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Abstract
Microalgal lipids are molecules of biotechnological interest for their application in sustainable food and energy production. 
However, lipid production is challenged by the time-consuming and laborious monitoring of lipid content in microalgae. 
This study aimed to predict the lipid content of Chlorella vulgaris cultivations based on non-invasively collected near-
infrared (NIR) range hyperspectral data. A gravimetric analysis of total lipids was used as reference data (between 2 and 
22% per dry weight) to compare three different models to determining the lipid content. A one-dimensional convolutional 
neural network and partial least squares models performed at a similar level. Both models could predict the lipid content of 
Chlorella dry weight with an error of 4%pt (root mean squared error). The index-based linear regression model performed 
the weakest of the three models, with the error of the prediction being 6%pt. Nile Red staining was used to visualise lipids 
on a microscope and lipid class analysis to resolve the lipid classes that explained most of the increase in lipids in Chlorella. 
A SHAP algorithm (SHapley Additive exPlanations) was used to analyse the wavebands of NIR spectra that were important 
for predicting the total lipid content. The results show that spectral data, when combined with an adequate algorithm, could 
be used to monitor microalgae lipids non-invasively in a closed system, in a way that has not previously been demonstrated 
with an imaging system.
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Introduction

Microalgae are single-celled organisms that can fix car-
bon dioxide and produce significant amounts of molecules 
important for consumers, such as lipids (Müller-Navarra 
et al. 2000; Patel et al. 2022). Lipids are hydrophobic mol-
ecules that include triglycerides, glycolipids, phospholipids 
and sterols, which play multiple roles in cell metabolism, 
storage, structure, and other functions. As environmentally 
responsible technologies advance, the cultivation of micro-
algae for commercial purposes is becoming more and more 
popular (Bellou et al. 2014; Fernández et al. 2021). The 
lipids produced by microalgae have been exploited both in 

human food, such as in food supplements, and in animal 
feed as, for example, part of fish feed (Ansari et al. 2021; 
De Bhowmick et al. 2023). Microalgae have also attracted 
interest from a bioenergy perspective, as the lipids produced 
by microalgae could be used as raw materials for biofuels 
(Fernández et al. 2021). Compared to other raw materials of 
biofuels, such as soybean and oil palm, microalgae cultiva-
tion requires less land area (Lam and Lee 2012). Consider-
ing the ability of microalgae to fix carbon dioxide, micro-
algal biotechnology is a promising area for food production 
and sustainable energy development.

To ensure the quality of microalgal products, it is impor-
tant to monitor algae cultivations (Havlik et al. 2022). Some 
of the most commonly used methods to quantify the lipid 
content of microalgae are gravimetric methods (Challagulla 
et al. 2017). They are accurate and frequently used, but they 
are also time-consuming and require physical manipulation 
of the cultures, trained personnel, and laboratory conditions 
(Challagulla et al. 2017). In addition, the solvents used in 
the protocols are toxic. Another commonly used method to 
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determine the lipid content of microalgae is Nile Red stain-
ing. Nile Red is a lipophilic dye that can be used to quantify 
especially the neutral lipid fraction in cells when it is com-
bined with fluorescence detection (Chen et al. 2009; Zheng 
et al. 2022). The challenge with this method is that it does 
not work with all microalgal species due to the presence of 
thick cell walls, which has led to the use of different sol-
vents being tested (Storms et al. 2014). Although solvents 
facilitate the staining of lipids and enhance their signal, 
this multi-step method is time-consuming and allows only 
a small volume of the cultivation to be viewed. More effi-
cient monitoring methods have been called for to meet the 
needs of industrial algae cultivation, which requires reliable 
and rapid monitoring in various volumetric scales (Liu et al. 
2020; Havlik et al. 2022; Solovchenko 2023).

Spectroscopic methods utilising absorbance or reflectance 
signals on the near-infrared (NIR; 780–2500 nm) portion of 
the light spectra have been proposed for detecting the lipid 
content of microalgae, because lipids contain functional 
groups (e.g. CH) with signals in the NIR region caused 
by molecular vibrations (dos Santos et al. 2013). Spectro-
scopic methods have increased in popularity because of 
their increased practicality, portability, and sensitivity. For 
example, Liu et al. (2015) analysed the total fatty acids of 
microalgae cultivation by detecting the diffusively reflected 
radiation of liquid samples with a portable NIRS spectrome-
ter. A challenge for NIR signal-based monitoring, especially 
in liquid cultures, is posed by water, which absorbs strongly 
in the NIR region. Brown et al. (2014) avoided the absorp-
tion property of water by determining the lipid content from 
filtered microalgae samples using a portable NIR reflectance 
spectrometer.

A hyperspectral imager produces a stack of images, also 
called a data cube, where the x- and y-axes contain spatial 
information, and the z-axis displays spectral information 
on hundreds of different wavebands, enabling the collec-
tion of detailed spectral information. Spectral imagers have 
been developed to detect information from the visual range 
(380–700 nm) but also NIR ranges. Li et al. (2020) investi-
gated the use of a spectral imager, that is, imaging spectros-
copy, in lipid monitoring. They aimed to reduce the need 
for sample processing and to image liquid samples despite 
the absorption of water in the NIR region. They were able 
to predict the production, as well as spatial accumulation, 
of microalgal lipids from living liquid samples by imaging 
algae with an NIR hyperspectral imager using a transmis-
sion setup. They overcame the water’s strong absorption by 
correcting each image with spectra of the growth medium.

