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Lambertus A. Kiemeney 49,50, Fred C. Sweep 51, Tessel E. Galesloot49, Patrick Sulem12,
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Dorine Swinkels51,62, Kari Stefansson12,63, Magnus Magnusson 12,63, Andrea Ganna 11,
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Iron homoeostasis is tightly regulated, with hepcidin and soluble transferrin receptor (sTfR) playing
significant roles. However, the genetic determinants of these traits and the biomedical consequences
of iron homoeostasis variation are unclear. In a meta-analysis of 12 cohorts involving 91,675
participants, we found 43genomic loci associatedwith either hepcidin or sTfR concentration, ofwhich
15 previously unreported. Mapping to putative genes indicated involvement in iron-trait expression,
erythropoiesis, immune response and cellular trafficking. Mendelian randomisation of 292 disease
outcomes in 1,492,717 participants revealed associations of iron-related loci and iron status with
selected health outcomes across multiple domains. These associations were largely driven by HFE,
which was associated with the largest iron variation. Our findings enhance understanding of iron
homoeostasis and its biomedical consequences, suggesting that lifelong exposure to higher iron
levels is likely associated with lower risk of anaemia-related disorders and higher risk of genitourinary,
musculoskeletal, infectious and neoplastic diseases.

Iron is essential for various biological functions, including respiration,
energy production, DNA synthesis, and cell proliferation1,2. Iron homo-
eostasis in healthy individuals is tightly regulated, with hepcidin and soluble
transferrin receptor (sTfR) playing significant roles. Hepcidin, a liver-
produced peptide hormone, regulates systemic iron levels by suppressing

dietary iron absorption and recycling in response to elevated iron levels1,3.
sTfR, the circulating extracellular part of transferrin receptor 1, serves as a
biomarker indicating iron demand relative to supply, although its biological
function is largely unknown1,4. Despite their relevance to iron homoeostasis
and potential clinical utility for assessing iron status in adults1, the genetic
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determinants of hepcidin and sTfR concentrations remain poorly
understood5,6, with previous large-scale genome-wide association studies
(GWASs) primarily focusing on conventional clinical biomarkers such as
serum iron, ferritin, transferrin saturation (TSAT), and either transferrin or
total iron-binding capacity (TIBC)7–9.

Disruption in iron homoeostasis can cause iron deficiency and iron
overload. Iron deficiency affects over two billion people worldwide1, which
underscores the need to understand its long-term consequences on popu-
lation health. Although iron overload is less prevalent, its extreme form—
hemochromatosis—can lead to severe clinical manifestations10. Previous
research on iron-regulating pathways has primarily focused on exploring
the long-termbiomedical consequences of perturbations inHFE11, a genetic
locus involved in the aetiology of hemochromatosis. The long-term clinical
associations of systemic iron status have been assessed in multiple obser-
vational studies12–19,Mendelian randomisation (MR) investigations20–25, and
randomised trials26–30, with uncertaintymainly arising from residual bias in
observational studies, limited statistical power and pleiotropy in MR
investigations, and the breadth of health outcomes analysed in randomised
trials.

To enhance the understanding of the genetic regulation of hepcidin
and sTfR, we combined data from 12 original GWASs. We identified and
described43genomic loci, including2new loci associatedwithhepcidin and
13 new loci associated with sTfR that had not been reported in any previous
GWAS of iron-related biomarkers. To address the uncertainties related to
the long-term consequences of individual iron-regulating pathways and
systemic iron status on health outcomes, we performed locus-based and
polygenic phenome-wide MR analyses on 292 clinical outcomes in up to
1,492,717 participants from deCODE, FinnGen, the Million Veteran Pro-
gramme (MVP) andUKBiobank (UKBB), and 47 biomedical traits in up to
860,060 participants from MVP and UKBB.

Results
Genetic predictors of hepcidin and sTfR
We included 12 cohortswith imputed genotype array data comprising up to
91,675 participants and 16,261,412 variants with assessments of hepcidin
concentration and up to 45,330 participants and 13,606,859 variants with
measurements of sTfRconcentration (Fig. 1; SupplementaryData1).Across
participating cohorts, themean age ranged between 40 and 67 years, and the
percentage of female participants ranged between 47% and 61% (Supple-
mentary Data 1). All studies included admixed European-ancestry partici-
pants. Using LD Score regression and the 1000 G EUR reference panel,
common SNP-based heritability estimates were 4.1% for hepcidin and
16.5% for sTfR (by comparison, heritability ranged between 15–48% in
recent GWASs of conventional iron biomarkers8,9), and genetic associations
were typically weaker for hepcidin compared to sTfR (Fig. 2A). Please note
that we provide definitions of common genetic terminology in Table 1.
Sensitivity analyses only adjusted for age and sex show similar results
(Supplementary Information, page 9). Sensitivity analyses adjusted for
C-reactive protein, in addition to the other covariates included in the main
analysis, also show results similar to the main model (Supplementary
Information, pages 9–10). Genetic and phenotypic correlations between
hepcidin, sTfR and other iron traits (serum iron, ferritin, TSAT, TIBC)were
broadly concordant (Fig. 2B; Supplementary Data 2).

We found 52 genome-wide significant (P < 5 × 10−8), conditionally
independent anduncorrelated (r2 < 0.01) signalsmapped to 43 loci (Table 2;
Supplementary Data 3; Supplementary Data 4). Of these, we found 20
associations with hepcidin (mapped to 16 loci) and 32 associations with
sTfR (27 loci). All these 16 loci are associatedwithhepcidin for thefirst time,
and two of them have not been reported in previous GWASs of iron
biomarkers7–9. Twenty-four loci are associated with sTfR for the first time
and 13 are previously unreported in GWASs of iron biomarkers. In Sup-
plementary Data 3, we annotate the studies where the loci were previously
reported. Three loci (DUOX2, HFE, TMPRSS6) contained signals for both
hepcidin and sTfR, suggesting some shared genetic aetiology for these two
biomarkers. We found 13 out of 52 sentinel variants with the strongest

evidence for association (P < 1 × 10−15) in known loci such asDUOX2,HFE
and PCSK7, and two variants in new loci (rs116816795, P = 3.13 × 10−46,
nearest gene: NDFIP1; rs885122, P = 2.28 × 10−18, LVRN) (Table 2; Sup-
plementary Data 3; Supplementary Data 4), suggesting potential involve-
ment of immune response (LVRN) in affecting hepcidin and a potential
connection between iron import regulation (NDFIP1) and sTfR.

