Transportation 2 −0.120 0.513 0.067 0.180
Oil & Gas Storage & Transportation 3 −0.154 0.393 0.167 0.222
Pharmaceuticals 1 0.081 0.186 0.105 0.182
Pharmaceuticals 2 0.058 0.100 0.046 0.108
Pharmaceuticals 3 0.152 0.161 0.085 0.145
Property & Casualty Insurance 1 −0.090 0.250 0.078 0.102
Property & Casualty Insurance 2 0.033 0.143 0.082 0.071
Property & Casualty Insurance 3 0.015 0.207 0.090 0.080
Property & Casualty Insurance 4 0.037 0.151 0.027 0.083
Railroads 1 0.139 0.284 0.082 0.109
Railroads 2 0.099 0.226 0.106 0.092
Railroads 3 0.096 0.211 0.091 0.101
Restaurants 1 0.089 0.383 0.033 0.163
Restaurants 2 0.093 0.286 0.087 0.096
Restaurants 3 0.109 0.138 0.074 0.073
Restaurants 4 0.121 0.204 0.074 0.107
Restaurants 5 0.075 0.168 0.242 0.211
Retail REITs 1 −0.057 0.250 0.038 0.069
Retail REITs 2 −0.094 0.303 0.063 0.118
Retail REITs 3 −0.140 0.364 0.098 0.058
Semiconductors 1 0.128 0.144 0.125 0.088
Semiconductors 2 0.097 0.149 0.050 0.132
Semiconductors 3 0.119 0.209 0.136 0.106
Semiconductors 4 0.293 0.164 0.087 0.097
Semiconductors 5 0.099 0.543 0.395 0.221
Semiconductors 6 0.498 0.503 0.034 0.223
Semiconductors 7 0.106 0.265 0.168 0.136
Semiconductors 8 0.045 0.260 0.095 0.122
Semiconductors 9 0.179 0.394 0.137 0.149
Semiconductors 10 0.164 0.138 0.016 0.127
Specialized REITs 1 0.160 0.126 0.129 0.125
Specialized REITs 2 0.216 0.162 0.109 0.107
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Appendix B: Details of Bayesian modelling

The global shrinkage factor � ∼ Gamma(27, 416) is based on a prior estimate, where 
we use inequality |𝜙| > 0.2 as a proxy for an informative expert. Our heuristic prior 
estimate was "around 10–20% of the analysts are informative". With the chosen prior 
distribution, the probability P(|𝜙| > 0.2) is within [0.1, 0.2] with a 95% probability. 
For the correlation matrix between experts, we are using an uninformative distribu-
tion Ω ∼ LKJ(1) (Lewadonsky-Kurowicka-Joe distribution, see Lewandowski et  al 
2009).

For other parameters, we use weakly informative distributions that guide the 
model towards plausible values and help the model to converge but avoid taking 
strong subjective opinions. Table 7 shows weakly informative prior distributions for 
the asset model.

Both degrees of freedom parameters �0 and � have restricted support (2,∞) as we 
assume that the related t-distributions have a finite variance. In addition, the prior 
distribution selections of degrees of freedom parameters are influenced by Juárez 
and Steel (2010). Table  8 shows weakly informative prior distributions for the 
SBEDE model.

With the EE model, we use the same prior distributions as with the SBEDE 
model for parameters � , � and �∗ . However, two prior decisions are specific for the 
EE model. For �∗ we use the weakly informative N(0, 0.752) distribution as we do 
not expect most experts to be very informative but still want to allocate reasonable 
probability for balanced experts. For a correlation coefficient � , we use the unin-
formative uniform U(−1, 1) distribution.

We fitted the models with the MCMC algorithm "Hamiltonian Monte Carlo with 
the No-U-turn Sampler" (Hoffman and Gelman 2014) using RStan (Stan Develop-
ment Team 2023). We run 8 MCMC chains, each having 7500 iterations and 7500 
warm-up iterations. We iteratively found out that with this number of iterations, 
most industries converge well. As a result, we had a total of S = 60000 simulated 
draws from posterior predictive distributions of xi[H,H+4] for all companies in every 
analyzed industry. These samples present possible future scenarios for next year’s 

Table 6   (continued)

Industry Company ID x̄ sd(x) M̄ sd(M)

Specialized REITs 3 0.173 0.164 0.133 0.112
Specialized REITs 4 −0.041 0.201 0.136 0.112
Specialty Stores 1 0.118 0.215 0.057 0.127
Specialty Stores 2 0.083 0.202 0.091 0.138
Specialty Stores 3 0.165 0.229 0.085 0.097
Specialty Stores 4 0.096 0.252 0.089 0.146
Specialty Stores 5 0.125 0.327 0.095 0.100
Systems Software 1 0.272 0.291 0.127 0.171
Systems Software 2 0.249 0.130 0.095 0.097
Systems Software 3 0.314 0.242 0.070 0.158
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stock returns. We monitored the convergence of the chains of xi[H,H+4] parameters 
with statistics R̂ , bulk effective sample size (bulk-ESS) and tail effective sample 
size (tail-ESS) (Vehtari et al 2021). We set the criteria for convergence as bulk-ESS 
> 400 and tail-ESS > 400 as recommended by Vehtari et al (2021). For R̂ , they sug-
gest the criterion R̂ < 1.01 , but we chose more liberal R̂ < 1.03 . We based the selec-
tions for S and the convergence criteria on a satisfying compromise between com-
puting time and the accuracy of the forecasts of xi[H,H+4] . One industry did not meet 
the convergence criteria, but we tried again, increasing S to 600,000, and the criteria 
was met. R and Stan codes and example data are available in Heikkinen (2024).