Previous studies on lipid monitoring of microalgae 
using spectroscopic methods have focused on the analy-
sis of filtered and liquid microalgal samples (Brown et al. 
2014; Liu et al. 2015; Li et al. 2020). This study explores 
the potential of a spectral imager to monitor the lipids 

of microalgae cultivation non-invasively, that is, with-
out sampling, on a laboratory scale. Spectral imaging is 
a potential method with many features that can be use-
ful on a larger scale. In addition to its non-invasiveness, 
the advantages of spectral imaging include the spatial 
information it provides, its low cost, and operating speed 
(Dierssen et al. 2021). For the above reasons, the develop-
ment of spectral imaging–based microalgae monitoring 
methods could meet the requirement for fast and efficient 
monitoring in large-scale microalgae cultivation.

A challenge when imaging an algae cultivation is that 
light propagation is affected by the arrangement of micro-
algal cell wall composition and microalgal growth style, as 
well as the growth media (Bricaud et al. 1988; Mehrubeoglu 
et al. 2013). Therefore, linear calibration models might not 
be the most expedient for monitoring biological phenomena. 
In particular, lipid accumulation can be non-linear concern-
ing the growth of microalgae. This is because the accumu-
lation of lipids in microalgae is usually highest at the point 
when carbon is not used for growth (i.e., cell division). This 
could be under unfavourable or stressful conditions (Hu et al. 
2008). The challenge with non-invasive imaging is that NIR 
radiation penetrates the sample to a maximum depth of a few 
centimetres (Beć et al. 2021) and high biomass can further 
block the passage of light through the culture. In this case, 
the measurement of absorbance, often used for example in 
a spectrophotometer where light passes through the sam-
ple (Beć et al. 2021), is not possible. An alternative is to 
image the culture in a reflectance setup (Pääkkönen et al. 
2024). Furthermore, in NIR spectroscopy, interpretation of 
the spectra is challenging as the signals from the lipid func-
tional groups have broad spectral shapes and may overlap 
with each other (Beć et al. 2021).

Vegetation indices, the ratio between two or more wave-
lengths, are a simple way of distinguishing certain features 
in the spectrum. In spectral applications, the indices can 
be fixed, such as in the Normalised Difference Vegetation 
Index (NDVI) based on NIR and red wavebands, which is 
a common method for monitoring vegetation (Huang et al. 
2021). The multiple wavelengths of the spectral imager also 
make it possible to find a more specific index to correlate 
with the desired factor (Salmi et al. 2021), which can be used 
for modelling. Such a method has been used, for example, 
in biomass prediction (Pääkkönen et al. 2024). Partial least 
squares (PLS) regression has also been successfully used 
in spectroscopic studies (Li et al. 2020; Liu et al. 2020), as 
spectra have variables that often correlate with each other. 
PLS first looks for factors that are not correlated with each 
other but are related to the outcome of the analysis. The anal-
ysis is then performed with these components. PLS regres-
sion has been used, for example, to predict lipid content 
(Brown et al. 2014), as well as biomass content (Martínez-
Guijarro et al. 2018) based on spectral data.
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The increase in computing capacity has enabled the gen-
eralisation of various machine learning algorithms for the 
analysis of spectral data. The algorithms can predict an out-
come once they have been trained with separate training 
data. Convolutional neural networks (CNN) have become 
more popular in recent years as they can be trained to solve 
complex non-linear problems. The model filters out factors 
that are irrelevant to the prediction and emphasises the fac-
tors it considers most important if trained successfully. CNN 
can solve both classification and regression problems: it has 
been used to classify microalgal species from microscopic 
images (Pant et al. 2020; Yadav et al. 2020) but also to clas-
sify species and predict their biomass content in laboratory 
cultivations (Pääkkönen et al. 2024). Neural networks have 
been criticised as black boxes, because it is not known on 
what basis they form a prediction (Sheu 2020). Nowadays, 
explanatory algorithms have gained popularity, helping to 
identify which factors have had the greatest impact on the 
model’s output.

In this study, the aim was to predict the total lipid content 
of microalgal cultivation from non-invasively collected NIR 
range reflectance-like spectra (see details in methods) using 
a hyperspectral imager. This study compared the ability of 
three algorithms – index-based model, PLS, and CNN – for 
lipid monitoring. Their ability to predict the total lipid con-
tent (% per dry weight) of microalgae despite non-linearity 
introduced by varying biomass concentrations was tested. In 
addition, the most important areas of the NIR spectrum for 
lipid prediction were investigated.

Methods

Chlorella vulgaris (CCAP 211/11B) was chosen for the 
study because it is a valuable microalga for mass cultivation: 
it is fast growing, can produce lipids efficiently (Sakarika 
and Kornaros 2017; Wong et al. 2017), and has a high ability 
to fix carbon dioxide (Senatore et al. 2021). Chlorella is also 
a widely used species in feed and food production (Ahmad 
et al. 2020; Coronado-Reyes et al. 2020). To encourage 
Chlorella to produce different lipid concentrations in vari-
ous biomass concentrations, three different experiments 
were conducted. In addition to autotrophic cultivation, the 
cultures were encouraged to produce lipids by limiting the 
amount of nitrogen (N) or sulphur (S) and by varying the 
light intensity (Fig. 1), because the limitation of the above 
factors has been shown to affect the storage lipid production 
of Chlorella (Sakarika and Kornaros 2016, 2017). Lipid pro-
duction was also encouraged by mixotrophic growth follow-
ing glucose addition in some cultures as shown in Sakarika 
and Kornaros (2017).

The biomass concentration of the cultivations was 
assessed to analyse the cultivation density. Gravimetric 

quantification of total lipids was used as the ground truth 
assessment for NIR imaging. To visualise the algal lipids, 
Nile Red staining was used on a subset of cultures, followed 
by imaging with a confocal fluorescence microscope. Lipid 
class analysis was done to provide additional information 
on the lipids present in the cultivations. Index-based LR, 
PLS, and 1D CNN models were tested for lipid monitor-
ing. Lastly, a SHAP algorithm (SHapley Additive exPlana-
tions) was used to analyse which areas of the spectra were 
important for the model prediction.

