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A B S T R A C T

We present a differential geometry-based model for linear wave equations in (2 + 1)-dimensional
spacetime. This model encompasses acoustic, elastic, and electromagnetic waves and is also
applicable in quantum mechanical simulations. For discretization, we introduce a spacetime
extension of discrete exterior calculus, resulting in a leapfrog-style time evolution. The scheme
further supports numerical simulations of moving and deforming domains. The numerical tests
presented in this paper demonstrate the method’s stability limits and computational efficiency.

. Introduction

Understanding the propagation of waves in spacetime presents a fundamental challenge with implications across various scientific
omains, including acoustics, elasticity, electromagnetism, and quantum mechanics. A primary difficulty in deriving a general model
rises from attempts at unification, which often focus on combining incompatible, problem-specific models. A potential remedy
s to return to the basics and seek the most general paradigm, shifting the focus from physical phenomena and observations to a
heoretical viewpoint. The authors have identified two promising concepts for unifying and generalizing classical vector analysis: the
xterior calculus of differential forms on manifolds [1] and Clifford geometric algebra with multivectors defined in pseudo-Euclidean
pacetime [2].

Several publications have introduced the Maxwell equations with differential forms (see, e.g., [3–6]), but neither of the concepts
as been generalized to a wider class of boundary value problems. We construct a real-valued spacetime algebra as a Clifford algebra
ith the Minkowski metric, presenting all physical quantities in spacetime as multivectors [7]. At each point of a flat spacetime
anifold, the spacetime algebra is reproduced as a tangent algebra, with locally defined multivectors [8]. The spacetime points and

heir tangent algebras form a Clifford bundle, which serves as the framework for defining multivector fields, such as electromagnetic,
coustic, elastic, or quantum mechanical fields. The geometric construction facilitates a natural unification of various wave models
see also [9,10]).

Over the past few decades, several computational tools based on problem-specific methods have been constructed, particularly
n the context of finite element methods. However, these often encounter challenges when addressing complex geometries,
iscontinuities in solutions, and the preservation of geometric properties. In the discontinuous Galerkin method, there are no global
ontinuity requirements, but each spacetime element only couples with the neighboring element by the face terms.

Cartan [11] introduced exterior calculus as a coordinate-free approach for handling differential forms on manifolds. Building on
his foundational work, discrete exterior calculus (DEC) [12,13] discretizes differential geometric quantities in a way that inherently
reserves the structure of the underlying smooth theory. It also relates to Tonti’s classification of physical variables and laws into
rimal and dual formulations [14,15].
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The early stages of the DEC, as a generalization of the finite difference time domain (FDTD) method [16], were introduced in
lectromagnetics by Bossavit and Kettunen [17]. Hirani [18] presented a rigorous computational tool that provides a framework

for discretizing differential forms, exterior derivatives, and the Hodge star operator, which led to the development of PyDEC
software [19]. Räbinä [20,21] implemented a general-purpose C++ library employing DEC formalism. More recently, Myyrä
published a discrete exterior calculus toolkit for Rust [22], which is currently under active development.

DEC discretization has been applied in several studies to static or time-harmonic problems from which time derivatives are
absent. Application areas include elastics [23], electromagnetics [24,25], quantum mechanics [26], and fluid problems [27]. In
dynamic problems, the system of partial differential equations is traditionally transformed into a system of ordinary differential
quations in time, which can then be solved using numerical integration. This classical approach, with DEC discretization in
pace, has found applications across various fields, including computer graphics [28,29], acoustics [30], electromagnetics [31–34],

quantum mechanics [35–37], and fluid dynamics [38]. For electromagnetics discretized with DEC, the mathematical aspects of
convergence and stability are discussed in [33,39], while for Poisson problems, stability, consistency, and convergence are proved
in [40]. Error bounds for discrete Hodge operators are considered in [41] in a general context. Toshniwal and Hughes introduced
isogeometric discrete differential forms [42], while Lohi et al. enhanced the method using higher-order Whitney forms [43–46]. An
essential feature that differentiates spacetime methods from the more classical approaches to dynamic boundary value problems is
the separation in space and time in discretization.