Among 17 of the 52 sentinel variants, or their strong proxies (r2 > 0.7)
at novel loci (Supplementary Data 3), 7 were missense, 6 were intronic, 2
were intergenic and 2 were downstream (Supplementary Data 5). Two of
these variants at novel loci had aminor allele frequency (MAF) of <0.01 and
both were associated with sTfR (rs143437464, intronic, and rs200307986,
missense, near TMEM181).

Phenome-wide scans using PhenoScanner v.2 showed associations of
multiple variants with a wide array of phenotypic traits across multiple
domains. In addition to associations with haematologic traits (e.g., hae-
moglobin concentration, erythrocyte count), we also observed strong
associations with traits relating to the cardiovascular system, autoimmune
activity, infectious diseases, respiratory and hepatorenal function. Taken
together, these results indicate involvement inmultiple biological functions
across several human body systems for nearly all the genetic variants
associated with hepcidin and/or sTfR concentrations (Supplemen-
tary Data 6).

We mapped the 52 sentinel variants to 43 non-overlapping loci based
on the nearest gene, of which 16 were associated with hepcidin and 27 with
sTfR.We used colocalization with expression and protein quantitative trait
loci to guide the selection of putative causal genes, in combination with
evidence from functional studies (Supplementary Information, pp 7–8).
Among the 16 candidate genes associated with hepcidin, we were able to
annotate 14 putative causal genes based on either biology or a combination
of colocalization and biology (‘biologically plausible genes’), one gene based
on colocalization only and one gene based on vicinity to the sentinel variant
(SupplementaryData 7, SupplementaryData 8). Biologically plausible genes
were involved in hepcidin synthesis (HAMP), iron-sensing and hepcidin
modulation (AXIN1, HFE, TMPRSS6), iron absorption and recycling
(DUOX2, FUT2, SLC11A2, SLC40A1), reaction to hypoxia and haemato-
poiesis (ARHGAP9/R3HDM2, EGLN3, IARS2, SOX7), and immune reac-
tion to pathogens (LVRN, MPO) (Fig. 3A). Of these, two putative causal
genes (ARHGAP9/R3HDM2 and LVRN) were not previously associated
with iron traits. Among the 27 candidate genes annotated for sTfR, we were
able to identify 19 biologically plausible genes (Supplementary Data 8),
including genes involved in transferrin receptor synthesis, modulation,
transport, degradation, recycling and shedding (GALNT6, MARCH8,
PCSK7, PGS1, RPS6KB1, TFRC, TFR2,UBXN6), iron-sensing and hepcidin
modulation (HFE,TMPRSS6,ZFPM1), intestinal iron absorption (DUOX2,
NDFIP1), erythropoiesis (CPS1, HBS1L/MYB, HK1, IRS2, SLC22A5), and
immune response (MFSD6) (Fig. 3A, B). Of these, 8 putative causal genes
(IRS2,MARCH8,MFSD6, NDFIP1, PGS1, SLC22A5, UBXN6 and ZFPM1)
were at loci previously not reported in GWASs of iron traits.

Putative causal effects of iron-related loci and iron status on
disease outcomes and biomedical traits
Tomitigate pleiotropy and collider bias when defining instruments for MR
analysis,wefirst collated197 genetic variants associatedwith eitherhepcidin
or sTfR in this study, and with serum iron, ferritin, TSAT or TIBC in a
previous study9 (Fig. 1). We then removed variants affected by horizontal
pleiotropy (i.e. influencing non-iron traits via pathways not mediated by
iron traits, such as ABO), indirect vertical pleiotropy (i.e. influencing iron
traits via pathways not mediated by iron traits, such as F5) and affected by
collider bias (which can result in spurious genetic associations and invalid
MR instruments) (Supplementary Data 9). For each non-pleiotropic and
non-collider-biased variant associated with iron traits, we defined a 200 Kb
region around its putative causal gene, selected conditionally independent
variants using GCTA-COJO with summary statistics for the most strongly
associated iron trait (Supplementary Data 10; Supplementary Data 11), and
then performed cis-MR (i.e. locus-specific MR rescaled by genetic
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associations with iron traits) and colocalization. We found Bonferroni-
significant log-linear associations of 19 loci with 47 diseases in 1,492,717
deCODE, FinnGen,MVP, andUKBB participants (Supplementary Fig. 1A;
Supplementary Data 12). Of these, we found evidence of colocalization for
four loci and six diseases (Fig. 4A; Supplementary Fig. 1B; Supplementary
Data 12; SupplementaryData 13), highlighting theusefulness of thismethod
in addressing residual genetic confounding. HFE (rescaled by TSAT) and
TMPRSS6 (iron) were strongly associated with inverse risk of iron-
deficiency anaemia. We also found that EPAS1 (TIBC) was inversely
associated with hypertension and that SLC25A28 (ferritin) was positively
associated with colorectal cancer and benign neoplasm of colon; however,
no other iron-related loci were associated and colocalized with these dis-
eases, suggesting that these effects may be driven by horizontal pleiotropy.
These four loci were associated with multiple biomedical traits, showing
evidence of positive association of HFE, TMPRSS6 and EPAS1 with hae-
moglobin and inverse associations ofEPAS1 andHFEwith total cholesterol,

suggesting that ironmay play a role in affecting these traits via these loci, as
well as several other associations of isolated loci with glycaemic, inflam-
matory, hepatorenal and other traits (Fig. 4B; Supplementary Fig. 2; Sup-
plementary Data 12).

