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ABSTRACT

Pasanen, Tiia-Maria
Bayesian spatio-temporal modeling of areal data
Jyväskylä: University of Jyväskylä, 2025, 52 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 864)
ISBN 978-952-86-0446-4 (PDF)

Data may be considered spatio-temporal when they describe both location and
time related to a phenomenon. Spatio-temporal statistical methodology aims to
find and quantify the dependencies within and between these two dimensions.
This dissertation focuses on methods for areal data and discrete time structure,
introducing models tailored for the needs of the applications and estimated with
Bayesian framework.

The models are applied to study the Finnish grain markets during the 1860s
famine, the spread of infectious diseases in Finland during the 18th and 19th

centuries, and the adaptation of Finnish fathers to parental leave policies dur-
ing 2009–2017. Spatiality is covered, for example, by conditional and simultane-
ous autoregressions, and time, for example, by random walk and autoregressive
model, error correction model, and hidden Markov model. Their combinations
also allow for the interaction of space and time. The methods are constructed to
enable application-driven analysis without setting additional limits on it. As a
consequence, the structures to model and the models are complicated. Neverthe-
less, the results are interpretable.

Keywords: autoregression, Bayesian model, conditional autoregression, error cor-
rection model, hidden Markov model, simultaneous autoregression,
spatial data, spatio-temporal model, time series
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TIIVISTELMÄ

Pasanen, Tiia-Maria
Alueellisen aineiston spatio-temporaalinen Bayes-mallintaminen
Jyväskylä: University of Jyväskylä, 2025, 52 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 864)
ISBN 978-952-86-0446-4 (PDF)

Aineistoa voidaan pitää spatio-temporaalisena, kun se kuvaa sekä ilmiöön liit-
tyvää sijaintia että aikaa. Spatio-temporaalisten tilastollisten menetelmien tarkoi-
tuksena on etsiä ja kvantifioida näiden ulottuvuuksien sisäisiä ja välisiä riippu-
vuuksia. Tämä väitöskirja keskittyy alueellisen aineiston ja diskreetin aikaraken-
teen menetelmiin esitellen malleja, jotka on yksilöity sovellusten tarpeisiin ja es-
timoitu bayesiläisittäin.

Malleilla tutkitaan Suomen 1860-luvun nälänhädän aikaisten viljamarkki-
noiden toimintaa, tartuntatautien leviämistä Suomessa 1700- ja 1800-luvuilla sekä
suomalaisten isien sopeutumista vanhempainvapaapolitiikkaan vuosina 2009–
2017. Spatiaalisuus otetaan huomioon esimerkiksi ehdollisen ja simultaanisen au-
toregression avulla, kun taas aika huomioidaan esimerkiksi satunnaiskulun ja
autoregressiivisen mallin, virheenkorjausmallin sekä piilo-Markov-mallin avul-
la. Näiden rakenteiden yhdistelmät mahdollistavat myös paikan ja ajan interak-
tion. Menetelmät on pyritty rakentamaan siten, että analyysi on sovelluslähtöis-
tä, eivätkä mentelmät rajoita sitä. Tämän seurauksena mallinnettavat rakenteet ja
mallit ovat monimutkaisia. Tulokset ovat silti helposti tulkittavissa.

Avainsanat: aikasarja, autoregressio, Bayes-malli, ehdollinen autoregressio, piilo-
Markov-malli, simultaaninen autoregressio, spatiaalinen data, spatio-
temporaalinen malli, virheenkorjausmalli
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1 INTRODUCTION

In everyday life, we often encounter phenomena, depending on both time and
location simultaneously. Possibly one of the most obvious ones is the weather.
On areas close to each other there are similar wider patterns, but also local dif-
ferences from those occur. Additionally, the weather changes a lot in time, some-
times quickly. The same kind of structures can be seen in epidemiology where
infectious diseases spread through social contacts so that epidemics appear and
fade away. In econometric settings, the prices of products may vary in time, for
example, due to seasons, and between different stores, towns, or countries. These
are merely a few examples. What all these phenomena have in common is that
they typically consist of complex dynamics which we might not know but would
like to find out. Sometimes we need to be able to explain things, for example,
the reasons for epidemics. At times, the prediction is a more important aspect, as
is the case with weather forecasts or when finding a balance between the supply
and demand of products.

In statistics, such phenomena are called spatio-temporal due to their relation
to both space and time. The methodology applied to study them is accordingly
called spatio-temporal. The statistical tools in this dissertation are aimed for the
exploration rather than the prediction of the phenomena. Many of the approaches
applied here include complex models which are computationally expensive and
slow. The execution time possibly lasting for days is often impractical or even
unbearable. Nevertheless, the historical applications have their own features,
being part of the past, and the slowness of research considering people who died
hundreds of years ago is fortunately merely an inconvenience in this case.

Article I of this dissertation focuses on the Finnish markets during the 1860s
famine. They have earlier been studied with the error correction model, intro-
duced in section 2.2, by Ó Gráda (2001). Compared with Article I, in the work of
Ó Gráda the data are more aggregated, the famine peak in 1867–1868 is treated
as a dummy effect, and the analysis is done with several separate error correc-
tion models that are compared with each other using a reference location. How-
ever, in the current study, there are 80 administrative districts instead of the eight
Ó Gráda used, thus the comparisons and testing related to the general error cor-



2

rection model would become exhaustive. As a response to the challenges, the
traditional error correction model is generalized to cover dozens of spatially de-
pendent time series simultaneously without any reference locations. The error
correction terms are allowed to depend on time which relieves us of the need
to predefine any specific periods for the famine peaks. The results reveal novel
details of Finnish markets during the 1860s.

As for Articles II and III, the application field lies in epidemics. Diseases are
clearly a matter of time and location, as have been painfully tangibly witnessed
during the COVID-19 pandemic of recent years, which have been excessively
studied in a short time (e.g, Giuliani et al., 2020; Jia et al., 2020). There are a lot of
data considering this new infection, partly due to the large number of inhabitants
populating the earth. The data are more reliable and organized than centuries
ago, and quickly available since globalization has changed the speed at which not
only people and infections but also information can travel. The data collected into
Finnish church archives during the 18th and 19th centuries are still not completely
digitized, and even if they were, they would not be as reliable or comprehensive
as, for example, most of the COVID-19 data. The amount of the past data is also
smaller due to the smaller population. Despite the drastic differences between
then and now, there have been and still are sparse populations in which tracking
of the routes of spread is not straightforward.

The Finnish historical archive data of the 18th and 19th centuries, on which
the data analyzed in Articles II and III are based, have been studied earlier using
a different methodology, aggregation level, and subsets of the data (e.g., Briga
et al., 2021, 2022; Ketola et al., 2021). The novelty of Article II is studying the co-
dynamics of several diseases utilizing sparse and scarce data. Article III, in turn,
introduces a new way to extract information from this kind of spatio-temporal
data consisting of a considerable number of locations and times. It intertwines the
spatial dependencies with the temporal dependencies via intrinsic conditional
autoregression, discussed in section 3.1, and hidden Markov model, discussed
in section 4.3, thus offering a smooth way to illustrate the main patterns of the
phenomenon in space and time.

In Article IV, the interest is to study the differences between Finnish munici-
palities using the parental leave quota of fathers during 2009–2017. These data are
contemporary and can be seen as reliable and comprehensive in contrast to the
other datasets used in the previous articles. The novelty of this research is to ap-
ply spatio-temporal methodology to learn if there are spatial patterns in parental
leave uptakes and if they evolve over time or can be explained with demographic
background information.

The rest of this summary offers the basics to understand the included arti-
cles and is structured as follows. In the second chapter, the general frameworks
of spatial and temporal data are introduced since the spatio-temporal data are
a combination of both these dimensions. Also, as historicity plays an important
role in the applications, some important characteristics of such data are discussed.
The third chapter describes some statistical methods for spatial modeling, namely
the conditional autoregression and its derivative, the intrinsic conditional autore-
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gression, as well as the spatial autoregressive model. The fourth chapter focuses
on temporal models such as the autoregression and its generalization. Also, the
error correction and hidden Markov models are covered. In the fifth chapter,
spatial and temporal models are combined for simultaneous usage. The sixth
chapter covers a brief description of the Bayesian approach in statistics. The sev-
enth chapter consists of the summaries of the articles included in this dissertation.
Finally, everything is brought together in a discussion in the last chapter.
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2 SPATIO-TEMPORAL PHENOMENA AND DATA

This chapter introduces the concepts of spatio-temporal phenomena and data, as
well as some common mathematical notations related to them. We go through
separately spatial and temporal phenomena, since their combination results in
the spatio-temporal nature we are interested in. Whereas this chapter introduces
the data, the processes generating such data are introduced in chapters 3, 4, and
5. As the articles of this dissertation are highly involved with past data, the
end of the chapter also describes some aspects that are often present in histor-
ical datasets.

2.1 Spatial data

In this spatial context, space and spatial are terms referring to locations, for ex-
ample, geographical regions on a map or locations of nucleotides in DNA. The
essential thing with this kind of space or regional entity is that it can be divided
into smaller subregions or locations that are connected to each other by some ac-
count. The division of the space into these smaller parts is also sometimes called
a tessellation.

The interest in spatial analysis often is whether there are dependencies be-
tween the locations such that the phenomenon behaves similarly in places close
to each other. For example, the weather is more likely alike in nearby areas than
those far from each other due to physical factors, a prevalence of an infection
in one municipality might resemble that of neighboring municipalities because
of social and biological connections, or the adjacent sequences of nucleotides or
genes in DNA might have biological connections. In addition to elucidating the
structure of the phenomenon, the spatial dependencies found can also be utilized
to predict the behavior of a phenomenon in locations where it has not been ob-
served, for example, due to missing data.

For a formal definition, denote each location or site of the complete space
with i = 1, . . . , N, where N is the total number of the locations. The observations
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concerning each location i are denoted with yi. In order to consider and iden-
tify the dependencies between the locations, their neighbors have to be acknowl-
edged. The neighborhood of the location i, i.e., the collection of the neighboring
locations, is denoted with Ji, and each neighbor of the location i is denoted with
j = 1, . . . , Ni, where Ni is the number of the neighbors of the location i. Some-
times the location i is also referred to as the focal location to distinguish it from
the neighbors.

Naturally, also the concept of neighborhood has to be defined for spatial ap-
proaches. Different kinds of definitions may be used depending on the situation,
maybe the most common ones being shared border and distance between cen-
troids of the locations. These both have their advances and drawbacks. Shared
borders or short distances do not guarantee a communication route between the
locations in geographical settings, nor do unshared borders or long distances
guarantee the lack of those routes. During historical times, waterways were
popular connections despite the possible long distances, whereas short distances
along difficult terrain most likely did not result in any contact. A neighborhood
definition based on road networks might be useful with regard to phenomena
that are related to the interaction of people. Distance, taking into consideration
the landforms, could be more suitable for phenomena such as weather that are
not based on human communication.

The neighborhood or the closeness of the locations is additionally described
with the order of the neighbors. The first order neighbors are the ones having a
common borderline or being otherwise the closest ones, the second order neigh-
bors are the first order neighbors of the first order neighbors, and so forth, see
Figure 1 for an illustration. Usually, a location cannot be its own neighbor. Some-
times it requires considering neighbors of several orders to capture the true spa-
tial dependencies. In this dissertation, all the articles utilize the first order neigh-
borhood based on border sharing.

2.2 Time series

A time series is a sequence of repeated observations of one variable in time. Some
examples of time series are a monthly mortality rate in a municipality, a daily
price of a certain product, and an hourly temperature in a location. An example
illustration of a time series can be seen in Figure 2 which represents the numbers
of deaths in one Finnish municipality during 1750–1850.

The time resolution of the observations may be dense, as several measure-
ments in a second, or more sparse, as weekly, monthly, or yearly measurements.
The intervals between the observations are usually the same length but also other
considerations are possible. The structure of time series can be modeled with dis-
crete or continuous time frameworks, depending on which of these the time is
seen in the application. This dissertation focuses on discrete time series with con-
stant observation intervals. Often with time series analysis, an interesting ques-
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i

j = 1

j = 2

j = 3 j = 4

FIGURE 1 An example of spatial division. The focal location, denoted with i, is in the
middle. The four first order neighbors of it are colored with dark turquoise.
The rest of the locations, colored with light turquoise, are the second order
neighbors of the focal location.

tion is whether there are some temporal dependency structures within the time
series, for example, a long-term trend, or some shorter-term dependencies such
as daily, weekly, monthly, or yearly periodicities.

Time series are commonly denoted with observations yt, where t = 1, . . . , T
indicates the time point of the observation y, and T is the total number of the
time points. If the observations indicate dependency, it is called autocorrelation,
which refers to correlating with oneself. The observation may correlate only with
the observation of the closest time point before (or after), or the effect might reach
over longer times. This is somewhat comparable with the order of the neighbor-
hood in the previous section.

Naturally, there can be multiple time series simultaneously instead of a
plain one. Those time series might consider different variables being measured
from one statistical unit using the same set-up and covering the same time span,
or consider the same thing being measured from different statistical units at the
same time. The combination of both of these perspectives is also possible. The
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FIGURE 2 An example of time series. The black line represents the number of monthly
deaths in the area of Kuopio during 1750–1850 according to the Finnish
church book archive data used in Article III.

statistical units can be, for example, people, stores, cities, or countries. In these
cases of several time series, not only the dependencies within a single time series
but also those shared between the time series are usually considered interesting.
If the statistical units happen to be spatial locations, we have spatio-temporal
data, and a spatio-temporal model should be considered for the analysis.

2.3 Special features of historical data

While almost all data can be seen as historical in some sense, here we discuss in-
formation dating back centuries. These data have been collected a long time ago
by people with the knowledge and skills of that time. Not everyone had the abil-
ity to write things down due to a lack of skills, opportunity, or proper equipment.
Furthermore, those with the necessary prerequisites most likely did not see the
world the same way people do today due to the huge increase in the amount of
information. For example, the people determining the causes of death in Finland
during the 18th and 19th centuries were usually priests with little or no medical
training, not to mention the prevailing lack of modern medicine (see, e.g., Vuori-
nen, 1999). In other words, some of the records may not be valid in the light of
current knowledge. This is especially unfortunate when the data is related to a
phenomenon that does not exist anymore or has changed dramatically. For ex-
ample, smallpox has been successfully eradicated, thus data describing its spread
cannot be gained from the modern world.

Additionally, the data were usually recorded for current purposes, such as
collecting demographic information for the needs of the ruler and for improving
the kingdom or empire (see, e.g., Suomen Sukututkimusseura, 2024). Thus, the
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data were not collected nor organized for any kind of modeling or more general
distant future use as, for example, the epidemiological research performed in Ar-
ticles II and III. Had the people known the objectives waiting ahead, they would
most likely have paid attention and care treating the data.

Another aspect of historical data is their incomplete nature, which likely is
a permanent feature. Of course, not even the contemporary data should be re-
garded as comprehensive without careful consideration, but the exclusions made
in the old days might be unrecoverable today. The Finnish church archives men-
tioned above do not cover the whole population but exclude, for example, those
not known being members of any specific parish (see, e.g., Pitkänen, 1977). The
excluded people might be only a small proportion of the total population in this
particular case, but not necessarily always. In some lucky instances, the gaps fol-
lowing the exclusions might be filled using other complementary data sources.
In general, the imperfect nature of historical data should not be forgotten.

While the collection and recording procedures of the data were somewhat
unreliable at times, the preservation process came with its own shortcomings.
Losing archives in fires or other unfortunate conditions occurred once in a while.
On some occasions, the data were rewritten or modified during their preserva-
tion, leading to additional errors. For example, unclear handwriting, changes in
currencies, or clerical errors may have caused trouble. Since carbon copies rarely
exist, there are few means to discover the flaws.

Nowadays, the digitization of the data brings several sources of information
into daylight, enabling and streamlining their use. Until all archives are avail-
able in digital format, the digitized data are selected. In the case of the Finnish
church archives, the records have been digitized by volunteers (Suomen Suku-
tutkimusseura, 2024), often amateur genealogists researching their own family
histories. Consequently, the digital archives cover only those original sources that
have been considered by someone. The digitization is still a work in progress, and
until it is finished, the data are not complete despite their decent representative-
ness.

Missing data are a feature commonly present in data regardless of the his-
torical or contemporary nature of them. In a historical context, the percentage
of missing observations can be exhaustive, and the inability to collect any ap-
propriate new data or correct the information only emphasizes the problem. For
example, in the Finnish church book data used in Article III, the percentage of
missing observations is at worst roughly 70% at the beginning of the 1750s, and
while it decreases steadily over time, it is still around 20% at best in the 1840s,
as may be seen from Figure 3. Such a level of missing data limits the selection of
applicable methods.

Nevertheless, sometimes there is no option but to find a way to work with
these historic, incomplete, and occasionally excessively missing data. The exper-
tise of a professional familiar with the research context, combined with statistical
methods capable to function despite the missing information, are important fac-
tors when overcoming the problems stated above. Integrating information from
several origins might help not only with the omitted aspects of the phenomenon
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but also with data missing for other reasons. All in all, the premises set by his-
toric data raise a need for the use of complex yet flexible statistical methods, such
as hierarchical, multilevel, or Bayesian models. This is even more pronounced
when analyzing simultaneously several aspects of data, for example, spatial and
temporal dimensions.
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FIGURE 3 The percentage of missing data during 1750–1850 in the Finnish church book
archive data used in Article III.
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3 SPATIAL MODELS

Spatial phenomena and data often require special consideration of dependencies
between the locations. There are several approaches to that, and this chapter
introduces the basic theory of conditional autoregression and its intrinsic modi-
fication, as well as simultaneous autoregression, which all are spatial models. In
order to account for the spatial dependency of locations, their adjacency has to
be defined. As mentioned in section 2.1, the neighborhood may be defined in
various ways. In what follows, two locations are assumed to be neighbors if they
share a borderline.

3.1 Conditional autoregression and its modifications

The conditional autoregressive (CAR) model (Besag, 1974) is a statistical method
for accounting spatial dependency between adjacent areas. It is a special case
of Markov random field and based on the idea of using multiple conditionally
independent univariate distributions to gain a multivariate joint distribution for
modeling the correlation between several variables (Held and Rue, 2010; Banerjee
et al., 2015). The method quantifies the amount of dependency without specifying
the direction of the effect so that no causal conclusions can be made based only
on the CAR model.

As in the previous chapter, denote each location with i = 1, . . . , N, and its
neighbor with corresponding indexing j = 1, . . . , N. As a location cannot be its
own neighbor, the maximum number of neighbors of any individual location is
N − 1. The neighborhood of each location i is denoted with Ji. Now, based on the
neighborhood definition, construct an N × N proximity or adjacency matrix, W,
so that it is symmetric and its elements are

wi,j =

{︄
1, when locations i and j are neighbors, and i ̸= j,
0, otherwise.

In other words, the elements wi,j indicate that the two locations, i and j, are neigh-
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bors. Instead of the plain binary indicators of neighborhood, the adjacency ma-
trix could also hold some other weights for each pair of locations. The numbers
of neighbors of each location i, denoted with Ni, in turn, are collected in another
N × N matrix, D. The elements of this diagonal matrix are

di,j =

{︄
Ni, when i = j,
0, otherwise.

To account for the actual intensity of the spatial dependency between the lo-
cations, we employ an N-dimensional random variable φ. For these spatial vari-
ables, we assign a Gaussian distribution according to the most common approach
when defining a CAR model. Alternatively, the Gaussian approach is applicable,
for example, with an autologistic model using binary variables with logistic link
function, or an auto-Poisson model for count variables using log-linear link func-
tion (see, e.g., Held and Rue, 2010; Banerjee et al., 2015). In Cressie (1993), also,
an autogamma approach is brought up.

The full conditional distribution of the Gaussian spatial variable φ is

φi|φ−i ∼ N

(︄
α

N

∑
j=1

w̃i,j φj, σ̃2
i

)︄
, (1)

where φ−i denotes a vector without the element considering the location i, and
the parameter α ∈ (0, 1) describes the amount of spatial dependency. The nota-
tions with tilde represent scaled variables w̃i,j = wi,j/Ni and σ̃2

i = σ2
i /Ni. Thus,

each variable φi follows a Gaussian distribution conditioned on the correspond-
ing variables of other locations, or in other words, φj, where j ̸= i. The expected
value is a constant proportion α of the weighted sum of the corresponding vari-
ables of other locations, and the variance is an unknown parameter. The unscaled
variance σ2

i is often fixed to be constant over the locations i, which is also done
here. Equation 1 defines a Gaussian Markov random field (see, e.g., Rue and
Held, 2005), offering a smooth spatial distribution for the variables φi.

The joint distribution based on the conditional distributions can be derived
using Brook’s Lemma (Brook, 1964), which states that if p(x) > 0 for all x ∈ RN

in the support of p(x), then for any two variables x and y in the support we have

p(x)
p(y)

=
N

∏
i=1

p(xi|y1, . . . , yi−1, xi+1, . . . , xN)

p(yi|y1, . . . , yi−1, xi+1, . . . , xN)

=
N

∏
i=1

p(xi|x1, . . . , xi−1, yi+1, . . . , yN)

p(yi|x1, . . . , xi−1, yi+1, . . . , yN)
.

(2)

If we now let x = φ and y = 0 = (01, . . . , 0N)
⊤, and we apply Brook’s Lemma,
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we get

p(φ)
p(0)

=
N

∏
i=1

exp

⎛⎝− 1
2σ̃2

i π

(︄
φi − α ∑

j<i
w̃i,j φj − α ∑

i<j
w̃i,j0j

)︄2
⎞⎠

exp

⎛⎝− 1
2σ̃2

i π

(︄
0i − α ∑

j<i
w̃i,j φj − α ∑

i<j
w̃i,j0j

)︄2
⎞⎠

=
N

∏
i=1

exp

⎛⎝− 1
2σ̃2

i π

(︄
φi − α ∑

j<i
w̃i,j φj

)︄2

+
1

2σ̃2
i π

(︄
α ∑

j<i
w̃i,j φj

)︄2
⎞⎠

= exp

⎛⎝−
N

∑
i=1

1
2σ̃2

i π

⎛⎝(︄φi − α ∑
j<i

w̃i,j φj

)︄2

−
(︄

α ∑
j<i

w̃i,j φj

)︄2
⎞⎠⎞⎠

= exp

(︄
−

N

∑
i=1

1
2σ̃2

i π

(︄
φ2

i − 2φiα ∑
j<i

w̃i,j φj

)︄)︄

= exp

(︄
−

N

∑
i=1

1
2σ̃2

i π
φ2

i + α
N

∑
i=1

N

∑
j=1

1
2σ̃2

i π
φiw̃i,j φj

)︄

= exp
(︃
− 1

2π
(φ− 0)⊤Σ̃−1

(I − αW̃)(φ− 0)
)︃

,

(3)

where Σ̃ is a diagonal matrix with elements σ̃2
i on its diagonal, the entries of the

matrix W̃ are the scaled variables w̃i,j, and I denotes an N × N identity matrix.
The fifth equality follows from the symmetry assumption that w̃i,j/σ̃2

i = w̃j,i/σ̃2
j .