The early inspiration for discrete geometric approaches in spacetime, based on the Voronoi and Delaunay lattices, was a
mathematical formalism called Regge Calculus (RC), a discretized form of Einstein’s general relativity developed by Regge [47].
RC has been applied in both classical and quantum general relativity (see [48], and references therein). Later, Sorkin presented the
mathematical principles of causal sets to discretize spacetime [49]. Our preliminary results on spacetime simulations using discrete
xterior discretizations are presented in [50,51]. Our method relies on Voronoi–Delaunay tessellation and enables simulations in

domains that undergo motions and deformations. Such simulations are known to be challenging using finite element approaches,
ut some progress has also been made in that field, such as with unfitted finite elements (see, e.g., [52,53], and references therein).

The rest of this article is organized as follows. In Section 2, we generalize the linear (2 + 1)-dimensional wave model by employing
a Clifford algebra in Minkowski spacetime. We first introduce a multivector representation and then transition to differential form
formulation. Section 3 presents the spacetime discretization using discrete exterior calculus, which is a natural choice for the
differential form formulation. One of the key contributions of our work lies in the computational software and numerical tests
conducted to show the performance of the method. In Section 4, we demonstrate the accuracy and stability conditions of five
ifferent types of computational meshes. We also simulate a nonconvex spatial obstacle rotating around the time axis.

2. Spacetime model

We present a general model for linear wave equations in (2 + 1) dimensions based on a Clifford algebra in Minkowski spacetime
R1,2. That is, we have a Euclidean space (𝑥1, 𝑥2)𝑇 , imaginary time 𝑥0 = i𝑐 𝑡, and orthonormal basis vectors 𝛾𝑖, 𝑖 = 0, 1, 2, such that
0𝛾0 = −1 and 𝛾𝑖𝛾𝑖 = 1 for 𝑖 = 1, 2. The unit pseudoscalar is i = 𝛾0𝛾1𝛾2. The geometric product of two vectors, 𝑎 and 𝑏, can be

presented by 𝑎𝑏 = 𝑎 ⋅ 𝑏+ 𝑎∧ 𝑏, where 𝑎 ⋅ 𝑏 is the dot product and 𝑎∧ 𝑏 = i𝑎× 𝑏 is the exterior product (wedge product). The geometric
product of the basis vectors is associative and distributive, and 𝛾𝑖𝛾𝑗 = −𝛾𝑗𝛾𝑖 for 𝑖 ≠ 𝑗.

2.1. Multivector presentation

The basis for (2 + 1)-dimensional geometric algebra is set by 23 blades that are 1, 𝛾0, 𝛾1, 𝛾2, (𝛾0 ∧ 𝛾1), (𝛾0 ∧ 𝛾2), (𝛾1 ∧ 𝛾2), and
𝛾0 ∧ 𝛾1 ∧ 𝛾2). In general, the basis 𝑘-blades are wedge products of 𝑘 basis vectors that span a 𝑘-dimensional subspace. The wedge
roduct of two vectors results in a two-dimensional subspace called bivector (2-vector), and the wedge product of three vectors
esults in a three-dimensional trivector (3-vector) space. In a three-dimensional space, a general element, presented as a linear
ombination of the basis blades, with coefficients 𝑓𝑖, 𝑖 = 1,… , 8, is

𝐹 =𝑓1 + 𝑓2𝛾0 + 𝑓3𝛾1 + 𝑓4𝛾2 + 𝑓5(𝛾0 ∧ 𝛾1) + 𝑓6(𝛾0 ∧ 𝛾2) + 𝑓7(𝛾1 ∧ 𝛾2) + 𝑓8(𝛾0 ∧ 𝛾1 ∧ 𝛾2). (1)

Respectively, we present, with coefficients 𝑏𝑖, 𝑖 = 1,… , 8, a general source term,

𝐽 =𝑏1 + 𝑏2𝛾0 + 𝑏3𝛾1 + 𝑏4𝛾2 + 𝑏5(𝛾0 ∧ 𝛾1) + 𝑏6(𝛾0 ∧ 𝛾2) + 𝑏7(𝛾1 ∧ 𝛾2) + 𝑏8(𝛾0 ∧ 𝛾1 ∧ 𝛾2). (2)