We then generated a polygenic instrument of systemic iron status
composed by six variants mapped to ERFE,HAMP,HFE, SLC25A37, TFR2
and TMPRSS6 (Supplementary Data 11), that were not affected by hor-
izontal pleiotropy, indirect vertical pleiotropy, or collider bias and that: (i)
were associated (P < 5 × 10−8) with at least one trait; (ii) were nominally
associated (P < 0.05) with all the other iron traits except for hepcidin (as its
levels are influenced by systemic iron status); and (iii) displayed a direction
of association consistent across all traits (e.g., positive for iron, ferritin,TSAT
and negative for TIBC and sTfR). To reduce the impact of study-specific
estimates that may disproportionately affect meta-analytic estimates, we
present Bonferroni-significant and nominal results for diseases and traits
havingMR estimates with the same direction (regardless of their p value) in

Fig. 1 | Study overview. GWAS, genome-wide
association study. sTfR soluble transferrin receptor,
TSAT transferrin saturation, TIBC total iron-
binding capacity, eQTL expression quantitative trait
loci, pQTL protein quantitative trait loci, MR
Mendelian randomisation, MVP Million Veteran
Programme. The genetic variants from Moksnes
2022 were obtained from the paper’s Supplemen-
tary Data 1.
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all the studies included in the meta-analysis. In an agnostic analysis of 292
disease outcomes in 1,492,717 deCODE, FinnGen, MVP and UKBB par-
ticipants, we found four expected Bonferroni-significant log-linear asso-
ciations of genetically predicted higher iron statuswith lower risk ofmineral
deficiency (a cluster of conditions that includes iron-deficiency), iron-
deficiency anaemia and other deficiency anaemia, and with higher risk of
disorders of mineral metabolism (a cluster of conditions that includes
haemochromatosis). We also found six Bonferroni-significant associations
withhigher risk of cystitis andurethritis, dermatophytosis/dermatomycosis,
postoperative infection, acquired foot deformities, arthropathy associated
with other disorders, and liver cancer (Fig. 5A; Supplementary Data 14).
Genetically predicted systemic iron status was also nominally associated
with multiple clinical outcomes spanning various domains: circulatory,
dermatologic, digestive, endocrine/metabolic, genitourinary, haemato-
poietic, infectious-disease, musculoskeletal, neoplasms, respiratory, sense

organs and symptoms. Sensitivity analyses showed general robustness of
findings when using MR Egger regression and the weighted median esti-
mator (Supplementary Fig. 3). Although some between-variant hetero-
geneity was present for specific outcomes (e.g., disorders of mineral
metabolism and other anaemias; Supplementary Data 14), MR Egger
intercepts generally showed no evidence of residual horizontal pleiotropy
(Supplementary Fig. 3). However, when removing the pC282Y variant in
HFE fromthepolygenic instrument,most of these associationsdidnot reach
significance, except for iron-deficiency anaemia and iron-metabolism dis-
orders, suggesting that these associations may be largely driven by HFE,
although reduced statistical powermight play a role in widening confidence
intervals (Fig. 5A; Supplementary Data 14). We also found ten Bonferroni-
corrected log-linear associations of genetically predicted iron concentration
with multiple biomedical traits in up to 860,060 MVP and UKBB partici-
pants across the following domains: glycaemic indices, haematologic,

Fig. 2 | Results of GWAS meta-analysis of hepcidin and sTfR and correlations
with common iron traits. A Miami plot for hepcidin (upper plot, N = 91,675 par-
ticipants) and sTfR (lower plot,N = 45,330 participants). For each locus (N = 16 loci
for hepcidin, N = 27 for sTfR), we show the candidate gene name for the sentinel
variant with the lowest p value. B Genetic and phenotypic correlations between the

iron traits analysed in this study (hepcidin, sTfR) and those investigated in previous
studies (ferritin, iron, TIBC, TSAT). Phenotypic correlations were estimated in the
INTERVAL study (up to 40,197 participants). Genetic correlations were estimated
using associations from the present study (hepcidin, sTfR; up to 91,675 participants)
and Moksnes et al. 2022 (ferritin, iron, TIBC, TSAT; up to 257,953 participants).

Table 1 | Glossary of genetic terms

Term Acronym Description

Colocalization - Statistical method used to determine whether two traits share a causal variant within a specific locus.

Expression quantitative trait locus eQTL Genetic loci that explain variation in mRNA expression levels.

Genome-wide association study GWAS Research approach for identifying genomic variants that are statistically linked to a particular trait.

Linkage disequilibrium LD Non-random association of alleles at different loci. It can be estimated statistically using the correlation coefficient
between pairs of loci (r2).

Locus - Specific position on a chromosome where a particular gene or genetic marker is located.

Mendelian randomization MR Statistical method for assessing causal relationships that tests whether genetic variants associated with an exposure
(e.g., iron status) are also associated with an outcome (e.g., diseases or intermediate traits).

Minor allele frequency MAF Frequency at which the second most common allele occurs in a given population. Common alleles typically have
a MAF ≥ 0.1.

Protein quantitative trait locus pQTL Genetic loci that explain variation in protein levels.

Single nucleotide polymorphism SNP Genomic variant occurring at a single nucleotide position in the DNA sequence.

Variant - A change in the most common DNA nucleotide sequence.
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hepatorenal function and respiratory (Fig. 5B; Supplementary Data 14).
Sensitivity analyses showed general robustness of findings when using MR
Egger regression and the weighted median estimator (Supplementary
Fig. 4). Three associations persisted after removing the pC282Y variant in
HFE: an inverse association of genetically predicted iron concentrationwith
glycated haemoglobin (HbA1c), and positive associations with direct
bilirubin and total bilirubin.

Discussion
In this meta-analysis of 12 original GWASs of over 90,000 participants, we
identify 43 loci associatedwith hepcidin and sTfR concentrations, including
15 novel loci not previously associated with iron biomarkers. Through
manual curation and colocalization, we mapped the new loci to several
putative genes, suggesting potential roles in iron-trait expression (PGS1,
ZFPM1), erythropoiesis (ARHGAP9/R3HDM2, IRS2, SLC22A5), immune
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response (LVRN, MFSD6) and cellular trafficking (MARCH8, NDFIP1,
UBXN6), although functional confirmation of candidate loci and variants is
required. In the first large-scale MR study, involving over 1.4 million par-
ticipants from four studies, we investigated the causal effects of iron-related
pathways and systemic iron status on over 292 major health outcomes and
conditions. Our findings showed that higher genetically predicted systemic
iron status was inversely associated with mineral deficiency and anaemia-
related disorders, suggesting that, aside from anaemia, iron deficiency is
unlikely to be associated with major diseases explored in this analysis.
Conversely, higher systemic iron status was positively associated with a
range of conditions, including genitourinary, musculoskeletal, infectious,
and neoplastic diseases. These associations attenuated after using the
polygenic instrument without the pC282Y variant inHFE, which increases
the risk for iron overload and, in its homozygous form, accounts for the
majority of hemochromatosis cases10, suggesting that they might be driven
by very high iron levels.