Appendix C: Optimized decisions

See Table 9.

Table 7   Weakly informative prior distributions for the asset model

HN refers to a half-normal distribution, and Gamma refers to a gamma distribution with shape and rate 
parameters

Parameter Distribution

Scale parameter for industry shocks, �0 HN(0, 0.0752)

Average scale for asset shocks within the industry, �∗ HN(0, 0.0752)

Standard deviation of random effect coefficient ci , � HN(0, 1.52)

Industry shock distribution’s degrees of freedom, �0 Gamma(2, 0.1)
Asset shock distribution’s degrees of freedom, � Gamma(2, 0.1)

Table 8   Weakly informative 
prior distributions for the 
SBEDE model

N refers to a normal distribution and HN to a half-normal distribu-
tion

Parameter Distribution/value

Mean bias in the industry, � N(0, 0.152)

Standard deviation of biases, � 0.3
Average inaccuracy of experts, �∗ HN(0, 0.152)

Standard deviation of random effect coefficients 
dj , �

HN(0, 1.52)
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Table 10   Sensitivity analysis results (S&P500 data) with prior selection: std of the expected return is 
0.05

Realized average portfolio growth rates (GMean G), return premiums, premium expectations, and real-
ized optimizer’s curse (OC), measured as BPS

Method GMean G GMean G Index Premium Premium Exp OC

1 SBEDE 2296 2282 13 304 −290
2 EE 2146 2282 −137 376 −513

Table 11   Sensitivity analysis results with prior selection (S&P500 data): std of the expected return is 0.2

Realized average portfolio growth rates (GMean G), return premiums, premium expectations, and real-
ized optimizer’s curse (OC), measured as BPS

Method GMean G GMean G Index Premium Premium Exp OC

1 SBEDE 2290 2282 8 1480 −1473
2 EE 1981 2282 −301 1486 −1787

Table 12   Hyperparameters 
for randomizing stock market 
returns and expert features

Type Hyperparameter Value

Market �0 10
Market � 7
Market �0 0.05
Market � 0.1
Market E(�) 0.05
Market SD(�) 0.1
Expert � 0.1
Expert �∗ 0.075
Expert � 0.5
Expert E(�) 0.45
Expert hi 0.15

Table 13   Simulation study 
coverage probabilities (CP) 
when n

t
= 20 and J = 4

Method CP 50 CP 68 CP 90 CP 95

1 SBEDE 0.531 0.708 0.901 0.945
2 EE 0.526 0.704 0.901 0.945
3 Merkle 0.566 0.742 0.924 0.962

Table 14   Simulation study 
coverage probabilities (CP) 
when n

t
= 20 and J = 8

Method CP 50 CP 68 CP 90 CP 95

1 SBEDE 0.493 0.689 0.904 0.952
2 EE 0.489 0.683 0.898 0.946
3 Merkle 0.570 0.758 0.947 0.975
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Appendix D: Results with alternative prior selections

See Tables 10, 11.

Appendix E: Details of the simulation study

Stock market returns are randomized based on the asset model in Sect.  3.2, and 
expert features and predictions are randomized based on the SBEDE model in 
Sect. 3.3 with the following additions. Expected returns

and correlations between experts

where hi stands for half-interval. Table 12 shows the values for all the needed hyper-
parameters. They are selected with the guidance of the real data. As these values dif-
fer between industries, we encourage readers to repeat these simulations with differ-
ent selections. The codes are available in Heikkinen (2024).  Tables 13, 14, 15 and 
16 show the coverage probabilities with different conditions in the simulation study.

Acknowledgements  This research is related to the thematic research area DEMO (Decision Analytics 
utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyvaskyla. 
We want to thank professor Juha-Pekka Junttila warmly for his comments about dividend management in 
portfolio optimization and CSC (IT Center for Science) for offering computing resources.

Author contributions  All authors contributed to the study conception and design. Material prepara-
tion, data collection and analysis were performed by Risto Heikkinen. The first draft of the manuscript 
was written by Risto Heikkinen and all authors commented on previous versions of the manuscript. All 
authors read and approved the final manuscript.

(E1)�i[t,t+4] ∼ N(E(�), SD(�)2)

(E2)�j,k ∼ Uniform(E(�) − hi,E(�) + hi),

Table 15   Simulation study 
coverage probabilities (CP) 
when n

t
= 40 and J = 4

Method CP 50 CP 68 CP 90 CP 95

1 SBEDE 0.492 0.668 0.898 0.948
2 EE 0.496 0.672 0.902 0.946
3 Merkle 0.536 0.711 0.921 0.966

Table 16   Simulation study 
coverage probabilities (CP) 
when n

t
= 40 and J = 8

Method CP 50 CP 68 CP 90 CP 95

1 SBEDE 0.524 0.700 0.913 0.956
2 EE 0.510 0.694 0.900 0.956
3 Merkle 0.607 0.785 0.957 0.981
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