By operating 𝐹 by the spacetime gradient 𝛁 = −𝛾0𝜕0 + 𝛾1𝜕1 + 𝛾2𝜕2, we get
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕0 𝜕1 𝜕2
−𝜕0 −𝜕1 −𝜕2
𝜕1 𝜕0 −𝜕2
𝜕2 𝜕0 𝜕1

−𝜕1 −𝜕0 𝜕2
− 𝜕2 −𝜕0 −𝜕1

−𝜕2 𝜕1 𝜕0
𝜕2 −𝜕1 −𝜕0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6
𝑏7
𝑏8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)
2 



S. Mönkölä et al.

𝜹

a

s
d

Results in Applied Mathematics 25 (2025) 100528 
Remark 2.1. Acoustic wave equation: By setting, in Eq. (3), 𝑓1 = 𝑓5 = 𝑓6 = 𝑓7 = 𝑓8 = 0, 𝑓3 and 𝑓4 can be associated with horizontal
and vertical velocity components and 𝑓2 with pressure.

Remark 2.2. Electromagnetic wave equation: By setting, in Eq. (3), 𝑓1 = 𝑓2 = 𝑓3 = 𝑓4 = 𝑓8 = 0 and associating 𝑓7 with the
third component of the magnetic field strength and 𝑓5 and 𝑓6 with the first and second components of the electric field strength,
we obtain the transverse electric mode of the Maxwell equation. Respectively, by setting 𝑓1 = 𝑓5 = 𝑓6 = 𝑓7 = 𝑓8 = 0 and associating
𝑓2 with the third component of the electric field strength and 𝑓3 and 𝑓4 with the second and first components of the magnetic field
strength, we get the transverse magnetic mode of the Maxwell equation.

2.2. Differential form formulation

Based on the dual correspondence between 𝑘-vectors and 𝑘-differential forms [54], we turn to a differential form representation,
where the differentials 𝑑𝑥0, 𝑑𝑥1, and 𝑑𝑥2 are basis 1-forms and basis 2-forms are constructed as wedge (exterior) products of two
basis 1-forms, such that 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑖 = 0 and 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗 = −𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖. Respectively, 𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 is a basis 3-form.

With differential multiforms

𝐹 = 𝑓1 + 𝑓2𝑑𝑥0 + 𝑓3𝑑𝑥1 + 𝑓4𝑑𝑥2 + 𝑓5(𝑑𝑥0 ∧ 𝑑𝑥1) + 𝑓6(𝑑𝑥0 ∧ 𝑑𝑥2) + 𝑓7(𝑑𝑥1 ∧ 𝑑𝑥2) + 𝑓8(𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2) (4)

and

𝐽 = �̃�1 + �̃�2𝑑𝑥0 + �̃�3𝑑𝑥1 + �̃�4𝑑𝑥2 + �̃�5(𝑑𝑥0 ∧ 𝑑𝑥1) + �̃�6(𝑑𝑥0 ∧ 𝑑𝑥2) + �̃�7(𝑑𝑥1 ∧ 𝑑𝑥2) + �̃�8(𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2), (5)

we can present (2 + 1)-dimensional linear wave models in a three-dimensional pseudo-Riemannian manifold as

𝝏𝐹 = 𝐽 , (6)

or

𝝏 ⋆ 𝐹 = ⋆𝐽 , (7)

where 𝝏 = (𝒅 + 𝜹) is the differential operator that is the sum of the exterior derivative 𝒅 and its coderivative (interior derivative)
= (−1)𝑘 ⋆−1 𝒅⋆ and ⋆ is the Hodge star operator. In particular,

𝒅𝐹 = − 𝜕0𝑓1𝑑𝑥0 + 𝜕1𝑓1𝑑𝑥1 + 𝜕2𝑓1𝑑𝑥2 − (𝜕0𝑓3 + 𝜕1𝑓2)(𝑑𝑥0 ∧ 𝑑𝑥1) − (𝜕0𝑓4 + 𝜕2𝑓2)(𝑑𝑥0 ∧ 𝑑𝑥2) + (𝜕1𝑓4 − 𝜕2𝑓3)(𝑑𝑥1 ∧ 𝑑𝑥2)

