
Saku Mäkinen

ENHANCING SOFTWARE DEVELOPMENT
THROUGH VALUE STREAM MAPPING - A CASE

STUDY

JYVÄSKYLÄN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2024

ABSTRACT

Mäkinen, Saku
Enhancing Software Development Processes Through Value Stream
Mapping – A Case Study
Jyväskylä: University of Jyväskylä, 2024, 64 pp.
Information Systems, Master’s Thesis
Supervisor(s): Seppänen, Ville

This thesis investigates how Value Stream Mapping (VSM) can be used to iden-
tify waste, bottlenecks, and inefficiencies in software development processes.
VSM, first created for the manufacturing sector, has been modified and applied
to several industries, including software development, to improve and visualize
process flow. Despite its growing popularity, its implementation in software de-
velopment remains challenging due to the abstract nature of software processes.
This study employs a qualitative case study methodology, involving VSM work-
shops with three software development teams within a global IT company. The
research aims to understand the suitability of VSM for software development, its
impact on process efficiency, and whether it creates more value than it takes re-
sources to implement. The results show that VSM can offer a structured method
for mapping out existing processes, pointing out inefficiencies, and fostering col-
laboration among teams when brainstorming improvement suggestions and put-
ting them into practice. Key findings show that a lack of pre-planning, cross-
functional dependencies, and resource constraints frequently result in significant
bottlenecks throughout the development and testing phases. The research high-
lights the significance of integrating VSM with strong change management meth-
odologies to address resistance and enable seamless process transformations. Us-
ing automated technologies to improve productivity and communication, in-
cluding important stakeholders early in the process, and strengthening feedback
loops between development and testing are some of the recommendations. This
research improves the understanding of VSM's applicability in software devel-
opment and offers practical advice to businesses trying to improve productivity
and streamline workflows. The study concludes that while VSM can significantly
enhance software development workflows in the company, its success relies
heavily on the adoption of complementary strategies that address human and
organizational dynamics.

Keywords: Value Stream Mapping, Software Development, Lean Management,
Change Management, Agile Development, Software Process Optimization.

TIIVISTELMÄ

Mäkinen, Saku
Enhancing Software Development Processes Through Value Stream
Mapping – A Case Study
Jyväskylä: Jyväskylän yliopisto, 2024, 64 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja(t): Ville Seppänen

Tässä Pro gradu -tutkielmassa selvitetään, miten Value Stream Mappingia (VSM)
voidaan käyttää työkaluna, jolla tunnistetaan turhaa työtä, pullonkauloja ja
tehottomuutta ohjelmistokehitysprosesseissa. VSM kehitettiin ensin
teollisuusympäristöön. Sitä on myöhemmin muokattu ja sovellettu useille uusille
toimialoille, kuten ohjelmistokehityksen prosessien tehostamiseen ja
visualisoimiseen. VSM:n kasvavasta suosiosta huolimatta sen käyttäminen
ohjelmistokehityksessä on haastavaa ohjelmistoprosessien abstraktien
rakenteiden vuoksi. Tässä tutkimuksessa käytetään laadullista
tapaustutkimusmetodologiaa. Tutkimusaineiston keräämiseen käytettiin VSM-
työpajoja, joihin osallistui yhteensä kolme ohjelmistokehitystiimiä globaalista
tietoliikenneyrityksestä. Tutkimuksen tavoitteena oli ymmärtää VSM:n
soveltuvuus ohjelmistokehitykseen ja VSM:n vaikutus prosessien tehokkuuteen.
Tutkimuksella pyrittiin selvittämään luoko VSM lisäarvoa suhteessa sen
implementointiin käytettäviin resursseihin. Tutkimustulokset osoittavat, että
VSM on toimiva työkalu olemassa olevien prosessien kartoittamiseen,
tehottomuuden havaitsemiseen ja tiimien välisen yhteistyön edistämiseen.
Keskeisimmät tutkimustulokset osoittavat, että esisuunnittelun puute, eri
toimintojen väliset riippuvuudet ja resurssirajoitteet johtavat usein
pullonkauloihin tiimien prosesseissa. Tutkimuksessa havaittuja mahdollisia
suosituksia ovat automatisoidun teknologian käyttäminen tuottavuuden ja
viestinnän parantamiseksi, mukaan lukien tärkeiden sidosryhmien aktivoiminen
prosessin varhaisessa vaiheessa, sekä kehitystyön ja testauksen välisten
palautesilmukoiden vahvistaminen. Tämä tutkimus parantaa ymmärrystä
VSM:n sovellettavuudesta ohjelmistokehityksessä ja tarjoaa käytännön neuvoja
yrityksille, jotka pyrkivät parantamaan tuottavuutta ja virtaviivaistamaan
prosessivirtojaan. Tutkimuksen johtopäätöksenä on, että vaikka VSM voi
tehostaa yrityksen ohjelmistokehitysprosesseja, sen menestys riippuu vahvasti
myös siitä, otetaanko käyttöön strategioita, jotka huomioivat ihmisten ja
organisaation dynamiikan.

Asiasanat: Ketterät menetelmät, Ohjelmistokehitys, Ohjelmistokehityksen opti-
mointi

FIGURES

Figure 1 The phases of a Waterfall Model (Pfleger & Atlee, 2006) 12
Figure 2. Diagram illustrating the Software Development Life Cycle (SDLC).
Adapted from “Software Development Life Cycle (SDLC),” by A. Artjoms, 2024,
Medium. .. 14
Figure 3 The development cost vs. change in the development process (Presmann,
2005). .. 16
Figure 4. Agile Methodology Design (Matharu, et al., 2015) 18
Figure 5 VSM workshop structure. bin Ali, (2015) ... 22
Figure 6 CSM from the Team 1 .. 36
Figure 7 CSM from the Team 2 .. 40
Figure 8 CSM from the Team 3 .. 43

TABLES

Table 1 The waterfall method’s advantages and disadvantages 13
Table 2. Three popular agile methods Scrum, Lean Software Development and
Scaled Agile Framework (SAFe) .. 17
Table 3 Agile method challenges according by Miller (2013) 19

Table 4. Comparison between traditional and agile methods 20
Table 5. Change management steps according to Lewin, (1948), Kotter, (2007)
Mento et al., (2002) and Cummings and Worley, (2016) .. 25
Table 6. Summary of the workshops .. 46
Table 7. Feedback survey results ... 47

TABLE OF CONTEXTS

ABSTRACT
FIGURES
TABLES

1 INTRODUCTION ... 7

2 THEORETICAL BACKGROUND .. 10
2.1 Software Development Processes ... 10

2.1.1 Overview of Software Development ... 10
2.1.2 Traditional Software Development: The Waterfall Method 11
2.1.3 Agile Software Development: Lean, Scrum, and Scaled Agile .. 14
2.1.4 Comparison of Traditional and Agile Approaches 19

2.2 Value Stream Mapping in Software Development 21
2.2.1 Introduction to Value Stream Mapping .. 21

2.2.2 Benefits of Value Stream Mapping .. 23
2.3 Change Management in Software Development .. 24

2.3.1 Overview of Change Management .. 24

2.3.2 Change Management in Software Development 26
2.4 Summary and Transition to the Empirical Study ... 27

3 METHODOLOGY ... 29
3.1 Objectives and Research Questions .. 29
3.2 Selected Methodology .. 30
3.3 Case Description ... 31

3.4 Data Collection ... 32

3.5 Data Analysis .. 33
3.6 Research Ethics ... 33

4 RESULTS .. 35
4.1 Workshop 1 ... 35

4.1.1 Team Background ... 35
4.1.2 Current State VSM .. 35
4.1.3 Pain Points and Bottlenecks .. 37
4.1.4 Improvement Opportunities .. 38
4.1.5 Conclusion of the Workshop 1 .. 39

4.2 Workshop 2 ... 39
4.2.1 Team Background ... 39
4.2.2 Current State VSM .. 39
4.2.3 Pain Points and Bottlenecks .. 40

4.2.4 Improvement Opportunities .. 41
4.2.5 Conclusion of the Workshop 2 .. 42

4.3 Workshop 3 ... 42
4.3.1 Team Background ... 42

4.3.2 Current State VSM .. 42
4.3.3 Pain Points and Bottlenecks .. 43
4.3.4 Improvement Opportunities .. 44
4.3.5 Conclusion of the Workshop 3 .. 44

4.4 Comparative Analysis of Workshop Findings .. 45

4.4.1 Workshop Summary .. 45
4.4.2 Overall Value of VSM .. 46

5 DISCUSSION ... 48
5.1 Interpretation of Findings ... 48
5.2 Value of VSM in Software Development ... 50
5.3 Implications for Theory and Practice ... 50

6 CONCLUSION .. 52
6.1 Summary of Key Findings .. 52
6.2 Theoretical Contributions ... 53
6.3 Practical Recommendations ... 54
6.4 Limitations and Future Research... 54
6.5 Final Thoughts.. 55

REFERENCES .. 56

APPENDIX ONE TEAM 1 VALUE STREAM MAPS .. 62

APPENDIX TWO TEAM 2 VALUE STREAM MAP ... 63

APPENDIX THREE TEAM 3 VALUE STREAM MAP ... 64

Modern software development has gone through dramatic changes over the past
decades. Initially dominated by linear and sequential methodologies such as the
Waterfall model, the industry has increasingly shifted toward iterative, cyclical
frameworks like agile, Scrum, and DevOps. These methodologies enhance inte-
gration, frequent increments, and adaptive planning, which are noteworthy ap-
proaches to addressing changes in requirements and enhancing the rate of mar-
ket deployment.

Despite the adoption of modern software development methodologies,
many projects continue to face challenges. These include frequent changes to pro-
ject scope, communication breakdowns within and between teams, and ineffec-
tive resource management. All these might lead to delays and increased costs.
These difficulties demonstrate the need for better methods of process manage-
ment. As a result, businesses are using lean management techniques in increasing
numbers. These methods were initially developed for the manufacturing sector
but have subsequently been modified for use in a variety of industries, including
software development. Value Stream Mapping (VSM), a method for visualizing
and optimizing the flow of materials and information needed to produce a prod-
uct or provide a service, is one of the key elements of lean management.

The goal of lean management is to reduce or eliminate waste while optimiz-
ing value for customers. Value-added and non-value-adding operations are iden-
tified by VSM, which helps businesses optimize their workflows and enhance
productivity. Because VSM may enhance complex development workflows,
there has been a lot of interest in implementing it in software development.

Software development processes usually involve several related phases, in-
cluding testing, deployment, specification, coding, and maintenance. Organiza-
tions can use VSM to get a comprehensive understanding of their development
processes, spot inefficiencies, and make data-driven choices that will boost out-
put. This method is a useful tool for increasing overall development efficiency
since it not only helps identify possible issue areas but also minimizes delays and
maximizes the utilization of resources.

1 INTRODUCTION

8

There also are some issues that organizations must face when they decide
to implement VSM. While manufacturing processes are more open to straightfor-
ward mapping, software development is more abstract and is often an iterative
process. Implementing VSM can be challenging, as it often requires significant
changes to already established workflows, which can lead to resistance from
teams. For VSM to be successfully adopted, it is essential to apply effective
change management practices that facilitate a smooth transition and encourage
team buy-in.

Furthermore, cautious organizational change management is necessary for
the successful implementation of VSM within software teams. Theories of change
management, including Bridges' Transition Model and Kotter's 8-step model,
place a strong emphasis on leading teams through change, dealing with opposi-
tion, and developing a common goal. A change in the team's development meth-
odology is frequently necessary for the successful deployment of VSM, which
makes change management procedures essential to reaching the intended results.

The use of lean and agile approaches in software development has been the
subject of earlier research, which has shown how these approaches can shorten
lead times, foster better teamwork, and increase overall productivity. However,
the use of VSM in software development is still an emerging area of research.
Prior research reveals that while VSM can help detect bottlenecks and waste, its
application in software settings is more challenging than in traditional manufac-
turing due to the abstract nature of software development processes (Khurum,
Petersen & Gorschek, 2014; Tyagi Choudhary, Cai &Yang, 2015). Furthermore, it
has been emphasized that the deployment of VSM must be accompanied by ef-
fective change management practices to guarantee long-term gains (Ali, Petersen
& Schneider, 2016).

Despite these insights, a lack of thorough research has been done on the
actual software development teams in which VSM is applied, as well as the dif-
ficulties that may occur in doing so. By performing an empirical study to deter-
mine the suitability of VSM in software development and analyse its influence
on process efficiency, this research seeks to close this gap.

Using a qualitative case study methodology, the study conducts VSM work-
shops inside a global IT company. The empirical data is gathered using a combi-
nation of feedback surveys, and the main data is gathered from VSM mapping
workshops from three distinct software development teams. The goal of the
workshops is to map out each team's present development process, pinpoint any
inefficiencies or bottlenecks, and suggest doable fixes. The information is exam-
ined to evaluate the difficulties encountered in putting VSM recommendations
into practice as well as the efficacy of VSM in locating and resolving process in-
efficiencies. To assess the effect of VSM on team performance, quantitative met-
rics like cycle time, resource allocation, and velocity are employed in addition to
the qualitative data. These objectives are reflected in the research questions this
thesis attempts to answer:

• What are the main pain points of a given company’s software devel-
opment and how they can be identified by Value Stream Mapping?

9

• What value does VSM bring to the company's teams and how can
this value be realized in the current software development environ-
ment?