We identified two new putative causal loci associated with hepcidin,
ARHGAP9/R3HDM2, andLVRN, whose role in hepcidinmetabolism is not
yet fully understood. ARHGAP9/R3HDM2 is involved in regulating adhe-
sion of hematopoietic cells to the extracellular matrix, which can influence
their localisation and differentiation potential31. Erythropoietic expansion,

in turn, depresses hepcidin production1. LVRN codes for laeverin, an ami-
nopeptidase cleaving N-terminal amino acids of peptides32. β-defensins,
implicated in innate immunity, feature two sites under positive selection in
the N-terminal region that may contribute to their functional diversity in
primates33. LVRN may play a role in the synthesis of defensins and could
affect hepcidin through an inflammation-mediatedpathway.We also found
biologically plausible candidate genes for 8 of the 13 new loci mapped to
sTfR-associated sentinel variants. Of these, IRS2, MARCH8 and NDFIP1
appear to have a more established role in iron biology. IRS2 is involved in
erythroid cell differentiation34, which in turn affects iron availability and
transferrin receptor presentation1, MARCH8 mediates the lysosomal
degradation of the transferrin receptor35, and NDFIP1 regulates iron
import36,37. Five additional genes mapped to new sTfR-associated variants
likely play a role in iron homoeostasis. MFSD6 contributes to shaping the
gut microbiome38, possibly increasing iron availability; additionally, as it is
an MHC-I receptor homologue39, could potentially compete with trans-
ferrin receptor 1 for interacting with HFE, an MHC-I homologue40. PGS1
could affect expressionof transferrin receptor 1 via cardiolipin41. SLC22A5 is
involved in the cellular uptake of carnitine42, which stimulates
erythropoiesis43. UBXN6 regulates endosome recycling to the plasma
membrane44, likely mediating transferrin receptor presentation and sTfR

Fig. 3 | Established and potential candidate genes mapped to variants associated
with hepcidin or sTfR: summary of their role and contextual information. AThis
figure summarises the genesmentioned in Table 2 of this study, as well as other iron-
homoeostasis genes provided for contextual information. Genes with an established
role in iron homoeostasis are shown in red and italic; genes with a potential role
are presented in dark grey and italic. Relevant references to other studies are included
in Supplementary Data 8 ❶ Hepcidin is tightly regulated by several pathways.
TMPRSS6, ERFE (via the BMP pathway), and ZFPM1 suppress hepcidin expression
in hepatocytes.HFE, TFR2, the Wnt pathway, and the JAK/STAT pathway increase
hepcidin expression. Activation of the Wnt pathways is observed in iron overload,
with involvement of AXIN1. Activation of JAK/STAT signalling has been proposed
as a possible link between inflammation and iron homoeostasis. ❷ In presence of
iron abundance, hepcidin suppresses function of ferroportin (FPN), an iron trans-
porter coded by SLC40A1 that mediates dietary intestinal iron uptake and iron
recycling by macrophages from senescent erythrocytes. NDFIP1 prevents degra-
dation of ferroportin in vitro. ❸ Hypoxia-inducible factor 2α (HIF-2 α), coded by
EPAS1 and regulated by EGLN3, also controls duodenal iron absorption by pro-
moting the expression of divalent metal transporter 1 (DMT1), coded by SLC11A2,
on the luminal side of enterocytes. NDFIP1 regulates DMT1 expression in mice.
EGLN3 hydroxylates key prolyl residues on HIF-2α, providing a recognition motif
for its degradation.❹ Several genes appear relevant to intestinal iron absorption: (i)
DUOX2 regulates interactions between the intestinal microbiota and the mucosa to
maintain immune homoeostasis in mice, which likely enables intestinal iron
absorption; (ii) FUT2 codes for fucosyltransferase 2, an enzyme responsible for
maintaining host-microbiota symbiosis via fucosylation of intestinal epithelial cells;
(iii) VANGL1 encodes a protein involved in mediating intestinal trefoil factor-
induced wound healing in the intestinal mucosa. ❺ Iron released through ferro-
portin is bound to iron carrier transferrin (referred to as apotransferrin when not
bound to iron), forming iron-loaded transferrin (holotransferrin), which delivers
iron to most cells, especially erythrocytes.❻ In presence of hypoxia, raised levels of
HIF-2 α result in increased erythropoietin (EPO) production. ❼ EPO stimulates
erythropoiesis, which is also modulated by several genes involved in erythroblast
proliferation and differentiation: (i) the HBS1L/MYB intergenic region regulates
erythroid cell proliferation,maturation, and foetal haemoglobin expression; (ii)HK1
mutations lead to haemolytic anaemia via hexokinase deficiency, which in turn likely
affects erythropoiesis; (iii) IRS2 expression plays a role in erythroid cell differ-
entiation through binding to cellular receptors involved in normal haematopoiesis;
(iv)ARHGAP9 regulates adhesion of haematopoietic cells to the extracellularmatrix,
which can influence their localisation and differentiation potential, and R3HDM2
has beenmapped to haemoglobin and red blood cell traits in large-scale GWASs; (v)
CPS1 is directly related to glycine, which is an essential requirement for haem
synthesis; (vi) SLC22A5 is involved in the active cellular uptake of carnitine, which
stimulates erythropoiesis; (vii) SOX7 blocks differentiation of hematopoietic pro-
genitors to erythroid and myeloid lineages. In erythroblasts, TFR2 is a sensor of
holotransferrin, and is thought to protect against excessive erythrocytosis in the