Now, the joint distribution of the last line can also be written as

φ ∼ N(0, Σ̃(I − αW̃)−1). (4)

A more general representation is

φ ∼ N(0, Q−1), (5)

where Q denotes the precision matrix which has to be symmetric and positive
definite in order to the distribution to have a proper joint probability density.
Above, these features have been achieved with the weights and deviations scaled
by the number of neighbors of each location. A convenient way to express the
precision matrix under our conditions is to use the matrices W and D and set

Q = τD(I − αD−1W) = τ(D − αW), (6)

where τ = 1
σ2 ∈ R+ is a precision parameter of the variables φi. Using the def-

inition for Q as in Equation 6, the probability density function of the Gaussian
distribution of Equation 5 can be written as

p(φ) = (2π)N/2
⃓⃓⃓
(τ(D − αW))−1

⃓⃓⃓1/2
exp

(︂
−τ

2
φ⊤(D − αW)φ

)︂
. (7)
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Sometimes we need to account for a significant amount of spatial correla-
tion or allow wide spatial patterns in the posterior distribution. In these cases,
the parameter α most likely draws close to one (Banerjee et al., 2015). If the pa-
rameter α in Equation 6 is set to 1, the model is called an intrinsic conditional
autoregressive (ICAR, sometimes also IAR) model. On the one hand, this results
in an improper distribution, which cannot be used as a model for the data, but
which, on the other hand, may be utilized as a prior distribution for spatial de-
pendency, as is done for example in the Besag York Mollié (BYM) models (Besag
et al., 1991).

The ICAR model is often represented in a pairwise form, which is espe-
cially profitable in the computational sense (see, e.g., Morris et al., 2019). The
pairwise formula can be derived from Equation 7 with some algebra represented
next. Keeping in mind that the parameter α = 1 now that we are discussing the
ICAR model, we concentrate on the modification of the component inside the ex-
ponential function. In what follows, the matrix form is broken down into sum
representation and then the terms are rearranged according to the properties of
the matrices W and D:

−τ

2
φ⊤ (D − W)φ = −τ

2

N

∑
i=1

N

∑
j=1

φi
(︁
di,j − wi,j

)︁
φj

= −τ

2

(︄
N

∑
i=1

N

∑
j=1

φidi,j φj −
N

∑
i=1

N

∑
j=1

φiwi,j φj

)︄

= −τ

2

(︄
N

∑
i=1

φ2
i di,i −

N

∑
i=1

∑
j∈Ji

2φi φj

)︄

= −τ

2

(︄
N

∑
i=1

∑
j∈Ji

(︂
φ2

i + φ2
j

)︂
−

N

∑
i=1

∑
j∈Ji

2φi φj

)︄

= −τ

2

N

∑
i=1

∑
j∈Ji

(︂
φ2

i − 2φi φj + φ2
j

)︂
= −τ

2

N

∑
i=1

∑
j∈Ji

(︁
φi − φj

)︁2 .

(8)

In the third equality, the first sum follows from the fact that the matrix D is di-
agonal and thus di,j ̸= 0 only when i = j. The second sum, on behalf, is the
consequence of the matrix W being symmetric and its entries being either zeros
or ones depending on whether the locations i and j are adjacent or not. The fourth
equation relies on the fact that the diagonal elements di,i = Ni state the numbers
of the neighbors, and the desired number of repetitions of each variable φi can be
achieved by going through the whole neighborhood Ji.

Now, the intrinsic version of Equation 7 takes the form

p(φ) = (2π)N/2
⃓⃓⃓
(τ(D − W))−1

⃓⃓⃓1/2
exp

(︄
−τ

2

N

∑
i=1

∑
j∈Ji

(︁
φi − φj

)︁2

)︄
, (9)
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which is also called the pairwise form. When looking at this pairwise formula,
one can see that adding any constant to all the variables φi does not change their
density. This causes identification problems, which, however, can be overcome
using some constraints. One of the most common remedies is to restrict the vari-
ables to sum to zero over all the locations.

ICAR is not the only modification of CAR, but the constraints and assump-
tions placed on the original CAR model can lead to several different kinds of
alternatives. Some of these derivatives are briefly introduced and applied in Vi-
cente et al. (2020).

3.2 Simultaneous autoregression

Another model for accounting for the spatial dependency of adjacent areas is the
simultaneous autoregressive (SAR) model which was originally introduced by
Whittle (1954). SAR models are related to the CAR models in the sense that any
SAR model can be presented as a CAR model, while the reverse is not true. In
what follows, we go through the basic theory of SAR models based on Ord (1975)
and Banerjee et al. (2015).

Consider the notation of the sites i and their neighbors j as with the CAR
model above. Denote the spatially structured variable of length N with y, and its
each element with yi, i = 1, . . . , N. Assign a weight bi,j to quantify the relation of
the adjacent variables yi and yj. This relation does not have to be symmetric, but
in general, we allow the inequality bi,j ̸= bj,i. The N × N matrix collecting all the
weights is denoted with B.

Now, let
yi = ∑

j∈Ji

bi,jyj + εi, (10)

where the independent error terms have a Gaussian distribution: εi ∼ N(0, σ2
i ).

In other words, the spatial variable yi of the location i is the weighted sum of
the corresponding variables of its neighboring locations accompanied with some
white noise error. In matrix form Equation 10 can be written as

y = By + ε

⇐⇒ (I − B)y = ε

⇐⇒ y = (I − B)−1ε,

(11)

where I denotes an identity matrix of an appropriate size, here N × N, and the
N-length vector of errors is again Gaussian, that is ε ∼ N(0, Σ) where

Σi,j =

{︄
σ2

i , when i = j,
0, otherwise.

The variances σ2
i are unknown.
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Utilizing the above notation, Equation 11 can be rewritten as a multivariate
Gaussian distribution as

y ∼ N
(︂

0, (I − B)−1Σ((I − B)−1)⊤
)︂

. (12)

The notation of Equation 12 is also equivalent with Equation 10. Furthermore, if
we assume that the variance σ2

i is the same for all the locations i, meaning that
Σ = σ2 I, the distribution simplifies to

y ∼ N
(︂

0, σ2(I − B)−1((I − B)−1)⊤
)︂

. (13)

Since the relation between the locations i and j does not have to be symmetric,
also the matrix I − B may be non-symmetric. Nevertheless, in order for the distri-
bution in Equation 13 to be proper, the matrix I − B has to fulfill some conditions,
more specifically, it has to be full rank, i.e., non-singular. In literature, there are
two common alternatives to guarantee this propriety.

In the first option, we may set the matrix B = ρW, where ρ is a spatial au-
toregression parameter which has to belong to the interval ( 1

λ1
, 1

λN
), where λ1 and

λN are the smallest and the largest eigenvalues of the matrix W, respectively. The
matrix W, in turn, is defined as an adjacency matrix as with CAR in section 3.1. As
a result, the matrix I − B is non-singular, and thus the distribution in Equation 13
is proper.

In the other common alternative we, again, set B = ρW, but instead of find-
ing eigenvalues and scaling with them, we normalize the adjacency matrix W
with its rowsums. The elements of the normalized matrix, denoted with W̃, are

w̃i,j =
wi,j

∑N
j=1 wi,j

. (14)

This leads the normalized adjacency matrix W̃ being non-symmetric. Due to the
normalization, the eigenvalues of W̃ are between −1 and 1, so that it is natural
to set B = ρ̃W, where ρ̃ ∈ (−1, 1) is called a spatial autocorrelation parameter.
Again, the resulting matrix I − B is non-singular. Note the similarity between this
normalization and the one used with the CAR in the previous section.

As mentioned at the beginning of this section, SAR models are special cases
of CAR models. The connection holds when both definitions yield proper dis-
tributions and the covariance of a SAR model equals the covariance of a CAR
model. That is, using the notations of this and the preceding section:

Q−1 = (I − B)−1Σ((I − B)−1)⊤. (15)

However, it is noteworthy that the proper models employing the spatial depen-
dency coefficients, α in the case of CAR and ρ in the case of SAR, do not nec-
essarily imply the same dependency (Wall, 2004). Also, the CAR model uses a
symmetric spatial dependency matrix whereas the SAR model works with asym-
metric ones as well. This might seem beneficial for the SAR model, but actually
it can lead to identifiability issues due to the estimation of the covariance matrix
(I − B)−1Σ((I − B)−1)⊤. Further comparisons between the models can be found,
for example, from Cressie (1993) and Banerjee et al. (2015).
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3.3 Spatiality accounted by explanatory variables

Sometimes we do not want to or we are not able to assign any specific pre-defined
dependency structure for the spatial units, maybe due to irregular dependencies
or due to the heterogeneous nature of the units. In these cases, the space can
be acknowledged, for example, by including spatial explanatory variables. This
leads to modeling the response with some covariates, which, in turn, can be done
in numerous different ways.

One possible practice is to employ regression terms to tie the response to-
gether with the covariates. Denote the response variable with yi and the explana-
tory variable with xi, where i = 1, . . . , N stands for the location. Now, the neigh-
borhood Ji of the location i can be utilized, for example, by saying that the prob-
ability of yi depends on the neighboring values xj via independent regression
coefficients per neighbor pair and some function f so that

p(yi) = f (∑
j∈Ji

βi,jxj). (16)

Instead of individual neighbors, one can study the relation between the whole
neighborhood and the response by setting the coefficients constants over the
neighbors, that is βi,j = βi, in Equation 16. This might be convenient when the
number of parameters to estimate is getting large, i.e., there are many locations
and neighbors, or when there is a limited amount of information in the data.

This kind of approach is utilized, for example, in Article II. There the re-
sponse indicates the local confirmed occurrence of a disease, and this occurrence
is explained by local occurrences of that and other diseases. The model takes into
consideration only the observations of the focal location and its closest neighbors,
which serve as components for the spatial dependency. Some of the parameters
to estimate are local and some are shared between the locations. The approach
resembles mixed, i.e., multilevel, models (see, e.g., Gelman and Hill, 2007).
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4 TEMPORAL MODELS

Time series are often seen as noisy observations of stochastic processes, and the
analysis of them aims to find the underlying processes, or the actual phenomena,
and to separate them from the errors. This chapter introduces some statistical
methods for time series analysis relevant to this dissertation. First, we go through
the temporal autoregression for one time series and then broaden the concept
for multiple time series. Furthermore, we discuss the error correction model for
analyzing several (econometric) time series. Finally, we introduce the hidden
Markov model which makes a clear distinction between the observed and latent
levels.

4.1 Autoregression and random walk

Autoregression as a term implies that something is regressed against itself. In
spatial context, the local variable is modeled with or conditioned on its corre-
sponding neighboring values, whereas in temporal context the temporal variable
is modeled using the same variable from other time points. Usually in the lit-
erature Yule (1927) is credited for being the first to introduce the autoregressive
model in temporal context (Klein, 1997). The theory represented in this chapter
is based on Hamilton (1994) and Hyndman and Athanasopoulos (2021).

As in section 2.2, denote the variable of interest with yt, where t = 1, . . . , T
indicates the time point of the observation and T is the number of time points.
The autoregressive process of order p, shortened often with AR(p), for one vari-
able is

yt = c +
p

∑
i=1

ϕiyt−i + εt, (17)

where the constant c is an intercept, the variable ϕi stands for an unknown model
parameter reflecting the strength of temporal dependency, and the errors εt are
independently and identically distributed white noise. We assume that the errors
are Gaussian with zero-mean, εt ∼ N(0, σ2). Thus, the order p indicates the num-
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ber of previous values needed to account for the temporal dependency, and the
expected value of each observation yt consists of a constant c and the weighted
sum of p preceding observations.

Depending on the values of the constant c and the autoregressive coeffi-
cients ϕi, the process has different interpretations. If we consider an AR(1) pro-
cess, depending only on the previous observation, and the constant as well as
the autoregressive coefficient are zero, the result reduces to pure white noise. In-
stead, if the autoregression parameter equals one while the constant is zero, the
process is called a random walk. If the autoregression parameter is one and the
constant differs from zero, we have a random walk with a drift.

The Gaussian random walk may also be presented in the form

yt ∼ N(yt−1, σ2). (18)

As well as the general autoregression, also the random walk introduces a time
series with large scale variation in the case of large deviation parameter σ2 and
small scale in the case of small deviation parameter.

The variable of interest, yt, does not have to be one dimensional. In fact,
the autoregressive process is directly expandable to a multivariate case, which
is known as vector autoregression (VAR). Now, assume again that we have a se-
quence of observations from T consecutive time points and let the observations at
each time point t be an N-dimensional vector yt. Straightforwardly, Equation 17
takes the form

yt = c +
p

∑
i=1

Φiyt−i + εt, (19)

where the symbols in bold, c and ε, are as before except that they are now N-
dimensional vectors. The autoregressive coefficients form an N × N matrix Φi.
The errors follow a Gaussian distribution: ε ∼ N(0, Σ), where Σ is the covariance
matrix. The errors are still assumed to be independent of time.

If one seeks a way to include one or more seasonal or cyclic components or
other corresponding elements in the model, they can, for example, simply insert
those as additional terms in Equation 17 or Equation 19. Seasonality may be ac-
counted for, e.g., by dummy variables, indicating each seasonal moment of time,
or by weighted lagged effects. Assume that we have a seasonal effect consisting
of K components, for example, a monthly effect repeating every year would have
K = 12 components. Denote each of these components with k = 1, . . . , K, and
the current component of time point t with kt. Combined with Equation 17, the
model with seasonal indicator functions without lagged effects would be

yt = c +
p

∑
i=1

ϕiyt−i + θkt + εt, (20)

where the unknown parameter θkt is the seasonal effect. The alternative with
lagged effects allowing different numbers of lags for the seasonal and non-season-
al effects, in turn, would be

yt = c +
p

∑
i=1

ϕiyt−i +
p′

∑
i′=1

θkt−i′+1
+ εt, (21)
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where p is the number of non-seasonal lagged effects and p′ is the number of
seasonal lagged effects including the current effect. For a model with monthly
effect and p = p′ = 1 the expected value of the current observation consists
of the constant, the previous observation, and the seasonal effect of the current
month, which corresponds to Equation 20 with p = 1. There are several choices
the user may make, thus these are merely examples of the inclusion of seasonal
components. More information about seasonal effects in temporal models can be
found, for example, in Metcalfe and Cowpertwait (2009), Box et al. (2016), and
Hyndman and Athanasopoulos (2021).

4.2 Error correction model

The vector autoregression mentioned above is frequently used in econometrics
in an applied form called the error correction model (ECM), introducing an error
correction term to the VAR model. This chapter follows Alogoskoufis and Smith
(1991), Kennedy (2003), and Lütkepohl (2005) in representing the model theory.
To start with, we assume that we have at least two time series which are cointe-
grated, that is, they share a common underlying long-run relationship or trend.
The term ’error’ refers to a deviation from the long-run equilibrium, which, in
turn, affects the short-run relationships. The error correction model describes a
stochastic process of a dependent time series returning to a common equilibrium
after changes in the other time series. The model is convenient for estimating the
short-term and long-term dependencies between the time series.

With two sequences of observations xt and yt, where t = 1, . . . , T, the gen-
eral ECM may be written as

yt − yt−1 = α + β(xt − xt−1) + γ(yt−1 − xt−1) + εt, (22)

where α denotes the trend shared between the time series, β stands for the short-
run effect of changes in the reference series x on y, and γ captures the long-term
effect of the difference between the time series. The errors are commonly assumed
to be Gaussian with mean zero and some unknown variance.

In the econometric context, the short-term and long-term coefficients are
normally expected to be limited: 0 < β < 1 and −1 < γ < 0. The short-term
coefficient β reflects the momentary shared movements between the time series,
whereas the coefficient γ is the error correction term adjusting the long-term equi-
librium. In other words, the error correction term presents the share of error that
is eradicated between consecutive time points, and the closer it is to −1 the larger
the proportion of the difference fading away between time points t and t − 1 and
the faster the return to the equilibrium.

Whereas the case of one equation is called the error correction model, the
case of several equations is called the vector error correction model (VECM). This
model arises when there are more than two cointegrated time series, i.e., the ob-
servations are vectors yt instead of single scalars yt and xt (see, e.g, Juselius, 2006).
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As the number of time series grows, the VECMs may become complex and the
preliminary inspection of the time series and their cointegration relationships be-
fore fitting the model can turn out laborious (see, e.g., Juselius, 2006; Kennedy,
2003).

4.3 Hidden Markov model

Discrete time hidden Markov models (HMM) are stochastic models with two lev-
els separating the observed and unobserved dynamics of a phenomenon consist-
ing of consecutive events. The observed process is a sequence of discrete obser-
vations which depend on the unobserved process. The unobserved process, in
turn, is a latent or hidden Markov process with discrete states reflecting the pre-
vailing position of the phenomenon of interest. This chapter follows the theory
represented in Rabiner (1989), Zucchini and MacDonald (2009), and Visser and
Speekenbrink (2022) unless locally otherwise stated.

Denote the hidden states with st, where t = 1, . . . , T. The possible values
of the states st are denoted with k = 1, . . . , S for simplicity, even though they in
practice are some descriptive situations of reality which might not even have any
innate order. The hidden states form a Markov chain, commonly fulfilling the
first-order Markov property so that any state depends only on the previous one.
Thus, the probability of a current state conditioned on the preceding states is

p(st|s1, . . . , st−1) = p(st|st−1). (23)

Of course, the process may alternatively satisfy a Markov condition of some other
degree so that the states depend on as many preceding states as is the degree of
the Markov chain. We do not consider those cases here, but additional informa-
tion can be found, for example, in Zucchini and MacDonald (2009).

Depending on the application, it is possible to stay in the current state or
move to another one. The probabilities of different transitions between the states
are denoted with ak,k′ = P(st = k′|st−1 = k) where k and k′ are labels for the
states 1, . . . , S. The transition probabilities are collected in an S × S transition
matrix A. For the possible states of the first time point, we have to assign separate
probabilities since there is no transition to the first state but it is the starting point.
These initial probabilities are commonly denoted with ρk = P(s1 = k), where
k = 1, . . . , S.

To return to the observational level, denote the observations with yt, where
t = 1, . . . , T, and let them depend only on the current state st of the hidden pro-
cess. Due to this, the observations are conditionally independent, which can be
formulated to an equation

p(yt|y1, . . . , yt−1, s1, . . . , st) = p(yt|st). (24)

This observational distribution p(yt|st) and its parameters θst , associated with
the states st, are the link between the observed process and the hidden layer. One
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may also write p(yt|st) = p(yt|θst). Some of the parameters θst may depend on
the value of the state st, while others may be shared between the states. The
probabilities of the states st to generate the observations yt with the parameters
θst are denoted with ωk,t = p(yt|θst), and they are collected in an S × T emission
matrix Ω.

Finally, the HMM may be defined by the set {Ω, A, ρ}. Additionally, Equa-
tion 23 and Equation 24 describe the dependencies within the model. The gen-
eral structure of an HMM is illustrated in Figure 4. Usually, the points of interest
in hidden Markov modeling are the states and parameters included in the hid-
den layer and describing some unknown features of the real world. Being unob-
served, they have to be estimated based on the observations of the non-hidden
level. The phenomena might be complex, so, fortunately, the HMM methodology
is generalizable from the case of a single times series to multidimensional data.
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Ω

. . .

A

st−1

yt−1

Ω

A

st

yt

Ω
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yt+1

Ω

A

. . .

A

sT

A

yT

Ω

observed

unknown

FIGURE 4 An example of a directed acyclic graph of a hidden Markov model.

The full joint distribution of the observations and the hidden states consists
of the initial probabilities, the transition probabilities, and the emission probabil-
ities and it can be written as

p(y1, . . . , yT, s1, . . . , sT|Ω, A, ρ) = p(s1|ρ)p(y1|s1, Ω)
⊤
∏
t=2

p(st|st−1, A)p(yt|st, Ω).

(25)
The sum of these joint distributions over all possible sequences of states, in turn,
is the likelihood of the model, i.e., the marginal distribution of the observations
as a function of the model parameters. Formally, this can be written as

L(y1, . . . , yT|Ω, A, ρ) = ∑
s1,...,sT∈S

p(y1, . . . , yT, s1, . . . , sT|Ω, A, ρ), (26)

where S denotes the set of all possible hidden processes. A convenient way to cal-
culate the likelihood is to use the forward variables of the forward-backward al-
gorithm (Baum and Petrie, 1966; Rabiner, 1989, and the references therein). Next,
we describe the forward and backward variables briefly. As the parameters Ω,
A, and ρ are considered known in the following algorithms, according to the
common practice, we do not write them explicitly as conditions in the equations
below either.
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First, define a forward variable αt(k) representing the joint probability of
having the observed sequence y1, . . . , yt until time t and being then in the state k
at time point t:

αt(k) = p(y1, . . . , yt, st = k). (27)

This joint distribution is marginalized over the hidden state path leading to being
in state k at time t. By the definition and the dependency between the observa-
tions and the states, for the first time point t = 1, we have that

α1(k) = p(s1 = k)p(y1|s1 = k). (28)

Values at the following time points, in turn, may be calculated recursively as

αt(k) =
S

∑
i=1

p(y1, . . . , yt−1, yt, st−1 = i, st = k)

=
S

∑
i=1

p(y1, . . . , yt−1|st−1 = i)p(yt, st|st−1 = i)

=
S

∑
i=1

p(st = k|st−1 = i)p(yt|st = i)αt−1(i).