Following this introduction, Chapter 2 provides an overview of the theoretical
background, covering software development methodologies, VSM principles,
and change management theories. Chapter 3 details the research design, meth-
odology, and data collection processes. The results from the empirical study are
presented in Chapter 4, which includes case descriptions and analysis of the VSM
workshops. Chapter 5 discusses the implications of the findings, while Chapter
6 concludes the thesis by summarising the key contributions, limitations, and
suggestions for future research.

This thesis benefited from the use of artificial intelligence (AI) tools, specif-
ically for language refinement and rephrasing support. These tools were utilized
to enhance the clarity and readability of the text, ensuring the effective commu-
nication of the research findings and analyses presented herein.

10

This narrative literature review looks at important ideas and frameworks that can
help shape future research. It carefully examines and brings together these con-
cepts to provide a solid foundation for what is to come. By building on previous
studies, a comprehensive understanding is established to provide a solid foun-
dation for subsequent investigations. Articles used are searched through Google
Scholar and JYKDOK. The articles point out that being timely and reliable is key
for credibility. Reliability of the articles is checked by looking at a JUFO classifi-
cation of at least 1, along with how often an article is cited and the quality of those
citations. These factors reflect each article's academic impact and acceptance
within the scholarly community.

2.1 Software Development Processes

In this chapter, we are studying what is software development, and what are the
most common practices and processes in software development. Also, we are go-
ing to look at the most common challenges that are faced during the software
development processes.

2.1.1 Overview of Software Development

Software development is a discipline that has undergone many improvements
through time, and it still does when a new strategy, way of work, or technology
is introduced. It aims to keep up with the new advancements in technology and
modern business requirements as efficiently as possible. The goal of software de-
velopment is to reach the final software product. There are different ways to
reach that goal and every company and person working on a software product is
trying to find the best processes to build the final product.

The term “Software Engineering” dates back to 1968 and NATO where a
study group that focused on addressing software issues and promoting its use in

2 THEORETICAL BACKGROUND

11

various aspects of life (Al-Sagga, Swahla & Abdelnabi, 2020). Like other engi-
neering disciplines, software is created for specific purposes. IEEE (1990) de-
scribes software engineering as “The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.”. In a software develop-
ment project, many steps need the approach of systematic, disciplined, and quan-
tifiable ways to build the software product to produce the best software product
possible. The end product should be as reliable as possible, easy to maintain, and
meet the business requirements that are based on the same criteria (Braude and
Bernstein, 2016). Software development is done by teams and needs strong coop-
eration between the teams and individuals (Giuffrida & Dittrich, 2015). Tasks are
often distributed across several teams. These tasks are managed and prioritized
based on specific criteria. Some tasks can be completed in parallel; others depend
on the completion of preceding tasks. Coordination among these tasks, processes,
and teams is essential to achieving the best software product possible at minimal
cost and time (Giuffrida & Dittrich, 2015).

Various approaches have developed over time to handle the difficulties and
complexity that come with developing software. Modern systems like agile, lean,
and Scrum encourage flexibility, adaptability, and frequent collaboration while
classic approaches like the Waterfall model emphasize thorough preparation and
documentation. It is essential to comprehend different approaches to choose the
best strategy for a particular project.

2.1.2 Traditional Software Development: The Waterfall Method

There are many traditional methods to develop software products. There are for
example the waterfall approach, iterative and incremental approach, spiral ap-
proach, and evolutionary approach. They are often referred to as planned or
heavyweight approaches which implement these approaches are particularly
useful for developing large, complex software systems, as they help eliminate
outdated, informal development practices and deliver high-quality software sys-
tematically, meeting user requirements within a predefined timeframe (Matharu,
Mishra, Singh & Upadhayay, 2015). On the other hand, the traditional software
development process has many downfalls due to its heavy size and other disad-
vantages such as:

1. Limited flexibility, because the project plan is completed before starting
the project

2. Lack of customer involvement during the project
3. High-risk due to testing and validation being at the end of the process
4. Lengthy development cycle (Pargoangar, 2023).

Many traditional projects fail because of their size and changes during the project.
Big projects fail due to their big size and long development time. Once the plan
is finished and the development starts the business requirements might have
changed because of the fast-changing business environment. For example, in the

12

waterfall approach changes are difficult and costly to make during lengthy de-
velopment. In the planning phase project management would be able to “see the
future” and predict problems upfront to make the software product effective to
the business (Jammalamadaka and Krishna, 2013). If the requirements change the
work that has been done might be for nothing and development might have to
be planned and start all over again. In many cases, the software product that is
finished might be “old” because of the changing environment and long develop-
ment time.

The Waterfall Method (Figure 1) is the most traditional way of software de-
velopment, and it is linear and simple to understand. The Waterfall model is a
static approach to systems development that progresses linearly and sequentially,
completing one activity before moving on to the next one (Adenowo & Adenowo,
2013). Fowler (2018) thinks that the waterfall method stages can be broken up
based on the following activities: requirement analysis, design, coding, and test-
ing. Pressman (2005) identifies the steps of the waterfall method as: communica-
tion (project initiation and requirements gathering), planning (estimating, sched-
uling, and tracking), modeling (analysis and design), construction (coding and
testing), and deployment (delivery, support, and feedback). Pfleeger and Atlee
(2006) describe the model as including the following phases: requirement analy-
sis, system design, program design, coding, unit and integration testing, system
testing, acceptance testing, and operation and maintenance.

Figure 1 The phases of a Waterfall Model (Pfleger & Atlee,
2006)

13

According to Pressman and Maxim (2014), the Waterfall technique is a linear ap-
proach to software development that divides projects into successive phases that
offer structure and predictability. This paradigm works well for projects with
consistent needs because it provides transparency and control through well-de-
fined milestones and thorough documentation (Somerville, 2016). However, be-
cause of its rigidity, it can be difficult to change to changing needs, and if prob-
lems are found late in the development process, the delayed testing phase may
result in expensive adjustments (Pfleeger & Atlee, 2010). The Waterfall model's
main strengths and drawbacks are listed in the following table, which also shows
how it works well in organized settings and how it falls short in more dynamic
settings highlights the situations in which it works best and any restrictions that
might affect its applicability for certain projects. Table 1 provides a comprehen-
sive overview of the advantages and disadvantages of the waterfall method.

Table 1 The waterfall method’s advantages and disadvantages

14

Some things unite the waterfall methodology and the agile methods. The Soft-
ware Development Life Cycle (SDLC) is used to develop and deliver high-quality,
reliable, cost-effective software products within a specified timeframe in the soft-
ware industry. This is also called the software development process model
(Shylez, 2017). Figure 2 demonstrates the SLDC and its parts. The SLDC is valid
in both traditional and agile ways of work. In agile the cycle goes around every
iteration, while in traditional ways for example waterfall methodology the steps
are done one at a time.

2.1.3 Agile Software Development: Lean, Scrum, and Scaled Agile

Agile encompasses a wide range of software development approaches and phi-
losophies. It serves as a conceptual framework for software engineering, begin-
ning with initial planning and progressing through iterative and incremental in-
teractions until project completion (Al-Sagga, et al. 2020). The primary aim of ag-
ile is to minimize overhead in the software development process while facilitat-
ing adaptability to changes without compromising the process or necessitating
excessive rework.

Although there are various methods within the agile philosophy, they are all
united by the "Agile Software Development Manifesto" established by Beck et al.
in 2001. This manifesto, introduced and endorsed by a group of 17 software

Figure 2. Diagram illustrating the Software Development Life Cycle
(SDLC). Adapted from “Software Development Life Cycle
(SDLC),” by A. Artjoms, 2024, Medium.

15

engineering consultants, outlines a set of principles and values for software and
system agility. The four values and twelve principles form the cornerstone for
directing the software development process and defining the distinctive charac-
teristics of any method associated with agility (Rodríguez, Mäntylä, Oivo, Lwa-
katare, Seppänen & Kuvaja, 2019). Fast changing environment does mean that
the team must adjust its structure, relationships, and behaviour according to the
situation. In each iteration, the team continues practices that were effective in the
last iteration and modifies the practices that posed obstacles in their workflow
(Al-Sagga, et al., 2020). These values and principles took the industry by storm
and changed the way of work for software engineering. Due to agile’s reduced
costs and improved productivity, quality, and satisfaction, the agile paradigm
has made a significant impact on the software development industry over the
past 20 years and continues to do so (Ericson, Lyytinen & Siau, 2005). The main
reason for the improvements in reduced costs, improved productivity and qual-
ity is due to the help of agile’s flexible handling techniques and improved com-
munication and coordination mechanisms (Rauf & Al-Ghafees, 2015).

Agility refers to the capability to adapt quickly to environment changes, new
user requirements or delivery constraints. It is linked with nimbleness, supple-
ness, quickness, dexterity, liveliness, and alertness (Ericson, et al., 2005). The
amount of agility a company possesses will determine its level of competitiveness
(Al-Shagga et al., 2020). Each iteration in the agile framework includes planning,
requirement analysis, design, coding, and testing (Choudhary and Rakesh, 2016).
The main advantages of using agile ways of work are:

• Improved communication and coordination among team members.

• Quicker releases.

• Increased flexibility of design.

• A more reasonable and adaptable process (Choudhary and Rakesh,
2016).

16

One of the most dominant characteristics of agile ways of working is the ability
to adapt to changes, as can be seen in Figure 3 (Pressman, 2005). As the surround-
ing environment is subject to changes, conventional software development pro-
cesses incur nonlinear increasing costs as the project progresses in response to
changes. In contrast, the incremental delivery aspect of agile processes reduces
and flattens these costs, enabling changes at later stages without significant losses
in cost and time (Pressman, 2005). This gives a great advantage in every spectrum
of success measurements that are used in software development projects. Using
an agile framework does not guarantee success but makes the failures more man-
ageable in a way of minimizing costs and the loss of time.

Many agile methods support and take their base knowledge from the Agile Man-
ifesto principles. Each agile method consists different mixture of practices which
then construct a description of how the day-to-day work is done by the team
member. Each method is different from the other usually from its set of terminol-
ogy and practices (Elbanna and Sarker, 2016). The most common agile methods
are Test-Driven Development (TDD), Feature Driven Development (FDD), Ex-
treme Programming (XP), Scrum method, and Dynamic System Development
Model (DSDM) to name of few (Al-Sagga, et al., 2020).

Over time each agile method has developed over the years and there are
new methodologies have emerged taking the basis of their predecessors. Every
methodology has its principles, iterations, life cycle, advantages and disad-
vantages. All agile software development methodologies construct the software
through iterative and incremental processes.

 Agile can be efficient also in large-scale projects. There are principles and
guidelines for using agile methodologies in complex and large-scale software de-
velopment such as Scaled Agile Framework (SAFe) (Putta, Paasivaara & Lasse-
nius, 2018). SAFe improves company’s transparency, alignment, productivity,

Figure 3 The development cost vs. change in the development process
(Presmann, 2005).

17

predictability and time to market challenges. SAFe is a framework that tries to
make the whole organization agile way (Brenner and Wunder, 2015). The SAFe
approach tackles the issue of scalability by increasing the extent of certain agile
practices and including novel ideas and methods (such as release trains, business
and architectural epics, and portfolio backlogs) that mesh well with both basic
and scaled agile techniques (Turetken, Stojanov & Trienekens, 2017). Table 2
demonstrates three popular agile methods Scrum, Lean Software Development
and Scaled Agile Framework (SAFe).

There are many frameworks to choose from and it is not an easy task to choose
the right one to use. Any company that wants to be effective has at least to study
the opportunities of agile versus traditional way of software product develop-
ment. It is important to consider that agile methods may not always be appropri-
ate for every company, and traditional methods remain a viable alternative (Ku-
rapati, Manyam & Petersen, 2012). The reason for that is for the company to suc-
ceed in transformation from a traditional software development method to an
agile method needs transformation work and that could be a challenge to a com-
pany (Kurapati, et al., 2012). So, the effort is bigger than the gains. Many compa-
nies adopt a tailored approach to the agile framework to ensure it is the most
efficient for their specific needs (Campanelli & Parreiras, 2015). The approaches
for the agile method tailoring are based on method engineering and the main

Table 2. Three popular agile methods Scrum, Lean Software Development and Scaled Agile
Framework (SAFe)

18

criteria for the method tailoring are internal environment and objectives (Cam-
panelli & Parreiras, 2015).

Software development teams using agile methods work on the same tasks
as in traditional software development methods but only in iterations (Figure 4).
The first step that the company needs to do is to create agile teams from the ex-
isting development teams. When forming agile teams, it is important to carefully
consider the skills and knowledge required for the project and its specific needs
(Cho, 2010). The goal of team formation is to minimize the time needed to grasp
the business logic, development tools, and programming languages. In addition
to team members, agile teams benefit from having a leader who can envision the
bigger picture and steer the team towards sound decisions, even though self-
management is a key feature of agile, particularly in Scrum method (Cho, 2010).

According to Kettunen and Laanti (2008), software companies use agile methods
where small teams work closely with customers to build high-quality software
products with frequent iterations and feedback. agile methods are highly effec-
tive for small projects. It must be noted, that for complex software products and
organizations, additional constraints must be met to realize the benefits of using
agile methods. Nerur, Mahapatra and Mangalaraj (2005) reported the problems
of migration challenges to agile methods. Despite these difficulties, companies
that use agile for large-scale or distributed projects have shown benefits
(Dingsøyr, Moe, Fægri & Seim, 2018; Eckstein, 2013). Agile is used in develop-
ment projects by organizations such as Yahoo, Google, Microsoft, Siemens,
CNBC, and AOL (Hajjdiab & Taleb, 2011).