Cultivation

The objective of the multiple cultivations was to obtain a 
wide range of lipid concentrations in different biomass con-
centrations and hence not all cultures were treated equally. 
Chlorella was cultivated in batches of 3 to 4 replicates for 
3 to 15 days using 650-mL tissue culture flasks with filter 
caps (VWR international) with a starting volume of 400 mL 
or 1L Erlenmeyer with a volume of 500 to 1000 mL. In the 
standard experiment, cultivation occurred in autotrophic 
conditions using MWC (Modified Wright’s Cryptophyte) 
media (Guillard and Lorenzen 1972). The cultivations were 
maintained in FH-130 growth chambers (HiPoint, Taiwan) 
at 22 ± 1 °C under continuous illumination using fluores-
cent lamps with a light intensity of 115 to 145 µmol pho-
tons m−2 s−1 measured with a quantum sensor (HiPoint, 
Taiwan). To provide sufficient inorganic carbon, 1 mL of 
inorganic carbon NaHCO3 was added to each flask. In the 
nitrogen experiment, Chlorella was cultivated in the stand-
ard conditions (control treatment) and in N-depleted MWC 
(N-treatment). In the sulphur experiment, the light intensity 
of the growth chambers was reduced to 12–18 µmol photons 
m−2 s−1, and a glucose solution was added to the MWC, 
the final concentration being 4.8 g L−1 (control treatment). 
For the sulphur treatment, S-depleted MWC was used and 
a glucose solution was added, with the final concentration 
being 10 g L−1 (Sakarika and Kornaros 2017). The flasks 
were covered with aluminium foil.

For the assessments of wet biomass, gravimetric lipid 
assessment, Nile red staining, and lipid class analysis, 
50-mL samples from all cultivations were taken aseptically 
inside a laminar flow hood at the beginning and/or at the end 
of the cultivation period, right before the spectral imaging.

Wet biomass assessment

Wet biomass was assessed with an electronic cell counter 
(CASY, Omni Life Sciences, Germany) to obtain additional 
information from the cultivation growth. A 60-µm capillary 
was used with Chlorella based on its cell size. Depending 
on the culture density, 10 to 40 µL of the sample was added 
to 10 mL of CasyTon buffer. The results were processed 
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with the CASY workX 1.26 macro (Omni Life Sciences) 
for Microsoft Excel. Microalgae biovolumes (fL mL−1) were 
converted to wet biomass (mg mL−1) by assuming that the 
cells are isopycnic to water. Wet biomasses were not used 
for lipid content analysis, which was done using dry bio-
masses, as described below.

Lipid ground truth

Between 40 and 50  mL of culture were centrifuged at 
4696 × g for 10  min. Supernatants were discarded and 
pellets were stored at –80 °C. Algal biomass was freeze-
dried overnight, after which 0.15 to 1.5  mg were used 
for total lipids extraction. Extractions were carried out 
with chloroform:methanol:water (4:2:1) using sonication 
(10 min) in a KIMAX glass tube. Centrifugation (2000 
RPM for 5 min) was then used to facilitate phase separation. 
The lipid-rich fraction was transferred to a new tube and 
solvents were evaporated at room temperature under an N2 
stream. The lipid extract was resuspended in 100 µL of chlo-
roform and transferred to a pre-weighted smooth-wall tin 
cup (D4057 Elemental Microanalysis). To ensure no lipids 

were left in the KIMAX glass tube, 100 µL of methanol was 
added, tubes were vortexed, and methanol was transferred 
to the same smooth-wall tin cup. Once the tin cups were 
completely dry, they were weighed and the difference from 
the initial weighing was used to calculate total lipid mass 
(mg). Lipid content (%) was calculated as the fraction of 
lipid mass to algal dried biomass. If the cultivation biomass 
was too low (sample dry weight less than 0.8 mg), replicates 
from a given batch were pooled, or the whole batch was 
discarded and not included in the study. The final number 
of samples was 104.

Spectral imaging

All Chlorella cultivation flasks were imaged with an NIR 
hyperspectral imager Specim FX17 (Specim, Finland) to test 
the monitoring of the microalgae lipid content. Apart from 
the imager model and waveband range, the imaging setup is 
identical to Pääkkönen et al. (2024). The FX17 imager used 
here has a spectral range of 950 to 1700 nm and a spectral 
resolution FWHM (full width at half maximum) of 8 nm 

Fig. 1   Up-to-down workflow of the study. Chlorella vulgaris was cul-
tivated in three different experiments to test the total lipid monitoring 
with a near-infrared (NIR) spectral imager. ROI stands for region of 

interest in the image. Index-based linear regression (LR), partial least 
squares (PLS) and one-dimensional convolutional neural network (1D 
CNN) models were tested for total lipid monitoring
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(mean). NIR images were taken at the beginning and/or at 
the end of each cultivation period.

The imaging setup consisted of a broad-band halogen 
light source (3 bulbs of DECOSTAR 51 ALU 20W 12 V 
36 deg GU5.3 halogen) and a white reference (PTFE diffuse 
reflector sheet PMR10P1, Thorlabs) (Fig. 2). The imager 
and the light source were placed on a motorised scanner 
(LabScanner 40 × 20, Specim, Finland). Laser shields with 
square engravings were placed to adjust focus and scanning 
speed. The scanner and imager were operated through Lumo 
Scanner software by Specim (Finland). The selected scan-
ning speed was 2.5 mm s−1, with a frame rate of 20 fps and 
an exposure time of 15 s. For simplicity, the term reflec-
tance will be used in this article. The distance between the 
imager’s lens and the target was fixed at 16 cm, while the 
distance between the imager’s lens and the white reference 
was 25 cm. Both white and black references were imaged for 
each image separately. The black reference was taken auto-
matically, with the mechanical shutter of the imager closing 
before each image. The images were taken in a darkroom to 
avoid any specular reflections or stray light. This setup is a 
reflectance-like setup because when the white reference is 
placed behind the target algae, light is also reflected from 
the white reference, and therefore the phenomenon to be 
measured is more complex.