(29)

The second and third lines follow from the properties of the observation to de-
pend only on the current state and of the current state to depend only on the
previous state. Using the forward variables, the complete likelihood is

p(y1, . . . , yT) =
S

∑
i=1

αT(i). (30)

Since these probabilities tend to zero fast, especially with large values of T, the
estimation may suffer from numerical instability. However, this can be relieved
by calculating the scaled forward variables

α̃t(k) =
αt(k)

∑S
i=1 αt(i)

(31)

and utilizing them to achieve the likelihood.
The other part, the backward variable βt(k), describing the probability to

observe the sequence yt+1, . . . , yT after the time point t on the condition of being
in state k at time point t, is defined as

βt(k) = p(yt+1, . . . , yT|st = k). (32)

This conditional probability is marginalized over all the hidden state paths. Now,
instead of starting from the first time point we begin the estimation from the last
time point T where we have

βT(k) = 1 for all k = 1, . . . , S. (33)



23

The preceding values may be calculated recursively going backwards:

βt(k) =
S

∑
i=1

p(yt+1, yt+2, . . . , yT, st = k, st+1 = i)

=
S

∑
i=1

p(yt+1, st+1 = i|st = k)p(yt+2, . . . , yT|st+1 = i)

=
S

∑
i=1

p(st+1 = i|st = k)p(yt+1|st+1 = i)βt+1(i).

(34)

As well as the forward variables, for numerical reasons, also the backward vari-
ables are often scaled. It is done using scaling factors based on the scaled forward
variables α̃t(k) in Equation 31. Further details can be found, for example, in Visser
and Speekenbrink (2022). Instead of scaling, the numerical instability can be alle-
viated by making the calculations on a logarithmic scale, which on the other hand
is computationally expensive since it requires transforming the probabilities back
to their natural scale with exponential function.

Together the forward and backward probabilities can be used to calculate
the probabilities to be in each state at each time point given the observations. The
statewise conditional probabilities are defined as

p(st = k) =
αt(k)βt(k)

L(y1, . . . , yT)
. (35)

This is useful when making inferences based on the model, especially considering
the interest lies in the hidden layer.

Calculating the likelihood by marginalizing over the paths of the hidden
states is convenient when it comes to missing data. If the observations are miss-
ing at random, i.e., the missingness does not depend on the value of the observa-
tions, the emission probabilities for the missing values are set to one, ωk,t = 1 for
all k. This corresponds to omitting the effect of the emission probability on the
computation of the marginal likelihood at the time point of the missing observa-
tion since no new information based on the data is gained then. For example,
Visser and Speekenbrink (2022) discusses more the treatment of missing data in
the case of HMMs.

One of the first questions while applying a HMM is the number of hidden
states S to use. Sometimes the decision might be obvious due to the phenomenon
or the limitations of the data, but often not—especially because it is the hidden
layer we are focusing on here. Several methods have been suggested for estimat-
ing the number of states, for example, in Pohle et al. (2017), the expert knowledge,
the validation of the model via model checking, the model selection criteria, and
the computational aspects are recommended to be considered jointly. Neverthe-
less, the choice seems quite subjective regardless of the selection method, and
usually, the number of states is treated as a fixed, known value during the anal-
ysis. This, however, affects the way the results are and should be interpreted. A
specific number of states may lead to results that direct us to certain interpreta-
tions and explaining specifically them, whereas using a different number of states
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can result in a different kind of result, possibly hiding the actual phenomenon or
revealing an alternative theory.

After choosing the number of states, one has to define which transitions
between the states are possible. Often there is no reason to set any limits, but
sometimes additional information can be employed to relieve the estimation pro-
cess. HMMs can also be used specifically in cases where this kind of restrictive
information is to be utilized. Whereas AR models are good in describing smooth
transitions in the time series, HMMs are able to allow abrupt changes. One exam-
ple of this is the change point model, in which the order of transitions is known
and only the length of stay in each state is estimated. This, and other HMMs in
which the states are ordered so that transitions returning to any preceding state
are not allowed, are called left-to-right models, which are also visualized in Fig-
ure 5. In Article III, a left-to-right model with two states is used to find a single
change point.

1 2 3 4

FIGURE 5 The possible transitions in a four-state left-to-right HMM. By ignoring the
transitions denoted with dotted blue arrows, the model corresponds to a
change point model in which all states are visited.

When it comes to the estimation of the hidden Markov models, there typi-
cally occurs multimodality that complicates the analysis. Sometimes the multiple
modes might be a result of the label-switching problem (Jasra et al., 2005), and the
situation may be relieved, for example, by using specific algorithms or employing
additional constraints suitable for the specific case. In complex models, the mul-
tiple modes might not be related to merely the difficulties in estimation, but they
actually are true local modes. With the maximum likelihood approach the model
parameters may be estimated several times using different starting values for the
optimization algorithm, and the best solution is declared also as the global mode.
In the Bayesian setting, the multimodality of the posterior distribution can ham-
per the convergence of the estimation algorithms and the interpretation of the
results.

4.4 Time-dependent and monotonic effects

When we have an explanatory variable in our model, a coefficient dependent
on time can be assigned to that to describe the changes over time. In that way,



25

we may study the temporal association between the response and the covariate.
Naturally, the same can be done for several background variables simultaneously
if needed.

The temporal coefficients may be structured in several ways. There does not
have to be any specific dependency structure between the time points, but the co-
efficients can depend on time but be independent of each other. Then again, we
may also say that βt ∼ N(0, σ2), which results in conditionally independent co-
efficients given the deviation σ. The coefficients may also construct, for example,
a random walk or other autoregressive component as described in section 4.1. In
the case of the random walk, for time points t = 2, . . . , T, we have

βt ∼ N(βt−1, σ2), (36)

where βt is the temporal coefficient and σ is its standard deviation. The first time
point has to be considered separately. In the Bayesian context, a prior may be
assigned to that. The autoregressive processes are used, for example, in Article I.
Another possible structure is monotonicity, which is used in Articles III and IV.

A monotonic effect is increasing or decreasing over time, but it cannot alter
between those. Monotonic effects are discussed, for example, in Bürkner and
Charpentier (2020). In Article IV, the effects are allowed to increase or decrease
and in Article III they are restricted to increase in order to alleviate the label-
switching problem mentioned in section 4.3.

One way to construct a monotonic effect is to use a simplex b length of the
number of the time points, T. The first element of the simplex, b1, is fixed to
zero and the rest of the elements sum up to one. The actual coefficients form
another vector, β ∈ RT. The coefficients of the first and last time points, β1 and
βT, respectively, are defined separately since they are needed for the construction
of the ones between them. In Bayesian applications, the first and last coefficients
may be defined by assigning priors to them. Now, using the simplex and the
predefined coefficients, we can set

βt = β1 + (βT − β1)
t

∑
i=1

bi, (37)

where t = 2, . . . , T − 1, which leads to the monotonicity.
The monotonicity enables abrupt changes in the level of the effect. This is

visible, for example, in Article IV, in which a clear decrease of an effect is visible
after a legislative reformation related to the application is made.
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5 SPATIO-TEMPORAL MODELS

Spatial models employ structure for a multidimensional variable at one time
point, whereas temporal models join the variables over time. If we have data
covering both spatial and temporal dimensions, we also have to consider the de-
pendencies within both dimensions. This can be achieved with spatio-temporal
models. They are constructed as combinations of spatial and temporal models,
so that time and space can be acknowledged simultaneously. Next, we introduce
the fusion of the intrinsic conditional regression, discussed in section 3.1, with the
temporal random walk model, discussed in section 4.1, we describe how adding
spatial structure into the error correction model, familiar from section 4.2, may
lead to a simultaneous autoregression introduced in section 3.2, and how the hid-
den Markov model from section 4.3 can make use of spatial components.

5.1 Random walk ICAR

A multivariate random walk model combined with ICAR structure at the indi-
vidual time points is a convenient distribution to use as a prior in the Bayesian
framework. It specifies a set of local temporal models with a structure such that
in locations close to each other, the phenomenon is likely to behave similarly.

For the spatio-temporal parameters φi,t, where i = 1, . . . , N and t = 1, . . . , T,
we set

φt ∼ N(φt−1, Q−1), (38)

where Q = τ(D − W) is the ICAR precision matrix similar to the one in Equa-
tion 5 and Equation 6. By introducing the time dependency into the general ICAR
model, in Equation 9 we may replace the parameters φ with (φt −φt−1), and φi,t
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with (φi,t − φi,t−1) for all i and correspondingly for all j, which leads to

p(φ) = (2π)N/2
⃓⃓⃓
(τ(D − W))−1

⃓⃓⃓1/2
×

exp

(︄
−τ

2

N

∑
i=1

∑
j∈Ji

(︁
φi,t − φi,t−1 − φj,t + φj,t−1

)︁2

)︄
.

(39)

This may be seen as an interaction of the independent explanatory components
of time and space, and it can be represented as a Kronecker product as in Knorr-
Held (2000). More details about the interactions can be found from Clayton
(1996). This model becomes computationally expensive as the number of time
points increases since the number of the spatial random variables depends on
the length of the time series, thus it cannot be straightforwardly applied in all
situations.

5.2 Extension of the general error correction model

The original error correction model consists of several time series with shared
dependencies which are not spatial by definition. Thus, the spatiality has to be
considered separately when needed. The following presents one approach to
that, also applied in I.

First, we denote the observations with yi,t, where i = 1, . . . , N stands for the
location and t = 1, . . . , T the time point. Additionally, we employ some neigh-
borhood definition, for example, the border sharing, and denote the neighboring
location with j, corresponding to the location indexing used with i. Since there
may be several neighbors for one location, the general ECM in Equation 22 is
adapted to consider them at once using pairwise short-term and long-term coef-
ficients, βi,j and γi,j, respectively, by

yi,t − yi,t−1 = α + ∑
j∈Ji

βi,j(yj,t − yj,t−1) + ∑
j∈Ji

γi,j(yi,t−1 − yj,t−1) + εi,t

⇐⇒ yi,t = α + yi,t−1 + ∑
j∈Ji

(︁
βi,jyj,t + γi,jyi,t−1 − (βi,j + γi,j)yj,t−1

)︁
+ εi,t,

(40)

where t = 2, . . . , T, the set Ji is the collection of the neighbors of the location i,
and the errors εi,t ∼ N(0, σ2).

If we estimated N separate models, that is, one for each location, they might
not be comparable nor would their results be necessarily compatible with each
other, even if the whole neighborhood was included at once as above. To avoid
estimating the individual models and choosing a reference location to be able
to compare them and analyze the behavior of the phenomenon in different lo-
cations, the models are estimated simultaneously. Formally, for t > 1 we have

yt = 1α + Byt + Dyt−1 + εt, (41)
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where 1 denotes an N-length vector of ones, the entries of the N × N matrix B are

bi,j =

{︄
βi,j, when locations i and j are neighbors, and i ̸= j,
0, otherwise,

and the entries of the N × N matrix D are

di,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(βi,j + γi,j), when locations i and j are neighbors, and i ̸= j,
1 + ∑

k∈Ji

γi,k, when i = j,

0, otherwise.

As before, the errors εi,t follow a normal distribution.
Now, Equation 41 can alternatively be written as a Gaussian distribution.

Using the above notations, say

yt ∼ N((I − B)−1(1α + Dyt−1), σ2(I − B)−1((I − B)−1)⊤). (42)

The formula resembles a SAR model, in which the spatiality is accounted for by
the spatial dependency parameter ρ as in section 3.2 and the predefined weight
matrix W, that is, by ρW. If this is set equal to our matrix B, the connection
between Equation 42 and Equation 12 is evident. The major difference lies in
the fact that with this ECM representation, the elements of the matrix B differing
from zero are unknown parameters interpreted as the short-term coefficients of
the ECM instead of the dependency parameter and preset weights.

5.3 Spatiality in hidden Markov model

As were not the temporal models before, neither are the hidden Markov models
limited by multidimensional responses. The simplest way to join the dimensions
of time and space within an HMM is to assign some spatial dependency structure
for the parameters, observations, or both. The strength of dependency may vary
between the states or be shared between them. In III the states are described with
maps rather than single values. The maps may be interpreted and summarized
in the way appropriate for the application, of course.

A convenient approach is to assign an observational distribution for the re-
sponses yi,t so that there are some spatially dependent parameters. Then, for
example, a CAR, ICAR, or SAR model can be applied to those variables. In this
framework we assume the states and transitions are shared between the locations
instead of having unique paths of hidden states for each location. The temporal
dependency is present via the transitions on the hidden layer, but it can be further
acknowledged by restricting some transitions between the states or, for example,
adding an explicit temporal structure, as a random walk, for the transitions. Thus
the temporal structure guides the transitions between the states of all locations si-
multaneously while the spatial structure holds together the other dimension by
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smoothing the differences between adjacent locations. For example, in Article
III, a unique spatial random effect is added into each state and an ICAR prior
assigned for each of those.
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6 BAYESIAN MODELING

All the articles in this dissertation utilize Bayesian estimation methods. This en-
ables the application of complex hierarchical models with a large number of un-
known parameters and dependencies. Also, prior knowledge about the studied
phenomenon can be exploited in the modeling procedure. The whole analysis is
driven by the application rather than by the methods and their possible limita-
tions. The uncertainty which is always present in statistical analysis is inherent
in the posterior distributions of individual parameters and, for example, in the
distributions of the predictions based on the posterior distributions. The results
can be seen as intuitive and easily interpretable in many cases, as is with all the
included Articles I–IV. In what follows, the ideas of Bayesian modeling in the
general case are shortly reviewed.

Bayesian modeling is an alternative approach to the more traditional max-
imum likelihood estimation of the model parameters. The method can be seen
to consist of three phases. First, one has to have a prior belief of the situation.
Secondly, there has to be some kind of evidence or data considering the situa-
tion. This evidence is used to update the current belief of the prevailing situation.
Thirdly, posterior conclusions are drawn based on the priors and the evidence.
The approach relies strongly on the Bayesian way to perceive probability and see
the uncertainties as distributions.

The first published Bayesian study was carried out by Bayes (1763), whose
name the methodology also carries. According to the Bayes’ rule for conditional
probabilities, the posterior distribution is

p(θ|y) = p(y|θ)p(θ)
p(y)

, (43)

where p(θ|y) is the so-called posterior distribution of the unknown parameters
given the data. The likelihood, or the data conditioned on the unknown param-
eters, is denoted with p(y|θ). The prior the applier assigns for the unknown pa-
rameters is, in turn, p(θ). The denominator p(y) corresponds to the evidence
normalizing the whole posterior distribution.

The shape of the posterior distribution is not affected by the normalizing
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factor p(y) which can be seen as a constant since the observations y are known.
Thus the posterior distribution in Equation 43 is proportional to the numerator:

p(θ|y) ∝ p(y|θ)p(θ). (44)

The posterior is often calculated in this unnormalized form to reduce the compu-
tational burden.

In addition to the parameter estimation, one aim of the inference is to make
predictions. According to the Bayes’ rule, the prior predictions, or the marginal
distribution of y, based only on the predefined model without considering the
data, are

p(y) =
∫︂

p(y, θ) dθ

=
∫︂

p(y|θ)p(θ) dθ.
(45)

The posterior predictive distribution for some new data ŷ, given the data already
observed and assuming the new and old data, ŷ and y, are independent on the
condition of the parameters θ, is

p(ŷ|y) =
∫︂

p(ŷ, θ|y) dθ

=
∫︂

p(ŷ|θ, y)p(θ|y) dθ

=
∫︂

p(ŷ|θ)p(θ|y) dθ.

(46)

The unknown observables may be predicted with these distributions. The predic-
tions as well as the parameter estimates come in the form of distributions, which
describe the probabilities of certain values and the uncertainty related to them
and their estimation.

The posterior, especially the normalizing constant, has rarely a closed form
representation in the real world applications, which poses computational chal-
lenges. Instead of the exact closed form answer, the posterior probabilities are
estimated with some approximations. The estimation can be done, for exam-
ple, via Markov Chain Monte Carlo (MCMC) methods that describe the posterior
distribution by drawing samples of it using Markov chains converging to the tar-
get distribution. These methods require often extensive computational resources.
This is why, despite the early origin of the first Bayesian work, the methodol-
ogy has become more popular only alongside the development of computers and
computation methods, especially since the 1980s when the MCMC algorithm of
Gibbs sampler was applied in Geman and Geman (1984). Luckily, since the 1990s
and 2000s statistical programs such as Bugs (Bayesian inference using Gibbs sam-
pling, see, e.g., Lunn et al. (2012)) and Stan (Stan Development Team, 2024) have
made the methodology more approachable and easier to use (Gelman et al., 2013),
providing a new powerful statistical tool. In all of the articles included in this dis-
sertation, Stan is used for the estimation.

Bayesian modeling is one statistical tool among others, and it should be
used with care, since it is not the best choice for every problem, whereas appro-
priately applied, it enables things otherwise unachievable. All in all, it widens the
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selection of available methods so that the analysis can more easily be made based
on the application and phenomenon instead of being limited by the methodology.
For a thorough discussion about Bayesian statistics, its theory, and applications,
see, for example, Gelman et al. (2013), or for a more introductory perspective, van
Oijen (2020).
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7 SUMMARIES AND CONTRIBUTIONS

This chapter summarizes the articles this dissertation consists of. All four studies
include Bayesian spatio-temporal models applied to real world problems. The
first three articles focus on historical phenomena whereas the fourth one has a
more contemporary topic.

7.1 Article I: Bayesian spatial error correction model

In Article I, the error correction model represented in section 4.2 is applied to rye
price data from 1860s Finland to investigate the market integration during the
great Finnish famine. The motivation of the study lies in the theory that there
were connections between the towns such that areas suffering from the famine
the least would trade the grain with towns suffering the most, simultaneously
alleviating the famine. In further thought, these connections might reflect the
general communication routes of the people. Additionally, the circumstances at
the time resemble the ones in current developing countries, thus the methodology
and results could be utilized to gain information and find solutions to alleviate
the current food management problems.

In practice, the traditional error correction model is generalized as described
in section 5.2 to fit the application in hand. Additionally, the constant α and the
error correction terms γi,j in Equation 41 are allowed to depend on time via AR(1)
process and neighbor-pair-specific random walks, respectively. The trend is lo-
calized with multiplicative weights λi ∈ R having a mean 1 which enables both
the identification of the product λiαt and the interpretation of the trend as a na-
tionwide pattern. The model is estimated with a Bayesian approach, which is not
the most common way with ECMs.

To concretize the results and visualize the connection routes, a further shock
simulation based on the estimated model was made. In the simulation, the po-
tential prices were predicted given the model parameters at a certain time point
and a preset common initial price level so that in one town there was an artificial
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price increase whose effect the simulation embodied. This way the connections
to the nearby towns could be visualized. The simulation also illustrated how our
temporally adjusted SAR model implicitly allowed the possibility to affect the
current prices of the second order neighbors. Even though our model included
only the observations of the first order neighbors in the explanatory component,
their association with the previous time point enabled the spatially lagged effect.

All in all, the results reflect connections between the towns, differences and
similarities between different kinds of towns, offering novel information. As a
result of the data and methodology used, the study provides a more detailed
view of the Finnish markets of that time than the previous research has done.

7.2 Article II: Bayesian spatial co-dynamics of diseases

In Article II, the application is the spread and co-dynamics of three infectious dis-
eases in Finnish parishes in 1820–1850. The method borrows information from
adjacent areas and other diseases to find dynamics within and between the in-
fections in the pre-healthcare society. The diseases include pertussis, measles,
and the afterwards eradicated smallpox. As in Article I, also in this study the
communication routes to be discovered play an essential role in terms of the phe-
nomenon.

The application of a multidimensional model to these specific data can be
considered a success. There are several sources of uncertainty associated with
the data from the initial collection to the preservation process, and in essence,
the data concern a sparse and small population, not to mention the quarter of
data that are missing. Yet, the phenomenon—the behavior of the infections—is
undeniably a process requiring an analysis with sufficiently detailed spatial and
temporal division. The compromises made in order to have enough information
for spatio-temporal modeling led to a Bernoulli distributed response describing if
at least one death caused by a specific disease was recorded at each parish during
each month. The monthly time resolution is also an accommodation which in this
specific case is dense enough to describe the phenomenon.

The response is explained with seasonal effect and locally adjusted nation-
wide trends similar to the one used in Article I as well as the binary observa-
tions related to the three diseases. In this case, all the diseases have separate
but correlated random walks as their incidence trends. The interdependency al-
lows for identifying the co-dynamics between the infections. In addition to the
local adjustments, the spatiality is included via the explanatory variables indi-
cating whether some of the diseases had caused at least one death in the focal
town or in its neighboring towns in the previous month. The covariates consist
of neighborhood-specific means instead of individual values of neighbors since
there is not enough information in the data to identify such detailed effects in this
case. Some of the model parameters are shared between months or towns, and
some are only local or temporal. In reality, the phenomenon is much more com-
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plicated than the simplifying assumptions made about the temporal and spatial
structures as well as about the background variables. Nevertheless, the results
seem reasonable, describing the relations between infections in a new way and
offering some novel information about the Finnish history of diseases.

7.3 Article III: Spatial hidden Markov model

Article III continues on the epidemiological path of Article II. The data are based
on the same Finnish church book archives, but, this time, the focus is on measles.
The time span is extended to cover years 1750–1850, which leads to an increas-
ing amount of missing data as can be seen from Figure 3. As the data are sparse
and scarce, the observations are aggregated and simplified to indicate if at least
one death caused by measles is observed in each town during each month. The
study aims to find a moderate number of different states describing the prevail-
ing probability of infection simultaneously in all locations and to discover how
those states alter in time. Thus each state can be illustrated as a map and the
order of different states with time series and transition probabilities. This allows
for describing multidimensional data in a simpler way than could be done, for
example, with animations covering the complete data.

Despite the cumbersome premises of the data, a hidden Markov model is
applicable for the analysis. The spatial dimension of the dependencies is covered
with the intrinsic conditional autoregression that is integrated with the HMM. At
each state, we explain the probability of our response with a state-specific con-
stant, local spatially independent constants, local spatially dependent variables,
and a monthly seasonal term. For the spatially dependent parameters, we assign
the ICAR structure to control their dependency. The temporal aspect is inherent
in the state-dependent variables changing along the transitions.

Additionally, a left-to-right model is estimated based on the state trajecto-
ries gained from the original HMM. This is done to find a possible change point in
which the communication routes would have changed dramatically. The results
depend on the number of states and further analysis accompanied with applica-
tion expertise is required to draw any strong conclusions. However, our approach
sheds light on some of the obscured corners of historical knowledge.