Agile approaches offer flexibility, adaptability, and enhanced teamwork,
but implementing them can be extremely difficult at the management, opera-
tional, and organizational levels. Effective implementation requires a profound
culture transformation, which many firms find difficult to accomplish, in addi-
tion to a change in development procedures. Miller (2013) states that poor com-
munication, opposition to change, and a lack of support from important stake-
holders are typical obstacles. Adoption of agile might operationally result in
daily difficulties such as backlog management, cross-functional team

Figure 4. Agile Methodology Design (Matharu, et
al., 2015)

19

coordination, and task visibility. Successful integration might also be hampered
by imprecise procedures and a lack of seasoned agile practitioners. more details
are presented in Table 3.

2.1.4 Comparison of Traditional and Agile Approaches

Agile and traditional approaches differ primarily in how flexible and adaptable
they are to changes. Conventional methods, like the Waterfall technique, have a
rigid, phase-by-phase schedule that restricts flexibility after development begins.
Agile approaches, on the other hand, take advantage of iterative cycles, which
enable regular revaluation and adaptation in response to stakeholder input. Ag-
ile and conventional software development methodologies differ from one an-
other, as Table 4 illustrates.

Agile methods are highly adaptive due to continuous collaboration be-
tween developers and customers and scoping the ways of work in every iteration,
making them effective especially for small to medium-sized projects. Agile fo-
cuses on short-term planning and specific functionalities, making it more adjust-
able and easier to modify compared to the extensive long-term planning which
is required in traditional methods. Agile approaches put working software ahead
of documentation, while traditional techniques place more emphasis on

Table 3 Agile method challenges according by Miller (2013)

20

thorough documentation, which causes engineers to spend a lot of time on pa-
perwork. Sure, there is documentation, but just that extensive in the agile ways
of work. Due to their structured, sequential character, traditional techniques of-
ten call for larger teams and greater budgets, whereas agile approaches typically
include smaller teams and essentially a lower budget from the start of the project.
Every approach has pros and cons of its own and a position in the field of soft-
ware development.

Even if traditional approaches are dependable and disciplined, they can be-
come inflexible and unyielding to modifications, which makes them less appro-
priate for fast-paced work settings. Agile approaches are very effective for pro-
jects with quickly changing requirements since they are built to handle uncer-
tainty and change (Campanelli & Parreiras, 2015).

Each methodology—traditional and agile—has advantages and disadvantages of
its own. The project's needs, organizational structure, and other factors all have
a role in which strategy is selected. While the Waterfall approach may work well
for projects with defined and consistent requirements, agile methodologies are

Table 4. Comparison between traditional and agile methods

21

more versatile and give teams the capacity to respond fast to changing client
needs (Kurapati, Manyam & Petersen, 2012).

2.2 Value Stream Mapping in Software Development

In this chapter, Value Stream Mapping (VSM) will be examined, including its
application in software development and the benefits it can bring to improving
software development processes.

2.2.1 Introduction to Value Stream Mapping

VSM is a method or tool that uses practical ways to help people visualize and
comprehend the information and material flow that a product goes through as it
moves along the value stream. The value stream refers to the comprehensive ar-
ray of activities—both value-adding and non-value-adding—essential for deliv-
ering a product or service from its initial conception to the final delivery to the
client (Nowak, Pfaff & Karbach, 2017). Customer loop, production control, sup-
plier loop, manufacturing loop, information flow, lead time data bar with critical
path are the components of VSM that provide us with a comprehensive picture
of the entire supply chain, from the needs of the customer to the supplier's deliv-
ery (Chen, Lixia & Bo Meng, 2010). VSM is used to explore and find wastes, inef-
ficiencies, and non-value-added steps using a single, definable process out of a
complete product development process (Tyagi, Choudhary, Cai & Yang, 2015). It
can be used in a variety of processes, industries, and settings. Another descrip-
tion of VSM in software development is that it is a lean methodology used to
visualize the current process flow, called current state map or CSM. VSM is also
supposed to pinpoint activities in the process that either add value or do not and
develop a collaborative plan for enhancing the process. This plan outlines the
desired future state and is called a future state map (FSM) (Khurum, et al., 2014;
Rother and Shook, 1999). VSM examines the movement of information as well as
materials through the process. Akin to the examination of material flow in soft-
ware development, artefact flow pertains to the flow of "work items," like re-
quirements, use cases, or user stories, that are involved in the process. Software
development requires recording verbal, written, formal, and informal communi-
cation in production processes where "information flow" mostly consists of
scheduling data. Additionally, it is critical to recognize and evaluate the data,
expertise, and abilities required to carry out the value-adding tasks during the
software development process (Ali, Petersen & Schneider, 2016).

The primary method for transitioning from agile to true continuous soft-
ware development is flow, which is a fundamental tenet of contemporary lean
thinking (Fitzgerald & Stol, 2015). Throughout the whole development process,
flow refers to the management of an ongoing stream of activities that create value
(Petersen & Wohlin, 2011). Because it places more of an emphasis on controlling

22

backlog than on project phases and milestones, this method varies from tradi-
tional project management (Power & Conboy, 2015). The flow concept, for in-
stance, is helpful when thinking about continuous software engineering, which
stresses movement continuously rather than concentrating on agile techniques
specifically (Fitzgerald & Stol, 2015). Flow promotes teamwork, knowledge shar-
ing, and the evaluation of costs, benefits, and technical metrics—all essential ele-
ments of DevOps (Bang et al., 2013).

When we refer to value-added (VA) activities, we are discussing activities
that yield a higher return on investment than the initial cost. This return on in-
vestment can manifest in increased revenue, enhanced user satisfaction, or cost
savings, such as reduced customer support expenses (Redish, 1995). Lean manu-
facturing is based on the fundamental premise of minimizing non-value-added
processes and process lead times. Activities referred to as non-value-added are
those that use resources but result in nothing at the end of the process (Maroofi
& Dehghan, 2012). Lean manufacturing approaches' primary goals are to increase
overall productivity, individual costs, equipment performance, and product
quality (Joseph & Ronald, 2012).

Lead Time (LT) and Process Time (PT) are the main metrics of flow that
VSM measures. When talking about LT it means the time that the actual task or
work phase takes to do. This means only the work, not bureaucracy, top manage-
ment approval or other bottlenecks. PT means the whole time that it takes from
the start of the task to the end of the task in total, including all the possible bot-
tlenecks added together.

VSM also measures the percentage of complete and its accuracy %C&A in
short. It measures the quality for example developed code. If %C&A for a code
developed task is 90% it means that the code developed was 90% working and
the missing 10% needs fixing or must done again.

In the context of value stream analysis, a bottleneck refers to a specific stage
or phase within the value stream where the flow of processes is significantly im-
peded, resulting in a marked slowdown or complete halt. One of the best ways
of identifying bottlenecks in the value stream is value stream mapping (Staron &
Meding, 2011). Bottlenecks can be identified by looking at PT and LT in the VSM.

Value Stream Maps are structured in workshops or exercise environments
where the stakeholders are participating and committed to the cause. Exercises
or workshops are straightforward and follow usually the same structure (Figure
5)

Figure 5 VSM workshop structure. bin Ali, (2015)

23

First, all stakeholders are informed about the purpose of the exercise, the benefits
of using Value Stream Mapping (VSM), and how it can positively impact their
work. This ensures that everyone understands the value of the activity and is
motivated to participate. Next, the stakeholders collaboratively build the CSM by
identifying each phase of the process, determining who is involved at each stage,
and recording key metrics such as PT, LT, and the Percentage of %C&A. Once
the CSM is complete, the team uses the collected data to identify bottlenecks and
inefficiencies in the workflow. After pinpointing these issues, the team engages
in a brainstorming session to generate improvement ideas and solutions. These
ideas are then used to create the FSM, which outlines the optimized version of
the process.

2.2.2 Benefits of Value Stream Mapping

VSM is one of the most popular tools when it comes to making manufacturing
almost anything more efficient. It is most used in lean manufacturing cases but
can adapt to numerous lean processes like software development. VSM has nu-
merous intangible benefits, it is said that the VSM framework will help the de-
velopment teams to reduce the product development lead time by 50% (Tyagi, et
al. 2015).

VSM is a useful tool to identify waste in the process and when it comes to
VSM, traditionally everything that does not add value is waste (Khurum, et al.
2014). On the other hand, VSM has been criticised for not showing all kinds of
waste as well as for its inability to represent various production routes (Dinis-
Carvalho, et al., 2015).

Potential bottlenecks and inefficiencies can be found by mapping the cur-
rent state of the process flow using VSM. Through process visualisation, VSM
offers an integrated perspective of the development lifecycle, enabling teams to
identify regions prone to delays or non-value-added tasks. By removing these
obstacles, the process becomes more efficient since it runs more smoothly and
has better flow overall (Thummala, 2004).

By fostering a shared and consistent understanding of the process and op-
portunities for improvement, VSM helps team members communicate and col-
laborate more effectively. Team members can grasp the workflow from various
angles since they have shared insight throughout the entire process. The team
can contribute to process improvement more successfully with VSM (Nasir, Min-
has & Sweden, 2018).

VSM contributes to developing a roadmap for future improvements (Future
State Map, or FSM) and establishes a baseline for the existing state of processes
(Current State Map, or CSM). Teams can focus on continuous process optimiza-
tion by removing non-value-added tasks and piece by piece improving the work-
flow thanks to this iterative approach. Thus, VSM encourages a culture of adap-
tation and ongoing development (Ali, Petersen & De França, 2015).

Through an emphasis on value creation from the customer's point of view,
VSM makes sure that the team's work is in line with the organization's goals.
According to Darwish, Haque and Shehab (2010), this alignment aids in

24

allocating resources to the most valuable tasks and guarantees that process en-
hancements are both effective and relevant to the demands of the company and
its clients.

With VSM, managers and teams could have a complete picture of the pro-
cess and use the data and insights from the mapping exercise/workshop to make
better decisions to enhance their processes. The visualization of important pro-
cess data assists stakeholders in identifying possible improvement areas and pri-
oritizing actions that will have the biggest effects on productivity (Jeong and
Yoon, 2016).

As a lean tool, VSM fosters a culture of waste reduction and continuous
improvement by establishing an atmosphere that continuously looks to improve
the efficacy of processes. This kind of thinking is essential in dynamic, fast-paced
industries like software development, where it is critical to continuously provide
value and adjust to changes (Tankhiwale & Saraf, 2020). Implementing Value
Stream Mapping (VSM) in software development has many benefits but requires
considerable time and resources.

2.3 Change Management in Software Development

In this chapter, the subject of change management will be explored. Some of the
most popular change management theories will be broadly reviewed, followed
by an examination of their application within a software development context as
a tool to implement changes that are brainstormed and identified in the VSM.

2.3.1 Overview of Change Management

Although there are various ways to define change, the two most important con-
tributors to the emerging field of change management, John Kotter and William
Bridges, provide the following definition. For handling the situational and emo-
tional aspects of change, Kotter's eight-step approach (developing urgency,
building a guiding team, creating a vision, communicating for buy-in, enabling
action, achieving short-term victories, not letting up, and making it stick) pro-
vides strategies (Kotter, 2007). Bridges tackles the topic of change at a more spe-
cialized, individual level, suggesting that individuals involved in organizational
change must modify their identities. According to Bridges (2009), transitions oc-
cur in three stages: beginnings, neutral zones, and endings. Organizations always
aim to modify and adjust their operations to changing conditions in a business
environment that is becoming more complicated and dynamic (Al-Haddad &
Kotnour, 2015; Burnes, 2011). Organizations are required to allocate significant
financial resources towards implementing diverse adaptations to accommodate
the evolving business landscape.

25

As said, there are many different models when it comes to change manage-
ment. Every model has its key components and phases. Table 5 presents four dif-
ferent models and their perspectives on how to make a successful change in the
organization (Lewin, 1948; Kotter, 2007; Mento, Jones & Dirdorfer, 2002; Cum-
mings & Worley, 2016).

Several studies have highlighted that most organizational change initiatives fail,
with an estimated failure rate of 60–70% (Barnes, 2011; Ashkenas, 2020; Jones,
Firth & Hannibal, 2018). A high failure rate prompts ongoing worry and curiosity
about the variables that can lower failure and boost organizational change suc-
cess (Rafferty, Jimmieson, Armenakis, 2013). Numerous change management
models have been created by researchers and consulting firms to enhance the
success rate of change projects. Despite the plethora of available models, it re-
mains crucial to fully identify these aspects and address the knowledge gaps re-
lated to successfully implementing organizational change management (Barnes,
2011). Because of this, using one or a small number of models is insufficient to
cover all possible change scenarios (Burnes and Jackson, 2011). Additionally, cer-
tain aspects may be overlooked or left out, which increases the risk of failure if
the model is not fit for the changing context (Erdogan, Anumba, Bouchlaghem &
Nielsen, 2005). Consequently, including current models could result in a more
thorough understanding of how to guarantee organizational transformation is
effective as well as aid in the creation of a change management strategy (Errida
& Lofti, 2021).