The reflectance (R) of the images were calculated using 
Eq. 1:

where I is the irradiance from the cultivation, Id the black 
reference, and Iw irradiance of the white reference, both of 
which were taken in conjunction with each image.

The water in the cultivation media affects the absorp-
tion characteristics of the algal culture, especially in the 
NIR range. The plastic of the culture flasks also has strong 
absorption properties in the NIR region. Therefore, before 
each batch was imaged, an image of the flask containing 
only the growth media (MWC) was also taken. These images 
were used to normalise the cultivation images to extract the 
algal signal. The volume of the MWC flask was adjusted to 
the volume of the imaged algae flask.

In the sulphur experiment in this study, the cultures 
reached the highest biomass. To test whether the model 
could interpret the higher biomass signal as indicating more 
lipids, one batch of the sulphur experiment was diluted first 
1:1 by replacing 200 mL of the culture with phosphate-buff-
ered saline (PBS). This would provide data from cultivations 
with low biomass and high lipid content (See supplementary 
Fig. 1 for mean spectra of the dilutions). A second dilution 
was made in the same way, resulting in 1:4 dilution from the 
original concentration. The flasks were imaged between the 
dilutions. The total lipid content (% per dry weight) of the 
cells was expected to stay the same between the dilutions 
because the dilutions were imaged within two hours.

Confocal microscopy and lipid staining

Storage lipids of Chlorella cells were visualised from rep-
resentative samples of each experiment with Nile Red and 
imaged with a confocal fluorescence microscope. The target 
for the cell density was 108–107 cells mL−1 for imaging. A 
mixture of 10 µL algae, 10 µL Nile Red stain (10 µg mL−1), 
and 80 µL ethanol (30% v/v) was used for imaged samples 
(Storms et al. 2014). Negative control images were taken 
using 10 µL algae and 90 µL alcohol (30%). Aliquots of 100 
µL were pipetted on microscopy plates (1 µ + Slide 8 well 
ibiTrear, Ibidi, Germany) and cells were allowed to settle in 
the dark, at room temperature, for 45 min before imaging.

The algae were imaged using a Nikon A1R confocal 
microscope and NIS-Elements AR version 5.21.03. The 
algae were observed through a Plan Apo 60X 1.2 NA water 
immersion objective using 561 excitation wavelength and 
595/50 emission filter and DIC contrast. This procedure pro-
duced 512 × 512 pixel images, with a pixel size of 110 nm 
(x, y). From each sample well, 4 to 6 randomly selected 
areas were imaged with the aim of visualising the overall 
fluorescence intensity. The imaging of different samples was 
made using the same laser intensity and detector settings 
for intensity-comparable data. The presented images were 

(1)R =
I − Id

Iw − Id

Fig. 2   Imaging setup, top view. A: target, B: light source, C: white 
reference, D: laser shields, E: computer-guided scanner mounting the 
imager and the light source, F: spectral imager. The black arrow out-
side the panel marks the direction of movement of the scanner. The 
setup is identical to Pääkkönen et al. (2024) with a different imager
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processed in FIJI using the same linear intensity function 
adjustments to retain the intensity comparability between 
the samples.

Lipid class analysis

To scrutinise which lipid classes were mainly responsible for 
the variation in the lipid content of Chlorella in the different 
treatments, lipid classes were analysed from 5 to 12 samples 
of each treatment by VTT Technical Research Centre of Fin-
land. The analysis was conducted in line with the study by 
Kotapati and Bates (2020).

Models for lipid monitoring

Spectral data processing

NIR images were cropped to 200 × 200 pixel ROIs. The 
spectra were truncated between 974 and 1378 nm (channels 
10–125) to cut off the flat and noisy tails of the spectra likely 
caused by a low signal-to-noise ratio resulting from the high 
absorbance by water. All spectral images were corrected by 
dividing them with the corresponding MWC image to over-
come the strong absorption characteristics of water and to 
separate the microalgae signal. The first replicates of each 
batch were used to test the model (n = 34) and the rest of the 
replicates to train the model (n = 70). Mean spectra were 
calculated from the test and training data images, and each 
spectrum was min–max normalised by the spectra’s mini-
mum and maximum values (spectral-wise) to highlight dif-
ferences in spectral shape. All spectral data were processed 
using Python Version 3.9.7 in Jupyter Notebook.

Index‑based linear regression

A vegetation index-based model was tested to predict the 
lipid content of microalgae. The best index between two 
wavelengths was formed with training data, in line with 
Pääkkönen et al. (2024). The vegetation index model was the 
only model in which the spectra were not min–max normal-
ised (Supplementary Fig. 2A), as this would have resulted in 
a division by zero. The best index was the one with the high-
est Pearson’s correlation with the total lipid content (% per 
dry weight) used as ground truth. A linear regression (LR) 
model was fitted between the best index and ground truth 
in Microsoft Excel version 2403 (See LR model in Supple-
mentary Fig. 3). The vegetation index-based LR model was 
used to predict the total lipid content of separate test data.