presence of iron deficiency. ❽ Finally, the immune response to external pathogens,
which compete for iron, may also influence overall iron availability. Among the
genes identified,LVRNmay play a role in the synthesis of defensins and defensin-like
peptides such as hepcidin, potentially contributing to iron homoeostasis via immune
response; (ii)MFSD6 recognises major histocompatibility complex type I (MHC-I)
molecules and mediates MHC-I restricted killing by macrophages; (iii) MPO cata-
lyses the production of hypohalous acids, primarily hypochlorous acid in physio-
logic situations, and other toxic intermediates that greatly enhance microbicidal
activity. Images from Servier Medical Art (https://smart.servier.com), licensed
under a Creative Commons Attribution 3.0 Unported (CC BY 3.0) Licence. B This
figure summarises the genesmentioned in Table 2 of this study, as well as other iron-
homoeostasis genes provided for contextual information. Genes with an established
role in transferrin receptor synthesis, recycling, or degradation are shown in red and
italic; genes with a potential role are presented in dark grey and italic. Relevant
references to other studies are included in Supplementary Data 8.❶ TFRC codes for
transferrin receptor 1, which is constitutively expressed in most cells, especially
erythrocytes. TFR2 codes for transferrin receptor 2, linked to iron sensing and
maintenance of body iron homoeostasis. PGS1 is involved in the synthesis of car-
diolipin, a phospholipid of mitochondrial membranes implicated in the regulation
of transferrin receptor expression. ❷ After O-linked glycosylation, possibly medi-
ated by the protein product of GALNT6, transferrin receptor 1 is expressed on the
external surface of the cytoplasmic membrane. ❸ HFE interactswith transferrin
receptor 1, facilitating cellular iron-sensing function and playing an important part
in the regulation of hepcidin expression in response to body iron status. ❹ Iron-
loaded transferrin (holotranferrin) binds to the receptor and the complex is inter-
nalised through clathrin-mediated endocytosis. ❺ A proton pump acidifies the
endosome, which causes release of iron from holotransferrin; iron-deprived trans-
ferrin (apotransferrin) remains bound to its receptor. ❻ The endosome is usually
recycled to the plasma membrane, a process likely regulated by (i) LRBA, known to
influence recycling of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) via
the classical recycling pathway used by receptors such as transferrin and (ii)UBXN6,
which negatively regulates the adenosine triphosphate (ATP) hydrolytic activity of
valosin containing protein (VCP), an ATP-driven segregase; VCP depletion delays
transferrin receptor recycling. ❼ At neutral pH, apotransferrin dissociates from
transferrin receptor and is ready to bind to free iron. The transferrin receptor may
also be ubiquitinated and directed to lysosomal degradation, which is mediated by
MARCH8, a membrane-associated zinc-finger factor, and, possibly, also by
RPS6KB1, a protein kinase involved in the mammalian target of rapamycin-protein
S6 kinase (mTOR-S6K) pathway, which is implicated in the degradation of trans-
ferrin receptor 1. ❽ Finally, PCSK7 mediates the shedding of soluble transferrin
receptor (sTfR) from the transferrin receptor.When iron availability is limited, sTfR
levels increase at least in part by downregulating expression of PCSK7 or neigh-
bouring genes. Images from Servier Medical Art (https://smart.servier.com),
licensed under a Creative Commons Attribution 3.0 Unported (CC BY 3.0) Licence.
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concentration. Finally, ZFPM1 suppresses GATA-mediated activation of
hepcidin expression45, although its connectionwith sTfR remains unclear. It
is worth noting that GWASs rely on population-level natural variation,
which can lead to both overstatement and understatement of the role of
individual modulators due to their natural variants being over- or under-
represented in human genomes. At the population level, the impact of
common variants that have a relativelyminor role in iron biology (e.g.,HFE
variants) may be overstated, whereas the impact of rarer variants with a
major effect on iron homoeostasis (e.g., HAMP variants) may be
understated.

In addition to the expected association with anaemia-related pheno-
types, the only other Bonferroni-significant associations of individual
biological pathways that persisted in colocalization were EPAS1 with
hypertension and SLC25A28with colorectal cancer and benign neoplasmof
colon.However, noother lociwere associatedwith thesediseases, suggesting
that mediation through pathways specific to these loci (rather than through
iron-related pathways) is more likely. For example, EPAS1 codes for
hypoxia-inducible factor 2-alpha, a transcription factor that contributes to
maintaining oxygen homoeostasis in response to hypoxia through activa-
tion of several biological pathways, such as raising norepinephrine levels46,
in addition to iron absorption and transport.

Thefinding thatmultiple positive associations of systemic iron status
with diseases attenuated after removing the pC282Y variant in HFE
constitutes one of the key results of this study, suggesting that these
associations may be driven by extreme iron overload and that moderate
iron overload may be unlikely to affect health outcomes other than
mineral metabolism disorders. In keeping with this interpretation, the
strongest association with non-haematologic and non-metabolic disease
outcomes was with greater risk of liver cancer, which is consistent with
reports showing associations of the pC282Y variant with liver cancer11,
and mentioning hepatocellular carcinoma as a commonmanifestation of

hemochromatosis10. The second-strongest association with non-
haematologic and non-metabolic disease outcomes was with arthro-
pathy,which is also consistentwith reports of associations of pC282Ywith
osteoarthritis11 and mentioning joint pain as a common symptom of
hemochromatosis10. It is also possible, however, that the wider confidence
intervals observed after removing the pC282Y variant inHFEmay be due
to reduced statistical power.

We also found positive associations of systemic iron statuswith greater
risk of dermatophytosis/dermatomyositis, postoperative infection and
cystitis/urethritis, broadly consistent with previous research that showed
associations with skin20 and bacterial24 infections. It is worth noting that we
did not observe associations with heart failure, which is consistent with a
recent randomised trial30 but in disagreement with previous trials26–29. We
did find an inverse nominal association with ischaemic heart disease, in
keeping with previous MR studies20,21 but in disagreement with some
observational evidence12–15. We also found a strong inverse association of
genetically predicted systemic iron status with HbA1c, which may reflect
greater erythrocyte turnover driven by iron excess47. Our findings reinforce
previouswarnings about interpretingHbA1c concentration in patientswith
iron-status imbalances47, leading to potential underestimation of type-2
diabetes in individuals with iron overload.

Our investigationhas several strengths. Firstly, theGWASs of hepcidin
and sTfRhave the largest sample size collected to date for genomic studies of
these traits, enabling the discovery of the first genetic loci associated with
hepcidin andmultiple new loci associated with sTfR. Secondly, to assess the
biomedical consequences of iron-altering biological pathways and systemic
iron status, we employed an MR design on a wide range of major clinical
outcomes, which reduces the impact of common sources of bias present in
observational studies, such as confounding and reverse causality. It is,
however, possible that this analysis may not capture rarer conditions and
diseases not included in the curated list of health outcomes. Finally, by

Fig. 4 | Putative causal effects of genetically predicted iron-related loci:
Bonferroni-significant and nominal associations (null findings not presented).
A Locus-basedMR associations with disease outcomes in up to 1,469,361 deCODE,
FinnGen, MVP, and UK Biobank participants. Only loci that are associated
(P < 5.2 × 10−6) with at least one disease and have suggestive evidence of

colocalization are shown. The terms in parenthesis indicate the trait that has been
used for rescaling. B Locus-based MR associations with biomedical traits in up to
854,977 MVP and UK Biobank participants. Only loci that are associated with at
least one disease outcome are shown. The terms in parenthesis indicate the trait that
has been used for rescaling.
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leveraging the largest sample size in an iron MR conducted to date, we had
very good (>90%) statistical power for the majority of the 292 outcomes
included in our analysis.