Success is a hard term to define, especially in change management. It always
depends on the perspective if the change is successful or not. There are common
things in many models that provide the best basis for a successful change in the
organization. According to Errida and Lofti (2021), successful change requires
the following active focus points:

• Clear and shared vision and strategy of change

• Change readiness and capacity for change

• Activities for managing change

• Managing resistance to change

• Effective communication

• Motivation of employees

Table 5. Change management steps according to Lewin, (1948), Kotter, (2007) Mento et al.,
(2002) and Cummings and Worley, (2016)

26

• Engaging stakeholders

• Leadership and sponsorship

• Reinforcement and sustainability of change

• Monitoring and measurement.

2.3.2 Change Management in Software Development

There are many common things with regular change management and change
management in software development. There are still some twists in software
development and the industry surrounding it that must be noticed when prac-
tising change management in a software development environment.

There are different methods for different changes in software development.
It can be challenging to identify comprehensive system requirements that accu-
rately reflect current circumstances and adapt to changing needs, change man-
agement is a complex aspect of the requirements engineering process of software
development (Jayatilleke & Lai, 2018). System requirements are always changing
due to several factors, including changing consumer demands, shifting market
dynamics, competition from around the world, and governmental laws. For these
kinds of changes, there are Requirement Change Management (RCM). Successful
RCM requires coordination and communication across stakeholders, as it is a
process driven by collaboration (Niazi, El-Attar, Usman & Ikram, 2012; Kumar &
Kumar, 2011). Insufficient RCM can result in high software costs, erratic needs,
postponed timelines, and never-ending testing, all of which can damage the pro-
ject's success and the company (Jayatilleke & Lai, 2018).

Global software development (GSD) is a software development paradigm
wherein development activities are carried out by experts situated in many
global locations to produce successful products for a company (Sinha, Senguta &
Chandra, 2006). The global software industries are becoming more interested in
using GSD to generate financial gains (Niazi, et al., 2012). Due to the much lower
development costs, outsourcing development to supplier firms in low-cost na-
tions has gained popularity. But for those who work on software projects pro-
duced at the same physical location, GSD presents several challenges that do not
arise in collocated projects (Niazi, et al., 2012). Because development teams are
dispersed across multiple geographic places, communication and coordination
are negatively impacted by differences in ethnicity and time zone, which leaves
development teams deficient in skills, abilities, and trust (Khan and Azeem,
2014).

RDM and GSD are more generally linked in software development but do
not have much common ground or answers in the context of this study. More in
the context of this study three of the most common problems are faced during
change in the realm of software development.

Change resistance is one of the most common troublemakers in the change
management scene. People are generally inclined to resist change and may at

27

times engage in extreme measures to avoid it. Yet, research also shows that most
people tend to oppose these kinds of changes because they are typically accom-
panied by more pressure, urgency, and danger than regular organizational oper-
ations (Ford, Ford & D’Amelio, 2008; Kotter, 1995). According to Ford (1996),
"Even in circumstances that favour creative action, people will likely choose fa-
miliar behavioural options that are relatively more attractive based on their past
success, relative ease, and certainty." To overcome change resistance depends
highly on the situation and people working on the problem but most of the time
the sense-making approach (Weick & Weick, 1995). The sense-making approach
is predicated on the idea that people participate in sense-making processes to
interpret the meaning of issues and events that surround change-oriented set-
tings, such as creative performance, which are frequently ambiguous and fuzzy
(Weick & Weick, 1995). The sense-making method also emphasizes that re-
sistance issues are not planned; rather, they are created within a specific social
environment and rely on signs and knowledge people gather about the degree of
uncertainty and the risks they confront. For instance, these cues affect people's
feelings of uneasiness and worry when things change (Jones, 2001).

Numerous studies show that employees' attitudes and behaviours are sig-
nificantly influenced by the type of leadership they receive, particularly from em-
powering leaders (Zhang & Bartol, 2010; Srivastava, Batrol & Locke, 2006). Hon,
Bloom and Grant (2014) suggest that overcoming employees' resistance to change
may also be significantly influenced by the behaviours of leaders. Encouraging
leaders to develop relationships with their subordinates that are built on trust
and power sharing. They also communicate a compelling work vision to them,
provide coaching, demonstrate concern, and help their followers become more
self-reliant Zhang & Bartol, 2010). By encouraging decision-making, exhibiting
their trust in subordinates, and giving followers the ability to be as flexible as
circumstances demand, they foster a strong sense of power-sharing among their
followers (Arnold, Arad, Rhoades & Drasgow, 2000). Also, based on current re-
search, workers under the direction of empowered leaders are more likely to be
inspired to question established practices and take calculated risks that come
with being innovative (Zhang & Bartol, 2010).

2.4 Summary and Transition to the Empirical Study

The research's theoretical foundations emphasize how crucial software develop-
ment frameworks and methodologies like agile, Scrum, and VSM—are to stream-
line development processes. Traditional linear approaches to software develop-
ment, such as the Waterfall technique, have given way to more dynamic and it-
erative models that prioritise continuous delivery and adaptability to change.
Through iterative cycles and ongoing stakeholder involvement, the adoption of
agile and lean techniques has transformed software engineering by boosting ef-
ficiency, quality, and team cooperation.

28

Nevertheless, software development continues to encounter challenges, de-
spite the pervasive adoption of these methodologies. Long development cycles,
scope fragmentation, poor communication, and ineffective resource manage-
ment are typical problems. These problems lead to lower-quality products, de-
lays, and cost overruns. Lean management concepts, particularly VSM, provide
an organized method for locating and getting rid of non-value-adding tasks to
address these issues.

VSM started in the manufacturing industry and has since been modified for
use in software development to optimize and visualize workflow processes. It
assists businesses in identifying inefficiencies, mapping out current procedures
(Current State Map), and developing improvements and opportunities with the
team brainstorming session. It is not easy to adopt VSM in software teams be-
cause successful implementation necessitates excellent change management and
a detailed understanding of intangible flows, such as information exchange. With
VSM there is a possibility to find bottlenecks (where the process flow stops or
slows down drastically) and eliminate them with the suggested improvement
ideas. In the literature, VSM has proved to be an efficient tool to identify waste
and find bottlenecks in the processes where it has been implemented.

The incorporation of VSM inside software development processes is made
easier by change management theories like Bridges' Transition Model and
Kotter's 8-step model. By addressing the human elements of change, these mod-
els help teams overcome opposition and develop a common vision. Change man-
agement, when used in tandem with VSM, guarantees that suggested enhance-
ments are successfully adopted and maintained inside a company. VSM perk is
that all the improvement ideas come from inside the team and there is no top
management who dictates the changes. This motivates the team members to
make the change when they are the ones who started them.

This study transitions from theory to practice by exploring how VSM can
be utilized within software development teams to identify bottlenecks and inef-
ficiencies, propose actionable improvements, and reveal if VSM is a tool that
brings value to the company. The empirical part of this research presents a case
study with three software development teams in a global IT corporation, where
VSM workshops were conducted to assess the current state of development pro-
cesses identify areas for enhancement and seek improvement from the team to
their processes.

The empirical section will delve into the practical application of VSM work-
shops, detailing the findings from each team’s experience and workshop. It will
go over the difficulties encountered during implementation, the suggested
changes, and how VSM assisted in identifying pain points. This practical thesis
tries to bridge the gap between theoretical principles and real-world applicabil-
ity, illustrating how VSM may be used to achieve more efficient and successful
software development processes.

29

This chapter introduces the objectives and research questions of this study and
the selected methodology to answer them. After the targets, research questions,
and chosen methodology of this study are presented, they are followed by a dis-
cussion of the environment and the case company. The description of the data
collection and analysis process comes next. Finally, a few ethical restrictions re-
lated to the study are covered and presented.

3.1 Objectives and Research Questions

Prior the research has identified what Value Stream Mapping is, how it is imple-
mented and what are the possible positives to implementing it in one’s software
development process. Everybody in the industry wants to be more efficient in
their way of working and VSM has proved its efficiency in the industrial line and
many agile frameworks as a way to identify waste and make the value flow more
efficiently in the value stream. But the most interesting question is how it works
in practical software development teams and what it provides that it can be used
the best way possible to make the value stream more efficient. Also, are the re-
sults of VSM proposals easy to put into action, or do they require different strat-
egies for managing change. This study aims to figure out how useful VSM is to
software development teams and what kind of improvements it can provide and
how they should be implemented.

This thesis strives to answer the following research questions:

1. What are the main pain points of a given company’s software develop-
ment and how they can be identified by Value Stream Mapping?

2. What value does VSM bring to the company's teams and how can this
value be realized in the current software development environment

3 METHODOLOGY

30

The focus of this study is to study how useful VSM is as a tool to identify waste
and how it brings value to a software development process and what kind of
improvement ideas result from the VSM workshops. Every team is one of a kind,
so it is important to study VSM with different teams and see if it can produce
value for each and are differences between the teams. VSM could be a useful tool
for a given company to identify waste and enhance its software development
processes. VSM also requires resources that could be costly if VSM does not pro-
duce added value.

3.2 Selected Methodology

Research methods in the field of information systems (IS) can be classified into
two main streams: qualitative and quantitative. Quantitative research aims to
generalize or validate specific theories and typically works with numerical data.
Conversely, qualitative research focuses on understanding human perceptions
and experiences within a specific social or cultural context (Myers and Avison,
2002; Stake, 2010). Human-technology interaction and organizational difficulties
have replaced technology-focused themes in the IS area, making qualitative re-
search approaches increasingly important (Myers 1997). The sample sizes used
in qualitative methods are smaller than those in quantitative approaches. Differ-
ent data collection techniques are also used. In qualitative research, the most
common techniques for gathering data are observations, questionnaires, docu-
ment analysis, and interviews (Stake, 2010; Myers and Avison, 2002).

The need for this study was initiated from practical needs and curiosity
from practitioners who were eager to develop the way the company’s teams were
working and keep track of what they were doing and how. Recent SAFe frame-
work implementation introduced VSM as a tool to identify waste and seek for
improvements within the teams their self. A few Value Stream Maps were done
in the recent year but not between one’s team, only at the management level. So,
it is interesting to go to the team level and see if VSM is a tool for a practical tool
to identify waste in software development and what kind of added value it can
bring to the processes when implemented. Considering the exploratory nature of
this research and the objectives of this study there was a need to collect practical
data from the teams in the concept of workshops. A qualitative case study ap-
proach was chosen based on the exploratory nature of the research as well as the
business's practical requirements. The purpose of this approach is to gain an in-
depth understanding of the software development processes and the potential
benefits of VSM. When examining a phenomenon in the context of real-life expe-
riences and when current literature is absent on the subject, qualitative case stud-
ies are especially appropriate (Yin, 2009). This aligns with the objectives of this
study, which seeks to explore the practical application of VSM at the team level
in a software development context.

31

Since the workshops in this study involved close collaboration with partic-
ipants to analyse and improve their processes, they are consistent with the con-
cepts of action research. Action research facilitates ongoing communication be-
tween participants and the researcher, which promotes iterative process im-
provement and learning (Avison, Baskerville & Myers, 1999).

The research's strategic decision to use workshops as its main data-gather-
ing strategy was in line with standard practices for implementing VSM. Usually
presented as an interactive exercise or in a workshop format, VSM enables par-
ticipants to interact directly with the methodology. As a result, the workshops
provide an organic setting for gathering the required information.

It was concluded that interviews would not substantially increase the
study's usefulness while being taken into consideration as an extra data-gather-
ing approach to obtain further insights into the VSM process. Rather than using
formal interviews, feedback forms successfully performed the role of collecting
participant reflections and ideas.

3.3 Case Description

The empirical data for this study was collected within the company by conduct-
ing workshops for three different teams with a few extra questions added in each
workshop. Although it had several goals, the main goals were to determine if
VSM is a practical tool that can identify waste in a software development envi-
ronment and what kind of improvements it can provide to make the company’s
teams more efficient. Also, within the workshops and after there was a feedback
query that gave a free word to workshop participants to impress their opinion
about VSM and is something that should be done occasionally.

The case company under study is a substantial global IT corporation with
an extensive history in the industry. Over the years, the company has changed
from being a telecommunications company to a software company, and it has
maintained an open approach to using modern, agile processes in various areas
of the business. The case company employs people globally, with offices and
most teams being distributed across countries.

Representatives from the company were contacted in the spring 2024 of to
introduce the idea of researching how the company could leverage VSM and im-
prove its team’s efficiency. At first, there were bi-weekly meetings with three
managers and a SAFe consultant to discuss the topic and modify the research
subject in a way that serves both, the company and the researcher. When the
scope was set, and agreement was taken place there was a decision to arrange
three VSM workshops of three different teams from three different product lines
to see the VSM in all areas of business. The industry and the area for all three
teams are the same, but the products and the maturity of the teams differ from
each other. The motivation for the company to participate in this research was to
test VSM as a tool to be used in the future to identify waste and make the team
processes more efficient.

32

This means that the workshop's main idea and structure remained the same
for the whole research, but the content and data would vary between the teams.
In total 37 team members participated in the workshops the biggest workshop by
participants was 18 people at a time and the smallest group were 9 people. The
main point of the workshops was that the team were physically available in the
conference room for the whole workshop, and this was done successfully. Only
5 people declined the workshop invitation due to not being able to be physically
in the workshop. The teams chosen to attend the workshops agreed with the com-
pany representative and the researcher. For both, it was important to gather data
from a wide range of teams as possible and it was successful.