7.4 Article IV: Spatio-temporal paternal leave uptakes

In Article IV, a spatio-temporal Bayesian model is applied to study the differ-
ences and dependencies between municipalities in the parental leave uptakes of
fathers. The data describing the uptake of quota of paternal leaves in Finland on a
yearly level during 2009–2017 come from Statistics Finland. The data are reliable
and comprehensive.
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The probability of a father to use his quota of parental leave is explained
with temporal constant, spatially dependent variables, and time-dependent co-
variates. The constant describing the nationwide trend of the probability is con-
structed as a random walk. The spatially dependent variables are assigned an
ICAR structure and the covariates have time-dependent regression coefficients
shared between the municipalities.

An especially interesting background factor to study is the family value pol-
icy in the municipality. According to the results, the association between the used
parental leave quota of fathers and the municipality policies supporting outsourc-
ing the care responsibilities from the family decreases over time. Particularly, af-
ter the legislative change in 2013, the support does not seem to have a distinctive
effect. Overall, the results are aligned with the previous research while bringing
new, areal information about parental leave uptakes of Finnish fathers.
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8 DISCUSSION

This dissertation consists of four articles on Bayesian spatio-temporal modeling
of historical and other phenomena. The methods applied are combinations of
spatial models, such as SAR and ICAR, and temporal models, such as the error
correction model, autoregressive models, and hidden Markov model. With the
methodology, the studies are able to offer novel information on the application
topics.

Articles I, II, and III study the pre-healthcare Finland in terms of market in-
tegration and epidemiology. In this context, the data are associated with errors
on many levels. The collection and preservation procedures are not completely
reliable, and the population the data describe differs from contemporary society,
making many comparisons cumbersome and inadequate. Due to small popula-
tion sizes and possibly slower pace of life back in the day, the data are also sparse
and scarce, which is why extracting the essential information from the data is
not straightforward. Despite all this, the statistical methods used overcome the
obstacles set by the data.

Article IV finds the dependencies between Finnish municipalities during
2009–2017 in the uptake of paternal leaves. The study covers the values reflect-
ing the political attitudes toward outsourcing the caretaking responsibilities of
families and their connection with the paternal leave uptakes. It also introduces
the spatial dimension to this specific sociological application. Both of these are
novelties in this context.

Potential issues for future research include, for example, other neighbor-
hood definitions, alternative ways to work with missing information, and find-
ing new models or estimation methods. As mentioned in Article I, the usage of
other than first order neighbors would be interesting. Whereas with the histor-
ical data, we have used the shared border as a definition for the neighborhood,
other definitions might be more relevant if proper professional knowledge could
be harnessed for it. Alternatively, an approach similar to the one used in Balocchi
and Jensen (2019) could be utilized, since along with the rest of the parameters,
they estimate also the possibility of neighboring locations to share a barrier in-
stead of a potential communication route. This seems a method worth trying
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until better information, such as waterway or road network, is available. In Arti-
cle II, the analysis is based on complete cases, even though considering the whole
neighborhood instead of individual neighbors allowed using some more obser-
vations. Finding another working solution for the missing observations remains.
New models or estimation methods could alleviate the issues in Article III as the
usage of random walks instead of hidden Markov models was infeasible with the
current number of parameters.

The conditions in Finland during the 18th and 19th centuries correspond in
many respects to those of developing countries of the modern world. It motivates
us to study these historical phenomena—markets reflecting the food manage-
ment and deaths reflecting the spread of diseases—in sparsely populated agrar-
ian culture without the contemporary advantages of present civilization. The
more recent analysis of parental leaves is in essence related to the equality be-
tween people, the balance that has been sought for a long time at an ever-in-
creasing pace. The Finnish affluent society can be seen as one of the forerunners
of equal parenthood and the research of the effects of reforms of laws and prac-
tices can provide critical information not only for the Finnish but also for many
other people. Regardless of the differing contexts, all these studies aim to find the
connections between people—markets, infections, and adopted influences driv-
ing the behavior and decisions of people. The statistical methodology needed
for these analyses always depends on the situation, and this dissertation presents
some ways to describe the phenomena in which space and time are intertwined.
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Abstract
We develop a Bayesian spatio-temporal model to study
pre-industrial grain market integration during the Finnish
famine of the 1860s. Our model takes into account several
problematic features often present when analysing multi-
ple spatially interdependent time series. For example, com-
pared with the error correction methodology commonly
applied in econometrics, our approach allows simulta-
neous modelling of multiple interdependent time series
avoiding cumbersome statistical testing needed to prede-
termine the market leader as a point of reference. Fur-
thermore, introducing a flexible spatio-temporal structure
enables analysing detailed regional and temporal dynam-
ics of the market mechanisms. Applying the proposed
method, we detected spatially asymmetric ‘price ripples’
that spread out from the shock origin.We corroborated the
existing literature on the speedier adjustment to emerg-
ing price differentials during the famine, but we observed
this principally in urban markets. This hastened return
to long-run equilibrium means faster and longer travel
of price shocks, implying prolonged out-of-equilibrium
dynamics, proliferated influence of market shocks, and,
importantly, a wider spread of famine conditions.
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1 INTRODUCTION

Analysing the co-movement of prices in multiple spatially connected regions is essential in gain-
ing understanding of the behaviour, structure and efficacy of the markets (e.g. Fackler & Tastan,
2008; Shin, 2010). However, statistical modelling of such spatio-temporal phenomena can be
challenging for various reasons.

Error correction models (ECMs) (Alogoskoufis & Smith, 1991; Engle & Granger, 1987) are
a popular tool for studying the short-term co-movement and the long-run out-of-equilibrium
dynamics in economics and other domains (e.g. Li et al., 2006, 2013;Møller & Sharp, 2014; Nkang
et al., 2006), but traditional ECM assumes a single exogenous variable affecting another depen-
dent variable, making it unsuitable for the context of joint modelling of spatio-temporal markets.
While vector error correction models (VECMs) (see, e.g. Juselius, 2006) allow joint modelling of
multiple interdependent time series, their use entails burdensome, error-prone and potentially
biasing testing for appropriate series in each co-integrated relationship, with additional difficul-
ties due to potentially time-varying relationships (Giles & Giles, 1993; Giles & Godwin, 2012;
Gonzalo & Lee, 1998; Hjalmarsson & Österholm, 2010).

In this paper, we study the integration of Finnish rye markets in the 1860s, during which
Finland suffered the last peacetime famine in Western Europe. Same markets have been studied
earlier in ÓGráda (2001) using aggregated provincial data and a simple ECMapproachwhere one
province was fixed as a market leader and where the famine peak in 1867–1868 was accounted
via a dummy variable. However, the use of aggregated data loses information about the smaller
scale price variation and the concept of amarket leader is somewhat artificial in poorly integrated
markets which may contain multiple spatial equilibria (e.g. Chilosi et al., 2013; Studer, 2008;
Voutilainen et al., 2020), especially during famines (e.g. Shin, 2010), leaving market behaviour
under such environments greatly understudied. Instead, we construct a Bayesian spatio-temporal
model which jointly models all regional price series without a need for a predetermined point
of reference. Furthermore, as the famine was a protracted socio-economic process punctuated
by failing harvests throughout the 1860s, we use time-varying coefficients which require no
pre-determined period for the famine and allow a smoothly shifting relationship between the
spatial markets. While our model bears some similarity to SAR models (Ord, 1975), it provides a
flexible and efficient estimation of the spatial correlation structures without a predefined spatial
weight matrix. In addition, the model inherently separates the short-term and long-term regional
relationships.

By allowing complicated feedback between the regions, we are able to study the overall sta-
bility of the market system. We observe that the out-of-equilibrium dynamics are contingent
on the overall spatial organization of the markets. Speedier error correction facilitates trans-
mission of price shocks, and regional feedback keeps the overall price system longer periods
out of equilibrium. In essence, our findings cast doubt on whether speedier error correction
between any pair of markets can solely be used to infer the behaviour of the market sys-
tem as a whole due to the complex short-term and long-term interdependence within the
markets on local and system-wide level. We also document the existence of ‘price ripples’
(Devereux, 1988; Hunter & Ogasawara, 2019; Seaman & Holt, 1980) from a shock epicentre
but observe a spatially asymmetric adjustment to price shocks. The majority of the increased
spatial price transmission happened in urban–rural trade with some evidence that urban prices
were increasingly influenced by the price level in the surrounding rural regions during the
famine.
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The paper is structured as follows. In Section 2, we provide background for the Finnish famine
of the 1860s and discuss the data used in this study. In Section 3, we extend the traditional ECM
to a spatio-temporal setting. In Section 4, we implement the model to study the spatial price
behaviour during the Finnish 1860s famine, leaving it for Section 5 to discuss the results and
model extensions, and to conclude.

2 BACKGROUND AND DATA

The role of markets in safeguarding or depleting food security has remained in analytical focus,
as recent famines (Maxwell et al., 2020) are characterized by a failure of markets to deliver access
to food at affordable prices (Andrée et al., 2020; Devereux, 2009; Howe & Devereux, 2004). While
there is little disagreement on the theoretical benefits of a well-integratedmarket system (e.g. van
Campenhout, 2007; Matz et al., 2015; Persson, 1999; Svanidze et al., 2019, see however, e.g. Deng,
2007), a distinction remains between the long-run gains and adverse behaviour of markets over
shorter periods.

By common account, markets can influence famines in three ways: markets may (1) alleviate
local food security problems through profit-seeking arbitrage, (2) balkanize and stop transmit-
ting price information needed to signal outside traders of localized food shortages and (3) make
things worse by exporting food from a region of scarcity (see, e.g. Devereux, 1988, 2009; Ó Gráda,
2005, 2015). Most famines experienced during the past 100 years have been marked by disin-
tegration and balkanization of market relationships (e.g. Ó Gráda, 2015; Shin, 2010), excessive
price volatility (Araujo Bonjean & Simonet, 2016; Devereux & Tiba, 2007; Garenne, 2007; Quddus
& Becker, 2000; Ravallion, 1987), lack of accurate market information and politically motivated
hampering ofmarket access (e.g.Macrae & Zwi, 1992;Marcus, 2003; ÓGráda, 2015; Olsson, 1993;
de Waal, 1993).

This modern experience opposes the available evidence from the pre-industrial markets,
which tended to function better during famines than in normal times (e.g. Ó Gráda, 2001, 2005,
2015; Ó Gráda & Chevet, 2002). Several historical studies have concurrently suggested that the
further back we go in time, the higher prominence low agricultural productivity and economic
backwardness rise in explaining the occurrence and timing of famines (e.g. Alfani & Ó Gráda,
2018; Campbell, 2010; Hoyle, 2010; Mishra et al., 2019). With some notable exceptions (e.g.
Slavin, 2014), these findings have poised scepticism that historical markets overwhelmed by sup-
ply shocks had the means or volumes needed to alleviate nationwide hardships. The Finnish
1860s famine has provided one of the original pieces of evidence that unlike their modern coun-
terparts, the pre-industrial markets functioned well, even better during famines (Ó Gráda, 2001).
To contribute to the literature, we revisit this case of famine.

2.1 The Finnish 1860s famine and data

Held as the last peace-time population disaster of Western Europe, the Finnish 1860s famine
occurred in an overwhelmingly agricultural economy in the hinterland of an industrializing con-
tinent and claimed close to 200,000 lives (in excess mortality and in absence of births) out of a
population of 1.8 million. With the proximate cause in a substantial drop in harvests (on aggre-
gate losses over 50% depending on location and grain variety) which could not be supplemented
with imports, the famine mortality was greatly amplified by the pre-famine increase in
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vulnerable population stemming fromhigh population growth, concentrated land ownership and
from lack of urban and industrial employment opportunities (Voutilainen, 2016).

In themid-19th century, although Finlandwas sparsely settled and often self-reliant regarding
grain output, food markets were sufficiently developed. This was true particularly in the histori-
cally well-off areas of Southwest Finland as well as in the southeastern parts of the country that
laid close to the grain markets of St. Petersburg. Grain sales were an important source of income
especially in the South-West Finland, and a substantial amount of grain consumed during har-
vest failures was purchased beyond local markets all over the country (Soininen, 1974). Due to
historical trade connections between rural areas and towns and due to geographical constraints
on movement (especially water ways), the regional nature of the inland trade remained in place
well into the mid-19th century. Towns and townmerchants were responsible for the largest trade
volumes, and towns due to their livelihood structure had the most developed markets for food.
Rural trade was liberalized in 1859, but it was mostly conducted to meet households’ day-to-day
needs and not used for large-scale rural food retailing (Voutilainen et al., 2020).

Our analysis of the food markets is based on the price of rye—the most widely traded and
most voluminously produced grain of the time (Soininen, 1974). The price data were obtained
from local reports sent to the Department of Finance and stored in the Finnish National Archives
in Helsinki.1 Starting in 1857, the officials of 48 administrational districts and in 32 town admin-
istrations were required to report monthly price denominations of the local prices of various
commodities. The prices were market prices and best ones available from the era (Pitkänen,
1993). The data have been previously analysed by Ó Gráda (2001), who—in contrast to our
approach—divided the data in eight provincial aggregates downgrading regional variance and
leaving, among other things, the within-province heterogeneity and urban–rural division unhan-
dled. The higher spatial resolution of this study is more in resonance with livelihood and
market regions (Maxwell et al., 2020; Voutilainen et al., 2020), thereby providing more accurate
measurement of the actual prices faced by the contemporary people.

Figure 1 plots the aggregate price movement between January 1861 and December 1869,
which is the time span of the data we analyse. In the beginning of our time span, in 1861,

F IGURE 1 Rye price in Finland during 1860s as Finnish marks (FIM) per barrel. Average as black curve
and 95% quantile interval as shaded area.

1We are grateful to Kari Pitkänen for allowing us to use the data. Additional archival work to fill in the gaps in the data
was conducted for the purpose of this study.
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the coefficient of variation of regional rye prices was about 0.1, roughly at par with the contem-
poraryWestern European economics, and signalling reasonably well-integratedmarkets in terms
of sigma convergence (e.g. Federico et al., 2021). The 1860s famine, which peaked in terms of
mortality in the winter and spring of 1867–1868, was foreshadowed by multiple harvest failures
earlier in the decade. Harvest failures of 1862, 1865 and especially the famine escalating one in
1867, were tailed by a substantial increase in grain prices over the following winter.

3 SPATIO-TEMPORAL ERROR CORRECTION MODEL

If markets are perfectly integrated, the prices in any two places should follow the so-called law of
one price. Under these circumstances, a price differential will signal opportunities for arbitrage
up to the point when prices are either identical or differ to reflect the transportation costs
(Ó Gráda, 2015; Studer, 2008). One of the implications of this is that the prices in two markets
are characterized by a long-run relationship, deviations from which vanish by ensuing arbitrage
(Ó Gráda, 2001; Studer, 2008). This is customarily studied using an error correction approach
(e.g. Alogoskoufis & Smith, 1991; Kennedy, 2008). Considering two (log-)price time series y =
(y1, y2, … , yT) and x = (x1, x2, … , xT), where T is the number of time points, an ECM is tradi-
tionally represented as

yt − yt−1 = 𝛼 + 𝛽(xt − xt−1) + 𝛾(yt−1 − xt−1) + 𝜖t, (1)

where 𝛼 stands for a common trend, 𝛽 denotes the short-run effect of changes in the reference
series x on y, and 𝛾 denotes the effect of the difference between y and x and 𝜖t ∼ N(0, 𝜎2y ).

In normally functioning markets, we expect that 0 < 𝛽 < 1 and −1 < 𝛾 < 0. The short-term
coefficient 𝛽 captures the price co-movement between the twomarkets. The error correction term
𝛾 is the long-term adjustment parameter: the share of disequilibrium (‘error’) eradicated in each
period. The higher the efficiency of the markets—that is, the closer 𝛾 is to −1—the larger the
proportion of the error vanishing between time points t and t + 1, and therefore the quicker the
emerged disequilibrium is arbitraged away.

To provide a flexible method for multiple spatially related series, we generalize the common
error correction Equation (1) in the following way. Consider a geographic region that can be par-
titioned into sub-regions denoted by i= 1, 2, … ,N. In our case, we regard regions sharing borders
as neighbours, even though some other condition for neighbourhood could be used as well. We
denote the neighbourhood of a site i with Ji, and an individual neighbour with j ∈ Ji. There is a
location specific price 𝜇i,t of the product for each region and each time point. The prices for all
the regions at one time point are denoted by 𝝁t = (𝜇1,t, 𝜇2,t, … , 𝜇N,t)T .

Now, if we denote the yt and xt in the original ECM by 𝜇i,t and 𝜇j,t, respectively, the model in
the case of only one neighbour looks like

𝜇i,t = 𝜇i,t−1 + 𝛼 + 𝛽i,j(𝜇j,t − 𝜇j,t−1) + 𝛾i,j(𝜇i,t−1 − 𝜇j,t−1) + 𝜖i,t.

The errors 𝜖i,t are assumed to be Gaussian. This model, in turn, can easily be generalized for an
arbitrary number of neighbours by adding new terms to all the neighbouring sites in question;
thus, we obtain

𝜇i,t = 𝜇i,t−1 + 𝛼 +
∑
j∈Ji

𝛽i,j
(
𝜇j,t − 𝜇j,t−1

)
+
∑
j∈Ji

𝛾i,j
(
𝜇i,t−1 − 𝜇j,t−1

)
+ 𝜖i,t.
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PASANEN et al. 1287

We now consider all the regions and their possible connections simultaneously by combining
all the site specific models and including the spatial dependency structure in its entirety into
a single model frame. The equation above can be written for all regions simultaneously with a
matrix notation as

𝝁t = 1𝛼 + B𝝁t + D𝝁t−1 + 𝝐t.

The term 1 denotes an all-ones vector of length N, and the entries of the N ×N matrix B are

bi,j =

{
𝛽i,j, if i and j are neighbours, that is, j ∈ Ji
0, otherwise.

The N ×N matrix D, in turn, has the entries

di,j =

⎧⎪⎪⎨⎪⎪⎩
−(𝛽i,j + 𝛾i,j), if i and j are neighbours, that is, j ∈ Ji
1 +

∑
j′∈Ji

𝛾i,j′ , if i = j

0, otherwise.

With a short notation

𝜼t = 1𝛼 + D𝝁t−1

the previous equation can be expressed as

𝝁t ∼ N((I − B)−1𝜼t, 𝜎2𝜇(I − B)−1((I − B)−1)T).

Instead of explicitly specifying the cointegration relationships, reference series and other com-
plex interdependency structures between the regions, we started with a generalization of a simple
ECM with a fixed neighbourhood structure and, perhaps surprisingly, arrived at a model that
bears similarity with simultaneous autoregressive (SAR) models (Anselin, 1988; Ord, 1975),
which are widely used in spatial statistics. Compared to a typical SAR model in which the neigh-
bourhood is defined via B = 𝜌W with a spatial dependency parameter 𝜌 and a fixed spatial weight
matrixW , here the non-zero elements of B are unknown parameters with an interpretation corre-
sponding to the original ECM formulation. The exogenous variables commonly used as predictors
in a SAR model are replaced here with a lagged dependent variable 𝜇t−1, which follows directly
from the above expansion of the original ECM.The advantage of our formulation is that the under-
lying cointegration relationships are now implicitly included by the spatial spillover of the SAR
structure. This enables a situation where a region j at time t may have an effect on a region i at
the next point of time t + 1, even though the regions i and j are not direct neighbours. An exten-
sion of standard SARmodel with heterogeneous spatial lag coefficients was developed in (Aquaro
et al., 2021), but this model does not decompose the spatial and temporal relationships into short-
and long-term effects as our ECM-inspired formulation, and thus lacks some of the interpretative
power of our model.

Whether the error correction parameters change during famines has been studied using a
predetermined famine period demarked by a dummy variable (e.g. Ó Gráda, 2001, 2005). This,
however, risks disregarding the regionally desynchronized evolution of famine conditions and
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1288 PASANEN et al.

enforcing a ‘cliff-edge’ of famine periodization (e.g. Maxwell et al., 2020). Ideally, the model
should provide estimates for time-dependency independent of pre-assumptions. Therefore, we
allow the parameters 𝛼 and 𝛾 to vary in time. Previous literature has introduced time dependency
to the short-run coefficients 𝛽 (e.g. Li et al., 2006; Ramajo, 2001); however, regarding market inte-
gration, the interest lies in the market adjustment parameter 𝛾 . Furthermore, we introduce time
dependency to the parameter 𝛼 to account for common nationwide shocks that may surface as an
increased price co-movement during the famine (e.g. Ó Gráda, 2001), alongside a common (irreg-
ular) seasonal variation due to harvests. Since we do not wish to assume all the sites are identical
with respect to 𝛼, we introduce also a site specific dependency of the nationwide trend, leading to

𝝁t = 𝝀𝛼t−1 + B𝝁t + Dt−1𝝁t−1 + 𝝐t. (2)

The term 𝝀 denotes a vector of the site specific coefficients 𝜆i that depict how strongly the site
i depends on the common 𝛼t−1. B is as before. The matrix Dt−1 depends on time through 𝛾t−1,
meaning that instead of having only one matrix compressing the information about the whole
period, there is an individual coefficient matrix for each time point. We model the time-varying
parameters 𝛾i,j,t as random walks and coefficients 𝛼t−1 as a stationary first-order autoregressive
(AR(1)) process.

In practice, our data have T = 108 time points andN = 80 regions with 298 neighbour pairs. It
is plausible that our historical price data contain inaccuracies, for example, due to the temporal
coarseness of the measurements or errors in the reporting process itself. The latter is underlined
since our data are not complete, but 5% of the observations are missing, probably attributed to the
absence of actual price reports or the loss of these reports in the archiving process. Therefore, it
is natural to think that the actual price development is a latent process from which we have only
noisy observations. The observed log-prices from N sites at the time point t = 1, 2, … , T form a
vector yt = (y1,t, y2,t, … , yN,t)T for each time point. They are considered to be realizations from a
Gaussian distribution

yt ∼ N(𝝁t, 𝜎2y I), (3)

with the expected value 𝝁t as in Equation (2). The variance 𝜎2y is assumed to be constant for all
sites and times, and I denotes an identity matrix. The variables 𝝁t are the true unobserved prices
on the latent level and yt are our observed data.