However, there are also some limitations. Firstly, in our GWASs we
focused on variants with MAF ≥ 0.001. Despite identifying some associa-
tions with rare variants, the role of rarer variants remains to be fully
investigated. Secondly, the focus on European ancestry participants limits
the generalisability of thesefindings, particularly in countries and ethnicities
where the majority of the burden of iron deficiency lies. Thirdly, metho-
dological differences in the GWASs, such as diverse adjustments for cov-
ariates and varying limits of detection, may have reduced homogeneity in
meta-analysis, despite all GWASs adhering to the same analysis plan.
Fourthly, our phenome scans demonstrated the extensive influence of
genetic pleiotropy on iron traits. This study, however, utilises a systematic
approach to reduce its impact onMRanalyses by selecting only variants that
are likely non-pleiotropic, and complementing locus-based MR with colo-
calization analysis to further reduce the impact of genetic confounding.
Finally, this study assumes additive genetic associations of instrumental
variables with iron traits, potentially missing between-variant interactions,
and focuses on the linear effects of iron, potentially overlooking non-linear
associations.

Taken together, this study increases knowledge of iron homoeostasis
and its biomedical consequences in humans, suggesting that long-term
exposure to higher iron levels is likely associatedwith lower risk of anaemia-
related disorders and higher risk of genitourinary, musculoskeletal, infec-
tious and neoplastic diseases.

Methods
Genetic discovery study of emerging iron traits
All studies included in the GWASs of hepcidin and sTfR followed the same
analysis plan, described in the Supplementary Information, p 2. The

characteristics of the cohorts included in this study are described in the
Supplementary Information, pp 2–6 and in Supplementary Data 1.

We established a data-management and quality-check pipeline for
study-specific GWAS results (Supplementary Information, p 6). We per-
formed fixed-effectmeta-analysis inMETAL using the SCHEME STDERR
command for all variants with MAF ≥ 0.001. After removing variants
available in only one study and with a combined sample size lower than
20,000 participants, we estimated SNP-based heritability and genomic
inflation factor using LDSC v. v1.0.1 (Supplementary Information, p 6).

To identify genetic variants independently associated with either
hepcidin or sTfR concentration, we performed approximate conditional
analysis using stepwise algorithm (‘--cojo-slct’) in gcta64 v. 1.26.0 on the
whole genome. We selected all single nucleotide polymorphisms (SNPs)
withP < 5 × 10−8 in themeta-analysis of each trait andwe specified the same
p value for the ‘--cojo p’ argument, to ensure that conditionally independent
SNPs were still genome-wide significant. Consistently with a previous
study48, we then clumped all resulting GWAS variants using PLINK v1.9 to
include only independent variants not in linkage disequilibrium (LD) with
one another within a 1Mb window (r2 < 0.01). We performed both GCTA
and clumping using LD information from 41,845 unrelated participants in
the INTERVAL study.

We provisionally mapped conditionally independent (sentinel) var-
iants to their nearest gene usingPhenoScannerv.2, a phenome scan tool that
includes mapping to nearest gene retrieved from BEDOPS v. 2.4.26, with
additional manual verification using the Ensembl genome browser (https://
grch37.ensembl.org/). We assessed the novelty of association using two
approaches. Firstly, we defined a ‘novel variant’ as any SNP (or its r2 ≥ 0.7
proxy) not associated with any iron traits in previous genome-wide
studies6–9. Secondly, we defined as ‘novel locus’ any genomic locus (within
500 Kb window from each independent variant) not including one or more
variants discovered in previous studies6–9.

Fig. 5 | Putative causal effects of genetically predicted systemic iron status:
Bonferroni-significant and nominal associations (null findings not presented).
AMR associations of systemic iron status with disease outcomes in up to 1,492,717
deCODE, FinnGen,MVP, andUKBiobank participants. The estimates are expressed in
odds ratio per one standard deviation (SD) higher transferrin saturation (TSAT) with
confidence intervals shown between brackets. The plot shows estimates with the
pC282Y variant in HFE (left-hand Forest plot) and without that variant (right-hand
Forestplot), presenting diseases that haveMRpoint estimateswith the samedirection in
all the biobanks included in the meta-analysis. The instrument was generated using six
variantsmapped toERFE,HAMP,HFE, SLC25A37,TFR2 andTMPRSS6not affected by

horizontal pleiotropy, indirect vertical pleiotropy, or collider bias and that: (i) were
associated (P < 5 × 10−8) with at least one trait; (ii) were nominally associated (P < 0.05)
with all the other iron traits except for hepcidin (as its levels are influenced by systemic
iron status); and (iii) displayed adirectionof association consistent across all traits.BMR
associations of systemic iron status, using the same instrument, with biomedical traits in
up to 860,060MVP andUKBiobank participants. The estimates are expressed inmean
change (beta) per one SD higher TSAT. The plot shows estimates with the pC282Y
variant inHFE (left-hand Forest plot) andwithout that variant (right-hand Forest plot),
presenting traits thathaveMRpoint estimateswith the samedirection inall thebiobanks
included in the meta-analysis.
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We used Ensembl Variant Effect Prediction to obtain information for
several measures of functional consequence for each sentinel variant and
their proxy variants (r2 > 0.7) (Supplementary Information, pp 6–7)49. We
conducted phenome scans drawing on the curated database of >65 billion
genetic summary statistics available in PhenoScanner v.2 (Supplementary
Information, p 7). We estimated genetic correlation using summary sta-
tistics from the present study (meta-analysis of hepcidin and sTfR con-
centration) and from a previous GWAS of conventional iron traits9, using
LDSC with the ‘--rg’ argument. We estimated phenotypic Pearson corre-
lation and its precision in up to 40,197 INTERVAL participants.

Tomap sentinel variants to candidate genes, we used a combination of
manual curation and colocalization with expression and protein quantita-
tive data.Wefirstmapped the above-defined conditionally independent and
uncorrelated GWAS signals to their nearest gene and then collapsed over-
lapping genes within 200 Kb from each other. The process was performed
independently for hepcidin- and sTfR-associated variants. This led to the
definition of 43 non-overlapping loci. Of these, 21 already had a biologically
plausible candidate gene (e.g., HFE, TMPRSS6, HAMP, TFRC). For the
remaining 22 loci, we performed conditional colocalization in Sumof Single
Effects (SuSiE) v. 0.11.92 and Coloc v. 5.1.0, following the procedure
described in Supplementary Information, pp 7–8. Locus-specific informa-
tion on our candidate gene mapping process, including a summary of our
manual curation, is available in Supplementary Data 8.