Workshops were arranged with each team’s management (Scrum Master
and Product Owner). Every workshop had a time slot varying from 2,5 hours to
4 hours and the workshop itself was facilitated by the researcher in the summer
of 2024. Every team leader was eager to help and interested in the idea of VSM
workshops. They wanted to participate in the research and had a positive attitude
towards the subject and the researcher. The fact that neither the company nor the
researcher offered any incentives suggests that the motivation for participating
in this study was most likely a sincere interest in the subject.

3.4 Data Collection

Workshops were the most usable and the best way to data collection for the VSM.
VSM is almost always held in a workshop scenario when done in teams. It is the
most convenient way to get the team together and keep the team members fo-
cused for the whole time needed. The workshop provided the VSM-Maps as one
form of data including each step of the process, who is responsible for each step
and the times and accuracy of each step with the proposed improvement ideas.
Data was also collected for each workshop end using a few questions regarding
the improvement ideas and how likely they could be implemented in the eyes of
each team member. Furthermore, a feedback survey administered via Google
Forms inquired whether the participants found the VSM workshop to be benefi-
cial and whether they would be interested in attending a follow-up workshop to
evaluate their progress. Also, in the forms were questions about the workshop
facilitator's performance and a free word for the organizer. The researcher also
took notes by hand in each workshop. In the actual workshop, everything was
done by hand for practical reasons, so Value Stream Maps were done by using
Post-it notes and done on a wall or a window.

Every workshop had the same setup and structure for each workshop. Only
spent time for the workshops differed. At first, there was a short motivation for
the participants and some explanation for the theory of VSM. Workshop times
set some limitations for the results of the workshops, so there was no future state
map, but the teams built current state maps and brainstormed improvement
ideas during the workshops.

33

The optimal time for each workshop was 4 hours but the workshops lasted
from 3 to 4 hours depending on each team’s schedule and priorities. Everything
got done was planned and overall workshops were efficiently organized, and the
data were successfully collected.

3.5 Data Analysis

All workshops produced the same data. The only difference was workshop 1
which had 16 people to participate, so there were two Value Stream Maps pro-
duced. Because everything produced in the workshops was done by hand there
was a task to virtualize everything, and it was done by the researcher using an
app called Klaxoon where the Value Stream Maps were virtualized and the data
from each session end was collected. Also, every Value Stream Map was docu-
mented in photo form to be careful.

Every improvement idea was recorded and talked through the teams’ man-
agement and top management. During the workshops, team members were able
to vote for the best improvement ideas and every team management chose the
top three improvements and was ready to start implementing voted improve-
ments to their processes.

Feedback forms were sent to each participant at the end of every workshop
and the form gave an understanding of the overall attitude towards VSM work-
shops and how useful they were. Forms calculated the data automatically from
each workshop.

3.6 Research Ethics

The way that the teams were selected might have resulted in a few limitations
that could influence this study. Top management recommended these three
teams to participate in the workshops and the team’s management chose to par-
ticipate. So, rather than taking part in the study because they were genuinely in-
terested in the subject, some participants may have felt pressured or aggressively
persuaded. Probably, some individuals answered differently because they felt
pressured to attend the workshops, which may have had an impact on their mo-
tivation. This seems highly unlikely since the workshops were team exercises,
and they chose to participate to make their teamwork more efficient.

The fact that the subject may occasionally be delicate is another problem.
Workshops were held face-to-face, and the team got through the whole process.
Sometimes there is a possibility to hurt each other feelings, so it is possible that
every participant did not want to say their opinions at the cost of hurting some-
one’s feelings. Also, the team management was in the workshop, so that could
influence free speech.

34

Data is analysed manually, and no computer-aided software is not used. It
could have improved the accuracy and reliability of the data. According to Friese
(2019), using that form of qualitative research software throughout the analysis
phase helps the researcher uncover insights that he might not have otherwise
discovered and enhances the entire research process.

35

The results of the conducted qualitative study are introduced in this chapter. First,
the background of the team is presented at the workshop, and then the current
situation and the current state map are discussed. After that, the pain points and
bottlenecks are pinpointed, followed by a review of the improvement ideas and
opportunities. The results of each workshop are presented separately, and in the
end, the workshops are studied as a whole, and a comparative analysis of the
findings is conducted.

4.1 Workshop 1

4.1.1 Team Background

Team 1 has been built the most recently and has been working together for about
two years. They started their process from scratch because the project is kind of
a new leap for the company. Some of the team members were taken from the
other projects inside the company and some work as an external workforce. They
have done only one real deployment to the customer, so the process is fresh, and
the process can move and adjust in a fast phase if necessary. The team age aver-
age is the lowest and it includes 18 team members. Team members work in two
different sites. In the actual workshop, there were 17 participants, so the team
was split in two and they made 2 Value Stream Maps. Both maps had approxi-
mately the same data, so they were processed as one. All improvement proposals
and process enhancement opportunities were considered by both VSMs.

4.1.2 Current State VSM

The entire software development process, from the first customer request to the
last phase of customer feedback and analysis, is described in the Value Stream
Map from Workshop. The process involves various stages including Request
Analysis, Prioritization, Planning, Sprint Planning, Development and

4 RESULTS

36

Documentation, Testing, Releasing to Production, and finally, Customer
Feedback.

There are numerous team members and jobs involved in each step. For ex-
ample, in the initial phases of request analysis and prioritizing, Product Owners
(POs), Business Analysts (BAs), and Sales staff are crucial. The QA/test team and
the development teams oversee the later phases, which include testing and de-
velopment. Notably, a few cross-functional positions are essential in the design
and sprint planning phases, such as the Scrum Master and System Architect. Each
stage is measured in terms of PT and LT, which enables a detailed assessment of
where inefficiencies and delays occur.

The overall PT for all phases is 48.3 days, whereas the LT is 111.1 days. This
indicates a large lag between the start and finish of the tasks. This extended LT
points to the existence of inefficiencies and bottlenecks, especially during phase
handoffs and in phases when reliance on cross-functional teams is essential.

The workflow itself spans several distinct phases:

• Request Analysis and Prioritization, conducted by business-facing roles
such as POs, BAs, and Sales.

• Development and Documentation, which heavily involves the develop-
ment team, along with supporting input from system architects and de-
signers.

• Testing and Deployment, where test and security teams ensure the final
product meets quality standards before release.

The thorough process mapping and important indicators like PT and LT offer
insightful information about how the software development lifecycle is currently

Figure 6 CSM from the Team 1

37

operating. This data is the starting point for locating bottlenecks, examining in-
efficiencies, and suggesting areas for improvement.

4.1.3 Pain Points and Bottlenecks

The analysis of the VSM reveals several critical pain points and bottlenecks that
impede process flow and contribute to extended lead times. Numerous things,
from a lack of resources to poor team communication, might result in these bot-
tlenecks. There were several bottlenecks that VSM discovered.

The first bottleneck found is in the Development and Documentation part
of the process. As seen in the Value Stream Map this phase represents the most
significant bottleneck with the LT of 30 days and the PT being 15 days. There are
a few of the most common reasons for these bottlenecks to form. One is resource
limitations where the development team appears to be operating under signifi-
cant load, which leads to high work-in-progress (WIP) levels. There might be
multiple concurrent tasks which make the load heavier. This overload leads to
longer wait times for tasks to be initiated and completed, as developers are re-
quired to juggle competing priorities. The imbalance between team capacity and
workload is a primary contributor to extended lead times. There also might be
some Cross-Team Dependencies. The Development phase often depends on
timely inputs from System Architects and POs. Particularly for design specifica-
tions and architectural guidance. Developer idle time might come from delays in
obtaining this feedback, which adds to the longer lead time. This implies that
there is a need to enhance the coordination and exchange of information between
the technical and business teams.

Planning the feature was also a bit difficult according to the LT and PT. This
suggests that it might be difficult to involve all the stakeholders in the planning
phase, so the feature could be planned and refined as accurately as possible. The
involvement of key stakeholders, such as System Architects, Product Owners,
and Designers is critical because their input in resolving architectural questions
and finalising task details might be the reason for time wasted or not. Delays in
obtaining their approval or participation could contribute to the long lead times
observed.

Another bottleneck was found in the Testing phase. The PT was 5 days, and
the LT was 10 days which indicates that there is 50 percent waste on the phase.
The large discrepancy between LT and PT indicates substantial delays. This
might be because of the cooperation between the developers and testers. If there
are some communication difficulties, there is a big chance that time is wasted on
unimportant tasks.

The %C&A statistic assesses the accuracy and completeness of the tasks that
are transferred between stages. The percentage C%A varies from 70% to 90% be-
tween phases, suggesting a comparatively high percentage of tasks that need to

38

be redone or better clarified before they can be processed further. This might be
a signal from the previously said problems in the Value Stream as insufficient
specification of the features done or inconsistent feedback mechanisms and loops
between the team members like feedback from testers to developers regarding
defects or issues may not be timely or thorough, leading to rework and cycle time
expansion.

4.1.4 Improvement Opportunities

The workshop produced several improvement opportunities from the brain-
storming session as seen in the VSM and the blue boxes. The brainstorming ses-
sion produced in total 29 (15+14) improvement ideas and all of them were feasi-
ble and could be implemented. Every participant had three votes for their use,
and they could use them as they liked. The idea was that the workshop provides
the top 3 improvements which are then implemented to the process flow. In this
case, because there were 2 VSMs, after the vote there were 6 improvement ideas
that team members selected three best to be implemented to their process flow.

The first improvement idea was to include designers in the pre-planning
session before the sprint planning. This would improve the readiness of tasks
before the formal sprint planning process. Adding the designers to the pre-sprint
planning sessions would ensure that backlog items are adequately refined and
that any ambiguities are resolved. This could reduce the LT for Sprint Planning,
allowing the team to start the sprint without delays.

The second improvement is to identify enablers earlier in the progress. The
failure to identify technological enablers promptly, such as reliance on external
teams or infrastructure, causes many delays. Developer and tester idle time
might be reduced by putting in place a systematic process for finding these ena-
blers early in the development cycle, which will ensure that the essential inputs
or resources are available when needed.

The third improvement Is to improve feedback loops and documentation.
The low %C&A metrics show that there are insufficient feedback mechanisms
within teams, especially between development and testing. Putting in place
higher-quality automated feedback methods, including automated defect report-
ing and continuous testing technologies, could improve communication and
guarantee that problems are resolved quickly. Enhancing feature documentation
would also lessen the need for clarification and revision, facilitating a more seam-
less transition between phases.

To be noted in the second group brought Artificial Intelligence (AI) to the
conversation as well when discussing improvements. Given company has pi-
loted their on-premises AI and it shows a lot of promise. AI does not come and
get utilized fast, but it shows a lot of promise and might boost the efficiency of
many processes if it works and gets used correctly.

39

4.1.5 Conclusion of the Workshop 1

A thorough examination of the VSM as it stands now identifies several inefficien-
cies in the software development lifecycle. The biggest bottlenecks arise in the
Development and Documentation and Planning stages, mostly because of insuf-
ficient pre-planning, technical debt, and resource constraints. The low %C&A in-
dicators also point to the need for improved task refinement and communication
throughout the value stream.

The proposed improvements, including increasing the involvement of con-
ducting pre-sprint planning sessions with the designers, identifying enablers ear-
lier, and improving feedback loops, are designed to address these issues that
emerged during the VSM workshop. Implementing these changes is expected to
reduce lead times, increase process efficiency, and improve the overall quality
and accuracy of task handoffs.

4.2 Workshop 2

4.2.1 Team Background

Team 2 has been working together for about 5 years with small changes in the
line-up. It works for the flagship product of the company and plays a critical role
in that. They are also in the middle of the organisational SAFe change, and it has
been for the last year. SAFe Release Train has been introduced as a way of work-
ing for the team and is still a new thing for the team and its members. Most of the
team members are internal and a few external workers. The team size is 12 team
members. Team members work officially in one site but are rarely together due
to the hybrid work and a few members are located in another city and doing their
work fully remote.

4.2.2 Current State VSM

The second workshop outlines a refined software development process that
spans from the initial customer request to the final stage of solution testing and
customer feedback. The phases include Customer Request, UI Concept, Feature
Analysis, Tech Meet, Implementation, Feature Testing, and finally, Releasing and
Solution Testing.

Various team members are involved across these stages, including Product
Owners (PO), Business Analysts (BA), the Architecture (ARC) and Development
teams, UX/UI Designers, and Technical Leads. Each phase is accompanied by PT
and LT metrics, which offer a detailed look into where inefficiencies may lie in
the current process.

40

There is a discrepancy between the amount of time a task is worked on and
the total amount of time it takes to complete in the pipeline; for instance, the total
PT for all phases in this VSM is 51.3 days, but the LT is 93.2 days. This disparity
draws attention to ineffective handoffs and teamwork, as well as potential pro-
cess bottlenecks that impede the flow.

The workflow spans several key phases:

• UI Concept and Feature Analysis, led by cross-functional teams in-
cluding Product Owners (PO), Business Managers (PBM), and Ar-
chitects.

• Development and Testing, where Development teams, UX/UI De-
signers, and Technical Leads play a pivotal role in implementing and
validating features.

• Releasing and Solution Testing, managed by Product Owners and
Solution Testing teams, ensure that the solution meets both technical
and business requirements before final release.