4 RESULTS

Weestimate themodel based onEquations (2) and (3) using a Bayesian approach.2 This allows the
estimation of complex hierarchical models with prior information and missing data, especially
as we wish to take into account the uncertainty due to parameter estimation while interpreting
the model parameters (or their arbitrary functions, as in Section 4.2). Bayesian approach also
naturally accommodates the possibility that the time-varying components of our model (𝛾 ,𝛼)
are (nearly) constant in time by averaging over the uncertainty of the respective standard devi-
ation parameters (see below). Following theoretical assumptions underlying price transmission
ECMs, we restrict the coefficients 𝛽i,j to be positive and −1 ≤ 𝛾i,j,t ≤ 0 for all i,j and t, and let the

2The material to reproduce the analysis is available on https://github.com/tihepasa/bayesecm.
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PASANEN et al. 1289

unconstrained �̃� i,j,t = logit(−𝛾i,j,t) follow linear Gaussian random walks (with respect to t). As a
prior for region-specific coefficients 𝜆i, we define the marginal distribution of each 𝜆i as N (1, 𝜎2

𝜆
),

with an additional constraint that the mean of coefficients is exactly 1. This ensures that the
product 𝝀𝛼t−1 is identifiable (Bai & Wang, 2015) while keeping 𝜶 interpretable.

The prior distributions of our full model are

𝛼1 ∼ N
⎛⎜⎜⎝

c𝛼
1 − 𝜙

,

(
𝜎𝛼√
1 − 𝜙2

)2⎞⎟⎟⎠ ,
𝛼t ∼ N(c𝛼 + 𝜙𝛼t−1, 𝜎

2
𝛼), for t > 1,

c𝛼 ∼ N(0, 0.12),
𝜙 ∼ Beta(2, 2),
𝜎𝛼 ∼ Gamma(2, 100),

𝜆i ∼ N(1, 𝜎2
𝜆
), for all i, given 1

N

N∑
i=1

𝜆i = 1,

𝜎𝜆 ∼ N(0, 0.52)[0, ],
𝛽i,j ∼ Gamma(0.5, 2) for all i, j,

�̃� i,j,1 ∼ N(−2, 22) for all i, j,
�̃� i,j,t ∼ N(�̃� i,j,t−1, 𝜎2𝛾 ) for all i, j, and t > 1,
𝜎𝛾 ∼ Gamma(2, 10),
𝜇i,1 ∼ N(3, 0.52) for all i,
𝜎𝜇 ∼ Gamma(2, 20), and
𝜎y ∼ Gamma(2, 20),

where N(⋅,⋅)[0,] denotes truncated (at zero) normal distribution.
The priorswere chosen based on the approximate prior scale of the variables and then adjusted

based on the initial Markov chain Monte Carlo (MCMC) runs for enhanced computational effi-
ciency of the final MCMC sampling. However, the chosen priors did not have strong influence
on the posterior estimates compared to more diffuse choices (see supplementary material on
GitHub), so they can be regarded as only weakly informative.

The model was estimated with rstan (Stan Development Team, 2020), which is an R interface
(R Core Team, 2021) for the probabilistic programming language Stan for statistical inference
(Carpenter et al., 2017). The samples were drawn using the NUTS sampler (Hoffman & Gel-
man, 2014) with four chains, each consisting of 8000 iterations, with the 3000 first discarded as
a warm-up. The total computation time with parallel chains was about 13 h. The effective sam-
ple sizes were approximately between 700 and 45,000, with the most inefficient estimation on the
strongly correlating parameters 𝜎y and 𝜎𝜇.

During the estimation of themodel, all regions were treated equally without definingwhether
they were rural districts or urban towns, as we did not have clear a priori knowledge about the
potential differences or similarities in say 𝛽 or 𝛾 coefficients between orwithin these groups. How-
ever, there was noticeable posterior evidence that the rural and urban regions behave somewhat
differently, and hence we present the results taking this grouping into account.

Instead of describing all region-specific results, in some instances we focus on three example
regions, namely the rural districts of Ilmajoki and Masku, and the town of Viipuri. These choices
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1290 PASANEN et al.

were based on the estimated model; these regions were found to be important drivers of the
prices in their neighbours. Ilmajoki is located on the western coast, whereas Masku lies within
South-West Finland, where the vast share of marketed grain surplus was produced (Soininen,
1974). In addition, the choice of Viipuri was motivated by initial observations by Ó Gráda (2001),
who stressed the importance of the wider southeastern Viipuri province as a market leader,
possibly due to its proximity to the Russian grain markets.

Figure 2 shows examples of estimates for the unobserved log-prices 𝜇i,t and corresponding
95% posterior intervals for Ilmajoki, Masku and Viipuri. In each instance, the estimates smoothly
follow the observed prices. Reasonable estimates were also obtained for missing observations.
The estimate of the parameter 𝜎𝜇, related to the deviation of the unobserved log-prices, is 0.038
with a 95% posterior interval [0.035, 0.041]. The standard deviation of the observed log-prices, 𝜎y,
is 0.036 with a 95% posterior interval [0.033, 0.038].

Perhaps a natural alternative to our analysis would be to model latent log-prices
via a SAR model. To this end, we defined 𝜇t − 𝜇t−1 = 𝜌W(𝜇t − 𝜇t−1) + 𝜖, leading to
𝜇t ∼ N(𝜇t−1, 𝜎2𝜇(I − 𝜌W)−1((I − 𝜌W)−1)T), where W is the fixed adjacency matrix after spectral
normalization (Kelejian & Prucha, 2010), and −1 < 𝜌 < 1 is the unknown spatial dependency
parameter. Thus, in addition to latent 𝜇, this model has only three unknown parameters, 𝜎y, 𝜎𝜇,
and 𝜌. These were estimated as 0.034 ([0.032, 0.035]), 0.055 ([0.054, 0.057]) and 0.778 ([0.755,
0.801]), respectively, implying strong spatial dependence and larger unexplained variation in

F IGURE 2 Posterior mean and 95% posterior interval for the unobserved log-price 𝜇i,t in Ilmajoki, Masku
and Viipuri (urban) over the time period under study. The dots represent the observed log-prices yi,t . [Colour
figure can be viewed at wileyonlinelibrary.com]
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PASANEN et al. 1291

the latent log-prices than our main model. The estimates of the 𝜇i,t resembled those in Figure 2
except that the posterior intervals were wider compared to our main model (see supplementary
material on GitHub). Overall, such a simplification does not provide the necessary informa-
tion to identify the spatio-temporal features we are interested in, for example, the short- and
long-term decomposition. Thus, we do not consider it more thoroughly here. Note, however, that
this alternative is a submodel of our more detailed approach.

4.1 Coefficient estimates

Figure 3 shows the common time-varying component 𝛼t, which captures not only the inher-
ent seasonal variation but also other unidentified nationwide price variation, for example due to
poor harvests. The parameters related to the AR process of 𝛼 are estimated as c𝛼 = 0 with a 95%
posterior interval [−0.003, 0.004], 𝜙 = 0.619 ([0.461, 0.766]) and 𝜎𝛼 = 0.017 ([0.013, 0.021]). In
general, the 𝛼t varies around zero, although exhibiting some larger swings. These aremainly price
increases due to harvest failures (e.g. in autumn 1862 and 1867) and price drops due to relatively
successful new harvests (e.g. in autumn 1868). Figure 3 also shows the general tendency of prices
to rise between two harvests (see also Figure 1). During the famine pinnacle of 1867–1868 this
tendency was particularly pronounced.

The site-specific coefficients 𝜆i allowing spatial level differences from the nationwide trend
𝛼t are plotted in Figure 4. The posterior medians vary between 0.224 and 1.650 among the rural
sites (upper panel) and 0.654 and 1.927 among the urban sites (lower panel). The posterior mean
of the standard deviation 𝜎𝜆 is 0.463 with a 95% posterior interval [0.316, 0.632]. Overall, the
coefficients corresponding to the urban towns are more concentrated to the high end of the range
of 𝜆s, suggesting that urban towns reacted more strongly to the nationwide shocks captured by 𝛼.
This stronger dependency could be related to the fact that towns had to purchase grain consumed
from surrounding rural regions.

Figure 5 illustrates the short-term coefficients 𝛽i,j for each of the 298 neighbour pairs.We group
also the coefficients 𝛽i,j: rural regions and their rural neighbours, urban locations and their sur-
rounding rural regions. The upper panel reports all rural–rural pairs (both 𝛽i,j and 𝛽j,i included),
the middle panel reports the rural–urban pairs (i.e., 𝛽rural,urban) and the lower panel reports

F IGURE 3 Posterior mean and 95% posterior interval for the trend 𝛼t over the period under study.
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1292 PASANEN et al.

F IGURE 4 Posterior median and 95% posterior interval for the site specific coefficients 𝜆i by urban and
rural groups. The estimates are ordered by their size in order to illustrate the difference between coefficients of
urban and rural districts.

the urban–rural pairs (𝛽urban,rural). The dots represent the posterior medians of the individual
coefficients 𝛽i,j, which are all between 0.006 and 1.020.

As is visible from Figure 5, the short-run coefficients 𝛽i,j are of similar magnitude both in
rural–rural and in rural–urban pairs (upper and middle panel). The vast majority of these coef-
ficients are small and fall between 0 and 0.2, the latter implying a price increase of 0.2% in
location i in response to a 1% increase in location j. This suggests that the short-run co-movement
of prices (beyond aggregate fluctuations captured in 𝛼t) in rural–rural and rural–urban pairs
was weak.

Interestingly, we detected asymmetry in the price co-movement. The urban–rural pairs (lower
panel) show that urban prices were generally more sensitive to follow the price development of
the surrounding rural region than vice versa. Majority of the coefficients 𝛽urban,rural lies between
0.3 and 0.6, with multiple urban locations with coefficients 𝛽i,j above 0.5. This implies a larger
than 0.5% increase in prices in response to 1% increase in the price level in the surrounding rural
area.

This means that urban people were susceptible to market-transmitted shocks; conversely,
rural prices were merely marginally affected by the urban demand pressure. In all likelihood, this
is because urban consumers more frequently resorted to market purchases to obtain the grain
consumed, thereby inducing a more developed market system in towns than in the rural regions
(Devereux, 1988).

The long-term market adjustment is captured by the parameters 𝛾i,j,t. There are 298 time
series of the error correction terms 𝛾i,j,t, one for each pair from January 1861 to December 1869,
with all the posterior medians between −0.817 and −0.003 for the whole period under our
study. The posterior mean of the standard deviation 𝜎𝛾 is 0.204 with a 95% posterior interval

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/5/1282/7073273 by Jyvaskyla U

niversity user on 02 D
ecem

ber 2024



PASANEN et al. 1293

F I GURE 5 Medians and 95% posterior intervals of each coefficient 𝛽i,j grouped by top: rural districts with
rural neighbours, middle: rural districts with urban neighbours and bottom: urban districts with rural neighbours.

[0.143, 0.273], confirming the need for time-varying coefficients (as time-invariant coefficients
would correspond to 𝜎𝛾 = 0).

In Figure 6 we present the coefficients 𝛾i,j,t using the same grouping as with the coefficients
𝛽i,j,t in Figure 5. Most of the coefficients 𝛾i,j,t are fairly steady over time, and there are no clear
thresholds visible marking the start or end of the famine period. The upper panel shows the
error correction coefficients for rural–rural pairs and the middle panel for rural–urban pairs.
Both reveal that price correction to emerging disequilibrium was slow among the rural markets
and between the rural–urban pairs. Furthermore, both show that while there are some pairs
with speedier market adjustments during the famine, in the vast majority of rural–rural and
rural–urban pairs, there are no worthwhile changes in the price transmission during the time
span in question.

The lower panel in Figure 6 shows the coefficients 𝛾i,j,t for urban–rural pairs illustrating
how the urban prices adjust to the urban–rural price differentials. In many instances, the urban
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1294 PASANEN et al.

F IGURE 6 Medians of 20,000 posterior draws for all coefficients 𝛾i,j,t by groups.

markets adjusted faster to emerging price disequilibrium during the famine than before it. The
acceleration of the market adjustment during the famine was most pronounced in northern
coastal towns (see supplementary maps on GitHub), but it also occurred in some inland towns.
While more marked in the urban markets, the speedier error correction during the famine was
not completely confined to towns. There were also some rural regions that witnessed a faster
reaction to price differences, many of which were located in south and southwest Finland, with
some regions also along the western coast and further inland. Examples of neighbour pairs are
displayed in Figure 7 where those 𝛾i,j,t series with values smaller than −0.55 at some time point
alongside their counterpart series 𝛾j,i,t are plotted.

Figures 6 and 7 show that the response of the coefficients 𝛾i,j,t to the famine conditions does
not happen abruptly, nor do they recover immediately after the famine. This emphasizes the ben-
efits of time-varying coefficients. Many of the coefficients 𝛾i,j,t begin to decrease in 1865–1866,
some even earlier and do not recover before the end of our time span. This means that price
transmissions accelerated much before the famine escalating crop failure in September 1867 and
continued at that level after the famine had ceded.
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PASANEN et al. 1295

F I GURE 7 Posterior medians and 95% posterior intervals of the coefficients 𝛾i,j,t and their counterparts 𝛾j,i,t
for those pairs where the posterior median is smaller than −0.55 at some time point. The name in the legend
corresponds to the site i in the coefficient 𝛾i,j,t . [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Visualizing spatial price propagation

To better understand the overall functioning of themarket system and the importance of the close
to 600 pairwise coefficients 𝛽i,j and 𝛾i,j,t, we examined the expected values of the latent log-prices
𝜇t in response to a price increase in one region. For this purpose, the trend 𝛼t was set to zero for
all t, and the error correction coefficients were selected from July (the last month uninfluenced
by a new harvest) for the years 1861 (before famine) and 1868 (the peak year of the famine).
The estimated coefficients 𝛽i,j were used as they were. The initial log-prices were fixed to equal
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1296 PASANEN et al.

F IGURE 8 Regional maximum percentage increase in prices during a 12-month period with respect to the
initial price due to a 1% increase in price in Ilmajoki (dark blue). Values are based on 𝜶 = 0, posterior samples of
𝛽i,j and 𝛾i,j,t, with t fixed to July of the year marked in each panel. The striped grey area is not included in our
study. [Colour figure can be viewed at wileyonlinelibrary.com]

values (as we were interested in the changes in prices, the actual value could be chosen arbitrar-
ily), except for one specified place where the log-price was increased by 0.01, corresponding to
approximately 1% price increase. The expected values were then calculated using the posterior
samples of the coefficients 𝛽i,j and 𝛾i,j,t and finally taking an average over all the simulated values
of 𝜇i,t. We restricted the simulation to 12 months. This corresponded to the annual harvest cycle.
Furthermore, changes in prices after 12 months were generally negligible.

Figures 8–10 present themaximumpercentage increase in regional prices due to a 1% increase
in price in region j. As in Figure 2 we used Ilmajoki, Masku and Viipuri as examples.

Figure 8 depicts the effects of a 1% change in the rye price in the administrational district of
Ilmajoki in July 1861 and 1868. The resulting maximum price increase is modest, and only in
one region it surpasses 0.3% with respect to its initial level over the 12-month window. The price
increase is larger north of Ilmajoki, and this tendency strengthens during the famine: in 1868,
the price shock travels further northeastward and reaches further inland. The pattern agrees with
the increased price transmission that happened in many Ostrobothnian coastal towns during the
famine (see Figures 6 and 7 and supplementary maps on GitHub). The asymmetry of the spread
is distinct: the price increase in the southern neighbouring district of Upper Satakunta Upper is
at maximum 0.05% (in 1868) in response to a 1% shock whereas in the northern neighbouring
district of Mustasaari the corresponding value is 0.28%.

Figure 9 depicts a price increase in the southwestern district of Masku. Unlike in the case of
Ilmajoki, the spatial reach of the shock does not change much during the famine, but the price
transmission intensifies close to the shock origin. For example, in the northern neighbouring
region of Upper Satakunta Lower, a 1% price increase in Masku results in price increases of c.
0.23% and 0.64% in 1861 and 1868 respectively. The fact that the spatial reach remains constant
probably reflects the fact that the southwestern Finnish markets were fairly well integrated to
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PASANEN et al. 1297

F I GURE 9 Regional maximum percentage increase in prices during a 12-month period with respect to the
initial price due to a 1% increase in price in Masku (dark blue). Values are based on 𝜶 = 0, posterior samples of 𝛽i,j
and 𝛾i,j,t, with t fixed to July of the year marked in each panel. The striped grey area is not included in our study.
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 Regional maximum percentage increase in prices during a 12-month period with respect to
the initial price due to a 1% increase in price in town of Viipuri (dark blue). Values are based on 𝜶 = 0, posterior
samples of 𝛽i,j and 𝛾i,j,t, with t fixed to July of the year marked in each panel. The striped grey area is not included
in our study. [Colour figure can be viewed at wileyonlinelibrary.com]
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1298 PASANEN et al.

begin with and suggests that well-integrated markets saw little change in their operation during
the famine.

Figure 10 depicts a shock to the southeastern town of Viipuri. Here, the spread patterns are
like those in Ilmajoki. The spatial spread of the shock is asymmetric, with more pronounced
westward travel from the shock origin, without apparent difference between the years 1861
and 1868.

These maps suggest that the price propagation retained their pre-famine routes: the famine
typically did not carve out new trade paths. Furthermore, the markets were fairly thin, and price
transmission was strong only to places close-by to the shock origin. Further research is needed
to tell whether observed route stabilities, spatial asymmetries and lack of long-distance price
transmission stemmed from liabilities of existing trade relationships, lack of information or, for
example insurmountable transportation costs.

5 DISCUSSION

To analyse the grain market integration during the Finnish 1860s famine, we introduced a spatial
context to the well-known error correction framework and modelled all the regional price time
series simultaneously. This allowed us to omit the complex procedures to predetermine the mar-
ket leader and the (time-varying) long-term relationships between the series. Also, allowing the
common trend and error correction parameters to vary smoothly in time enabled us to estimate
the temporal changes in the market integration without relying on artificial, sharp time period
demarking the famine.

Depending on the available data and prior information, our model could be further modi-
fied and extended, for example, through more detailed modelling of the trend or error correction
terms. For example, the common trend term 𝛼 could be specified with some functional form of
seasonal variation related to, for instance, harvests. We treated the error correction terms as inde-
pendent random walks, but these could be allowed to depend on each other according to some
(spatial) correlation structure or grouping. Time-varying components could also be assumed to
vary more smoothly using integrated random walks, or piecewise constant given prior knowl-
edge of potential the change points. It is also possible to let the short-run coefficients vary in
time, although this induces a significant increase in the computational burden due to the subse-
quent time-varying covariancematrix in likelihood computations. Additional data on the regions’
characteristics could be incorporated in the model to explain the differences in the short-run
and long-run coefficients of the regions for a further insight of the market dynamics. Finally, we
have defined the neighbourhood based on border sharing, but it could be interesting to study
whether addition of second-order neighbours (neighbours of neighbours)would affect the results,
especially for urban towns surrounded by a single rural region. Further extensions to enable
simultaneous modelling of multiple products could also be an interesting future venue (an alter-
native agent-based modelling approach to model multivariate spatio-temporal panel data was
used in Cun and Pesaran (2021)).

Regarding the patterns of market integration, we detected certain differences from those in
the original contribution of Ó Gráda (2001). We estimated generally weaker price co-movement
and, importantly, documented increased price transmission principally in the urban markets. In
addition to modelling differences, it is likely that some of the differences can be attributed to the
use of provincial aggregates in Ó Gráda (2001), whichmay overemphasize the role of small urban
locations.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/5/1282/7073273 by Jyvaskyla U

niversity user on 02 D
ecem

ber 2024



PASANEN et al. 1299

A possible reason for the increased price transmission during the famine may be the connec-
tion between an ill-developed pre-famine market system, the pre-famine prevalence of subsis-
tence farming, and the introduction of deficit producers to the food markets after crop failures
(Devereux, 1988). The fact that we observed little change in the behaviour of the reasonably
well-developed southwestern and southeastern Finnish food markets during the famine aligns
with this interpretation.

Our results show that the regional aspects of the early 19th century Finnish grain markets
(e.g. Voutilainen et al., 2020) were still in place during the 1860s famine. The overall weak price
transmission not only provides an explanation for the emergence of persistent east–west price
gaps observed by Ó Gráda (2001), but also yields an important wider implication for the study of
market integration. The results also suggest thatmoderate price dispersion (displayed in Figure 1)
and reasonably high level of sigma convergence (measured in coefficient of variation of regional
prices) are not universally coincided with efficient price transmission between the regional mar-
kets. Further research is needed to understand how low levels of price dispersion were achieved
in this kind of setting and whether it was driven by certain key markets or reasonable symme-
try of harvest outcomes. Our results show that the trade routes appeared robust to a large-scale
harvest shock of 1867. Markets rarely changed their spatial orientation in response to this, even
though the harvest failures camewith substantial geographic variation. Transportation costs, lack
of information and preexisting trade connections probably explain this.

Where markets behaved better during the famine, they facilitated the spread of the price
shocks. The thin markets had the advantage of limiting the shocks to locations close by. The
increasedmarket transmission during the famine proliferated the spread of the shocks, especially
along the western coast.
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ABSTRACT
Infections are known to interact as previous infectionsmay have an effect on risk of suc-
cumbing to a new infection. The co-dynamics can be mediated by immunosuppression
ormodulation, shared environmental or climatic drivers, or competition for susceptible
hosts. Research and statistical methods in epidemiology often concentrate on large
pooled datasets, or high quality data from cities, leaving rural areas underrepresented in
literature. Data considering rural populations are typically sparse and scarce, especially
in the case of historical data sources, whichmay introduce considerablemethodological
challenges. In order to overcome many obstacles due to such data, we present a general
Bayesian spatio-temporal model for disease co-dynamics. Applying the proposed
model on historical (1820–1850) Finnish parish register data, we study the spread
of infectious diseases in pre-healthcare Finland. We observe that measles, pertussis,
and smallpox exhibit positively correlated dynamics, which could be attributed to
immunosuppressive effects or, for example, the general weakening of the population
due to recurring infections or poor nutritional conditions.

Subjects Ecology, Microbiology, Epidemiology, Statistics, Data Science
Keywords Spatio-temporal, Infection co-dynamics, Pertussis, Measles, Smallpox, Bayesian
analysis

INTRODUCTION
Infections exist rarely in isolation, and their effects on hosts are known to interact and
to have both positive and negative relationships between each other (Gupta, Ferguson
& Anderson, 1998; Rohani et al., 2003; Shrestha et al., 2013; Mina et al., 2015; Nickbakhsh
et al., 2019). For example, cross immunity may prevent others from infecting the host,
competition for the same resources or susceptible host can have strong effects on epidemics,
and sometimes one infection paves a way for another (Gupta, Ferguson & Anderson, 1998;
Rohani et al., 2003; Graham, 2008). Perhaps historically the best-known relationship
between infections is the immunosuppressive effect of measles on the following pertussis
epidemic by increasing the severity of the epidemic (see Coleman, 2015; Mina et al.,
2015; Noori & Rohani, 2019). Coinfections of parasites (Graham, 2008) and viruses and
respiratory bacterial infections are well known (e.g., Bakaletz, 2017; Wong et al., 2023),
whereas understanding coinfections and cotransmissions of, for example, zika, dengue,
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and chikungunya viruses presents a current serious challenge for public health (Vogels et
al., 2019).