Partial least squares

Partial least squares (PLS) regression was tested for the 
microalgae lipid content monitoring. The input for the 
PLS was min–max normalised mean spectra (Supplemen-
tary Fig. 2B) with corresponding lipid content (% per dry 
weight), rounded to an integer as labels for each spectrum. 
The PLS algorithm automatically creates a new dataset from 
the factors that do not correlate with each other but which are 
related to the outcome of the model – in this case, total lipid 
prediction – and the analysis is then performed with these 
components. The number of principal components (PC) was 
determined with training data using cross-validation with ten 
folds. The number of PCs that produced the minimum mean 
squared error (MSE), maximum residual predictive devia-
tion (RPD), and maximum coefficient of determination (R2) 
was chosen for the model. Based on previous factors, the 
model with six PCs was chosen (Fig. 3). Separate test data 
were used to test the model.

Fig. 3   Selection of the number of principal components (PC) of the 
partial least squares (PLS) model based on (A) the minimum mean 
squared error (MSE), (B) the maximum residual predictive deviation 

(RPD), and (C) the maximum coefficient of determination (R2) of 
training data using cross-validation. The circle in the figure shows the 
best number of PCs
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One‑dimensional convolutional neural network

A one-dimensional convolutional neural network (1D CNN) 
was constructed to test microalgae lipid content monitor-
ing. The model was implemented with a Keras library and 
Tensorflow backend, and computed on a Nvidia Tesla V100-
SXM2 16 GB GPU unit. The input for the 1D CNN was 
min–max normalised mean spectra (Supplementary Fig. 2C) 
with corresponding lipid content (% per dry weight) rounded 
to an integer as labels for each spectrum.

The training data (200 × 200 pixel images) were divided 
into 100 × 100 pixel images for data augmentation. The 
total lipid content (% per dry weight) (i.e. ground truth) 
was assumed to remain the same in all smaller parts of the 
image as the flasks were shaken carefully before imaging. 
The training data was split into training and validation data 
by randomly dividing 80% as training and 20% as valida-
tion data (sklearn). To train the model efficiently, random 
oversampling was used to balance the differences between 
the lipid content and the corresponding mean spectra (Sup-
plementary Fig. 4). This was done for training and validation 
data separately and resulted in a training data set of 648 and 
a validation data set of 140. Mean spectra from 200 × 200 
pixel areas were used as test data.

To make a robust model, the 1D CNN was first built with 
the simplest possible architecture. After that, it was tested if 
the model prediction improves when layers are added to the 

architecture. Because validation loss and validation RMSE 
grew as the layers were added, the simplest architecture (ID 1 
in Table 1, Fig. 4) was chosen as the best model. Max pooling 
layers with pool size 2 were added after each convolutional 
layer and a dropout layer with 0.2 drops was added after the 
first convolutional layer and before the output layer to con-
trol overfitting. A rectified linear unit (ReLu) was selected as 
an activation function for the convolutional and dense layers. 
The model was optimised through a gradient-based stochastic 
optimiser (Adam) with a learning rate of 0.001. Models were 
trained for 50 epochs in a sample batch size of 32. The best 
model was trained three times, and the results are means of 
the triplicate training (See learning curves in Supplementary 
Fig. 5).

Comparison of models

The coefficient of determination (R2) and the test root mean 
squared error (RMSE) were used to evaluate the performance 
of the index-based LR, PLS, and 1D CNN models. The factors 
were defined in Eqs. 2 and 3:

(2)R2 =

∑n

i=1

�

expi − predi
�2

∑n

i=1

�

expi − y
�2

Table 1   Testing the architectures of the one-dimensional convolutional neural network (1D CNN) model for lipid monitoring. Convolution filter 
counts in convolution blocks and node counts in dense blocks are separated with “/” and “do” = dropout layer of 0.2

ID Convolution block Dense block Train loss Train RMSE Validation loss Validation 
RMSE

Validation Cor

1 256 + do 256 12.13 3.48 12.90 3.59 0.84
2 256 + do/128 256 17.73 4.20 22.33 4.73 0.84

Fig. 4   The architecture of the 1D CNN used for total lipid content (% per dry weight) prediction



	 Journal of Applied Phycology

where n = number of samples, exp = expected value, 
pred = predicted value, and y = 1

n

∑n

i=1
expi.

Results

Near‑infrared spectra of the cultivations

The mean spectra of 200 × 200 pixel ROIs of Chlorella cul-
tivations in three different experiments are shown in Fig. 5. 
The spectra of all experiments show two clear absorp-
tion valleys: a smaller valley around 980 nm and a clearer 
valley around 1150 nm. The clearest reflection peaks are 

(3)RMSE,%pt =

√

√

√

√
1

n

n−1
∑

i=1

(expi − predi)
2

between 1000 and 1130 nm. All spectra become noisier after 
1150 nm.

Assessed total lipid and biomass content

The wet biomass of the Chlorella cultures assessed with the 
electronic cell counter ranged between 0.05 and 3.50 mg 
L−1 and the gravimetrically assessed lipid content between 
2 and 22% per dry weight. The biomass and the lipid content 
did not increase linearly (Fig. 6). The S-control cultivations 
had the highest average biomass as well as the greatest vari-
ation in the biomass compared to other experiments. The 
S-depleted cultivations, on the other hand, had the highest 
total lipid content on average. In the nitrogen experiment, 
a similar phenomenon can be observed as in the sulphur 
experiment: the N-depleted cultivations produced on average 

Fig. 5   Min–max normalised mean spectra of Chlorella vulgaris from three different experiments. (A) Standard, (B) Nitrogen, and (C) Sulphur, 
from 200 × 200 pixel areas

Fig. 6   (A) Wet biomass (mg mL−1) and (B) total lipid content (% per dry weight), of Chlorella vulgaris from three different experiments
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more lipids than the N-control cultivations, although their 
average biomass was lower.

