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ABSTRACT
Background and Aims: Multisite pain is a prevalent and significant issue among adolescents, often associated with adverse

physical, psychological, and social outcomes. We aimed to (1) predict multisite pain incidence in the whole body and in the

musculoskeletal sites in adolescents, and (2) explore the sex‐specific predictors of multisite pain incidence using a novel

machine learning (ML) approach (random forest, AdaBoost, and support vector classifier).

Methods: A 2‐year longitudinal observational study (2013–2015) was conducted in a population‐based sample of Finnish

adolescents (N= 410, 57% girls, 12.5 years (SD = 1.2) at baseline). Three different data sets were used. First data included 48 pre‐
selected variables relevant for adolescents' health and wellbeing. The second data included nine physical fitness variables

related to the Finnish national ‘Move!’ monitoring system for health‐related fitness. The third data set included all available

baseline data (392 variables). Multisite pain was self‐reported weekly pain during the past 3 months manifesting in at least three

sites and not related to any known disease or injury. Musculoskeletal pain sites included the neck/shoulder, upper extremities,

chest, upper back, low back, buttocks, and lower extremities. Whole body pain sites also included the head and abdominal

areas.

Results: Overall, 16% of boys and 28% of girls developed multisite pain in the whole body and 10% and 15% in the muscu-

loskeletal area during the 2‐year follow‐up. The prediction ability of ML reached area under the receiver operating characteristic

curve 0.78 at highest but remained mainly < 0.7 for the majority of the methods. With ML, a broad variety of predictors were

identified, with up to 33 variables showing predictive power in girls and 13 in boys.

Conclusion: The results highlight that rather than any isolated variable, a variety of factors contribute to future multisite pain.

1 | Introduction

Pain is common in adolescents [1]. Long‐lasting pain in at least
two bodily locations is reported by at least every tenth and up to

every third adolescent in large cohort studies [2], with muscu-
loskeletal locations most common sites for pain [3]. This
co‐occurrence of pain is typical in the adolescent population [4],
and hence, multisite pain is recommended to be considered in
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clinical practice over isolated pain sites [2]. While the adoles-
cent population is relatively free from many disabling health
outcomes, experiences of pain are associated with a lesser
ability to conduct daily activities. This association follows a
dose‐response pattern where more pain sites are associated with
a higher degree of disability [3]. The relevance of multisite pain
in adolescence is stressed by pediatric pain researchers [5]. Pain
in adolescence is associated with a broad range of adverse
outcomes, from limitations in school attendance and hobbies to
reduced quality of life and depressive symptoms, with especially
multisite pain affecting several areas of daily living [3, 6–8].
Alarmingly, experiences of multisite pain are common in ado-
lescents [3]. Furthermore, pain experiences tend to track from
childhood and adolescence into adulthood [9, 10], with high
relevance to, e.g. future work disability [11].

Previous studies have found several cross‐sectional correlates
with pain. Various biological, psychosocial, and lifestyle factors,
such as age, pubertal status, overweight or obesity, symptoms of
anxiety and depression, chronic health problems, frequent
change of residence, poor academic achievement, leisure screen
time, fewer interactions with peers, unhealthy lifestyles (e.g.,
sedentary behavior, screen time, inadequate sleep and smok-
ing), and excessive physical activity, especially in a technical,
team, strength, or extreme sports increase the odds for overall
or musculoskeletal pain [1, 2, 12–15]. Of these, specifically
sedentary behavior, overweight/obesity, and smoking report-
edly correlate with multisite pain especially in adolescent girls
[12]. Previous findings have also shown that psychological
distress and anxiety associate with multisite musculoskeletal
pain regardless of the gender [8]. In addition, physical fitness is
suggested to be associated with pain in adolescents. Especially
the associations of flexibility and muscular fitness with mus-
culoskeletal pain have been of great interest. Findings remain
persistently inconclusive, although the majority of studies have
focused on examining a specific pain site [16, 17]. Despite the
inconclusive evidence, proper functioning of the musculo-
skeletal system, i.e adequate exertion of force, fatigue resist-
ance, and range of motion in the body, is a rationale for many
health‐related large‐scale monitoring and surveillance systems
to implement fitness testing at the population level [16, 18].
Previous findings also indicate that girls report pain more often
than boys [2, 3], and the correlates of pain might be sex‐specific,
potentially due to differences in maturation, pain tolerance, or
coping behaviors between sexes [2, 12].