Demographic consequences of epidemics are most dramatically seen in large cities
and in densely populated areas, which is reflected in the epidemiological research in
general (Mueller et al., 2020). However, as rural areas constitute a large part of most
countries, the spatio-temporal dynamics of epidemics in populations with low densities
deserve more attention (Mueller et al., 2020). In rural areas, populations often consist
of loosely connected metapopulations rather than large and epidemiologically more
autonomous populations in cities. This has most likely strong repercussions for the drivers
of epidemics (Ball et al., 2015) and also for the co-occurrence of infections. However,
these issues are rarely addressed in the literature, possibly due to the statistical challenges
encountered with sparse and scarce data, as well as the difficulty of modeling the dynamics
of several infections simultaneously both in space and time.

The discrepancy between studying dense and sparse populations is evident and can be
seen, for example, by comparing our case of rural Finland in 1820–1850 to the seminal
research of Rohani et al. (2003). Their study is based on five large European cities, where
the weekly number of fatalities frequently exceeds 30 and even 80. In our data, the recorded
incidents in most of the towns rarely exceed one person per month, as we study a small
and mainly agrarian population in the southern part of Finland with circa 1.2 to 1.6
million individuals (Voutilainen, Helske & Högmander, 2020). The population, without
proper healthcare (Saarivirta, Consoli & Dhondt, 2012), was spread over a vast area in
geographically separated, but socially connected, small towns and villages. Based on the
data from 1882, population sizes of towns varied between 300 and 25,000 (Statistical
Office of Finland, 1882; Ketola et al., 2021). Despite the obvious uncertainty of population
censuses during that era (Voutilainen, Helske & Högmander, 2020), the contrast between
our data and most of the published datasets is striking. Statistical modeling of such data is
problematic due to incomplete information from some locations and the rare occurrence
of events, hampering the ability of generally used models to consider several infectious
diseases at the same time and on both temporal and spatial scales.

To estimate the spatio-temporal co-dynamics of deaths due to pertussis, measles, and
smallpox, we build a model that can overcome the limitations inherent in our data. The
model jointly estimates the spread of multiple infections, enabling the exploration of
the temporal and spatial dependence structures both within and between the infections.
Our general Bayesian model consists of a multivariate latent incidence process, a seasonal
component, andmultiple predictors whose effects may vary between the towns. This allows
us to study the dynamics of the diseases simultaneously despite having only incomplete
information about the deaths. The results we get from modeling the mere presence-
absence data are compared with those of modeling the corresponding death counts, and
the simplification is deemed to be a reasonable option in our case. Given the limitations
of our data, we do not aim to make causal claims on a biological level, and rather than
focusing on the magnitude of infections and the intensity of deaths, our primary interest
lies in understanding how the prevalence of these three diseases varied both spatially
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1This text was originally published as a
preprint (https://export.arxiv.org/abs/2310.
06538).

and temporally in pre-industrial Finland, and if there were possible associations in these
dynamics across the diseases.1

MATERIALS AND METHODS
Data
During the study period, 1820–1850, the parishes in Finland kept track, among
others, of baptisms, burials and causes of deaths, according to common and long
held principles (Pitkänen, 1977). Even though the death diagnostics were based on
symptoms, some infections can be considered to be diagnosed rather accurately due to their
characteristic features. These diseases include pertussis (whooping cough), measles, and
smallpox, which we consider. These infections were the main reason for child mortality,
and, overall, they were responsible for approximately 5, 3, and 3 percent of total deaths,
respectively, according to our data. Based also on the available records in our data, the
median ages of deaths in complete years were 0 (sd = 3.6) for pertussis, 2 (sd = 3.9) for
measles, and 2 (sd= 7.5) years for smallpox. Smallpox vaccinations were started in Finland
in 1802 and were slowly progressing during the study period (Briga, Ketola & Lummaa,
2022). However, general healthcare was almost non-existent as in 1820 there were only 373
hospital sickbeds for 1.2 million inhabitants (Saarivirta, Consoli & Dhondt, 2012).

Our data consist of the daily numbers of deaths, classified by the cause of death, between
January 1820 and December 1850 from N = 387 different regions (towns) in mainland
Finland with the exclusion of northern areas. The time window is chosen such that there
were no major famines, wars, border changes, or other potentially confounding events,
which could have altered the geographical partition or the dynamics of the epidemics. The
general stability achieved is advantageous in the modeling.

Although using a daily time scale would, theoretically, be ideal for modeling disease
dynamics, the infrequency of deaths implies that our data lack sufficient information to
study temporal dependencies at such a detailed level. This issue is likely further pronounced
by the spatial heterogeneity of the data and the potentially complex lagged auto- and cross-
dependencies between the infection dynamics of the diseases. Therefore, the daily counts
of deaths are aggregated over time into a monthly level, decreasing the number of zero
observations yet maintaining a reasonable time resolution for observing the spread of the
diseases on our geographical scale. This yields a total of T = 372 time points. The counts of
the observed numbers of deaths by disease, considering the aggregated data, are visualized
in Fig. 1. In each case of the three infections, about 93–96% of the death counts are zero
or one, and less than 2% of the counts are more than three, despite the aggregation. The
reliability of the actual death counts varies considerably both temporally and spatially owing
to the heterogeneous quality of the parish records and the cause of death classifications.
Moreover, these deficiencies are not necessarily independent of the true number of deaths.
It is also noteworthy that despite the records of baptisms and burials, there are no reliable
estimates of the population sizes at the town level (Voutilainen, Helske & Högmander,
2020). Hence the intuitive idea of using local relative mortality is unfortunately beyond
reach. Because of this and the aforementioned reliability issues—and since most of the
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counts are still either zero or one even after the aggregation to a monthly level—only the
dichotomous knowledge of the death occurrence is used in the main analysis. Even so, the
count data are considered in the model comparison section.

About 24% of the data concerning death occurrences in a town and a month are
missing, and from 57 out of the overall 387 regions there are no observations at all. The
missingness pattern is common to all the diseases, as for a particular town and month, we
have observed the death counts for all the diseases or for none of them. This is because
the missing data can be attributed to the absence of parish records that document all
deaths. Such unavailability of data may be a result of incomplete digitization of the parish
records, loss of the documents for example due to a fire in the local rectory or church, or
simply because there were no deaths in a given month. Therefore, the missing data could
potentially depend on the unknown regional population size, but not on the specific cause
of death, given that the proportions of deaths attributable to the particular cause of death
are relatively small. Nevertheless, our proposed model provides estimates of the monthly
probabilities of observing at least one death also for the towns with missing observations.

Model
We construct a general model to describe the spatial and temporal dependencies both
within and between the infections under study. We also want to enable exploiting other
relevant information as explanatory variables. In epidemiological context, there typically
occur spatial or temporal trends or seasonal effects, which can be included as separate
components in the model. Due to the nature of our data, we model the probability of
observing at least one death caused by a disease in a certain town in a certain month. The
model consists of a trend, a seasonal effect, and a regression part reflecting the local effects
of the previous state of infection in the focal town and its neighboring towns.

Formally, let ydi,t denote a dichotomous variable of an event where at least one death
occurs due to a disease d in a region i= 1, ...,N at a time point t = 1, ...,T , where N is
the number of regions and T the number of time points. Let Kd

x indicate the number of
explanatory variables x , based on the features of the region i. Accordingly, z denotes the
explanatory variables, and Kd

z their number, related to the neighborhood of the region i.
Thus the model for observing at least one death caused by the disease d in the region i at
the time point t can be written as follows:

ydi,t ∼Bernoulli
(
logit−1(ηd

i,t
))
, (1)

where

ηd
i,t = λd

i τ
d
t + sdt +adi +bdi

Kd
x∑

k=1

βd
k x

d
i,k + cdi

Kd
z∑

k=1

γ d
k z

d
i,k . (2)

Here Bernoulli distributionwith a logit link is chosen due to our dichotomous consideration
of the occurrences of death, but other distributions with appropriate link functions can be
applied for different types of response variables.

The first three terms being summed in Eq. (2) form a base level, in our case, for the
probability of observing at least one death caused by the disease d at each town and month.
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Figure 1 The counts of the observed numbers of deaths over all towns andmonths plotted by disease.
The first bar indicates the number of missing observations. The numbers above the bars are the counts.
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More specifically, the first term consists of the time dependent latent factor τt , describing
the nationwide incidence (on log-odds scale), or trend, of the disease d , and the regional
adjustments or loadings λi, with respect to the mean level. As in general dynamic factor
models, the products λiτt are not identifiable without constraints (Bai & Wang, 2015).
Instead of the common approach of fixing one of the loadings λi to 1, we constrain the
mean of the loadings to 1, enabling the interpretation of the factor τt as the nationwide
incidence level. Due to the nature of the other terms in Eq. (2), this incidence level gives
the national average log-odds of observing at least one death in an ‘‘average’’ town in
a given month if no deaths were observed in the previous month in the focal town or
in its neighboring towns. The second term st is a monthly seasonal effect, which is the
average deviation from the nationwide incidence level, summing up to 0 over the months.
The third term ai is a regional, zero-mean constant reflecting local deviations from the
nationwide incidence level τt due to unobserved local demographic, geographic, social or
other characteristics associated with mortality.

The last two sum terms in Eq. (2) form the regression part of the model. The first sum
includes the covariates xi,k related to the focal region i, and the second sum the covariates
zi,k related to the neighboring regions. These variables have both nationwide coefficients
β and γ , and their local adjustments bi and ci amplifying or diminishing the nationwide
level. As the regional constants ai, also the multiplicative local adjustments may account
for any unobserved heterogeneity between the regions, such as the local population sizes
or densities. The adjustment parameter bi reflects the features of the focal region i, and
ci those of the neighborhood of the region i (possibly relative to i). We assume that bi is
the same for all covariates xk , and, accordingly, ci for all zk , since the underlying regional
characteristics modifying the nationwide mortality effects β and γ do not depend on the
covariates.

In our study, there are three covariates assigned to the town i and another three to
its neighbors for all diseases d = p,m, s, where p stands for pertussis, m measles, and s
smallpox. The local explanatory variables xi,k are the presences of deaths caused by the
three different diseases in the previous month in the focal town, whereas the regional
neighborhood predictors zi,k are the averages of the same presences of deaths over the local
neighborhood. We define two regions being neighbors when they share a border. By this
definition, all the towns have at least one neighbor. Other definitions of neighborhood
could be used as well, for example based on the transportation network or distance, leading
to weighted averages of death occurrences.

As noted earlier, our data contain a large number of missing observations. We assume
that the probability of having a missing response or predictor variable is independent of
the value of the response variable. This presumption may be considered valid, given that
the lack of parish records on deaths is unlikely to depend on the causes of deaths in a
particular month. Under this assumption, we can model the observed data analogously
to a complete-case analysis in an unbiased manner, assuming our model is correctly
specified (van Buuren, 2018). This eliminates the need for multiple imputation or sampling
missing observations using MCMC algorithms which do not use gradient information (i.e.,
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algorithms capable of sampling discrete variables), both of which would be computationally
unfeasible in our Bayesian spatio-temporal context.

In practice, the complete-case analysis in our context means that to use an observation
as a response, we require that both the current response variable as well as all of the related
covariates are observed. If any of them is missing, we omit the particular combination of
town and month as a response. On the other hand, when calculating the neighborhood
covariates zi,k , which in our case are the averages over the observations within the
neighborhood, we omit the neighbors with missing observations so that they are not
included even as a denominator in the evaluation of the mean. If all neighbor observations
are missing, the corresponding covariate is defined as missing.

Wemodel the latent factor τt = (τ p
t ,τm

t ,τ s
t ), the temporal process describing the baseline

of the nationwide incidence rates, as an intercorrelated randomwalk, τt+1 ∼N(τt ,�). Here
� is an unconstrained 3×3 covariance matrix parametrized using the standard deviations
σ d

τ and the correlation matrix R. In our application this latent process, together with the
regional constant and the monthly effect, can be interpreted as the probability to observe
at least one new death in a particular town when no deaths caused by any of the three
diseases were observed in the previous month in the focal town or in its neighborhood.

In the Bayesian modeling framework, we need prior distributions for all the parameters
to be estimated. The incidence factors τ d follow a N(−2,22) prior at the first time point
and form a random walk at the later time points. For the correlation matrix R we use an
LKJ(1) prior with a Cholesky parametrization (Lewandowski, Kurowicka & Joe, 2009), i.e.,
a uniform prior over valid 3×3 correlation matrices. For the regional parameters we apply
Gaussian priors: λd

i ∼N(1,σ 2
λd
),adi ∼N(0,σ 2

ad ),b
d
i ∼N(1,σ 2

bd ), and cdi ∼N(1,σ 2
cd ). The

prior means of the local adjustments bdi and cdi are set to 1, which enables us to interpret
βd
k and γ d

k as nationwide effects as is the case with additive multilevel models having
population-level and group-level effects. While we use a hard equality constraint for the
mean of the λd

i s to ensure the identifiability and more efficient estimation of the model,
the hierarchical priors for bdi and c

d
i are sufficient for their identifiability. For the unknown

deviations στ d , σλd , σad , σbd , and σcd we assign Gamma priors with shape parameter 2 and
rate parameter 1. The nationwide coefficients βd

k and γ d
k have N(0,22) priors. The seasonal

effects sdt follow a standard normal prior with the aforementioned sum-to-zero constraint.
The priors can be seen as weakly informative, and they are chosen primarily to enhance
the computational efficiency (Banner, Irvine & Rodhouse, 2020).

Naturally, any of the components in the model could be excluded by setting the
corresponding coefficients or standard deviations to zero.Our Bayesianmodel encompasses
all such simplified alternatives, with the corresponding model and parameter uncertainty
reflected by the estimated posterior distributions, leading to more truthful uncertainty
estimates compared to merely imposing prior constraints on certain effects to be zero.

RESULTS
The model is estimated using Markov chain Monte Carlo (MCMC) with cmdstanr (Gabry
& Češnovar, 2022), which is an R interface (R Core Team, 2022) for the probabilistic
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programming language Stan for statistical inference (Stan Development Team, 2022). To
draw the posterior samples we use NUTS sampler (Hoffman & Gelman, 2014; Betancourt,
2018) with four chains, each consisting of 7,500 iterations, the first 2,500 of which discarded
as a warm-up. With parallel chains the computation takes about ten hours. The model is
estimated on a supercomputer node with four cores of Xeon Gold 6230 2.1 GHz processors
and 40 GB of RAM. According to the MCMC diagnostics of cmdstanr (Vehtari et al., 2021),
the model converges without divergences, the R̂ statistics are always below 1.005, and the
effective sample sizes are approximately between 700 and 43,000. The lowest effective
sample size is the one of the deviation parameter of the constants considering measles, σαm .
The R and Stan codes, the data used for the analysis, and Supplementary Figures and Tables
are available on GitHub (https://github.com/tihepasa/infectionDynamics). All the figures
were created using the R packages ggplot2 (Wickham, 2016) and ggpubr (Kassambara,
2023).

To visualize the temporal and spatial patterns of the death occurrences and to see how
the model estimates the corresponding probabilities to observe at least one death, the
data and the predictions based on the model are plotted as time series and as maps in
Figs. 2 and 3. The estimates are computed as

∫
p(y ′

t+k |y1,...,yt ,θ)p(θ |y1,...,yT ) dθ . In
other words, they are k-step ahead in-sample predictions (often called fitted values in
the time series literature, see, e.g., Hyndman & Athanasopoulos (2021)), where k−1 is the
number of preceding missing months, and they are calculated conditional on the posterior
distribution of the model parameters, including the latent incidence process τ . For the first
time point in this computation we also assume that the missing observations are zeros in
order to have covariates for all the sites.

The temporal behavior of the data is similar to the corresponding estimates. The slight
differences may be due to the fact that the proportions are based only on the data available,
whereas themodel predictions cover all themonth-town combinations. The spatial patterns
of the modeled probabilities reflect the infection distributions visible in the data. Pertussis,
measles, and smallpox all have emphasis on the eastern half of Finland, with especially
measles extending its prevalence to the southern parts of the country as well. When it
comes to the completely missing sites, the medians of the estimated average probabilities
over time are 3.7 percentage points higher for them than for the sites with observed data in
the case of pertussis, 0.3 percentage points higher in the case of measles, and 0.2 percentage
points lower in the case of smallpox. The differences are quite small, and by the prediction
account, the model seems to work well.

In what follows, we present the results in detail. They confirm that all the components
in the model are relevant, capturing different aspects of the spatio-temporal dynamics of
the epidemiological phenomena.

The nationwide incidence time series of the diseases are depicted by the factors τ d
t . The

corresponding estimates are shown in Fig. 4 on a probability scale (logit−1(τ d
t )). In general,

they seem to have the same shapes as the observed nationwide monthly proportions of
towns where at least one death caused by pertussis, measles, or smallpox was recorded (see
Fig. 2). There is one major disease outbreak regarding smallpox, whereas the other diseases
have several peaks, pertussis varying the most. No clear periodicity can be seen in any of the
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Figure 2 The prevalence of the diseases is illustrated with the dark lines depicting the proportions of
the towns where at least one death was observed. The lighter turquoise lines show the posterior means of
the corresponding estimates and the shaded areas their 95% posterior intervals. Note that the data line is
calculated over the towns with observations, whereas the estimate line averages all the towns.

Full-size DOI: 10.7717/peerj.18155/fig-2

series, which was also confirmed by estimating dominant frequencies via spectral analysis
using the R package forecast (Hyndman & Khandakar, 2008).

The seasonal effects sdt , or the average monthly deviations from the nationwide incidence
level, are shown in Fig. 5. According to the estimates, the seasonal effect of pertussis peaks
at the beginning of the calendar year, while the effect decreases during the summer and
increases again towards the end of the year. In contrast, the only distinctive seasonal effects
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Figure 3 The left panels show the proportions of the months when deaths were recorded over the
study period of 31 years. The gray areas indicate the towns where all data are missing. The right panels
present the regional averages of the predicted conditional probabilities to observe at least one death caused
by each disease in each month given the actual observations from the previous month. Note that the data
are averaged over the observed towns and months, whereas the model covers all the towns and months.

Full-size DOI: 10.7717/peerj.18155/fig-3
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Figure 4 Posterior means and 95% posterior intervals for the unobserved incidence factors τd
t for per-

tussis, measles, and smallpox over the time period under study. The curves are on a probability scale.
Full-size DOI: 10.7717/peerj.18155/fig-4

related to measles and smallpox are the peaks in the spring and the minor decreases at the
end of the year.

Measured by the τ factors, we found a distinctive correlation between the infections of
measles and pertussis, 0.33 with a 95% posterior interval [0.08,0.55]. Omitting the specific
seasonal term s in the model yields almost the same correlation 0.31 [0.10,0.50]. The
correlation between smallpox and measles is ambiguous, being 0.24 [−0.01,0.46], though
it increases to 0.46 [0.26,0.63] in the model without the seasonal component. This implies
that monthly effects explain partly but not exhaustively the connection between these
diseases. Smallpox and pertussis seem to be mutually independent, 0.06 [−0.19,0.30],
which is also the case with the model without the seasonal terms, 0.15 [−0.07,0.37].
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Figure 5 Posterior means (black), 50% (dark turquoise) and 95% (light turquoise) posterior intervals
of monthly seasonal effects sdt for pertussis, measles, and smallpox over a year.

Full-size DOI: 10.7717/peerj.18155/fig-5

According to the regional loadings λd
i , adjusting the nationwide factors τ d

t , it was more
likely to die of any of these diseases in eastern and southeastern Finland than in other
parts of the study area. This is also in accordance with the maps of the data in Fig. 3. The
posterior means of the loadings λ are plotted in Fig. 6. Considering the loadings, there
is most local variation in pertussis, σλp = 0.35 with a 95% posterior interval [0.31,0.40].
With regard to measles and smallpox, the loadings vary less, σλm = 0.17 [0.14,0.20] and
σλs = 0.15 [0.13,0.17].

The final term affecting the base level of the probability to observe at least one death
caused by pertussis, measles, or smallpox consists of the regional constants ai, shown in Fig.
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Figure 6 The left panels show the posterior means of the local loadings λi, adjusting the national inci-
dence factors τt . Since the factors are negative, the smaller the loading is, the greater the probability of at
least one death is. The right panels illustrate the posterior means of the regional constants ai.

Full-size DOI: 10.7717/peerj.18155/fig-6
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6. Those related to pertussis and smallpox seem to be larger in eastern and southwestern
inland areas, whereas those considering measles are the largest in southern Finland.

The estimates of the nationwide regression coefficients β and γ are represented in
Table 1. All effects differing from zero are positive, meaning they increase the probability
to detect at least one death. The probability to observe one or more deaths induced by
one of these diseases is increased most prominently if there are recorded deaths caused by
the same disease in the same town, or in its neighbors, in the previous month. However,
there is more uncertainty in the effects of neighbors than in those of the towns themselves.
The risk that there is at least one death caused by pertussis is increased by the occurrence
of measles, whereas the corresponding effect of smallpox is not distinctive. Measles is
probably affected more by smallpox than by pertussis. In turn, measles seems to affect
smallpox more than pertussis does.

When it comes to the local adjustments bi and ci, their standard deviations are clearly
above zero, varying between 0.22 (σbm) and 0.55 (σcp), which indicates that the local
adjustments differ geographically. There are no obvious interpretations of their spatial
patterns (see maps of b and c in Supplementary Figures 1 and 2 on GitHub). This is
credible since the coefficients represent the combined effects of multiple unobserved
features that are not necessarily spatially organized.

For full results of all time and town invariant parameter estimates with their prior and
posterior intervals, see Supplementary Table 1 on GitHub.