Visualisation with confocal fluorescence microscope

The Nile Red stained lipids produced by Chlorella were 
visualised using fluorescence microscopy (Fig. 7). The flu-
orescence signal highlights storage lipids detected in each 
treatment (Fig. 7A, C–F). Fluorescence was not observed in 
Chlorella without the Nile Red (Fig. 7B). As expected, the 
fluorescence intensity varied between the experiments. The 
highest fluorescence was detected in the S-depleted treat-
ments and the lowest in the control treatments of the sulphur 
experiment.

Lipid class analysis

Variation in lipid classes was observed between the different 
experiments in the lipid class analysis (Fig. 8). Concerning 
all experiments, the biggest variation was in triacylglycerols 
(TAG), meaning the most significant variation was in lipid 

Fig. 7   Nile Red staining of lipids. (A) Standard experiment, (B) 
negative control without Nile Red, (C) S-depleted, (D) S-control (E) 
N-depleted, and (F) N-control. Fluorescence intensity is presented in 
a fire lookup table (calibration bar in panel A) overlayed with a dif-

ferential interference contrast (DIC) signal describing the cell mor-
phology. The images were selected to represent the highest observed 
fluorescent intensities

Fig. 8   Lipid class analysis for different experiments (% per dry 
weight). TAG = triacylglycerols, SE = sterol esters, MGDG = mono 
galactosyl diacylglycerol, DGDG = di galactosyl diacylglycerol, 
SQDG = sulfoquinovosyl diacylglycerols, PA = phosphatidic acid, 
PE = phosphatidylethanolamine, PC = phosphatidylcholines
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storage inside the cells. The mean concentration of TAGs 
was, in % per dry weight, 0.8 ± 0.4, 6.9 ± 4.1, 15.5 ± 5.6, 
and 10.6 ± 3.1 in the N-control, N-depleted, S-control, and 
S-depleted samples, respectively. Other lipid classes, such 
as membrane lipids of plastids, did not add much variation 
to the data. The only exception was the N-control cultiva-
tions where the main source of variation was sterol esters 
(SE, mean 1.6 ± 1.1% per dry weight). For a more detailed 
analysis, see Supplementary Table 1.

Modelling

A Pearson correlation matrix determined from training 
data of the index model showed that several indices (a 
division of wavebands) correlated well with the Chlorella 
total lipid content (% per dry weight), that is, the ground 
truth (Fig. 9A). The highest positive correlation between 
total lipid content and A/B index was with wavebands 
A = 1171 nm and B = 1223 nm (r = 0.75, p < 0.001, n = 70), 
hereafter called the best index (Fig. 9B).

The index-based LR model was the weakest model to pre-
dict the total lipid content (% per dry weight) with a moder-
ate correlation between predicted and expected lipid content 
and the highest test RMSE (Table 2, Fig. 10A). There were 
no major differences in prediction between the PLS and 1D 
CNN models as both had strong correlations and same level 
test RMSE between predicted and expected lipid content 
(Table 2, Fig. 10B–C). Based on the validation data, the 
learning of the 1D CNN model was at a higher level than the 
performance shown by the test data (Table 2).

The SHAP algorithm was used to find the most effec-
tive wavebands for lipid prediction in the PLS and CNN 
models, that is, to find the wavelengths with the highest 
SHAP value. Based on the modelling results, there were two 
separate lipid groups, one with lower and one with higher 
total lipid content (% per dry weight) (Fig. 10). Therefore, 
the three wavelengths that were most significant in predict-
ing low lipid content (< 10% of dry weight) and higher lipid 
content (> 10% of dry weight) were investigated separately. 
For the PLS model, the most important wavelengths were 
at the beginning of the spectrum at 974 nm and at the end of 
the spectrum at 1336 nm and 1347 nm for low lipid content 
(grey dashed lines, Fig. 11A). For high lipid content, the 
corresponding wavelengths were near the largest absorp-
tion valley at 1139 nm, 1143 nm, and 1171 nm (black lines, 
Fig. 11A). For the 1D CNN model, the most important wave-
lengths are located close to the absorption valley and to the 
smaller reflection peak: For low lipid content at 1195 nm, 

Fig. 9   (A) Pearson correlation matrix, determined from training data, 
for total lipid concentration and indices A/B where A and B are wave-
bands and (B) Mean spectra of test data from a 200 × 200 pixel area 

used in the index-based linear regression model. Vertical lines mark 
the location of the best index. The spectral data was min–max nor-
malised for the visualisation

Table 2   Comparison of index-based linear regression (LR), partial 
least squares (PLS), and one-dimensional convolutional neural net-
work (1D CNN) models. The table shows both test and validation 
data from the 1D CNN, which reflects the learning of the model. The 
values to be compared are the coefficient of determination (R2) and 
the test root mean squared error (RMSE)

Model test R2 test RMSE (%pt) p value

LR (n = 34) 0.31 6  < 0.001
PLS (n = 34) 0.64 4  < 0.001
CNN val (n = 140) 0.70 ± 0.02 4 ± 0.1  < 0.001
CNN test (n = 34) 0.65 ± 0.05 4 ± 0.3  < 0.001
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1248 nm, and 1252 nm (grey dashed lines, Fig. 11B) and, 
for high lipid content, at 1136 nm, 1273 nm, and 1297 nm 
(black lines, Fig. 11B). For more details on the relationship 
between SHAP values and lipid content, see Supplementary 
Figs. 6–7.

Discussion

This study described a non-invasive approach for lipid moni-
toring of Chlorella. The cultures were imaged with an NIR 
range hyperspectral imager in a reflectance setup. The imag-
ing process was fast, as it took less than a minute to take one 

image. The method also posed no risk of contamination to 
the cultures. Total lipid content (% per dry weight) assessed 
with gravimetric methods served as the ground truth for 
three models that were compared: index-based LR, PLS, 
and 1D CNN model. The highest prediction performances 
were achieved with the PLS and 1D CNN models, which 
also seemed to learn the nonlinearity between biomass and 
total lipid concentration, as the low lipids in high biomasses 
could be detected and vice versa.