Each phase is measured for %C&A. The overall %C&A for this workflow is
0,002% signifying that a considerable portion of tasks require clarification or re-
work before completion and there lies a problem.

4.2.3 Pain Points and Bottlenecks

A more thorough examination of the second VSM workshop was able to identify
several significant pain points and bottlenecks that reduce process efficiency as a

Figure 7 CSM from the Team 2

41

way of work and for their process as a team. The team was able to specify the
bottlenecks during the workshop in a few specific phases in the process.

The development phase presents a notable bottleneck with an LT of 14 days
and a PT of 3 days for the tech meet. Considering the comparatively short PT, it
seems that the time required to properly implement and test a feature is unnec-
essarily long. This suggests that during the phases of implementation and testing,
there may be a delay in feedback and communication. This bottleneck may also
be caused by resource constraints, as the development team may need to manage
several projects at once.

Effort estimates and the AC draft are another bottleneck in the process. PT
is 1,5 days and LT is 10+ days because the team said it sometimes takes longer
and sometimes 10 days. Still, if it takes the 10days there is a significant amount
of time wasted in this phase of the process. This suggests that cross-team com-
munication, particularly between development and technical leadership, could
be improved to streamline the technical requirements and feature specifications.

The %C&A in several phases remains low and that is a significant problem
in the process. This usually suggests that there may have been a lack of clarity
in the original task specifications, which resulted in rework and lengthier lead
times. Increased accuracy of tasks transferred between phases and a decrease in
these disparities could be achieved through improved documentation and com-
munication.

It should be noted that the SAFe’s way of working is relatively new to the
team, so the process has not had the time to mature and develop among the
team. This is something that only time and iterations will fix, so just doing more
increments with the team will probably enhance the process when the team
have the skill to work within the framework’s limits.

4.2.4 Improvement Opportunities

During the brainstorming session in Workshop 2, several improvement opportu-
nities were identified and categorized into feasible solutions. The session yielded
23 potential improvements, from which the top three were voted for implemen-
tation.

The first improvement opportunity that was found in the workshop was
including Technical Leads sooner in the planning and estimate stages is the first
improvement. One obstacle that was identified was the time it took to define
technical requirements, especially during the Tech Meet. Teams can lessen the
possibility of miscommunications and implementation inefficiencies by includ-
ing Technical Leads in conversations during the Feature Analysis and UI Concept
stages. This will facilitate smoother transitions between planning and develop-
ment. So, the tech meet should be done earlier in the process than it is done now.

The second improvement is to freeze the UI when the implementation is
underway. The team has a problem where the UI picture changes when develop-
ers are already doing the task. This leads to misunderstandings and work going
to waste. Now, there should be one picture of the UI design attached to Jira

42

tickets, so there is no room for mistakes, and nobody could not change the design
without telling anybody. This also shows that there are some problems with com-
munication in the team.

The third improvement was to take time and prioritize technical studies and
improvements. The team was a bit worried that when always building new fea-
tures and stories there is no time to upgrade and enhance the environment where
the build things go. This grows the technical debt and at some point, it will catch
the team back if not noticed.

4.2.5 Conclusion of the Workshop 2

The VSM from the second session identifies several ongoing problems, particu-
larly regarding task clarity and communication between phases. Cross-func-
tional cooperation frequently breaks down during the development and testing
phases, which is when bottlenecks are concentrated. The brainstorming session
revealed several areas for improvement. These include task definition, early tech-
nical engagement, and worry about technical debt. These changes are intended
to relieve these bottlenecks and optimize the software development process.

The team anticipates that by putting these adjustments into practice, lead
times will be shortened, and task accuracy will rise, improving overall process
efficiency. Maintaining a constant focus on automation and cooperation will also
assist in reducing future bottlenecks and enhance the way work moves through
the value stream.

4.3 Workshop 3

4.3.1 Team Background

Team 3 has been working together for the last 10 years. It works in an older prod-
uct, and it is the most used and worked-on product of the three. The team is part
of a release train and works incrementally. Teams have 10 members, and most of
them are internals who work in the site itself every day and rarely work remotely.

4.3.2 Current State VSM

The third VSM outlines a comprehensive process flow from Customer Request
to Delivery and Customer Support. This workflow includes several key stages:
Screening, Concepting, Design, Development, Testing, Documentation, Integra-
tion, and Approval, with a final handover to customer support.

During various stages, important parties like System Feature Teams, Prod-
uct Owner, Architects, and Business Analysts are involved. This VSM stands out
for having long lead and process times, which indicates that there are a lot of
areas where it might be improved, like cutting down on idle time, enhancing
communication, and expediting task handoffs.

43

The total PT in this VSM is 111 days, while the LT stands at a significant 579
days. The %C&A is 16.3%, indicating major inefficiencies and frequent rework
across phases.

This workflow covers the following stages:
• Screening and concepting, where Product Owners, Architects, and Soft-

ware teams evaluate customer needs and define the project.
• Development and Testing, where the feature team designs, builds, and

tests the solution in collaboration with the UI/UX team.
• System Testing, Integration, and Release, involving cross-team collabora-

tion between developers, testers, and system feature teams to validate and
release the product.

4.3.3 Pain Points and Bottlenecks

This VSM showed several bottlenecks and inefficiencies, especially concerning
long lead times and a low percentage of %C&A, which indicated considerable
delays and a high frequency of rework.

It appears that tasks are left unfinished for prolonged periods throughout
the testing phase, which has a PT of 15 days and an extended LT of 45 days. With
testing and subsequent integration delayed, the low %C&A of 80% suggests
problems with task definition and handoffs between the feature teams and the
system feature teams.

Figure 8 CSM from the Team 3

44

With a 95% %C&A, the Integration phase has a lead time of 60 days. Most
jobs are accurate, however, proceeding to the final testing and release phases is
significantly delayed due to the lengthy waits between feature handoffs. The cre-
ation of automated tests by developers has been identified to increase efficiency
and decrease bottlenecks.

The Documentation phase stands out with a Process Time of 2 days but a
Lead Time of 14 days, reflecting delays in formalizing documentation handoffs
and approvals. Moreover, the approval phase shows an LT of 30 days, which
might be attributed to a slow approval mechanism, potentially exacerbated by
the annual PDB review process.

4.3.4 Improvement Opportunities

During Workshop 3's brainstorming session, several issues that needed improve-
ment were noted. The main goals were to decrease the enormous lead times,
boost task accuracy, and enhance team communication.

The first bottleneck identified was the long lead time between the concept
and decision/order phases. At this point, better task prioritizing and a deeper
comprehension of client demands may help to minimize rework and define ex-
pectations. Later in the process, idle time may be decreased by establishing more
precise parameters for customer follow-up and engagement at the outset. The
team would like to know and meet the actual customer and end users of the prod-
uct. It would bring clarity to the progress and give more purpose to the team. It
gives the team motivation to see what they have done and how the product helps
the customer/end user.

The second bottleneck is that integration and testing still pose challenges,
especially since manual testing is slower and requires more resources compared
to automated testing. Promoting increased automated testing and involving de-
velopers in the process of writing automated tests directly could reduce a signif-
icant amount of idle time and expedite the verification process. Additionally, by
increasing work accuracy through automation, the percentage %C&A would rise
at this point. The team would want to put time and effort into the automated
testing to enhance the accuracy and time in this phase.

Third, the lengthy LT observed in the Approval phase could be mitigated
by implementing a more frequent, continuous approval process. Currently, the
once-a-year PDB review significantly delays approval for tasks, which could be
streamlined by establishing shorter feedback loops and more frequent approvals.

4.3.5 Conclusion of the Workshop 3

The third VSM highlights several noteworthy bottlenecks and problems, the most
prominent of which are the lengthy lead times and low %C&A rates at various
stages. The phases of Concepting, Development, and Testing are especially vul-
nerable to delays because of imprecise task specifications, lagging feedback
loops, and manual procedures.

45

It is anticipated that the enhancements made during the brainstorming ses-
sion—namely, promoting automation in testing, expediting the approval pro-
cess, and augmenting client engagement at the outset—will shorten lead times
and increase task correctness. The team hopes to improve the productivity of the
software development process and facilitate more seamless transitions between
stages by putting these changes into practice.

4.4 Comparative Analysis of Workshop Findings

The three workshops' outcomes show different trends and common issues that
the software development teams face. Although every team has a different work-
flow and set of problems, there are clear common bottlenecks and variations in
process performance. To give a better understanding of inefficiencies and areas
for development, this section compares the workshop results.

4.4.1 Workshop Summary

Table 6 provides an in-depth comparison of the main findings from the three
Value Stream Mapping workshops. Each team actively engaged in the identifica-
tion of bottlenecks and inefficiencies within their respective processes, resulting
in the generation of numerous improvement ideas among team members. Work-
shops challenged their participants to think about their processes as a team and
break the silos inside the teams. During brainstorming sessions, teams explored
and discussed ways to streamline their team's workflow, reduce waste, and im-
prove overall productivity. The top three improvement opportunities were voted
for each team and workshop to get prioritized for implementation to enhance
their processes. Table 6 below highlights metrics like team size, process and lead
times, %C&A, and the primary waste percentages identified in each workshop,
alongside key improvement opportunities.

46

4.4.2 Overall Value of VSM

There is a value produced by VSM to the teams. There was a feedback query to
the workshop participants, and it got an overall 20 responses. As seen in Table 7
90% of the participants found the VSM workshop useful and would participate
in a follow-up workshop to track the progress of the changes implemented.

The two “No” answers were reasoned as follows, “Everything is okay how
it is” and the other one was “In software projects, such a simplistic approach to
the value chain is not giving the best input”. They thought that the way that VSM
was implanted or used was not the best way possible. For the second negative
comment, there might be a reason, and it was the restricted time slot. Normally

Table 6. Summary of the workshops

47

VSM workshops take about 2 days to facilitate and there was no time to do the
future map which would have helped to illustrate the purpose of the VSM to the
participants. When only doing the current state map there is a chance that it looks
like from a team member's perspective that there is no plan to implement the
changes that were brainstormed, and the workshops only produce ideas that are
just forgotten.
There were a lot of positive comments in the feedback. Many comments related
to the overall view of each participant and how they see the whole process. One
key takeaway from the feedback is the ability of VSM to break down silos and
create a holistic view of the process. VSM gave participants a more comprehen-
sive grasp of the whole value flow, which was helpful in businesses where teams
often concentrate exclusively on their assigned responsibilities. Addressing bot-
tlenecks and inefficiencies that impact cross-functional teams requires this new
viewpoint.

Positive feedback from participants highlighted the importance of this in-
creased visibility, expressing how it improved their understanding of their role
as well as the difficulties and interdependencies in the process. This change in
perspective may result in more cooperative solutions, which would lower friction
and boost the effectiveness of the software development process.

The workshop was also seen as an opportunity to stop and think about what
the teams were doing. When working on their daily tasks, the team could rarely
discuss the challenges and things they do as a group and everybody present.
Many of the comments suggested that this type of workshop should be done once
a year to track the progress and see if they can make changes to the progress.

Ultimately, the insight gained from the VSM workshops improves team
roles individually and fosters a collaborative environment that aims to increase
productivity and effectiveness in the software development process. Companies
can better manage the complexity of their workflows and pave the road for crea-
tive solutions and long-term performance improvements by adopting this new
viewpoint. VSM brought value and insights to every team in the research regard-
less of the team size, maturity or product. It also works as a team-building exer-
cise and can break silos inside the teams.

Table 7. Feedback survey results

48

This chapter addresses the research questions, presents a summary of the results
that were previously introduced, compares them to earlier studies, discusses the
findings, and makes recommendations for both theory and practice.

5.1 Interpretation of Findings

The results from the VSM workshops provided significant insights into the com-
pany's software development processes. The primary issues found by VSM
largely correspond with the body of research already available on bottlenecks in
knowledge-based work settings (Ali, et al., 2016). Systemic inefficiencies in soft-
ware development are frequently brought about by team dependencies and in-
complete task handovers, which prolong lead times in stages like development
and testing (Fitzgerald & Stol, 2015).

Throughout the sessions, one of the main conclusions has been the differ-
ence between PT and LT. This gap shows that even while some actions may exe-
cute relatively quickly (PT), delays brought on by resource availability, permis-
sions, and feedback loops result in a substantially longer waiting period (LT).
Theoretical concerns about waste and inefficiency in lean processes are strength-
ened by this discovery. These kinds of delays are seen as "waste" in the software
environment, according to Petersen and Wohlin (2011), and they can be avoided
with improved coordination and more open lines of communication.

Several bottlenecks were identified during the workshops, particularly in
the development, testing, and handoff phases between teams. Long lead times,
non-optimal communication, and resource bottlenecks were typical issues. VSM
was a useful tool in visualizing these problems, particularly during the work
handover and cross-functional collaboration phases. For instance, in Workshop
1, there were discernible delays in the Development and Documentation phase
because of a shortage of resources and a delay in the handoffs between the de-
velopment and design teams. These findings are consistent with earlier research

5 DISCUSSION

49

(Petersen & Wohlin, 2011), which highlights the usefulness of VSM in locating
inefficiencies in intricate, knowledge-based processes like software development.