Less is known about the predictors of pain incidence. Predicting
the future onset of multisite pain has proven to be challenging
despite the broad range of potential explanatory factors. For ex-
ample, Paananen et al. [13] did not find statistically significant
predictors for multisite musculoskeletal pain incidence in a 2‐year
follow‐up study. Recently, machine learning (ML)‐based pattern
recognition approaches have emerged as promising alternatives to
traditional statistical approaches in modeling complex phenome-
non in various areas of society, including health care [19]. In this
approach, a hypothesis‐free data‐driven methods are used to
handle complex, high‐dimensional data for predictive tasks [20].
Therefore, the aim of this study was to (1) predict multisite pain
incidence in the musculoskeletal and whole body sites in adoles-
cents and (2) explore the sex‐specific determinants of multisite
pain incidence utilizing a novel ML approach.

2 | Methods

2.1 | Study Population

This study was part of a research entity related to the Finnish
Schools' on the Move program focusing on physical activity and
wellbeing among children and adolescents [21]. A longitudinal
observational study was conducted between January 2013 and
June 2015. A total of 1778 students from nine Finnish schools
were invited to participate. Out of these, 970 students (53%
girls) provided signed written consent with their main caregiver
and participated in the study. After excluding students with
possible confounding factors at baseline (such as guardian‐
reported existing chronic illnesses or disorders, injuries, existing
multisite pain, and more than 50% of missing data), the final
sample consisted of 410 apparently healthy participants
(57% girls) (Figure 1).

The study setting and measurements were approved by the Ethics
Committee of the University of Jyväskylä, and all procedures were
conducted in accordance with the principles outlined in the
Declaration of Helsinki. Participants had the option to discontinue
their involvement at any point during the research. All measure-
ments were conducted by trained personnel.

2.2 | Outcome

Pain incidence was defined as the new onset of multisite pain at
any time point during the 2‐year follow‐up. Pain symptoms
were screened four times after baseline with structured ques-
tionnaires at 6‐month intervals: “How often you have had
symptoms in the last 3 months (in body parts A–I in the pic-
tures below)? Mark the appropriate option. Headache (A), Neck
and shoulder pain/ache (B), Upper extremities pain/ache (C),
Chest pain/ache (D), Upper back pain/ache (E), Low back pain/
ache (F), Stomach ache (G), Buttocks pain/ache (H), Lower
extremities pain o/ache (I)” [22]. The question was supported
by an illustration of the described body parts. The answering
options were: “Almost daily, More than once a week, About
once a week, About once a month, Seldom or never.” The used
approach combines the information regarding pain symptom,
frequency and location. Students also reported if the pain
originated from trauma:”Have you injured any of the above‐
mentioned and pictured pain areas during the previous
3 months (e.g., fallen, stumbled, being hurt during sport, etc.)?”
The answer options were “yes” or “no” and provided additional
information related to the injured body area.

Multisite pain was defined as reported weekly pain (almost
daily, more than once a week, or about once a week) in at least
three sites during the past 3 months. Pains due to traumatic
causes were excluded from the analysis. In this study, multisite
pain was reported separately for the whole body and muscu-
loskeletal locations. The pain reported in at least three sites was
selected to reflect the disabling form of multisite pain. Previ-
ously, multisite pain measured in a similar manner has shown
increased prevalence of difficulties in falling asleep, sitting
during school lesson, disturbances during 1 km walking, dis-
turbances during exercise class and difficulties in participating
to leisure time activities in adolescents [3]. Musculoskeletal
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pain sites included the neck/shoulder, upper extremities, chest,
upper back, low back, buttocks, and lower extremities. Whole
body pain sites included additionally head and abdominal areas.
The categorization was based on previous literature [3].

2.3 | Predictive Variables

We aimed to determine the predictors of multisite pain inci-
dence using three different data sets. First, we included 48
selected baseline variables relevant to adolescents' physical
activity, fitness, health, and wellbeing [23]. The data included
information on participants' basic demographics, physical,
psychosocial, and lifestyle characteristics and is presented in
detail elsewhere [23]. The results of these analyses are pre-
sented in the main text.