Locus-based and polygenic phenome-wide MR analysis
We collated 197 genetic variants (189 after deduplication) associated with
iron traits, of which 52 associated with either hepcidin or sTfR (in the
present study) and 145 associatedwith serum iron, ferritin, TSAT andTIBC
(reported previously9). Because iron is involved in multiple biological pro-
cesses, genetic variants associated with iron traits are often associated also
with other traits (pleiotropy). This may lead to biased MR associations if
genetic associations with iron traits are distinct (horizontal pleiotropy) or
mediated by a non-iron trait (indirect vertical pleiotropy). To reduce the
impact of horizontal and indirect vertical pleiotropy in our analysis, we
performed phenome scans in MR Base and retained 57 genetic variants
mapped to genes that (i) included only sentinel variants associatedwith iron
traits or iron-related traits (such as haemoglobin concentration and ery-
throcyte count); (ii) affected iron homoeostasis directly and not via a non-
iron phenotype (e.g., variants mapped toHFE, TMPRSS6 andHAMP). We
then assessed potential collider bias by comparing the genetic associations
with and without adjustment for covariates that may result in collider bias
(e.g., bodymass index, smoking andothers) inup toN = 40,197 INTERVAL
participants (Supplementary Information, p 8). This analysis showed very
high correlation (r2 ≈ 1.00) between estimates of these two approaches. All
effect estimates had the same direction in the two models, apart from two
variants (rs79694859 and rs10804630) that we removed fromour list ofMR
instruments, leaving 55 variants for further analysis (Supplemen-
tary Data 9).

To select locus-based MR instruments, firstly, we mapped these 55
variants to their most plausible or nearest genes as defined in their source
GWAS, leading to 39 non-overlapping loci. To ensure better generalisability
of associations with clinical outcomes, we further selected 33 (out of 39) loci
including at least one variant available in all the studies involved in theMR
(SupplementaryData 10).We performed stepwise approximate conditional
analysis for the 200 Kb region around each variant’smapped candidate gene
(P < 10−5, r2 < 0.1) in gcta64 v. 1.26.0 using genetic summary statistics for the
most strongly associated iron trait at each locus. This returned locus-based
instruments for 33 loci with variance explained between <0.1%–4.1%
(Supplementary Information, p 8; Supplementary Data 10; Supplementary
Data 11). To select the polygenicMR instrument of systemic iron status, we
filtered the above-mentioned 55 variants and included those that were: (i)
associated (P < 5 × 10−8) with at least one iron trait, (ii) nominally associated
(P < 0.05) with all the other iron traits considered; and (iii) with a direction
consistent across all traits (e.g., positive for iron, ferritin, TSAT and negative

for TIBC and sTfR; or the other way round) (Supplementary Fig. 5; Sup-
plementaryData 11). Because hepcidin is influenced by systemic iron status
and therefore it is difficult to disentangle whether genetic associations with
hepcidin affect this trait directly or through other iron traits, we did not
consider hepcidin associations in the definition of the polygenic instrument.
We selected six variants for the polygenic instrument of systemic iron status
mapped to ERFE, HAMP, HFE, SLC25A37, TFR2 and TMPRSS6. In MR
analysis, we rescaled the polygenic instrument byTSAT as it had the highest
variance explained, 4.4%. We performed sensitivity analyses for key MR
results utilising more liberal sets of polygenic instruments, illustrating the
value of the 6-variant instrument inmitigating pleiotropy and heterogeneity
(Supplementary Data 15). We estimated statistical power for this instru-
ment, showing ≥90% power for ≥50% disease outcomes while assuming an
ORof 1.5 (Supplementary Information, p 8; Supplementary Fig. 6). Because
variants in HFE had the strongest genetic associations across all traits
analysed (Supplementary Fig. 7), we performed a sensitivity analysis using a
polygenic instrument without the HFE variant to identify MR association
driven by HFE.

Before performingMRanalysis,we estimatedgenetic associations of all
instruments with health outcomes from deCODE, FinnGen data freeze 10
(R10),MVPandUKBB andwith biomedical traits fromMVPandUKBB in
European-ancestry participants. We adjusted for age, sex (for non-sex-
specific outcomes) and either the first 10 principal components of ancestry
(FinnGen, MVP and UKBB) or county (deCODE). Information on the
deCODE50, FinnGen51, MVP52 and UKBB53 cohorts is available elsewhere.
We meta-analysed study-specific genetic associations using fixed-effects
models in the ‘metafor’R package.We defined 292 binary disease outcomes
available in all four studies using a curated list ofmajor phecodes available in
the ‘PheWAS’ R package. To restrict our analysis to major health outcomes
of interest, we discarded any sub-categories (i.e. phecodes with four ormore
characters), removed hereditary/poisoning-related/accident-related out-
comes and those with less than 100 events in each study. The disease out-
comes were grouped in the following domains: circulatory system,
dermatologic, digestive, endocrine/metabolic, genitourinary, haemato-
poietic, infectious diseases, mental disorders, musculoskeletal, neoplasms,
neurological, pregnancy complications, respiratory, sense organs, symp-
toms. We grouped biomedical traits in the following domains: blood
pressure and cardiac pulse, glycaemic indices, haematologic, inflammation,
lipids and apolipoproteins, renal and liver function, respiratory, other.