Model comparison
While our main interest was studying the past spatio-temporal dynamics of infections and
disease associations within and between the diseases, we also examined the necessity and
reasonableness of modeling the disease interdependencies and the response aggregation.
We compared our model with a corresponding one without the dependencies between
the infections by excluding the other diseases as explanatory variables and omitting the
correlation between the incidence factors τt in the simpler model. Since the original data
contained the numbers of deaths instead of the dichotomous aggregates we used as a
response, we also estimated corresponding models with the difference of using the counts
as a response and a negative binomial distribution to model them. Additionally, the briefly
aforementioned model without a seasonal component was included in the comparison
in the case of both types of responses. This resulted in six different model versions for
comparison: dependent diseases, independent diseases, and dependent diseases without a
seasonal effect, each for both Bernoulli and negative binomial distributions.

The negative binomial model can be formally written as

ydi,t ∼NB
(
exp

(
ηd
i,t

)
,exp

(
αφd +φd

i
))

, (3)

where the mean parameter ηd
i,t is defined as in Eq. (2), and the nationwide dispersion

parameters αφd and the local dispersion parameters φd
i depend on the response disease.

The priors are the same as with the Bernoulli model, with the addition of αφd ∼N(0,12),
φd ∼N(0,σ 2

φd ), and σφd ∼Gamma(2,1). From the negative binomial model, we could
then compute our quantity of interest, the probability of observing at least one death in a
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Table 1 Posterior means and 95% posterior intervals of the nationwide regression parameters
grouped by the response disease. The superscript indicates the response disease and the subscript the
explanatory disease.

Within towns Between towns

Mean (2.5, 97.5%) Mean (2.5, 97.5%)

pertussis → pertussis β
p
p 1.56 (1.47, 1.64) γ

p
p 1.23 (1.10, 1.35)

measles → measles βm
m 1.90 (1.82, 1.98) γ m

m 2.21 (2.06, 2.38)
smallpox → smallpox β s

s 2.43 (2.34, 2.53) γ s
s 2.57 (2.40, 2.74)

measles → pertussis β
p
m 0.11 (0.04, 0.18) γ

p
m 0.12 (0.00, 0.24)

smallpox → pertussis β
p
s 0.04 (−0.04, 0.12) γ

p
s 0.11 (−0.02, 0.23)

pertussis → measles βm
p 0.13 (0.06, 0.20) γ m

p 0.11 (−0.01, 0.23)
smallpox → measles βm

s 0.15 (0.05, 0.24) γ m
s 0.24 (0.08, 0.39)

pertussis → smallpox β s
p 0.05 (−0.03, 0.13) γ s

p 0.19 (0.05, 0.33)
measles → smallpox β s

m 0.21 (0.12, 0.31) γ s
m 0.38 (0.21, 0.54)

specific town and month, which could be compared with the corresponding estimates of
the Bernoulli model.

As a scoring rule for the model comparison, we used the expected log predictive density
(ELPD), which measures the goodness of the entire predictive distribution (Vehtari,
Gelman & Gabry, 2017). The ELPD was estimated via an approximate leave-one-out
cross-validation using the R package loo (Vehtari et al., 2023). We left out one month and
town from all the diseases at a time to estimate the ELPD. Models with higher values of
ELPD correspond to greater posterior predictive accuracy for predicting new data points
compared to models with lower ELPD values.

According to the differences in the ELPDs in Table 2, the best performing model is the
one utilizing Bernoulli distribution and considering the diseases dependent. Omitting the
dependencies results in the second-best model, with the difference in ELPD over three
times the standard error. As could be expected, omitting the seasonal effect further impairs
the model. When it comes to the negative binomial models with counts as responses, the
order of the dependent, independent, and seasonless models is the same. The Bernoulli
models outperform the negative binomial ones in all cases. Overall, we see that directly
using the dichotomized data versus modeling the count data has a greater impact than
considering the infection dependencies or seasonality in our model. However, even though
in terms of predictive performance the differences between different Bernoulli models are
relatively small, we used the most complex model in our main analysis. This is in line with
the common Bayesian paradigm of incorporating the uncertainty of the model structure
in the model (Vehtari & Ojanen, 2012).

For the dependent and independent models, we performed additional prediction checks
by discarding the last two years of the data and estimating the probabilities for those
years. We also calculated the ELPDs considering the removed years, see Table 2. The
modifications without the seasonal effect were not included in this comparison due to
their already evident poor performance and the fact that they were originally fitted merely
to investigate the importance of the obvious seasonal variation. The posterior means were
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Table 2 Differences of the ELPDs and the standard errors of the ELPD differences for the leave-one-
out cross-validation. The values in the first two columns are computed over all the years for the models
estimated with the full data, and the last two columns are the values calculated over the last two years for
the models discarding those years while estimating the models.

Full data Last two years

ELPDdiff SEdiff ELPDdiff SEdiff

Bernoulli dependent 0.00 0.00 0.00 0.00
Bernoulli independent −36.71 11.75 −46.84 4.21
Bernoulli dependent, without season −80.50 13.08 – –
Negative binomial dependent −353.88 43.75 −381.38 16.70
Negative binomial independent −400.59 45.01 −490.50 18.90
Negative binomial dependent, without season −437.72 45.98 – –

quite similar in all cases, but the posterior intervals were wider for measles and smallpox
in the case of the negative binomial model, as can be seen from Fig. 7.

Overall, the results of the Bernoulli, as well as the negative binomial, models seem
to indicate similar interdependencies between the diseases. In the case of the negative
binomial model, the estimates of all the time and town invariant parameters with their
prior and posterior intervals are shown in Supplementary Table 2 on GitHub. Also, figures
corresponding to the ones representing the results of the Bernoulli model are available in
GitHub (Supplementary Figures 3-9).

Furthermore, to inspect the effect of the earlier disease history, a Bernoulli model
according to Eqs. (1) and (2) was fitted with additional lags of two months for the three
focal and three neighbor covariates. The approach resulted in having six scalar regression
coefficients (three βs and three γ s) more for each response disease than in our main
model. The results are well aligned with the one-month lag model. The amount of available
observations decreases by about three percentage points when introducing the two-month
lag since we must know not only the previous observation but also the one preceding that.
Thus this model is not completely comparable to our main model. Using the same data
for both one-month and two-month lag models, the model with two-month lag performs
better, measured with the ELPD: one-month lag model results in ELPDdiff = −989.87 and
SEdiff = 53.89, compared with the two-month lag model. Nevertheless, there are some
convergence and efficacy issues. Out of the 20,000 iterations, there are 28 diverging ones
which can potentially bias the results, thus they are not completely reliable (Betancourt,
2018). The outperformance of the two-month lag model in the sense of the ELPD might
be also related to smaller variance regardless of the possible bias, which is consistent with
the seemingly better fitting predictions gained from our main model than the two-month
lag model (see Supplementary Figure 10). The full results are in GitHub in Supplementary
Table 3 and Supplementary Figures 10-16.

Additionally, we fitted a model using our data aggregated on a weekly level, which
increases the amount of missing data from 24% in the monthly data to 48% in the weekly
data.We used lags from1 to 4weeks to cover asmuch delayed effect as with ourmainmodel.
Due to the unequal number of weeks per calendar month, incorporating the monthly effect
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Figure 7 The dark gray lines depict the proportions of the towns where at least one death was ob-
served. The turquoise lines show the posterior means of the corresponding estimates and the shaded ar-
eas their 95% posterior intervals in the case of the Bernoulli model, whereas the pink lines and areas repre-
sent the same values for the negative binomial model. The dotted vertical line indicates the time point af-
ter which the model estimates are predicted by the models estimated without the data of the last two years.

Full-size DOI: 10.7717/peerj.18155/fig-7

is not straightforward, so we omitted the seasonal effect. Unfortunately, this model did
not converge, potentially because of the increased amount of missing data, or the complex
dependency structures due to varying sub-monthly incubation and time-to-fatality times.
The weekly data and model code are available in the supplementary material.
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DISCUSSION
We developed a Bayesian model to explore the spatio-temporal dynamics and co-dynamics
of three fatal childhood infections—measles, smallpox, and pertussis—in pre-healthcare
Finland (1820–1850). The main novelties of the approach are, firstly, the consideration
of both the spatial and temporal aspects simultaneously, and, secondly, considering the
connections not only within but also between the three diseases. Furthermore, our dataset
is substantially different in comparison to the corresponding previous epidemiological
literature. Instead of data regarding large cities or being pooled over countries, we
exploited records from a sparsely populated nation, where 1.2–1.6 million inhabitants
were spread over vast areas in hundreds of small towns without modern healthcare. Our
model allows the inclusion of several explanatory elements which all capture different
features. According to our results, all the components are meaningful and statistically
distinctive, and the incorporation of the possibility of dependencies between the diseases
leads to a model describing the data better than one merely assuming independent diseases.
The data and the model framework are available on GitHub, providing a template for other
researchers.

Based on our results, the main components explaining the temporal and geographical
variation in the probabilities of observing at least one death caused by pertussis, measles, or
smallpox are the nationwide incidence factors with their local adjustments. The estimated
incidence factors follow the temporal behavior of the observed data, and the regional
adjustments resemble the spatial patterns of the data (Figs. 2 and 4, and 3 and 6).

Measured by pairwise correlations of the incidence factors, a distinctive positive co-
occurrence of measles and pertussis was discovered. Previous research has found positive,
negative, and inconsistent co-occurrences of these infections, see, e.g., Rohani et al. (2003),
Coleman (2015), and Noori & Rohani (2019). We also found a notable connection between
measles and smallpox with a model without the seasonal component, but this correlation
is not present in the full model including the seasonality. This indicates that their dynamics
follow a similar, seasonal pace. Overall, the seasonal effect is visible among all the diseases.
In addition to the nationwide incidence level, the seasonality increases the mortality during
the first half of the year, depending on the disease, see Fig. 5. The seasonalities may reflect
increased transmission during social gatherings, or they can be due to some environmental
and climatic drivers (Metcalf et al., 2009; Metcalf et al., 2017). The work of Briga et al.
(2021), based on selected data covering longer periods, indicates that of the infections of
pertussis, measles, and smallpox only pertussis was linked with new year and Easter in
Finland in the 18th and 19th centuries.

Furthermore, lagged dependencies within and between the infections were discovered
as positive temporal and spatial effects of the explanatory variables. Recorded deaths in the
focal town and in its adjacent towns in the previous month increased the risk of dying of
the same disease. Between the infections, these effects were notably smaller (Table 1). It
should be noticed that the coefficients reflecting the effect of the history of the focal town
and its neighbors are not directly comparable, as the value of the focal covariate is either 0
or 1, but the neighborhood covariate is a proportion between 0 and 1.
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According to the results, the risk of succumbing to pertussis, measles, and smallpox was
mediated by occurrences of the other infections in the area. All these three diseases tended
to increase the mortality related to the two other diseases, as all the pairwise interaction
parameter estimates are positive. This might be due to general immunosuppression or to
decreased condition following the previous infection. The strongest associations were found
between measles and pertussis, and measles and smallpox. The possibility that pertussis is
driven by the immunosuppressive effects of measles as suggested by Coleman (2015) and
Noori & Rohani (2019) implies that the risk of dying of pertussis is increased by a recent
measles infection. This is also supported by findings of Mina et al. (2015) showing that
measles vaccination, by preventing measles-associated immune memory loss, decreases
the risk of other infections. Our observations (see Table 1) are aligned with these results.
However, also a reverse connection was recovered: the recorded deaths caused by pertussis
in the same town during the previous month increased the risk of observing one or more
measles induced deaths almost equally. A stronger lagged effect was discovered between
measles and smallpox. Also these interactions were found to act in both directions.

To gain further insights into the specific effects of immunosuppression and impaired
health conditions, longer than the one-month (or two-month) lags that we used here,
should likely be employed. Unfortunately, our data do not suffice for identifying such
effects as accounting longer histories or using finer timescale is challenging due to the
missing data and the relative rarity of the deaths. Also herd immunity would be an
important aspect to consider, but until proper population size estimates are available,
it remains a topic for future work. Concerning our results, the lack of controlling for
the longer term immunity might obscure some of the findings when compared to more
contemporary datasets. Although immunosuppressive mechanisms of measles are well
known in the literature, for many other diseases those are less known, for example, the
effect of pertussis on measles (however, see, e.g.,Macina & Evans (2021)). Thus, we suggest
carefulness in interpreting our results as they might reflect the shorter term effects caused
by the overall condition of the patients rather than true immunosuppression.

The observed spatially varying local risks of at least one death due to pertussis, measles,
or smallpox may arise from the closeness of potential sources of infection, differences
in cultural, housing, or nutritional circumstances, or even genetics (Honkola et al., 2018;
Voutilainen, 2017; Kerminen et al., 2017). As can be seen from Fig. 3, the probabilities of
detecting one or more deaths caused by pertussis and smallpox were greater in the eastern
parts of Finland, whereas measles was clearly an infection emphasized in the southern
parts, being in concordance what was suggested by Pitkänen, Mielke & Jorde (1989) and
Ketola et al. (2021).

When it comes to the long term temporal behavior of the infections, it seems that
epidemics in small populations, consisting of sparse metapopulations of tiny towns, might
be dominated by reintroductions and fade-outs rather than by endemic dynamics more
typical in densely populated cities and countries (Keeling & Grenfell, 1997; Grenfell &
Harwood, 1997; Rohani et al., 2003; Ketola et al., 2021). In Briga, Ketola & Lummaa (2022)
epidemics were found to reoccur in cycles of roughly four years in the 18th and 19th
centuries in chosen Finnish towns with the highest quality data. The length and phase
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of such patterns are likely to vary due to annual and geographical differences in seasons,
making them challenging to estimate from our scarce data. Our study covering 31 years
did not reveal any long-term nationwide periodicities.

Wemodeled the deaths caused bymeasles, smallpox, and pertussis via a binary Bernoulli
distribution, where value 1 denotes that there was at least one reported death given the
disease, town, and month, and 0 for no reported deaths. This approach, while sacrificing
some detail, allowed us to capture the broad trends and patterns in the data, and to make
meaningful inferences about the spatio-temporal co-dynamics of these diseases. In contrast
to the generally held view that dichotomizing data should be avoided, in our case directly
modeling binary presence-absence data seemed to be beneficial compared to modeling
observed death counts, potentially due to accuracy issues in the actual counts. However,
both approaches led to practically identical main conclusions. The model comparisons
also exemplified how our approach is applicable to other kinds of responses than Bernoulli
variables.

We accounted for spatial dependencies using explanatory variables based on a
neighborhood structure defined by a shared border between two towns. To model
and quantify the evident epidemiological transmission dynamics, we included neighbor
effects enabling the situation in the adjacent towns in the previous month to affect the
probability to observe one or more deaths in the focal town. Our choice of neighborhood is
straightforward, omitting the actual intensity of communication between the neighboring
towns, hence possibly shrinking or magnifying the true dynamics of the infections. If there
were more detailed data or complementary information about the social connections,
other definitions for neighborhood, even with an appropriate weighing mechanism, could
be employed. We tried to consider each pair of neighbors individually, but the information
in the data was not sufficient for model identifiability, owing to the rarity of cases in
neighboring towns. Naturally, including alternative appropriate and available covariates as
explanatory variables is possible as well. The general spatio-temporal model developed for
the purpose of exploring the dynamics and co-dynamics particularly in the case of sparse
and scarce data is applicable to other corresponding datasets, for example, based on the
historical parish records from other Nordic countries, or data on modern day rural areas.
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Abstract

Real world spatio-temporal datasets, and phenomena related to them, are often chal-
lenging to visualise or gain a general overview of. In order to summarise information
encompassed in such data, we combine two well known statistical modelling methods.
To account for the spatial dimension, we use the intrinsic modification of the condi-
tional autoregression, and incorporate it with the hidden Markov model, allowing the
spatial patterns to vary over time. We apply our method into parish register data
considering deaths caused by measles in Finland in 1750–1850, and gain novel insight
of previously undiscovered infection dynamics. Five distinctive, reoccurring states de-
scribing spatially and temporally differing infection burden and potential routes of
spread are identified. We also find that there is a change in the occurrences of the
most typical spatial patterns circa 1812, possibly due to changes in communication
routes after major administrative transformations in Finland.

Keywords: Bayes, epidemiology, hidden Markov model, intrinsic conditional autoregres-
sion, measles, spatio-temporal

1 Introduction

Describing, visualising, and modelling spatio-temporal panel data is often challenging, par-
ticularly in high-dimensional settings with numerous time points and spatial areas. Con-
ditional autoregressive models (CAR) [7] and their variants, such as intrinsic conditional
autoregressive models (ICAR), are frequently employed to describe areal data. Although it
is possible to extend CAR models to spatio-temporal settings [13], these interaction mod-
els can become computationally intensive with high-dimensional data where spatial and
temporal effects are not separable [23]. Approximate methods like INLA [35] may be com-
putationally efficient alternatives to asymptotically exact Bayesian estimation via Markov
chain Monte Carlo (MCMC), but these methods typically impose some restrictions on the
model structure and the number of hyperparameters [2]. The potential bias of these approx-
imations is also challenging to quantify in specific cases, although in many typical settings
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the approximation bias has been found to be negligible [27, 36]. Furthermore, visualising
and interpreting the results of these interaction models may be complex: with time-varying
spatial effects and a large number of time points, a substantial number of static maps are
required to convey information about the estimated (or observed) spatial dynamics.

In life course research, hidden Markov models have been suggested as a probabilistic
method to condense information of complex, multidomain life courses into a few inter-
pretable latent states [18, 17]. In these applications, given a common data generating
process, individuals are assumed to be independent, having their own latent trajectories. In
contrast, in spatio-temporal panel data, individuals share a spatial dependency structure
which should be accounted for.

In Amorós et al. [1], hidden Markov models are utilised in a spatio-temporal setting to
detect influenza outbreaks, and in Knorr-Held and Richardson [24], they are used to identify
meningococcal disease incidences. Both studies use two states to identify the endemic
and epidemic, or endemic and hyperendemic, phases of the infections but do not aim to
deeply analyse the underlying dynamics of the diseases. Employing more states may aid in
discovering latent phenomena related to the epidemics. Amorós et al. [1] include the spatial
dependence in the epidemic state as temporally independent ICAR components and omit
it in the endemic state, whereas Knorr-Held and Richardson [24] account for the spatial
dependency as ICAR in both states but consider it as time-invariant.

In this paper, we propose a Bayesian hidden Markov model with a state-dependent
spatial correlation structure as an unsupervised learning method for decomposing the spatio-
temporal variation in the data into relatively few interpretable latent components. We
illustrate our approach by modelling the spatio-temporal occurrence of measles in Finland
during the 18th and 19th centuries, offering important insights into the historical measles
epidemics in Finland. Overall, such descriptive analysis in epidemiology may be of great
value [14].

Extremely low population size coupled with hundreds of sparsely spaced small towns
makes it challenging for epidemics to remain fully endemic [21]. Thus, it is probable that in
such conditions of Finland, fadeouts and reintroductions dominated the infection dynam-
ics, implying that changes in the transmission sources could have strongly affected these
dynamics. Finland and Sweden are separated by a large geographical barrier, the Gulf of
Bothnia, and this, as well as the Russian border on the east, must have influenced the trade
connections and the movement of people. The annexation of Finland to Russia, after a war
in 1808–1809, resulted in the transfer of the capital from the western position of Turku to a
more eastern location of Helsinki, increased dramatically trade and social communication,
and altered drastically Finland’s connectivity to other countries [28]. We exploit our method
to describe the reoccurring and presumably significantly foreign connection driven patterns
of the epidemics in a compact yet informative way.1

2 Data and methods

2.1 Data

Finland has a long history in collecting demographic and health-related data, with local
parishes systematically maintaining records of baptisms, burials, and causes of death from
1749 onwards. Also earlier, albeit incomplete, records exist [30]. Even though death diag-
nostics were symptom-based, the distinctive features of certain diseases allowed for relatively
accurate diagnoses. One of those infections is measles, which we focus on. According to our

1This text was originally published as a preprint (https://arxiv.org/abs/2405.16885v1).
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data, measles accounted for approximately 2% of all deaths during our study period from
1750 to 1850. The population of Finland was roughly 500,000 in 1750, and grew to over
1.6 million by 1850 [40, 43]. However, the healthcare system was primitive and virtually
non-existent before the 19th century, lagging behind in development compared to the other
Nordic countries and Europe until the 20th century [37, 38].

Communication within Finland and between neighbouring countries, combined with
limited knowledge of infections and a poor healthcare system, were factors that enabled
recurring epidemics of various diseases, including measles. While armed conflicts between
countries were not uncommon, wars and border changes affected, among many other things,
the common welfare of people. Finland had been part of Sweden for centuries, but in 1721,
Russia annexed the southeastern parts of Finland, or Old Finland, including the signifi-
cant trading center of Vyborg. After the Finnish War in 1808—1809, the rest of Finland
became an autonomous grand duchy of Russia. In 1812, Old Finland was united with
the new autonomous Finland, and the capital of Finland was moved from Turku on the
southwestern coast to Helsinki on the southern coast, impacting markets and trade con-
nections [28]. Being a remarkable transformation, the administrative change, however, left
also many things unchanged. For example, the demographic records collected during the
Swedish administration were still maintained in a similar way as before.

We analyse information obtained from parish records, using monthly data from January
1750 to December 1850 from 387 different towns located in the southern half of Finland.
The original records offer count information on the deaths at the town level, but since
the counts are quite small (99% of all measles counts in our data are three or less) and
there are no areal population sizes available—merely nationwide approximations [43]—it is
challenging to separate the actual differences between towns from those resulting from the
varying population sizes.

To overcome these issues, we summarise the data into a more robust form. The obser-
vations we use are dichotomous, indicating whether at least one death caused by measles
was recorded in each town. Thus, the data contains zeros for towns and months with no
recorded deaths, and ones for those with recorded cases. Corresponding data, covering a
different time span, has been used in Pasanen et al. [29], which also describes the handling
of the data in more detail. Other studies analysing data based on the same registers but
covering different areas or time periods, or being aggregated to a different level, include,
for example, Ketola et al. [22] and Briga et al. [11, 10]. Pasanen et al. [29] also implies
that the dichotomisation of the observations results in conclusions corresponding to those
of undichotomised data.

The data come with a significant amount of missing observations for several reasons.
These include misdiagnoses, varying personal practices in maintaining the registers [30],
and loss of records due to fires and other conditions over time. There are a total of 1212
time points, each having observations from 75–272 sites simultaneously, so no month has
information from all the sites at once. From another perspective, only one town has no
missing observations at all, whereas all observations are missing from 44 towns. Overall, at
the beginning of the time series, the missingness is approximately 70%, decreasing steadily
to about 20% at the end of the time series, so that 40% of all data are missing.