+ (𝜕2𝑓5 − 𝜕1𝑓6 − 𝜕0𝑓7)(𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2), (8)

𝜹𝐹 =𝜕0𝑓2 + 𝜕1𝑓3 + 𝜕2𝑓4 − (𝜕1𝑓5 + 𝜕2𝑓6)𝑑𝑥0 + (𝜕0𝑓5 − 𝜕2𝑓7)𝑑𝑥1 + (𝜕0𝑓6 + 𝜕1𝑓7)𝑑𝑥2
+ 𝜕2𝑓8(𝑑𝑥0 ∧ 𝑑𝑥1) − 𝜕1𝑓8(𝑑𝑥0 ∧ 𝑑𝑥2) + 𝜕0𝑓8(𝑑𝑥1 ∧ 𝑑𝑥2). (9)

Eqs. (6) and (7) are dual to each other. For instance, electromagnetic problems with electric field strength and magnetic flux density
re presented by Eq. (6) and with electric flux density and magnetic field strength by Eq. (7).

3. Discretization

We perform the spacetime discretization using the DEC. In principle, the procedure is similar than applied to space discretization
(see, e.g., [21,28,31,55]). First, we provide the computational domain with two meshes: a primal mesh and a dual mesh. The dual
mesh, formed as the Delaunay dual of the primal mesh, is orthogonal to the primal mesh under the Minkowski inner product. Each
mesh is a cell complex with such a hierarchy that a 0-cell is a vertex, a 1-cell is an edge between two 0-cells, a 2-cell is a face
urrounded by edges, and a 3-cell is a volume element surrounded by faces. Each primal 𝑘-cell is associated with a corresponding
ual (𝑛 − 𝑘)-cell.

In general, in a discretized 𝑛-dimensional manifold, or a cell complex, a 𝑘-form is an object that can be integrated over 𝑘-
dimensional, 0 ≤ 𝑘 ≤ 𝑛, submanifolds, or elements of the mesh. Discrete differential forms as cochains formalize the assignment of
values to these 𝑘-dimensional cells. That is, the variables can be associated with nodes (0-forms), edges (1-forms), faces (2-forms),
or volumes (3-forms). A discrete 𝑘-form corresponding to a differential form 𝛼𝑘 is

𝑢𝑘 = ∫𝑘
𝛼𝑘 =

⎛⎜⎜⎜⎝

∫𝑘1 𝛼𝑘
⋮

∫𝑘𝑛𝑘
𝛼𝑘

⎞⎟⎟⎟⎠
, (10)

where 𝑘𝑖 is the 𝑖th 𝑘-cell and 𝑛𝑘 is the number of 𝑘-cells in the mesh.
At the discrete level, the exterior derivative is presented as an incidence matrix 𝑑𝑘 that operates discrete differential 𝑘-forms 𝑢𝑘

and represents the neighboring relations and relative orientations. It describes the relationships between the 𝑘-dimensional cells and
their (𝑘− 1)-dimensional boundaries such that the entries of the matrix indicate whether a particular 𝑘-cell is incident to a particular
(𝑘 − 1)-cell. Since the Stokes theorem holds exactly, 𝑑 𝑢 = 𝑑 ∫ 𝛼 = ∫ 𝑑 𝛼 , the discrete differential operator 𝑑 is exact.
𝑘 𝑘 𝑘 𝐶𝑘 𝑘 𝐶𝑘+1 𝑘 𝑘

3 
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The discrete counterpart to the Hodge operator is matrix ⋆𝑘 mapping between the primal and dual mesh. It is diagonal by
onstruction if the dual elements are orthogonal to the primal elements. Essentially, it is a map from discrete differential 𝑘-forms
n a mesh to a discrete differential (𝑛 − 𝑘)-form on the dual mesh and includes metric and material properties.