Secondly, we used baseline physical fitness measurements
belonging to the Finnish national ‘Move!’ monitoring and sur-
veillance system for health‐related fitness [24] (nine baseline
variables include 20‐m shuttle run, push‐up, curl‐up, 5‐leaps

test, throwing–catching combination test, squat, lower‐back
extension in sitting posture, and shoulder stretch (measurement
protocols described in detail elsewhere) [25]. Annually,
approximately 100,000 children and adolescents (approximately
96% of the relevant age groups) participate in ‘Move!’ creating a
unique database for health‐enhancing policies [26].

Thirdly, a data‐driven approach was used with the whole
available data (392 baseline variables) to explore potential novel
predictors of multisite pain incidence. Data included extensive
information on students' self‐reported, and device‐based de-
mographics, physical and psychosocial characteristics, and
physical activity.

2.4 | Analytical Procedures

The random forest (RF), AdaBoost, and support vector classifier
(SVC) methods were applied. The RF method was the default,
and latter two methods were utilized only to confirm the pre-
diction ability of the RF method. With AdaBoost and SVC we

FIGURE 1 | Flow chart of the exclusion process.
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used only the 48 selected baseline variables for analyses. All
analyses were performed using MATLAB R2023b with the
Statistics and Machine Learning Toolbox and conducted sepa-
rately for both sexes. Initial preprocessing and creation of the
outcome variable were made using the Python programming
language.

Firstly, RF is an ML method where multiple de‐correlated
decision trees are grown to form a forest. Afterward, this forest
is employed as a voting ensemble, where each tree provides an
answer for the prediction task. The final prediction of the forest
is the class that gets the most votes from the individual trees
[27, 28]. Secondly, AdaBoost (adaptive boosting) adds multiple
weak learners, like decision trees, to create a strong classifier. It
sequentially trains each learner, focusing on instances mis-
classified by previous ones, thereby improving the overall model
[29]. Finally, SVC aims to create a separating hyperplane that
best separates the classes, maximizing the margin between
them [28].

Ten‐fold cross‐validation (CV) was employed for model
assessment. During CV, the data for each prediction task was
divided into 10 subsamples called folds. Nine of these folds, 90%
of the whole data set, were used as the training data to fit the
RF, AdaBoost or SVC model, while onefold, 10% of the data,
was used as the validation data. This procedure was repeated 10
times in a rotating manner, where eventually all the folds had
been employed for training and validation. Thus, all the pre-
sented results are based on 10 separate data‐driven prediction
models.

For each of the 10 CV folds in RF, the trained model was em-
ployed to predict the out‐of‐bag (OOB) observations i.e., those
observations which were not utilized during the training of each
tree, and the validation portion of the data. The main metric
recorded was the area the under receiver operating character-
istic curve (AUC). T‐tests were performed in MATLAB for the
OOB and validation data AUC results to determine if the means
of the CV folds were significantly (p< 0.05) above the random
level of 0.5. Further analyses regarding the predictive power of
each variable were conducted only in those cases where AUC
95% confidence interval (CI) did not violate the 0.5 threshold. A
similar setup was used for AdaBoost and SVC. However, since
OOB observations are exclusive to RF, they could not be utilized
for performance estimation in these two methods.

RF requires choosing several hyperparameters i.e., options that
define the model creation. F‐measure for the training data OOB
observations was used as a target during Bayesian optimization
[30], where several hyperparameters of the RF model were
chosen in an automated fashion. For the AdaBoost and SVC
models, hyperparameters were also tuned using Bayesian opti-
mization, employing a nested fivefold CV for each fold. Please
see Supporting Information S1: Supplementary methods for
further information on the target measure, the hyperpara-
meters, and other details concerning the RF, AdaBoost and SVC
models.

The contribution of each variable to prediction was estimated
using the RF's OOB observations by a permutation importance
measure. A baseline result for the model in each CV fold was

the accuracy of the model with the original data. To estimate
the contribution of each variable, the values of the variables
were permuted randomly. The procedure was repeated for all
the variables separately, and the accuracy of the model with
permutations was recorded for each variable. The accuracy
obtained using the permuted variable was then subtracted from
the baseline accuracy. The final permutation importance esti-
mate for each variable was the mean of accuracy change for the
10 CV folds. T‐tests were employed also for the importance
estimates. If the change was significantly (p< 0.05) over zero,
the variable was seen as having predictive power. Furthermore,
if the mean change was near zero or negative, the variable did
not have importance in the prediction. MATLAB's predict
function in the TreeBagger class was utilized to calculate the
OOB predictions on the trained model. This function computed
the weighted average of the class posterior probabilities over the
trees. To provide an alternative perspective on the importance
of individual predictors, SHAP (SHapley Additive exPlanations)
values were extracted for the AdaBoost and SVC models. The
results and details of the SHAP are presented in Supporting
Information S1: Figures S4–11.