Brown et al. (2014) and Li et al. (2020) achieved promis-
ing results when predicting the lipids of microalgae samples 
using NIR spectroscopy methods. Brown et al. (2014) aimed 
to investigate the use of a NIR range portable reflectance 

Fig. 10   The comparison of the expected and predicted total lipid 
content (% per dry weight) of (A) the index-based linear regression 
model (LR), (B) the partial least squares (PLS) and (C) the first of 
three trainings of the one-dimensional convolutional neural network 

(1D CNN). The results are on test data. The colour bar represents the 
measured wet biomass concentration (mg mL−1) and the regression 
line represents the Pearson’s correlation between expected and pre-
dicted lipid content

Fig. 11   A SHAP algorithm was used to determine the three most 
effective wavebands in predicting low total lipid content (< 10% of 
dry weight, grey dashed lines) and higher lipid content (> 10% of 

dry weight, black lines) for (A) partial least squares (PLS) and (B) 
one-dimensional neural network (1D CNN) models. Spectra are mean 
spectra of test data from a 200 × 200 pixel area
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spectrometer as a fast tool to monitor microalgal lipids, more 
specifically fatty acid methyl esters (FAME), as a percentage 
of dry weight in filtered samples of two species, Kirchneri-
ella sp. and Nannochloropsis sp. They used a PLS model 
achieving R2 values of 0.97 and 0.94 for Kirchneriella, and 
Nannochloropsis respectively, indicating excellent model 
performance. Compared to Brown et al. (2014), who ana-
lysed filtered samples, Li et al. (2020) imaged liquid sam-
ples of Scenedesmus obliquus with a hyperspectral imager 
in a non-destructive way, that is, the sampling or imaging 
did not harm the cultivations. They compared different mod-
els in their study and achieved the best results with a mul-
tiple linear regression (MLR) model (r = 0.94). They also 
tested a PLS model and achieved excellent results (r = 0.92). 
Compared to previous studies, this study investigated a com-
pletely non-invasive way to monitor microalgae lipids in a 
reflectance setup, that is, cultures were imaged directly from 
the cultivation flasks. The closest to the level of the previous 
studies was the performance of the PLS (r = 0.81, R2 = 0.64, 
p < 0.001) and the 1D CNN (r = 0.83, R2 = 0.65, p < 0.001) 
models. The performance of the index-based LR was weak 
(r = 0.55, R2 = 0.31, p < 0.001). The results of this study 
thus show that non-invasive microalgae monitoring is also 
a potential approach for lipid monitoring when using a suit-
able algorithm. It is reasonable, however, to examine why 
the models did not perform as well as in previous studies.

CNN models can often solve complex problems. In this 
study, the original training data set was rather small for the 
CNN model (70 images), which generally requires a lot 
of data (Alzubaidi et al. 2021). Due to the small dataset, 
the training images of the CNN model were augmented by 
dividing them into four smaller images. In this way, in addi-
tion to more data, variation was also added to the training 
data. Following the image division, the shape of a few of 
the mean spectra from smaller ROI became very different 
from the average shape of the spectra, possibly due to the 
illumination conditions of the specific ROI (Supplemen-
tary Fig. 2C). This may have affected the predictive ability 
of the 1D-CNN model. It is also possible that the uneven 
distribution of the data may have affected the performance 
of the CNN model. The model learning was enhanced by 
smoothing out the differences using a random oversampling 
algorithm (Supplementary Fig. 4). However, no lipid con-
tents from the middle parts of the data (around 10% per dry 
weight) ended up in the validation data, which may have 
increased the prediction error. Despite this, the learning of 
the 1D CNN was good.

In this study, the PLS model performed at the same level 
as the 1D CNN in predicting lipids and required less data 
processing. However, the behaviour of RMSE and R2 as 
a function of PC shows variation based on training data 
(Fig. 3). Thus, in the case of PLS, it should be noted that for 
the selected number of components, the predictions were at 

the same level as 1D CNN, but the choice of the number of 
PCs adds some uncertainty to the PLS. The index-based LR 
model performed at a lower level in predicting lipid contents 
than did the PLS and 1D CNN models (Table 2). Models 
based on vegetation indices are a common way to obtain 
information on, for example, microalgal biomass based on 
spectral data (Huang et al. 2021). However, the results show 
that it may not be a suitable approach for predicting lipids, 
probably due to the non-linearity of the data, at least in this 
study.

The relatively low lipid content of Chlorella cultures 
in this study may explain the magnitude of the prediction 
error. Li et al. (2020) achieved a prediction error of 2.4%pt 
(RMSE) when predicting the total lipids of S, obliquus. In 
their study, the lipid content ranged between 35 and 62% 
per dry weight. In this study, the error (RMSE) between 
expected and predicted total lipid content (% per dry weight) 
was higher: 6%pt with the index-based LR model and 4%pt 
with the PLS and 1D CNN models. The lipid contents in 
this study (2–22% per dry weight) were not as high as in the 
previous studies, but on the other hand typical for the strain 
(Sakarika and Kornaros 2016, 2017). In general, the error 
of gravimetric lipid determinations is around 3% (Lu et al. 
2008). At low lipid concentrations, however, the analytical 
error may be higher than at higher concentrations. However, 
since the model error cannot be better than the error of the 
background data, it is reasonable to think that the prediction 
error of the PLS and 1D-CNN models in this study could 
not have been much better, or else the models would have 
been overfitted.