The discretized general model for linear wave equations in four dimensions without external forces is
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝛿0𝑠
1
𝛥𝑡2

𝑑0𝑡
𝑑0𝑠 𝛿1𝑠

1
𝛥𝑡2

𝑑1𝑡
𝑑0𝑡 −𝛿0𝑠

𝑑1𝑠
1
𝛥𝑡2

𝑑2𝑡
𝑑1𝑡 −𝑑0𝑠 −𝛿1𝑠

𝑑2𝑡 −𝑑1𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑢0𝑠
𝑢1𝑠
𝑢1𝑡
𝑢2𝑠
𝑢2𝑡
𝑢3𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (11)

where discrete 𝑘-forms 𝑢𝑘 and incidence matrices 𝑑𝑘 and the corresponding co-operators 𝛿𝑘 are constructed by spatial (subscript 𝑠)
nd temporal (subscript 𝑡) components. As a consequence of the model (11), we get a leapfrog-style time-stepping.

4. Numerical examples

The simulations presented in this section are performed using in-house software implemented in C++ and based on the DEC
oftware library discussed in, for example, [21,50]. The results are carried out on a laptop with an Intel Core i5-5300U processor
t 2.30 GHz.

4.1. Accuracy and stability

We solve, over the time interval [0, 𝑇 ] within the spatial domain 𝛺 = [0, 1] × [0, 1], an transverse electric electromagnetic problem
with

𝐹 =𝐵3(𝑑𝑥1 ∧ 𝑑𝑥2) + 𝐸1(𝑑𝑥0 ∧ 𝑑𝑥1) + 𝐸2(𝑑𝑥0 ∧ 𝑑𝑥2) = 𝐵s − 𝐸s ∧ 𝑑𝑥0, (12)

𝐽 =𝐽2(𝑑𝑥0 ∧ 𝑑𝑥1) − 𝐽1(𝑑𝑥0 ∧ 𝑑𝑥2) = 𝐽 s ∧ 𝑑𝑥0, (13)

𝐽1 = −
(
2𝑥0(𝑥21 − 𝑥31)(𝑥2 − 𝑥22) +

1
3
𝑥30𝑥2(−5𝑥2 + 12𝑥1𝑥2 − 10𝑥1 + 4)

)
, (14)

𝐽2 = −
(
2𝑥0(𝑥1 − 𝑥21)(𝑥

2
2 − 𝑥32) −

1
3
𝑥30𝑥1(−5𝑥1 + 12𝑥1𝑥2 − 10𝑥2 + 4)

)
, (15)

where 𝑥0 is time, 𝐱 = (𝑥1, 𝑥2) contains spatial variables, 𝐵s = 𝐵3𝑑𝑥1∧𝑑𝑥2 is a two-form, and 𝐸s = 𝐸1𝑑𝑥1+𝐸2𝑑𝑥2 and 𝐽 s = 𝐽1𝑑𝑥2−𝐽2𝑑𝑥1
are one-forms. Here, 𝐸1 and 𝐸2 are the spatially horizontal and vertical components of the electric field, and 𝐵3 is the magnetic flux
perpendicular to the electric field. The model assumes that there are no horizontal or vertical components of the magnetic field or
the electric field component perpendicular to them.

The formulation above also satisfies

𝑑𝑠�̃� s = 𝜕�̃�s

𝜕 𝑥0
− 𝐽 s, (16)

𝑑𝑠𝐸s = − 𝜕𝐵s

𝜕 𝑥0
, (17)

where time and space are separated from each other, 𝑑𝑠 is the spatial exterior derivative, 𝜕
𝜕 𝑥0 is the time derivative, �̃�s =

𝐷1𝑑𝑥2 −𝐷2𝑑𝑥1 is a one-form, and �̃� s = 𝐻3 is a zero-form. With (16)–(17), the constitutive relations are �̃�s = ⋆𝜀𝐸s and 𝐵s = ⋆𝜇�̃� s,
where ⋆𝜀 and ⋆𝜇 are the Hodge operators, related to permittivity 𝜀 and permeability 𝜇, mapping a differential 𝑘-form to a differential
− 𝑘 form in an 𝑛-dimensional space. Respectively, in three-dimensional spacetime, the spatial one- and two-forms 𝐸s and 𝐵s have
s their dual counterparts spacetime two-form �̃� = 𝐷1(𝑑𝑥2 ∧ 𝑑𝑥0) −𝐷2(𝑑𝑥1 ∧ 𝑑𝑥0) and temporal one-form �̃� = 𝐻3 ∧ 𝑑𝑥0.