The effectiveness of VSM was demonstrated by how it helped teams iden-
tify inefficiencies collectively, develop focused improvement plans, and enhance
process transparency. For instance, in Workshop 2, improvements such as freez-
ing UI designs during development were identified to reduce confusion and re-
work. Comparably, Workshop 3 stressed how critical it is to enhance customer
communication and better match development activities with end-user require-
ments. The study also shows how, as Workshop 2 illustrates, VSM can improve
sprint planning and backlog prioritization to further improve agile and SAFe
practices. This is in line with research from Power and Conboy (2015), who con-
tend that VSM in agile environments provides an organized method for itera-
tively enhancing the value stream.

The workshops also emphasized the value of involving key stakeholders
early on, especially in cross-functional collaboration throughout the planning
and refinement phases, such as technical leaders and product owners. This result
is in line with the agile and lean literature, which emphasizes the significance of
dismantling organizational silos and making sure team members are aligned
early on (Bang et al., 2013). By drawing attention to areas where cooperation
broke down and outlining interdependence, VSM acted as a diagnostic tool that
helped everyone comprehend the workflow.

A unique concern raised during Workshop 2 was the issue of technical debt.
The team stated that upper management was pressuring them to concentrate
only on creating new features while the environment in which these features
were implemented had become outdated and bug-ridden, making the work more
difficult and time-consuming. Even though this worry had nothing to do with
the value stream itself, it became apparent that it was an important problem that
required addressing. This was ranked by the team as one of the top three en-
hancements to be made, highlighting the necessity of taking your time while up-
dating and maintaining the environment. This may only be the other side of the
coin. Team 2 perceives that the pursuit of business objectives took precedence
over environmental maintenance efforts, possibly indicating a tendency to de-
flect responsibility by seeking external factors to account for any issues. If mainte-
nance work is critical, it should be prioritized. Business goals should not take
precedence over critical maintenance work. There may be a situation where the
team assumes that developing a new feature is the top management's priority
and feels unable to speak up. Anyway, this demonstrates how operational issues
that are not immediately related to the value stream can be brought to light
through VSM workshops.

Finally, VSM encourages teamwork by providing a forum for all team mem-
bers to share their concerns and participate in the workshop's decision-making
process. One of VSM's advantages is its inclusivity, which guarantees that all
viewpoints are considered when proposing process enhancements. Even if there
are a few more vocal people in the workshop, everyone gets the opportunity to
add their suggestions for improvement and vote for the most important reforms

50

in the process. Of course, the loudest personalities may take the general discus-
sion in a certain direction, but everyone always gets a chance to present their
opinions and suggestions thanks to the structure of the workshop.

5.2 Value of VSM in Software Development

The workshops proved that VSM is a useful tool for identifying software devel-
opment inefficiencies. In software, job handoffs and information flow are the
main points of emphasis, as opposed to traditional manufacturing, where VSM
concentrates on the physical flow of materials. The way that VSM aided in locat-
ing bottlenecks in cross-team communication, delayed feedback loops, and erro-
neous job handovers demonstrated its capacity to map these intangible elements.
This result is consistent with research suggesting that VSM should be modified
for knowledge work by emphasizing feedback cycles and communication chan-
nels more (Fitzgerald & Stol, 2015). The workshops showed that teams can better
understand their workflow and pinpoint areas where they can increase effi-
ciency, especially in cutting down on waste and delays, thanks to the visibility
that VSM provides.

The workshops also made clear, though, that teamwork and a willingness
to question established procedures are critical to VSM's success in software de-
velopment. A small percentage of participants voiced doubts in the feedback re-
garding the usefulness of VSM, especially in more complicated software settings.
This reflects concerns raised in earlier research (Dinis-Carvalho et al., 2015),
where it was noted that the abstraction needed for VSM in non-physical work-
flows occasionally oversimplified the complexities of software development.

 In the feedback from workshop 2, there was a concern that the VSM does
not suit their process as well as it is supposed to be. This means that it might be
a bit too simple to measure things as accurately as possible. In agile, lean and
SAFe framework thins move iteration to iteration which brings the challenge to
try to simplify the iterative process as one value stream. Because VSM was orig-
inally invented in a manufacturing environment where things go only one stream
forward it might work better with a waterfall framework VSM could be more
efficient but in agile the tool gives enough information and data to discover bot-
tlenecks in inefficiencies.

5.3 Implications for Theory and Practice

The research broadens understanding of lean principles in software development
from a theoretical standpoint. It supports the idea that, with the right adjust-
ments, manufacturing-specific tools, such as VSM, can be converted for use in
software development. This builds on earlier studies on lean's application in agile

51

frameworks by demonstrating how VSM can act as a link between general agile
concepts and targeted process improvement projects.

Validating the importance of feedback loops and cross-functional coopera-
tion as the main causes of software development bottlenecks is a significant the-
oretical contribution. According to the study's findings, one of the main causes
of inefficiency is feedback delays. This idea is supported by agile literature but
isn't as frequently discussed in lean theory (Power & Conboy, 2015).

The report provides useful advice on how to include VSM into routine soft-
ware development tasks for practitioners. The workshops show that regular VSM
sessions, either as part of sprint reviews or backlog refinement sessions, yield the
best results. Teams may keep an eye on their processes and spot new bottlenecks
quickly by regularly mapping and updating the value stream.

This study also suggests increasing automation in areas that are bottlenecks,
such as deployment and testing. The research on continuous delivery and inte-
gration already in existence supports the workshops' conclusion that manual
chores are a key cause of delays (Ali, et al., 2016). Teams can decrease manual
involvement, minimize lead times, and improve process accuracy by investing in
automation.

In the end, the study highlights how important it is to foster a continuous
improvement culture. Beyond just identifying inefficiencies, VSM supports
teams in taking responsibility for process enhancements and engaging in dia-
logues aimed at resolving issues. This aligns with the broad goals of agile and
lean methodologies, which give priority to continuous feedback and incremental
improvements (Fitzgerald & Stol, 2015).

52

This thesis set out to explore how Value Stream Mapping (VSM) could be applied
to enhance software development processes. With an emphasis on using VSM as
a tool to discover inefficiencies, bottlenecks, and areas for improvement within
software development workflows, the research was carried out through a series
of workshops within a case company. The study set out to address two main
queries:

• What are the main pain points of the company's software development pro-
cesses, and how can they be identified by Value Stream Mapping?

• What value does VSM bring to the company and its teams, and how can this
value be realized in the current software development environment?

6.1 Summary of Key Findings

Key conclusions from the workshops included the confirmation that VSM is an
effective method for identifying and resolving software development inefficien-
cies. Key conclusions include:

1. Identifying inefficiencies: The workshops made clear that there were
large differences between LT and process time PT. Even though some
tasks might be completed rapidly, waiting times were greatly increased
by resource availability, permissions, and communication delays. This
is consistent with lean theory, which sees delays of this kind as waste
that may be reduced by better cooperation and communication.

2. Visualization of Bottlenecks: Throughout the software development
lifecycle, bottlenecks can be effectively visualized with the help of VSM.
Long lead times, non-optimal communication and resource bottlenecks
were common in the development, testing, and handoff stages, where
notable problems were found during the workshops. Workshop 1

6 CONCLUSION

53

brought to light, for example, observable delays in the Development and
Documentation phase, which were caused by a lack of resources and
ineffective handoffs between the development and design teams. VSM
can show the inefficiencies simply and understandably.

3. Cross-Functional Collaboration: During the workshops, the importance
of involving key stakeholders early in the planning and refinement
stages, such as technical leaders and product owners, was emphasized.
Early involvement is essential for improving cross-functional coopera-
tion and guaranteeing team member alignment, which helps break
down organizational silos that could block progress.

4. Team Engagement and Inclusivity: VSM's structured approach pro-
motes the value of teamwork by providing everyone with a platform to
express their ideas and participate in decision-making. This inclusivity
is a vital component of VSM, ensuring that different viewpoints are con-
sidered when determining how to improve the process. In the work-
shops, all participants had the opportunity to voice their opinions on
potential improvements and present their arguments due to the phase
where everybody's improvement ideas were discussed.

5. Managing Technical Debt: During the workshops, the topic of technical
debt was brought up, which was an important concern to notice. Team
members stated that there was often more managerial pressure to create
new features than to maintain and improve the current development en-
vironment. This might be a one-sided view, but it still needs to be noted.
This worry emphasizes how important it is to strike a balance between
continuing maintenance and fresh development. This shows that VSM
can bring team members together and raise some concerns that are not
directly attached to the progress.

6.2 Theoretical Contributions

This research enhances the larger understanding of lean software development
approaches. It proves that knowledge work may effectively adapt manufactur-
ing-specific technologies like VSM, bridging the gap between basic agile concepts
and focused process improvements. The study expands on the conversation
within lean theory while supporting agile literature by validating the significance
of feedback loops and cross-functional cooperation as crucial elements in allevi-
ating software development bottlenecks. This thesis contributes to the theoretical
discussion on the suitability of VSM for software contexts by emphasising these
dimensions.

54

6.3 Practical Recommendations

From a practical perspective, this thesis offers several actionable recommenda-
tions for practitioners. VSM must be regularly integrated into software develop-
ment processes. Ideally, it would be good to be used in an increment review or
as often in a sprint review but once in a 4 iteration is a good time to make changes
and track the progress. If done too often, the changes might not be visible enough
and it might lower the motivation of the people who are making the changes.
Practically it also would affect the actual work being done if done too often.

The results indicate that there is an urgent need to boost automation in areas
that have been identified as bottlenecks, especially in deployment and testing.
Investing in automation will reduce human error and streamline procedures, re-
sulting in quicker delivery and higher-quality products. For example, one of the
factors that could beneficially impact the processes is AI. The company should
prioritize efforts to fully realize the potential value of AI.

Effective use of VSM requires fostering a culture that values ongoing devel-
opment. Organizations can establish a culture of continuous learning and adap-
tation by empowering teams to assume accountability for their processes and
participate in collaborative discussions aimed at addressing challenges. This
means to emphasize the teams and how they work. Top management can set the
big targets and show the way of the work, but there should be more “decentral-
ized command” where the team makes the plans and executes them. That is how
there is more ownership in the team, and they know the capacity and the envi-
ronment to work as efficiently as possible.

Along with developing new features, organizations should give priority to
maintaining and upgrading existing software environments. By balancing these
efforts, technical debt will not necessarily build-up, resulting in longer-term de-
velopment processes that are more streamlined and effective.

6.4 Limitations and Future Research

Even though this study provides insightful information, it is important to recog-
nize its limitations regarding time and money. The research was done inside a
single company, so it is possible, that the conclusions cannot be applied to differ-
ent situations or companies. Deeper investigations may expand on this work by
utilizing VSM in various companies and organizations, investigating its wider
suitability and efficacy in a range of software development contexts to have more
comprehensive results.

This thesis focused on shorter-period improvements identified during the
VSM workshops and how the VSM can help enhance software processes due to
limited time and resources. Future research should study the long-term impacts
of VSM on process efficiency, identifying waste, team productivity, and return

55

on investment (ROI) of implementing VSM. This could be done for example by
tracking the progress of each team with a follow-up workshop and studying
whether are they able to make their processes more efficient through VSM. This
research would take time and resources to execute.

Additionally, researching how VSM might be adapted to solve the difficul-
ties of modern software development—particularly in the contexts of DevOps,
agile scaling frameworks, and microservices architecture—would be a great path
for future exploration. As said, there are many ways to execute agile and every
company has its own. The scope of the study could be broader and include many
other teams from other companies as well.

6.5 Final Thoughts

In conclusion, this thesis highlights the potential of Value Stream Mapping as a
lean and transformative tool to use in software development. Through the visu-
alization of processes and collaborative identification of inefficiencies, VSM facil-
itates a culture of continuous improvement and improves communication among
all organizational levels and most importantly within the teams. The insights
gained from this research not only advance theoretical understanding but also
provide practical guidance and guidelines to optimize and enhance software de-
velopment practices and processes.

More effective processes, improved customer responsiveness, and a greater
competitive edge in an increasingly complicated software market can result from
the successful implementation of VSM. The journey towards optimizing software
development processes through VSM requires commitment, adaptability, and a
willingness to learn, but the rewards—improved productivity, quality, and team
engagement—are well worth the effort and might lead to great results.

56

REFERENCES

Artjoms, A. (2024, July 18). Software development life cycle (SDLC). Medium.
https://medium.com/@artjoms/software-development-life-cycle-sdlc-
6155dbfe3cbc (11.10.2024)

Adenowo, A. A., and Adenowo, B. A. (2013). Software engineering
methodologies: a review of the waterfall model and object-oriented
approach. International Journal of Scientific and Engineering Research, 4(7),
427-434.

Ali, N. B., Petersen, K., and De França, B. B. N. (2015). Evaluation of simulation-
assisted value stream mapping for software product development: Two
industrial cases. Information and software technology, 68, 45-61.

Ali, N. B., Petersen, K., and Schneider, K. (2016). FLOW-assisted value stream
mapping in the early phases of large-scale software development. Journal
of Systems and Software, 111, 213-227.

Al-Haddad, S., and Kotnour, T. (2015). Integrating the organizational change
literature: a model for successful change. Journal of organizational change
management, 28(2), 234-262.

Al-Saqqa, S., Sawalha, S., and AbdelNabi, H. (2020). Agile software
development: Methodologies and trends. International Journal of Interactive
Mobile Technologies, 14(11).