In further sensitivity analyses the class imbalance was con-
sidered, meaning that there are considerably less observations
in diffuse idiopathic pain class, is a challenge in all explored
settings. This issue was approached during the modeling in two
separate ways. Firstly, in the RF, AdaBoost and SVC models by
changing the default cost matrix of misclassification. Cost of
misclassifying true pain class observations to no pain class (false
negative classification) was increased to 2, while the other
misclassification (false positive) was left to its default value 1.

Furthermore, as an alternate view, a synthetic minority over-
sampling technique for nominal and continuous data SMOTE‐
NC [31], was utilized with RF to see if artificially balancing the
training data by oversampling the pain class observations pro-
vided any performance improvements. Since SMOTE‐NC,
available in Themis library in R, expected that there are no
missing values in data, missForest imputation for mixed‐type
data was utilized before oversampling. As a limitation, due to
artificially manipulating the training data, the OOB observa-
tions could not be meaningfully utilized during this experiment
and only non‐manipulated validation data for each CV fold was
used when estimating the performance measures.

When estimating the importance of individual variables, the
associated risk for each variable was examined with simple
ROC analysis while acknowledging how the variables were
coded in the data. The analysis was done separately from the RF
model for the whole age‐adjusted data once without utilizing
CV. The analysis was performed only for continuous and
ordinal variables. The identified risk variables are presented in
permutation importance estimate figures with a red panel.

3 | Results

Descriptive information on the study sample is provided in
Table 1. At baseline, headache (22.5%, 30.4%) and neck and
shoulder pain (13.5%, 18.5%) were the most prevalent pain
symptoms among boys and girls, respectively (Table 1).

4 of 10 Health Science Reports, 2024
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3.1 | Whole Body Multisite Pain Incidence

Sixteen percent of boys and 28.1% of girls experienced multisite
pain incidents in the whole body area during the 2‐year follow‐
up (Table 2). The ability of the ML approach to predict whole
body multisite pain incidence reached an AUC 0.54 (95% CI:
0.51–0.57) for boys and 0.65 (0.64–0.67) for girls with the first
data set and our default RF OOB observations (Table 2).
Incorporating additional ML‐methods (AdaBoost, SVC) did not
provide systematically or considerably better prediction ability
(Table 2).

The default tasks where prediction ability reached above ran-
dom level (AUC 95% CI > 0.5) were further analyzed for vari-
able importance. Altogether, 33 variables out of 48 baseline
variables showed predictive power for whole body multisite
pain incidence among girls. All variables are illustrated in
Figure 2, and the top 10 are described in detail here. Poorer
perceived health, higher perceived fitness, more frequent
tiredness on schoolday mornings, having overweight or obesity
based on body mass index, more frequent participation in sports

competitions and matches, more frequent breakfast eating
during the school week, a lower grade point in physical edu-
cation, a lower amount moderate‐to‐vigorous physical activity
during leisure time, higher school enjoyment, and higher
pubertal status increased the probability of multisite pain inci-
dence in the whole body area in girls.

Prediction ability with the Move! variables reached above the
random level only in boys and in the whole body area (AUC
0.59 [0.56–0.62], Supporting Information S1: Table S1) and
indicated that better muscular and cardiorespiratory fitness but
poorer motor fitness predict higher multisite pain incidence
(Supporting Information S1: Figure S1). With the full available
data set, ML was able to predict multisite pain incidence only in
girls (AUC 0.68 [0.66 to 0.70] in the whole body area
(Supporting Information S1: Table S2). With the full data, along
with physical, psychosocial, and lifestyle factors, individual pain
sites at baseline rose as predictive factors of future multisite
pain (Supporting Information S1: Figure S2). Balancing the data
artificially with SMOTE‐NC did improve prediction ability up to
AUC 0.69 (with high a standard deviation as a result of the
small size of each validation fold), but due to automatic risk
threshold selection designed for earlier tasks, it created in
general suboptimal sensitivity and specificity values
(Supporting Information S1: Tables S3–5).