Given the spacetime context, we interpret both the initial conditions,

𝐸1(𝐱, 0) = 𝐸2(𝐱, 0) = 𝐻3(𝐱, 0) = 0, in 𝛺 , (18)
𝜕 𝐸1(𝐱, 0)

𝜕 𝑥0
=

𝜕 𝐸2(𝐱, 0)
𝜕 𝑥0

=
𝜕 𝐻3(𝐱, 0)

𝜕 𝑥0
= 0, in 𝛺 , (19)

and boundary conditions,

𝑛3𝐸2(𝐱, 𝑥0) = 0, 𝑛3𝐸1(𝐱, 𝑥0) = 0, 𝑛1𝐸2(𝐱, 𝑥0) = 𝑛2𝐸1(𝐱, 𝑥0), on 𝜕 𝛺 × [0, 𝑇 ], (20)

𝑛2𝐻3(𝐱, 𝑥0) = 1
3
𝑛2𝑥

3
0𝑥1𝑥2(−5𝑥1 + 6𝑥1𝑥2 − 5𝑥2 + 4), on 𝜕 𝛺 × [0, 𝑇 ], (21)

𝑛1𝐻3(𝐱, 𝑥0) = −1
3
𝑛1𝑥

3
0𝑥1𝑥2(−5𝑥1 + 6𝑥1𝑥2 − 5𝑥2 + 4), on 𝜕 𝛺 × [0, 𝑇 ], (22)

where 𝑛𝑖, 𝑖 = 1, 2, 3 are the components of the outward pointing unit normal, as conditions imposed along the spacetime boundary.
The electric permittivity and magnetic permeability are chosen to be equal to one.

The computational domain is discretized by a mesh of vertices, edges, surfaces, and volumes. In full (2+1)-dimensional spacetime,
he orthogonality of the dual mesh is defined by the Minkowski metric, which differs from the Euclidean treatment in the time
4 
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Fig. 1. Primal (black solid line) and dual (blue dashed line) spatial tesselations.

dimension. In principle, within the spatial domain 𝛺, we have 2D primal mesh structures constructed of squares, triangles,
snubsquares, tetrilles, or hexagons. The primal meshes and their dual counterparts are presented as cross-sections, restricted to
the spatial (𝑥1, 𝑥2) plane at time 𝑥0 = 0, in Fig. 1. We define the discrete differential 1-forms 𝖤 on primal edges and 𝖧 on dual edges.
Respectively, we can define the discrete differential 2-forms 𝖡 = ⋆−1

2 𝖧 on primal faces and 𝖣 = ⋆1𝖤 on dual faces.
The spatial mesh step size is denoted as ℎ𝑠. For meshes with elements of varying sizes, we denote the shortest spatial edge length

of the primal mesh as ℎ𝑠min . For the time direction, we use uniform mesh step size ℎ𝑡. The spatial 2D structure repeats itself in the
time direction, which is why we do not need to store the whole (2+1)D mesh structure. The temporal refinement does not increase
the memory requirement since the whole (2+1)D mesh is not stored. The spacetime-stepping is staggered both in space and time,
and, in principle, we could proceed in any of the spatial or temporal directions.

To consider the accuracy and stability of the method, we compare the numerical solution with the exact solution. The error
is measured at 𝑥0 = 1 as a discrete 𝓁2- norm ‖𝖤 − 𝖤exact‖2 =

√(
𝖤 − 𝖤exact

)𝖳 (
𝖤 − 𝖤exact

)
, where 𝖤 is the numerical solution vector

(discrete 1-form) and 𝖤exact is the line-integrated exact electric field strength vector with components 𝖤exact𝑗 = ∫𝑗 𝐄 ⋅ 𝑑 𝑙, where 𝐄 is
the analytical solution of the electric field given by the vector