We performed univariable MR using the inverse-variance weighted
method for each locus-based andpolygenic instrumentwhile accounting for
between-variant correlation estimated in INTERVAL. We performed sen-
sitivity analyses usingMREgger regression andweightedmedian estimator.
We used fixed-effect models in locus-based analyses and random-effects
models in polygenic analyses.We quantified between-variant heterogeneity
using the I-squared statistic. To account for multiple testing, we used
Bonferroni-corrected thresholds for all analyses. For locus-based analyses,
these were P < 0.05/(33 × 292) (5.2 × 10−6) for diseases and P < 0.05/
(33 × 47) (3.2 × 10−5) for traits. For polygenic analyses, the thresholds were
P < 0.05/292 (1.7 × 10−4) for diseases and P < 0.05/47 (1.1 × 10−3) for traits.
To reduce the impact of individual study-specific estimates that may dis-
proportionately affect meta-analytic estimates, in the main figures we pre-
sent Bonferroni-significant and nominal results for diseases and traits that
have MR estimates in the same direction (regardless of their p value) in all
the biobanks included in themeta-analysis, although all results are available
in the SupplementaryData. Associationswith p values below 0.05 but above
the Bonferroni thresholds are described as ‘nominal associations’. For locus-
based MR nominal associations, we performed colocalization analysis to
remove associations chiefly driven by genetic confounding (Supplementary
Information, p 8).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
GWAS summary statistics are publicly available through the NHGRI-EBI
GWAS Catalogue (hepcidin: accession number GCST90451683; soluble
transferrin receptor: accession number GCST90451684).
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bers of BBMRI.fi infrastructure (www.bbmri.fi). Finnish BiobankCooperative
-FINBB (https://finbb.fi/) is the coordinator of BBMRI-ERIC operations in
Finland. TheFinnish biobankdata canbeaccessed through the Fingenious®
services (https://site.fingenious.fi/en/) managed by FINBB. The FinnGen
study is approved by Finnish Institute for Health and Welfare (permit num-
bers: THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/
2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/
2019 and THL/1524/5.05.00/2020), Digital and population data service
agency (permit numbers: VRK43431/2017-3,VRK/6909/2018-3, VRK/4415/
2019-3), the Social Insurance Institution (permit numbers: KELA 58/522/
2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, KELA
134/522/2019,KELA138/522/2019,KELA2/522/2020,KELA16/522/2020),
Findata permit numbers THL/2364/14.02/2020, THL/4055/14.06.00/
2020,,THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/
2020, THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/
14.06.00/2021, THL/688/14.06.00/2021, THL/1284/14.06.00/2021, THL/
1965/14.06.00/2021, THL/5546/14.02.00/2020, THL/2658/14.06.00/2021,
THL/4235/14.06.00/202,StatisticsFinland (permit numbers: TK-53-1041-17
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and TK/143/07.03.00/2020 (earlier TK-53-90-20) TK/1735/07.03.00/2021,
TK/3112/07.03.00/2021) and Finnish Registry for Kidney Diseases permis-
sion/extract from themeetingminutes on 4th July 2019. The Biobank Access
Decisions for FinnGen samples and data utilised in FinnGen Data Freeze 10
include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34,
BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1,
Finnish RedCross Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/
359/2017, HUS/248/2020, Auria Biobank AB17-5154 and amendment #1
(August 17 2020), AB20-5926 and amendment #1 (April 23 2020) and it’s
modification (22 Sep 2021), Biobank Borealis of Northern Fin-
land_2017_1013, Biobank of Eastern Finland 1186/2018 and amendment 22
§ /2020, Finnish Clinical Biobank Tampere MH0004 and amendments
(21.02.2020 & 06.10.2020), Central Finland Biobank 1-2017, and Terveystalo
BiobankSTB2018001andamendment25thAug2020. InCHIANTI.Thestudy
baseline (1998-2000) was supported by the Italian Ministry of Health
(ICS110.1/RF97.71) and by the U.S. National Institute on Aging (Contracts:
263MD9164 and 263MD821336). INGI-VB. The researchwas supported by
funds from Compagnia di San Paolo, Torino, Italy; Fondazione Cariplo, Italy
andMinistryofHealth,RicercaFinalizzata2008andCCM2010, andTelethon,
Italy to Daniela Toniolo, Italian Ministry of Health, through the contribution
given to the Institute for Maternal and Child Health IRCCS Burlo Garofolo,
Trieste, Italy—RC 01/21 to MPC, and D70-RESRICGIROTTO to GG. The
funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.We thank the inhabitants of the VB
that made this study possible, the local administrations, the Tortona and
Genova archdiocese, and the ASL-22, Novi Ligure (AL) for their support. We
also thank Prof. Daniela Toniolo for the project supervision, Clara Cama-
schella for data collection supervision and organisation of the clinical data
collection, Fiammetta Viganò for technical help, and Corrado Masciullo and
Massimiliano Cocca for building the analysis platform. INTERVAL. The aca-
demiccoordinatingcentre for INTERVALwassupportedbycore funding from
NIHR Blood and Transplant Research Unit in Donor Health and Genomics
(NIHR BTRU-2014-10024), UK Medical Research Council (MR/L003120/1),
BritishHeart Foundation (SP/09/002;RG/13/13/30194;RG/18/13/33946) and
theNIHRCambridgeBRC.Theviewsexpressedare thoseof theauthor(s) and
not necessarily those of the NIHR or the Department of Health and Social
Care. The academic coordinating center would like to thank the blood donor
center staff and blood donors for participating in the INTERVAL trial.
KORA_F3. The study was initiated and financed by the Helmholtz Zentrum
München—German Research Center for Environmental Health, which is
funded by the German Federal Ministry of Education and Research (BMBF)
and by the State of Bavaria. Furthermore, KORA research was supported
within the Munich Center of Health Sciences (MC-Health), Ludwig-Max-
imilians-Universität, as part of LMUinnovativ. The funders hadno role in study
design, data collection and analysis, decision to publish, or preparation of the
manuscript. NBS. The Nijmegen Biomedical Study is a population-based
surveyconductedat theDepartment forHealth Evidenceand theDepartment
of LaboratoryMedicine of theRadboudUniversityMedical Center, Nijmegen,
theNetherlands.Principal investigatorsof theNijmegenBiomedical Studyare
Lambertus Kiemeney, André Verbeek, Dorine Swinkels, and Barbara Franke.
We thank Doorlène van Tienoven and Anneke Geurts-Moespot for serum
hepcidin measurements. PREVEND. PREVEND genetics was supported by
the Dutch Kidney Foundation (Grant E033), the EU project grant GENECURE
(FP-6 LSHM CT 2006 037697), the National Institutes of Health (grant
2R01LM010098), The Netherlands organisation for health research and
development (NWO-Groot grant 175.010.2007.006, NWO VENI grant
916.761.70, ZonMw grant 90.700.441), and the Dutch Inter University Car-
diology Institute Netherlands (ICIN). N. Verweij is supported by NWO VENI
grant 016.186.125. We thank all individuals for participating in the PREVEND

study. UKBiobank. This research has been conducted using theUKBiobank
resource (Reference 88349).
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