Amazon Web Services. (n.d.). Introduction to DevOps value stream mapping.
AWS Prescriptive Guidance. Retrieved October 11, 2024, from
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-
devops-value-stream-mapping/introduction.html

Arnold, J. A., Arad, S., Rhoades, J. A., and Drasgow, F. (2000). The empowering
leadership questionnaire: The construction and validation of a new scale
for measuring leader behaviors. Journal of organizational behavior, 21(3), 249-
269.

Ashkenas, R. (2013). Change management needs to change. Harvard Business
Review, 3, 20-23.

Avison, D., Baskerville, R., and Myers, M. (2001). Controlling action research
projects. Information technology and people, 14(1), 28-45.

Bang, S. K., Chung, S., Choh, Y., and Dupuis, M. (2013, October). A grounded
theory analysis of modern web applications: knowledge, skills, and
abilities for DevOps. In Proceedings of the 2nd annual conference on Research
in information technology (pp. 61-62).

Bassil, Y. (2012). A simulation model for the waterfall software development life
cycle. arXiv preprint arXiv:1205.6904.

https://medium.com/@artjoms/software-development-life-cycle-sdlc-6155dbfe3cbc
https://medium.com/@artjoms/software-development-life-cycle-sdlc-6155dbfe3cbc
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-devops-value-stream-mapping/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-devops-value-stream-mapping/introduction.html

57

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., ... and Thomas, D. (2001). The agile manifesto.

bin Ali, N. (2015). Operationalization of lean thinking through value stream mapping
with simulation and FLOW (Doctoral dissertation, Blekinge Tekniska
Högskola).

Bridges, W. (2009). Managing transitions: Making the most of change. Da Capo
Press.

Braude, E. J., and Bernstein, M. E. (2016). Software engineering: modern approaches.
Waveland Press.

Brenner, R., and Wunder, S. (2015, April). Scaled Agile Framework:
Presentation and real world example. In 2015 ieee eighth international
conference on software testing, verification and validation workshops (icstw) (pp.
1-2). IEEE.

Burnes, B. (2011). Introduction: Why does change fail, and what can we do
about it?. Journal of change management, 11(4), 445-450

Burnes, B., and Jackson, P. (2011). Success and failure in organizational change:
An exploration of the role of values. Journal of change management, 11(2),
133-162.

Campbell, R. J. (2008). Change management in health care. The health care
manager, 27(1), 23-39.

Campanelli, A. S., and Parreiras, F. S. (2015). Agile methods tailoring–A
systematic literature review. Journal of Systems and Software, 110, 85-100.

Chen, J. C., and Cox, R. A. (2012). Value stream management for lean office—A
case study.

Chen, L., and Meng, B. (2010). The application of value stream mapping based
lean production system. International journal of business and management,
5(6), 203.

Cho, J. J. (2010). An exploratory study on issues and challenges of agile software
development with Scrum. All Graduate theses and dissertations, 599.

Darwish, M., Haque, B., Shehab, E., and Al-Ashaab, A. (2010, September). Value
stream mapping and analysis of product development (engineering)
processes. In Proceedings of The 8th International Conference on
Manufacturing Research (ICMR 2010), University, Durham, UK (pp. 14-16).

Dingsøyr, T., Moe, N. B., Fægri, T. E., and Seim, E. A. (2018). Exploring software
development at the very large-scale: a revelatory case study and research
agenda for agile method adaptation. Empirical Software Engineering, 23,
490-520.

Dinis-Carvalho, J., Moreira, F., Bragança, S., Costa, E., Alves, A., and Sousa, R.
(2015). Waste identification diagrams. Production Planning and Control,
26(3), 235-247.

58

Eckstein, J. (2013). Agile software development in the large: Diving into the deep.
Pearson Education.

Elbanna, A., and Sarker, S. (2015). The risks of agile software development:
learning from adopters. IEEE Software, 33(5), 72-79.

Erdogan, B., Anumba, C., Bouchlaghem, D., and Nielsen, Y. (2005, September).
Change management in construction: the current context. In 21st Annual
ARCOM Conference (pp. 1085-1095). SOAS, University of London.
Association of Researchers in Construction Management.

Erickson, J., Lyytinen, K., and Siau, K. (2005). Agile modeling, agile software
development, and extreme programming: the state of research. Journal of
Database Management (JDM), 16(4), 88-100.

Fairley, R. E. (2011). Managing and leading software projects. John Wiley & Sons.

Fitzgerald & Stol, 2015, B., and Stol, K. J. (2017). Continuous software
engineering: A roadmap and agenda. Journal of Systems and Software, 123,
176-189.

Ford, C. M. (1996). A theory of individual creative action in multiple social
domains. Academy of Management review, 21(4), 1112-1142.

Ford, J. D., Ford, L. W., and D

Amelio, A. (2008). Resistance to change: The rest of the story. Academy of
management Review, 33(2), 362-377.

Fowler, M. (2018). UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional.

Giuffrida, R., and Dittrich, Y. (2015). A conceptual framework to study the role
of communication through social software for coordination in globally-
distributed software teams. Information and Software Technology, 63, 11-30.

IEEE Standard Glossary of Software Engineering Terminology," in IEEE Std
610.12-1990 , vol., no., pp.1-84, 31 Dec. 1990, doi:
10.1109/IEEESTD.1990.101064.

Jammalamadaka, K., and Krishna, V. R. (2013). Agile software development and
challenges. International Journal of Research in Engineering and Technology,
2(8), 125-129.

Jayatilleke, S., and Lai, R. (2018). A systematic review of requirements change
management. Information and Software Technology, 93, 163-185.

Jeong, B. K., and Yoon, T. E. (2016). Improving IT process management through
value stream mapping approach: A case study. JISTEM-Journal of
Information Systems and Technology Management, 13(3), 389-404.

Jones, G. R. (2001). Organizational theory: Text and cases

Jones, J., Firth, J., Hannibal, C., and Ogunseyin, M. (2021). Factors contributing
to organizational change success or failure: a qualitative meta-analysis of

59

200 reflective case studies. In Research Anthology on Digital Transformation,
Organizational Change, and the Impact of Remote Work (pp. 1427-1450). IGI
Global.

Kettunen, P., and Laanti, M. (2008). Combining agile software projects and
large‐scale organizational agility. Software Process: Improvement and
Practice, 13(2), 183-193.

Khan, S. U., and Azeem, M. I. (2014). Intercultural challenges in offshore
software development outsourcing relationships: an exploratory study
using a systematic literature review. IET software, 8(4), 161-173.

Khurum, M., Petersen, K., and Gorschek, T. (2014). Extending value stream
mapping through waste definition beyond customer perspective. Journal of
Software: Evolution and Process, 26(12), 1074-1105.

Kotter, J. P. (2007). Leading change: Why transformation efforts fail. In Museum
management and marketing (pp. 20-29). Routledge.

Kumar, S. A., and Kumar, T. A. (2011). Study the impact of requirements
management characteristics in global software development projects: an
ontology based approach. International Journal of Software Engineering and
Applications, 2(4), 107.

Kurapati, N., Manyam, V. S. C., and Petersen, K. (2012). Agile software
development practice adoption survey. In Agile Processes in Software
Engineering and Extreme Programming: 13th International Conference, XP
2012, Malmö, Sweden, May 21-25, 2012. Proceedings 13 (pp. 16-30). Springer
Berlin Heidelberg.

Lewin, K. (1948). Field theory.

Matharu, G. S., Mishra, A., Singh, H., and Upadhyay, P. (2015). Empirical study
of agile software development methodologies: A comparative analysis.
ACM SIGSOFT Software Engineering Notes, 40(1), 1-6.

Mento, A., Jones, R., and Dirndorfer, W. (2002). A change management process:
Grounded in both theory and practice. Journal of change management, 3(1),
45-59.

Maroofi, F., and Dehghan, S. (2012). Performing lean manufacturing system in
small and medium enterprises. International Journal of Academic Research in
Accounting, Finance and Management Sciences, 2(3), 156-163.

Miller, G. J. (2013). Agile problems, challenges, and failures. Project
Management Institute.

Myers, M. and Avison, D. (2002). An introduction to qualitative research in
information systems. In Myers, M. D., and Avison, D. Introducing
Qualitative Methods: Qualitative research in information systems (pp. 2-
12). London: SAGE Publications.

Myers, M. D. (1997). Qualitative Research in Information Systems. MIS

60

Quarterly, 21(2).

Nasir, N., Minhas, N. M., and Sweden, S. E. R. L. (2018). Implementing Value
Stream Mapping in a Scrum-based project-An Experience Report. In
QuASoQ@ APSEC (pp. 44-51).

Nerur, S., Mahapatra, R., and Mangalaraj, G. (2005). Challenges of migrating to
agile methodologies. Communications of the ACM, 48(5), 72-78.

Niazi, M., El-Attar, M., Usman, M., and Ikram, N. (2012, May). GlobReq: A
framework for improving requirements engineering in global software
development projects: Preliminary results. In 16th International Conference
on Evaluation and Assessment in Software Engineering (EASE 2012) (pp. 166-
170). IET.

Nowak, M., Pfaff, H., & Karbach, U. (2017). Does Value Stream Mapping affect
the structure, process, and outcome quality in care facilities? A systematic
review. Systematic reviews, 6, 1-11.

Pargaonkar, S. (2023). A Comprehensive Research Analysis of Software
Development Life Cycle (SDLC) Agile and Waterfall Model Advantages,
Disadvantages, and Application Suitability in Software Quality
Engineering. International Journal of Scientific and Research Publications
(IJSRP), 13(08), 345-358.

Petersen, K., and Wohlin, C. (2011). Measuring the flow in lean software
development. Software: Practice and experience, 41(9), 975-996.

Pfleeger, S.L. and Atlee, J.M. (2006). Software Engineering: Theory and Practice, 3rd
Edition. US: Prentice Hall.

Pfleeger, S. L., & Atlee, J. M. (2010). Software engineering: Theory and practice (4th
ed.). Prentice-Hall.

Power, K., and Conboy, K. (2015, May). A metric-based approach to managing
architecture-related impediments in product development flow: an
industry case study from Cisco. In 2015 IEEE/ACM 2nd International
Workshop on Software Architecture and Metrics (pp. 15-21). IEEE.

Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave
macmillan.

Rafferty, A. E., Jimmieson, N. L., and Armenakis, A. A. (2013). Change
readiness: A multilevel review. Journal of management, 39(1), 110-135.

Rasheed, A., Zafar, B., Shehryar, T., Aslam, N. A., Sajid, M., Ali, N., ... and
Khalid, S. (2021). Requirement engineering challenges in agile software
development. Mathematical Problems in Engineering, 2021(1), 6696695.

Rauf, A., and AlGhafees, M. (2015, August). Gap analysis between state of
practice and state of art practices in agile software development. In 2015
agile conference (pp. 102-106). IEEE.

61

Rodríguez, P., Mäntylä, M., Oivo, M., Lwakatare, L. E., Seppänen, P., and
Kuvaja, P. (2019). Advances in using agile and lean processes for software
development. In Advances in computers (Vol. 113, pp. 135-224). Elsevier.

Rother, M., and Shook, J. (2003). Learning to see: value stream mapping to add value
and eliminate muda. Lean enterprise institute.

Schach, S. R. (2007). Object-oriented and classical software engineering (Vol. 6). New
York: McGraw-Hill.

Shylesh, S. (2017, April). A study of software development life cycle process
models. In National Conference on Reinventing Opportunities in Management,
IT, and Social Sciences (pp. 534-541).

Sinha, V., Sengupta, B., and Chandra, S. (2006). Enabling collaboration in
distributed requirements management. IEEE software, 23(5), 52-61.

Somerville, I. (2016). Software engineering (10th ed.). Pearson Education.

Srivastava, A., Bartol, K. M., and Locke, E. A. (2006). Empowering leadership in
management teams: Effects on knowledge sharing, efficacy, and
performance. Academy of management journal, 49(6), 1239-1251.

Stake, R. E. (2010). Qualitative research: Studying how things work. Guilford
Press

Staron, M., and Meding, W. (2011, June). Monitoring bottlenecks in agile and
lean software development projects–a method and its industrial use. In
International Conference on Product Focused Software Process Improvement (pp.
3-16). Berlin, Heidelberg: Springer Berlin Heidelberg.

Tankhiwale, S., and Saraf, S. (2020). Value stream mapping (vsm) led approach
for waste and time to market reduction in software product development
process. Telecom Business Review, 13(1), 27.

Thummala, G. S. (2004). Value stream mapping for software development
process.

Turetken, O., Stojanov, I., and Trienekens, J. J. (2017). Assessing the adoption
level of scaled agile development: a maturity model for Scaled Agile
Framework. Journal of Software: Evolution and process, 29(6), e1796.

Tyagi, S., Choudhary, A., Cai, X., and Yang, K. (2015). Value stream mapping to
reduce the lead-time of a product development process. International
journal of production economics, 160, 202-212.

Weick, K. E., and Weick, K. E. (1995). Sensemaking in organizations (Vol. 3, pp. 1-
231). Thousand Oaks, CA: Sage publications.

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). sage.

Zhang, X., and Bartol, K. M. (2010). Linking empowering leadership and
employee creativity: The influence of psychological empowerment,
intrinsic motivation, and creative process engagement. Academy of
management journal, 53(1), 107-128.

62

APPENDIX ONE TEAM 1 VALUE STREAM MAPS

63

 APPENDIX TWO TEAM 2 VALUE STREAM MAP

64

APPENDIX THREE TEAM 3 VALUE STREAM MAP