𝐄(𝑥1, 𝑥2, 𝑥0) =
⎛
⎜⎜⎜⎝

𝑥20𝑥2(𝑥1 − 𝑥21)(𝑥2 − 𝑥22)

−𝑥20𝑥1(𝑥1 − 𝑥21)(𝑥2 − 𝑥22)
0

⎞
⎟⎟⎟⎠
. (23)

Respectively, the analytical solution of the magnetic field strength 𝐇 is

𝐇(𝑥1, 𝑥2, 𝑥0) =
⎛⎜⎜⎝

0
0

1
3𝑥

3
0𝑥1𝑥2(−5𝑥1 + 6𝑥1𝑥2 − 5𝑥2 + 4)

⎞⎟⎟⎠
. (24)

While proceeding in the time direction with a spatial mesh constructed of squares, the update formulas are the same as in the
conventional FDTD method with separated space and time discretization. Accordingly, for the stability of the numerical scheme,
the Courant–Friedrichs–Lewy (CFL) condition based on the eigenvalue criterion presented in [56] holds. That is, the scheme with a
square mesh is stable, with ℎ𝑡 ≤ ℎ𝑠∕

√
2 (see Fig. 2(a)). For a triangle mesh, the stability condition is ℎ𝑡 ≤ ℎ𝑠min∕

√
6 (see Fig. 2(b)).

Numerical tests also reveal the stability limits of the form ℎ𝑡 ≤ ℎ𝑠min∕𝛽 for other mesh types. For the snubsquare mesh, 𝛽 ≈ 2.613;
the tetrille mesh 𝛽 ≈ 1.401; and the hexagon mesh 𝛽 ≈ 1.394 (see Figs. 2(c)–2(e)).

The accuracy of the solution can be improved by refining the temporal discretization with only the square mesh. In other cases,
the level of accuracy of spatial discretization is already achieved with the largest stable temporal mesh stepsize. In these tests, the
uniformity of the primal mesh correlates with a more accurate result within a fixed CPU time (see Fig. 3). That is, in a unit square
5 
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Fig. 2. Error of the line-integrated electric field strength with respect to ℎ𝑡∕ℎ𝑠 for different mesh types.

spatial domain, simulations with a square mesh are computationally the most efficient. This is because other meshes have relatively
maller edge lengths near the domain boundaries, requiring finer temporal discretization to satisfy the CFL condition compared to
ther parts of the domain. Nevertheless, when utilizing more complex computational domains, the computational efficiency can be
mproved using mesh types other than the square grid.

4.2. Rotating obstacle

In this section, we consider a spacetime mesh wrapped around the time axis and show the method’s capability to handle rotating
omains. The cross-sectional profile of a boomerang-shaped spatial cavity rotates clockwise at a constant speed, covering an angle
6 
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Fig. 3. Error of the line-integrated electric field strength with respect to CPU time in seconds for square, triangle, snubsquare, tetrille, and hexagon meshes with
spatial and temporal refinements.

Fig. 4. Boomerang-shaped obstacle with ℎ𝑠 = 1∕12.

of 𝜃 within a time interval of 0.1. In this case, the spatial domain is tessellated with triangles, and the spatial edge length ℎ𝑠 remains
constant throughout the entire spatial domain within the triangular mesh (see Fig. 4). The selected shape of the spatial domain, along
with this mesh construction, eliminates errors arising from geometry approximation in the primal mesh. Hence, it is a preferable
option for this test compared to the square mesh. Furthermore, in Section 4.1, the triangle mesh yielded more accurate results within
a fixed CPU time than the snubsquare, tetrahedral, or hexagon meshes.

The spacetime discretization is accomplished by introducing in the time direction discretization, which can be performed either
synchronously or asynchronously (see Fig. 5). In synchronous time-stepping, we use constant time instants to compute the values
in the spatial plane, i.e. all vertices of the faces of the spatial mesh are at the same time level. In asynchronous time-stepping,
the time instant depends on the node positions of the spatial mesh analogous to pitching tents over a planar triangulation (see,
e.g., [57,58]). The advantage of asynchronous time-stepping is that there are temporal mesh stepsizes relatively smaller than the
spatial mesh stepsizes compared to synchronous time-stepping. Thus, when the number of mesh edges is fixed, the stability condition
for asynchronous time-stepping is less strict than the stability condition for synchronous time-stepping. When variables are evaluated
at different times, values can be interpolated to a fixed time point, though interpolation error may affect the accuracy of the solution.