It is not known exactly what causes the spectral shape 
in the NIR region, and hence what correlates with the total 
lipids used as ground truth in this study. The experiment 
was designed so that the relationship between biomass and 
total lipid content was non-linear (Fig. 6). This is relevant 
because NIR spectra can correlate with biomass (Sandnes 
et al. 2006; Brown et al. 2014), and lipid content does not 
always have a linear relationship with biomass (Hu et al. 
2008), as lipid accumulation in microalgae is usually highest 
when growth resources are limited. Both the PLS and the 
1D-CNN models learned to predict total lipid content rela-
tively well despite the non-linear relationship between lipid 
content and wet biomass as Fig. 10 shows that predictions 
of high lipid content also include low biomass cultures and 
vice versa. It could therefore be concluded that the differ-
ences in spectra were due to lipids, or at least some factor 
that correlates with lipids.

Based on the lipid class analysis, storage lipids were the 
main source of variation in total lipid content in Chlorella 
cultures (Fig. 8). The variation in storage lipid levels can 
also be observed in Nile Red images, which visualise the 
difference in lipid levels between treatments (Fig. 7). There-
fore, the results suggest that storage lipids caused the largest 
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variation in the total lipid content of different treatments and 
had the largest impact on the model's output. According to 
the microscopy observations, there were many cell-to-cell 
Nile red intensity variations within each sample. However, 
since the models used average spectra from regions con-
taining numerous cells, differences in individual cells are 
unlikely to affect significantly the results. Surprisingly, the 
images of the S-control samples were dim, although the lipid 
content in these samples was the second highest compared 
to the other treatments. There was no obvious explanation 
for this, however, the motive here was to visualise the main 
features rather than quantitative analysis. In the future, it 
would be interesting to investigate the monitoring of lipids 
in microalgal cultures based on spectral data using TAGs as 
ground truth, as they are of interest in different algal applica-
tions (Khan and Fu 2020).

The advantage of the CNN and PLS models used in this 
study and previous studies (Brown et al. 2014; Li et al. 2020) 
is that they self-select the features they consider important 
for the prediction, making them convenient to implement. 
Increasingly popular explanatory AI, in this study the SHAP 
algorithm, was used to discover the factors that the PLS 
and CNN model emphasised. Based on the SHAP algorithm 
(Fig. 11), both the PLS and 1D CNN models had impor-
tant wavelengths for lipid monitoring between 1130 and 
1200 nm. The result is partly aligned with Li et al. (2020) 
who used the same brand of hyperspectral imager and NIR 
wavelengths for lipid content prediction. They used competi-
tive adaptive reweighted sampling (CARS) to find the most 
effective wavebands for lipid prediction, after which they 
used those wavebands for modelling with PLS and MLR. 
They found the most important wavelengths between 1050 
and 1130 nm and near 1200 nm. Lipids have absorption 
signals between 1100 and 1200 nm (Westad et al. 2008), to 
which the waveband area identified as important for lipid 
prediction in this study corresponds. The PLS and 1D CNN 
models used in this study also had important wavelengths in 
other areas, such as between 1200 and 1300 nm, but they are 
more difficult to interpret. Lipids also have absorbance areas 
between 1350 and 1450 nm as well as 1650 and 1850 nm 
(Westad et al. 2008), but in this study spectra were truncated 
because the end of the signal was flat and noisy.

Today, lipid monitoring is based on point sampling and 
laboratory analysis. Bouillaud et al. (2020) used nuclear 
magnetic resonance (NMR) for automated lipid monitor-
ing in a non-invasive way. Larger-scale monitoring could 
benefit from the spatial data provided by a spectral imager 
(Pääkkönen et al. 2024), which could provide more detailed 
information about the algal culture over a wider area com-
pared to point sampling. For example, in such large-scale 
monitoring, a PLS or 1D CNN model, applied pixel-wise, 
could be used. In this study, the experiment was carried 
out on a laboratory scale. The flasks were shaken before 

imaging, making the microalgae culture rather homog-
enous, so spatial information would not necessarily have 
added much information about the culture. The challenge 
for industrial-scale monitoring is that cultivations are often 
outdoors, where the varying cloudiness could introduce vari-
ation into the NIR signal. The application of the approach 
to outdoor conditions therefore needs further research. Nev-
ertheless, different species and conditions would probably 
require a new model, as many factors, including species, 
illumination, imaging setup, and photobioreactor (especially 
in non-invasive monitoring), influence the measured signal. 
On the other hand, if the measurement geometry remained 
similar, and only the species changed, the 1D CNN model 
could potentially be retrained, thereby eliminating the need 
to start the model training from scratch. Eventually, although 
the models used in this study were promising, they need 
further research before they can be used in practice for non-
invasive monitoring.

Conclusion

This study presented a non-invasive spectral data-based 
approach for lipid monitoring of microalgae cultivations. 
The study monitored biomass and validated lipid accumula-
tion using two methods to ensure that the model learned total 
lipid variation in different treatments. The approaches were 
promising, as PLS and 1D CNN could predict the total lipid 
content of a microalgal culture with an appropriate predic-
tion error and learn the difference between lipid content and 
biomass. The results were corroborated by the SHAP result, 
which showed a similarity between the models in predicting 
lipid content when the lipid content was high. The models 
could benefit from further development with a larger dataset 
of a broader lipid content range, as their prediction errors 
were still larger than, for example, the error of gravimet-
ric methods traditionally used for total lipid determination. 
However, the approaches used in this study could potentially 
provide indicative information on the lipid content of micro-
algal cultures during cultivation. The information could fur-
ther be used to make necessary adjustments to the culturing 
conditions if required. The method also has the potential 
for online monitoring to provide up-to-date information on 
cultivation.
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