3.2 | Multisite Musculoskeletal Pain Incidence

Multisite pain incidence in the musculoskeletal area was 9.6%
and 15.3% in boys and girls, respectively (Table 2). The pre-
diction ability for multisite musculoskeletal pain incidence was
AUC 0.65 (0.62–0.68) in boys and 0.51 (0.48–0.54) in girls
(Table 2). Incorporating additional ML‐methods (AdaBoost,
SVC) did not provide systematically better prediction ability
across all performance metrics, although AUC reached 0.78
(0.61–0.96) with SVC in boys (Table 2).

In boys, a total of 13 variables out of 48 showed predictive
power for multisite musculoskeletal pain incidence. The top 10
predictors for pain incidence included higher school strain,
lower school enjoyment, a higher participation rate in sports
competitions or matches, lower amounts of continuous device‐
measured sedentary time, better muscular fitness measured
with the number of push‐ups conducted within 1min, a lower
body mass index, more active participation in physical activity
clubs in school, a later bedtime on schooldays, lower total
sedentary time, and parents' higher willingness to help with
schoolwork (Figure 3).

With the full available data set, ML was able to predict multisite
musculoskeletal pain incidence only in girls (AUC 0.58
[0.56–0.60], Supporting Information S1: Table 2). With the full
data, along with physical, psychosocial, and lifestyle factors,
individual pain sites at baseline rose as predictive factors of
future multisite pain (Supporting Information S1: Figure 3).
Balancing the data artificially with SMOTE‐NC did also
improve prediction ability of multisite musculoskeletal pain up
to AUC 0.72, but showed in general similar suboptimal sensi-
tivity and specificity values as for the whole body area
(Supporting Information S1: Tables S3–5).

TABLE 1 | Selected subject demographics at baseline by sex.

N= 410 Boys Girls

Characteristic

N 175 (42.6%) 235 (57.3%)

Age (years) 12.5 (1.2) 12.5 (1.2)

Height (cm) 156.7 (10.9) 155.1 (9.6)

Weight (kg) 46.1 (12.2) 45.4 (10.1)

BMI (kg/m2) 18.5 (3.2) 18.7 (3.0)

Pain at different body sites

Any pain (one or two sites) 59 (33.7%) 99 (42.1%)

Musculoskeletal pain sites

Neck/shoulder (%) 23 (13.6%) 42 (18.5%)

Upper extremities (%) 7 (4.1%) 10 (4.4%)

Chest (%) 1 (0.6%) 2 (0.9%)

Upper back (%) 5 (3.0%) 5 (2.2%)

Low back (%) 8 (4.7%) 8 (3.5%)

Buttocks (%) 2 (1.2%) 6 (2.6%)

Lower extremities (%) 9 (5.3%) 13 (5.7%)

Other pain sites

Head (%) 38 (22.5%) 69 (30.4%)

Abdominal (%) 18 (10.7%) 36 (15.9%)

Physical activity and fitness

Moderate‐to‐vigorous
physical activity (min/day)

58.3 (24.2) 47.4 (18.3)

Sedentary time (hours/day) 8.1 (1.3) 8.6 (1.1)

Physical fitness index
(move‐index)

16.6 (4.1) 17.2 (3.6)

Note: Values are means and standard deviations for continues variables and
proportions of participants for others.
Abbreviations: BMI, body mass index; move‐index, weighted sum of the Finnish
national Move! monitoring system's fitness items.
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4 | Discussion

In this data‐driven exploratory study, we aimed to investigate
determinants of multisite pain incidence among the adolescent
population with a novel ML approach. Multisite pain incidence
in the study population was considerable, with up to 16% of
boys and 28% of girls developing multisite weekly pain during
the 2‐year follow‐up. The prediction ability of the ML approach
with selected predictive variables reached with our default
method an AUC 0.65 at its highest. With ML, a broad variety of
variables predicting multisite pain incidence in adolescents
were identified. Out of 48 selected variables, up to 33 variables
showed predictive power in girls and 13 in boys. These findings
highlight that rather than any isolated variable, a variety of
factors may possess an increased risk for multisite pain
and indicate the paradoxical nature of some variables, especially
in girls.