First, we demonstrate the spatial cavity with edge length ℎ𝑠 = 1∕40 rotating clockwise with an angle of 𝜃 = 𝜋∕12 with synchronous
time-stepping and a timestep length of ℎ𝑡 = 1∕100. The primal mesh has 29952 nodes, 194068 edges, 320834 faces, and 156717
volumes. The problem we solve is (12)–(13), where 𝐽 = 0 and the wave source is set at the beginning of the simulation by discrete
2-form values, corresponding to 𝐵3 = 3(1 + cos(50𝑙)), on the mesh faces whose center of mass is closer than the distance 𝑙 = 𝜋∕50
to the point located 12 edge lengths horizontally from the tip of the trailing boomerang arm. In the chosen coordinates, this point
is at (−0.3, 0.6). All other initial and source values are set to zero. The boundaries of the cavity are assumed to be rigid, forming
a perfect electric conductor that confines the electromagnetic wave within the domain and causes total reflection on the boundary.
The simulation of this rotating cavity resonator is carried out with a wave speed of 1.0 until time 𝑥0 = 7.2 is reached. The snapshots
of the total wave pattern, as the wave is scattered by the moving cavity boundaries, are presented in Fig. 6 at 𝑥 = 𝑥 = 9𝑖∕5,
0 0𝑖
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Fig. 5. Synchronous versus asynchronous time-stepping in a mesh with ℎ𝑠 = 1∕4, constructed of 238 nodes, 1179 edges, and 756 faces.

Fig. 6. Snapshots of the wave scattering by the moving cavity boundaries.

Fig. 7. Stability factor 𝛽 with respect to rotation speed angle 𝜃 for several spatial mesh refinements with the largest stable timestep.

𝑖 = 1, 2, 3, 4. The CPU time required for the entire simulation, including mesh generation, assembling discrete structures, spacetime
evolution, and visualization, is 145 s.

We repeat the simulation for both synchronous and asynchronous time-steppings with rotation speed angles 𝛽 = 𝜋∕(3 ⋅ 2𝑖), 𝑖 =
1,… , 5 and spatial edge lengths ℎ𝑠 = 2−𝑖, 𝑖 = 3,… , 7. With these tests, we consider the stability limits of the form ℎ𝑡 ≤ ℎ𝑠∕𝛽.
Since the exact solution is not known, we consider the time-stepping to be stable, with the largest timestep with the norm of the
solution vector bounded. As 𝜃 → 0 and ℎ𝑠 → 0, the stability factor 𝛽 converges in synchronous time-stepping to

√
6 ≈ 2.449 (the

same stability factor as observed for the triangle mesh in Section 4.1) and in asynchronous time-stepping to 0.672 (see Fig. 7).
Constructing asynchronous time-stepping requires more computing time but enables the use of larger timestep lengths compared to
synchronous time-stepping. Overall, we do not observe a significant difference in CPU time requirements when comparing entire
simulations using synchronous and asynchronous time schemes with the largest stable timestep (see Fig. 8).
8 
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Fig. 8. CPU time in seconds required for the entire simulation, including mesh generation, assembling discrete structures, spacetime evolution, and visualization,
with respect to rotation speed angle 𝜃 for several spatial mesh refinements with the largest stable timestep.

5. Conclusions

We presented a (2 + 1)-dimensional general wave model in Minkowski spacetime and employed DEC-based spacetime dis-
cretization on five different types of meshes. Numerical tests were conducted to assess stability conditions and consider accuracy.
The method is not limited to convex spatial domains and allows for the treatment of moving and deforming domains through
its construction. Nevertheless, the shape of the spatial domain and the mesh type should be adjusted to each other to ensure
computational efficiency. Overall, the computational efficiency provided by the method is reflected in the fact that the numerical
tests were conducted on a laptop computer in a short time.
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