Multisite pain is a major adverse health outcome in the ado-
lescent population, affecting the daily lives of more than every
fourth adolescent and their families [1]. Predicting the future
onset of multisite pain, identifying individuals potentially ex-
periencing disabling pain in the future, and recognizing the
predictors of pain hold the potential to enhance the quality of
life in this important demographic through better health edu-
cation and policies. Pediatric experts have long stressed the
importance of pain research and further understanding of pain

epidemiology and underlying pathophysiology through inno-
vative study designs [5].

ML‐based pattern recognition algorithms, a subgroup of artifi-
cial intelligence, have emerged as promising alternatives to
traditional statistical methods in developing next‐generation
tools to enhance public health. In contrast to theory‐based and
often restricted traditional statistical models, the ML approach
enables near unlimited learning capacity from the available
data [27], providing the potential to develop more precise
methods for screening and predicting adverse health outcomes.
ML‐based approaches are acknowledged to hold significant
potential for reforming public health policies in the future [32].

Previous studies have shown that prediction of multisite pain
incidence is demanding [13], and the isolated correlates have
modest effect sizes [8]. In this current study, the ML approach
was able to predict pain incidence above the random level,
however remaining with most methods under clinical relevance
(AUC< 0.7) [33]. Through the ML approach, we found various
predictors for multisite pain incidence, reflecting the previously
reported physical, lifestyle, and psychosocial correlates [1, 2,
12–15], and complementing these findings by illustrating the
risky variables in a holistic framework alongside the paradoxi-
cal nature of some variables. For example, with whole body
multisite pain incidence among girls, indicators of both lower
and higher psychosocial wellbeing (e.g., lower life enjoyment vs.

FIGURE 2 | Permutation importance estimates for girls in the selected set for all sites (AUC 0.65). Red panel, risk factors; PA, physical activity;

counts, accelerometer total activity counts.
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higher school enjoyment), low and high physical activity (lower
amount of moderate‐to‐vigorous physical activity during leisure
time vs. more days with physical activity for at least 60 min
per day), lower body mass index, and obesity or overweight
classification were identified as risk factors. These findings
illustrate that risk factors, especially for whole body multisite
pain incidence in girls are complex, associations are not linear,
and individuals with both healthy and unhealthy lifestyles,
favorable or unfavorable psychosocial status might develop
multisite pain in the future. In boys, findings indicated more
consistently that poorer psychosocial wellbeing, higher physical
activity, a leaner body, and better physical fitness predict mul-
tisite musculoskeletal pain incidence and support the
acknowledgment of overall wellbeing and health‐enhancing
physical activity practices among boys to prevent musculo-
skeletal pain.

The strengths of this study were the novel application of ML in
pain prediction, the longitudinal study design, and the exten-
siveness of predictors. The ML approach considerably extends
pain research and provides potential avenues for screening and
modeling complex phenomena in the future. The data was
however limited by information (no data on current medica-
tion) and cases (e.g., < 66 cases in the data set) with possibly

influencing the generalizability of the findings. ML explores
patterns in the data and does not explain underlying mecha-
nisms or causality. As an additional note, it is important to
consider that the OOB values were utilized during the hy-
perparameter optimization process. This means that the model
has already been exposed to these observations while tuning its
parameters. Consequently, the performance estimates derived
from the OOB values may be slightly biased, as the model is
indirectly optimized to perform as well as possible on these
observations. This potential bias should be considered when
interpreting the results, as it may lead to an overestimation of
the model's true generalization performance. However, this bias
is probably very low, as Probst et al. [34] showed that opti-
mizing the hyperparameters in an RF model gave, on average,
only a 0.01 increase in the AUC metric. The multicollinearity of
the variables might affect the interpretation of variables with
similar phenomenal origins. Self‐reported data may suffer from
recall bias, although the reliability of the utilized questionnaire
has shown to be reasonable [22].

In conclusion, these novel findings highlight the multifaceted
predictors of multisite pain incidence in adolescents and sup-
port the adoption of holistic and multidisciplinary prevention
approaches in the future.

FIGURE 3 | Permutation importance estimates for boys in the selected set for musculoskeletal sites (AUC 0.64). Red panel, risk factors;

PA, physical activity; counts, accelerometer total activity counts.
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