2.2 Hidden Markov Models

Discrete time hidden Markov models (HMM) [33] are statistical models for temporal, or
other sequentially ordered data, consisting of two essential components. There are, firstly,
the hidden stochastic Markov process describing the unobserved, yet often interesting, part
of the model, and secondly, the observed process dependent on the hidden component. With
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the word ”state”, often appearing in the terminology, we refer to some discrete, prevailing
situations related to the phenomenon of interest, for example, two states could be the
presence and absence of a disease. Next, we introduce the method in more detail.

The first component of the model is the hidden stochastic process xt, t = 1, . . . , T, with
the state space {1, . . . , S}, i.e., having values from 1 to S. Usually the temporal dependency
of the process xt encompasses only one previous time point so that it satisfies the first-order
Markov property

p(xt|x1, . . . , xt−1) = p(xt|xt−1). (1)

The hidden process may also meet some other order Markov condition, meaning that the
current state depends on as many preceding states as is the degree of the Markov chain,
but we do not consider those cases here. For the states s ∈ {1, . . . , S} we use consecutive
numbering as labels for simplicity. Between two preceding time points it is possible to stay
at the current state or to switch to another state. The probabilities of different transitions
between the states are collected into a transition matrix A, where each element as,s′ =
P (xt = s′|xt−1 = s), where s, s′ ∈ {1, . . . , S}. Additionally, initial state probabilities ρs =
P (x1 = s), s ∈ {1, . . . , S}, describe the probabilities to start from each state at the first
time point t = 1.

As a second component, we have the observed process yt, t = 1, . . . , T , where yt depends
only on the current state of the hidden process. In consequence, the observations are
conditionally independent:

p(yt|y1, . . . , yt−1, x1, . . . , xt) = p(yt|xt). (2)

Each state xt is associated with parameters θxt of the observational distribution p(yt|xt)
and thus we can also write p(yt|xt) = p(yt|θxt). Of the parameters θxt some may depend on
the value of the state xt, while others may be shared between the states. Finally, we can
define an emission matrix Ω, where ωs,t = p(yt|θxt=s). Now the HMM can be defined by the
set {Ω, A,ρ}.

Often the hidden process and state-dependent parameters, describing the features of
particular states, are the main interest of hidden Markov modelling, but since we do not
directly observe the hidden process, we have to estimate it based on the observations gained
from the non-hidden process. The general idea of the dependencies between the states,
parameters and observations in HMMs is visualised in Figure 1.

While various methods have been suggested for estimating the number of states, S,
for example, Pohle et al. [31], typically it is treated as known, fixed value when analysing
the HMM results. The interpretation (”labelling”) of the hidden states is then based on
the estimated model parameters {Ω, A,ρ}, and on the hidden state trajectory x1, . . . , xT ,
given the observations yt. As an example, consider HMM consisting of binary observations
and two states, with ρ = (1, 0)T , a1,1 = 0.9, a2,2 = 0.5, ω1,t = Bernoulli(0.1), and ω2,t =
Bernoulli(0.8). From these, we see that we always start from state one which is relatively
persistent state (a1,1 = 0.9) emitting mostly zeros, whereas we are more likely to observe
ones when the hidden process is in state two. Based on this, if the observations were related,
for example, to the occurrence of some disease, we could label the first state as endemic
state and the second state as epidemic state. We could also gain further understanding
from the estimated state trajectory, from which we could see, for example, that state one is
more common during winter, whereas state two occurs only during summer months. This
could lead us to conclude that the transmission probability of our disease is higher during
summer than winter, and thus further guide us to find reasons for that.

To perform fully Bayesian estimation of the HMM parameters and the corresponding la-
tent states, we first run an MCMC targeting the marginal posterior of the model parameters,
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Figure 1: Directed graph of a hidden Markov model. The state x1 in the first time point
depends on the initial probabilities ρ, and the following transitions are determined by the
transition probabilities in A. The observations yt depend on the current state xt via the
emission probabilities in Ω, and the current state xt in turn depends on the previous state
xt−1.

p(Ω, A, ρ|y), where y = (y1, . . . , yT ). For this we need the marginal likelihood p(y|Ω, A, ρ),
which can be computed with the forward part of the forward-backward algorithm [6, 33, and
the references therein]. The latent states x = (x1, . . . , xT ) can then be sampled in the post-
processing stage given the posterior samples of {Ω, A, ρ}. This marginalisation approach
commonly used with latent variable models allows much more efficient sampling than the
approaches where the estimation is based on the joint posterior p(x,Ω, A, ρ), and is also
strictly necessary when using efficient Hamiltonian Monte Carlo type of MCMC algorithms
which rely on the differentiability of the posterior.

The marginal likelihood approach is also convenient with respect to missing data. When
computing the emission probabilities ωs,t, i.e., the conditional probabilities of the obser-
vations given the current state and the model parameters, we set ωs,t = 1 for all s if the
observation yt is missing. This means that as we do not gain any new information about
the states due to the missing observation at time t, we essentially skip the contribution of
ωs,t at the marginal likelihood computation in forward algorithm at that time point [44].

The likelihood and the posterior density of the hidden Markov models typically contain
multiple modes. Some of these modes can be due to the label-switching problem [20] but in
complex models true local modes can also be present. In maximum likelihood setting the
model parameters are often estimated by repeating the estimation several times with varying
starting values for the optimisation algorithm, with the best solution declared as a global
mode, while ignoring the other modes. In Bayesian setting multimodality of the posterior
can pose both computational (convergence of the MCMC algorithms) and interpretability
challenges. For example, it is difficult to interpret (label) and visualise the hidden states if
the corresponding observational density is multimodal. These issues have to be taken into
consideration when using HMMs.

The complexity of the response variables yt is not limited to scalars, but they can be
multidimensional as well. In our case they are vectors containing spatially dependent el-
ements. This means that the states, as well as the parameters, should allow for spatial
structure.

2.3 Intrinsic conditional autoregressive models

Next we introduce the intrinsic conditional autoregressive (ICAR) model, which is a special
case of the conditional autoregressive (CAR) model [7], especially meant for spatial analysis
to depict the amount of dependency between different locations. These models are based on
a spatial division of a larger area, employing a neighbourhood definition for the generated
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subareas, and combining both of these with a Gaussian distribution in order to quantify the
amount of the spatial dependency. This method does not offer information on the direction
of the effects, i.e., the causal relationships, but only on the total amount of dependency.

For the spatial division, denote each areal unit or site of a regional entity with i =
1, . . . , N , and correspondingly its neighbour with j = 1, . . . , N . To account for the contiguity
of the sites, let W be an N ×N matrix for the binary neighbourhood so that the elements
in it are

wi,j =

{
1, when sites i and j are neighbours, and i �= j

0, otherwise.

Additionally, denote with D an N×N diagonal matrix indicating the amounts of neighbours
of each site so that

di,j =

{
number of neighbours of site i, when i = j

0, otherwise.

Now, we employ a variable ϕ ∈ RN to express the intensity of the dependency between
each site and its neighbours. In case of the CAR model, we have

ϕ ∼ N(0, Q−1), (3)

where the precision matrix Q has to be symmetric and positive definite for the distribution
to have a proper joint probability density. This can be achieved with the matrices W and
D by setting

Q = τD(I − αD−1W ) = τ(D − αW ), (4)

where τ ∈ R+ is a precision parameter of the variables ϕi, α ∈ (0, 1) depicts the amount of
spatial correlation, and I is an identity matrix.

The normal distribution of formula 3 can also be written as

p(ϕ) = (2π)N/2
∣∣(τ(D − αW ))−1

∣∣1/2 exp(−τ

2
ϕ�(D − αW )ϕ

)
, (5)

where ϕ� denotes the transpose of ϕ and |x| stands for the determinant of x. In case of
ICAR model, we assume that α = 1, which results in improper distribution, which cannot
be used as a model for the data, but as a prior distribution for spatial dependency, as is
done for example in the Besag York Mollié (BYM) models [8]. The parameters ϕi are not
identifiable without further constraints, as adding a constant to all of them does not change
their density. A common way to avoid the identifiability problem is to restrict them to sum
to zero over the sites.

Some reasons to employ the improper distribution of ICAR instead of the proper of the
CAR, are the facts that, firstly, to account significant amount of spatial association, the
parameter α most likely has to be close to one, and, secondly, the width of the posterior
spatial pattern might be limited in the case of CAR [4]. Additionally, when employing the
ICAR model, the specification α = 1 obviates the need to calculate the determinant in
Equation 5 since it becomes constant, thus reducing the computation time even from days
to hours [25]. Therefore, in some cases, it might be convenient to choose ICAR in the first
place.

2.4 HMM with ICAR

In our approach, we combine the HMM and the spatial ICAR model, introduced above,
thus enabling the HMM analysis of spatio-temporal data sets. We apply our method to
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the historical Finnish parish register data to study the dynamics of the measles epidemics.
More precisely, our response variable yi,t is dichotomous, indicating the presence of at least
one measles induced death observation in town i in time point t.

As before, we denote each site with i = 1, . . . , N , and each time point with t = 1, . . . , T .
In this setting, the probability of observing at least one death yi,t caused by measles in site
i and time point t can be modeled as

yi,t ∼ Bernoulli(logit−1(μxt + λi + σϕϕi,xt + γt)), (6)

where the states
xt|xt−1 ∼ Categorical(Axt−1,.). (7)

The notation Axt−1,. means the row xt−1 including all columns of the matrix A. As we are
using our method to study the occurrences and absences of deaths, Bernoulli distribution is
a natural choice for the model. With other kinds of response variables also the distribution
should be changed, for example Poisson distribution for counts. In formula 6, which corre-
sponds to the p(yt|xt) in Equation 2, the logit link function maps the combination of the
explanatory terms onto a probability scale required by the Bernoulli distribution. Also the
link function should be changed to an appropriate one when using a different distribution.
The four explanatory terms describe the state specific constants, the local constants, the
intensity of spatial interaction between the site and its neighbours, and a monthly seasonal
variation. The formula 7 defines the connection between the underlying states xt and the
transition matrix A.

The state specific constant μxt=s, s ∈ {1, . . . , S}, sets a base level for the nationwide
probability of observing at least one death in each state s. In order to reduce the common,
yet problematic, multimodality encountered with HMMs, we define the state specific con-
stants so that they are monotonically increasing in a similar way as described in Bürkner
and Charpentier [12]. Due to this, our states are ordered based on the general incidence
level. In our case, to begin with, we define the constants for the first and last state, μ1 and
μS, respectively. We use these two to scale the ones for the other states. We do this by
defining a simplex m of S components, i.e., a vector summing to one, with the first term
m1 fixed to zero, and defining the rest of the constants as

μs = μ1 + (μS − μ1)
s∑

i=1

mi for all s = 1, . . . , S. (8)

As we are using a Bayesian approach, this allows us to employ informative priors for the
constants of the first and last state, μ1 and μS.

To allow local deviations from the nationwide base level, we add a site dependent term
λi, which is constant over the states, i.e., over time. These local terms do not have a
spatial dependency structure by definition, but they aim to capture any heterogeneous, time
constant features of the sites, for example, differing population densities or communication
intensities in our case. As we set the mean of the local constants to zero to improve
model identifiability and MCMC sampling efficiency, we also gain a more straightforward
interpretation of the state dependent constant μs as a nationwide average level.

The actual spatial dependence between the sites is introduced in the third term, σϕϕi,xt .
The dependency is achieved via the ICAR structure outlined above, i.e., adapting the for-
mulas 3 and 4, and letting ϕxt=s ∼ N(0, (D −W )−1), where s ∈ {1, . . . , S}, and σϕ = τ−

1
2 .

To employ the ICAR component, we need a definition for the neighbourhood. Here two
regions are considered as neighbours if they share a border. Other definitions, for example,
based on the distance from the centers of the sites, could be used as well. In practice, the
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matrices W and D are constructed according to our neighbourhood definition in order to
access the covariance of the spatial terms. The state specific spatial term ϕi,xt is zero on
average over the sites to guarantee identifiability using soft constraint as in Morris et al.
[25].

The final component γt in the model is a monthly average deviation additional to all the
other components. It is constrained to sum to zero over a year.

As mentioned in subsection 2.1, our data are missing a large number of observations.
However, as long as we assume they are missing at random, the HMM is a convenient
approach to work with such imperfect data sets. Due to the hidden level, the observations
do not depend on time, conditioned on the states, which is not the case when modelling
dependencies only on the observed level. Now, the likelihood can be calculated without the
missing observations by computing p(yt|xt) over only the observed sites at time t [44]. Thus,
the absent information can be omitted while estimating the model, yet the model provides
estimates for all sites and time points. Even though the missing information is omitted, its
effect and the uncertainty is reflected in the width of the posterior intervals of the estimates.

To fit the model we use a Bayesian approach, which on its behalf allows smooth handling
of missing data and inclusion of prior information. This procedure requires setting prior
distributions for the unknown parameters, and for the full model they are

μ1 ∼ N(−4.5, 0.252),

μS ∼ N(−1.75, 0.52)[μ1, ],

m2:S ∼ Dirichlet(11, . . . , 1S−1),

λi ∼ N(0, σ2
λ), for all i = 1, . . . , N , given

1

N

N∑
i=1

λi = 0,

σλ ∼ N(0, 12)[0, ],

σϕ ∼ N(0, 12)[0, ],

ϕs ∼ N(0, (D −W )−1), for all s = 1, . . . , S,

γt ∼ N(0, 12), for all t = 1, . . . , 12, given
1

12

12∑
i=1

γt = 0,

ρ ∼ Dirichlet(11, . . . , 1S), and

As,. ∼ Dirichlet(p1, . . . , pS), where ps′ =

{
0.5, when s′ �= s

2 · S, when s′ = s,

where N(., .)[z, ] denotes a normal distribution truncated at z, and m2:S denotes the
components from 2 to S of the vector m, omitting the first component since it is zero. The
priors for the state specific constants μ1 and μS are chosen based on the data, to roughly
match with the 10th and 90th percentiles of the monthly averages of the observed death
occurrences. Such utilisation of the data is a common practice, for example, in rstanarm [26].
The row sums of the transition matrix A are one, as well as the sums of the parameters ρ and
a, which is achieved with the Dirichlet priors. These priors are mostly weakly informative
and chosen to enhance the computational efficiency [26, 5]. In our case, the number of time
points is T = 1212 and the number of sites N = 387. For our final model, we set the number
of states to be S = 5.
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3 Results

The model is estimated with MCMC using cmdstanr [15], which is an R interface [32] for the
probabilistic programming language Stan for statistical inference [39]. Posterior samples are
drawn using NUTS sampler [19, 9] with four chains. Each chain consists of 7,500 iterations,
the first 5,000 being discarded as warm-up. The computation with parallel chains takes
approximately 30 hours. The estimation is done on a supercomputer node with four cores
of Xeon Gold 6230 2.1 GHz processors, each core allocated 15 GB of RAM. According to
the MCMC diagnostics of the cmdstanr [41], the model converges without any divergences.

The R̂ statistics are all below 1.004, and the bulk effective sample sizes are roughly between
640 and 28000, the most inefficient one being ϕ29,5, which corresponds to a town and month
that, while not associated with a missing observation itself, is missing five out of six of the
neighbouring observations. The R and Stan codes and the data used for the analysis are
available on GitHub (https://github.com/tihepasa/spatialHMM).

The data, aggregated temporally, the predicted probabilities of observing at least one
death caused by measles, and the state trajectories that depict the path of the most probable
states are illustrated in Figure 2. The predictions are computed according to the model as
logit−1(μxt + λi + σϕϕi,xt + γt), followed by taking an average over all the sites. It appears
that State 1 is predominantly prevalent before the year 1813, while States 2, 3 and 5 are
emphasised during the remainder of the study period. State 5 emerges for the first time in
1793, whereas States 2 and 3 have a few occurrences since the beginning. State 4, on the
other hand, appears throughout the whole study period. In general, State 1 is the most
likely during 45% of the months, State 2 during 22% of the months, and States 3 and 4
during 16% and 12% of the months, respectively, leaving State 5 prevailing during 5% of the
months. The probabilities of the estimated most likely states to be the actual most likely
states always range between 44− 100%, with approximately 90% of all of the probabilities
being over 89%, and only five, randomly distributed in terms of time, falling below 50%.
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Figure 2: The turquoise line denotes the proportion of towns where at least one death caused
by measles was observed in that month according to the data. The black line represents the
nationwide average over local probabilities to observe at least one death caused by measles
given by the model: logit−1(μxt+λi+σϕϕi,xt+γt). The grey area around the black line shows
the 95% posterior interval of the predicted average. The colors below the curve indicate in
which state it was most likely to be at that time.

The spatial dimension of the states can be seen in Figure 3, which presents the esti-
mated local probabilities and the corresponding data of observing at least one death caused
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by measles in each state. The probabilities are computed in accordance with the model,
as in the temporal case above, aggregated over time, and displayed on a logarithmic scale
to facilitate easier comparison both between and within the states. The smallest probabil-
ities are associated with State 1, which seems to be common during the periods when the
proportion of the towns observing at least one death is low, see Figure 2. In States 1, 2
and 3, the probabilities seem to be larger in the southeastern parts of the country, and as
moving from State 1 to the others the increased probabilities spread wider covering almost
the whole study area in State 3. In State 4, the highest probabilities are located in the
northern regions, and in State 5, they are concentrated in the southwestern half of the area.

According to the transition probabilities, shown in Table 1, it is most likely to remain
in the current state. If we disregard this possibility, the most probable transitions are from
State 1 to State 2, from State 2 to State 1, from States 3 and 4 to State 2, and from
State 5 to State 4. It should be remembered that these probabilities describe the overall
transition probabilities instead of the likelinesses of the fast, abrupt monthly transitions.
The estimates of the initial state probabilities ρs, along with other scalar parameters, can
be found from Table 2. State 3 appears to be the starting point for the state trajectory in
these data. However, the posterior distributions of the initial probabilities are quite wide.
This is attributable to the fact that there is only one state trajectory to estimate, and an
estimation based on a single observation does not provide much information.

Table 1: Posterior means and 95% posterior intervals of the transition probabilities in the
transition matrix A. Rows represent the states to transfer from and the columns the states
to transfer to.

State 1 State 2 State 3 State 4 State 5

State 1
0.97 0.02 0.01 0.00 0.00

(0.95, 0.98) (0.01, 0.03) (0.00, 0.02) (0.00, 0.01) (0.00, 0.01)

State 2
0.04 0.91 0.02 0.02 0.00

(0.02, 0.07) (0.88, 0.95) (0.01, 0.05) (0.01, 0.04) (0.00, 0.01)

State 3
0.01 0.03 0.91 0.02 0.02

(0.00, 0.03) (0.01, 0.07) (0.87, 0.95) (0.01, 0.05) (0.01, 0.05)

State 4
0.02 0.05 0.02 0.89 0.02

(0.00, 0.06) (0.02, 0.10) (0.00, 0.05) (0.83, 0.93) (0.00, 0.05)

State 5
0.01 0.01 0.04 0.08 0.87

(0.00, 0.03) (0.00, 0.03) (0.01, 0.010) (0.03, 0.16) (0.78, 0.94)

The scalar constants μs, controlling the base levels of the probabilities to observe at least
one death caused by measles in each state, are all negative in logit-scale and differ between
the states distinctively, see Table 2. When these are transformed into a probability scale,
the base probabilities range from 1% in State 1 to 16% in State 5.

The local constants λi, independent of the state, are shown in Figure 4. As expected,
there are no visible spatial patterns in these parameters aimed to capture spatially inde-
pendent differences of the sites. The deviation σλ of the constants λi is 0.59 with posterior
interval [0.53, 0.65], see also Table 2, suggesting that there is some non-spatial heterogeneity
between the towns. For instance, in State 5, the 5% and 95% quantiles for the posterior
mean of the local probabilities logit−1(μS + λi) are (0.07, 0.33) with median 0.17.

The spatial dependence in the spread of measles is accounted for by the spatial terms
σϕϕi,s. The deviation parameter σϕ is constant for all the sites and states and is estimated
to be 0.89 [0.82, 0.96], see also Table 2. The state-specific spatial terms σϕϕi,s are shown in
Figure 5. The spatial patterns are similar to those of the estimated probabilities to observe
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Figure 3: On the left column are the probabilities to observe at least one death caused by
measles in each town as means over the months when each state was most likely, and on the
right column are the corresponding estimated probabilities logit−1(μxt + λi + σϕϕi,xt + γt).
The rows represent different states. Gray area indicates a site with only missing observations
in months corresponding to that state. Note that the color scale is logarithmic.

at least one death caused by measles in Figure 3.
To capture the yearly temporal variation, the model includes a seasonal component γt,

which is shown in Figure 6. These monthly terms sum to zero over a year, i.e., they depict
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Table 2: Posterior means and standard deviations, 95% posterior intervals, bulk and tail
effective sample sizes (ess) and R̂ statistics of the initial probabilities ρs, the state specific
constants μs, the deviation of local constants σλ, and the deviation parameter σϕ of the
ICAR component.

mean sd 2.5% 97.5% ess bulk ess tail R̂
ρ1 0.17 0.14 0.01 0.52 17657 5620 1.00
ρ2 0.17 0.14 0.01 0.53 18953 5898 1.00
ρ3 0.33 0.18 0.05 0.73 20350 6151 1.00
ρ4 0.17 0.14 0.00 0.53 15146 6368 1.00
ρ5 0.17 0.14 0.01 0.53 16702 7113 1.00
μ1 -4.55 0.04 -4.64 -4.47 3595 5045 1.00
μ2 -3.87 0.04 -3.96 -3.79 4056 7210 1.00
μ3 -2.76 0.03 -2.82 -2.69 4229 6986 1.00
μ4 -2.43 0.03 -2.49 -2.36 1011 4169 1.00
μ5 -1.68 0.03 -1.74 -1.61 3109 5485 1.00
σλ 0.59 0.03 0.53 0.65 2941 5410 1.00
σϕ 0.89 0.03 0.82 0.96 1368 2622 1.00

−1(λi)

Figure 4: Inverse logit transformations of the posterior means of the local constants λi.

an average monthly variation additional to the other components of the model. The effect of
the month increases from January to peak in May and decreases after that until December.
The effect is positive, thereby increasing the probability of observing at least one death
caused by measles, from March to July, and negative or decreasing the risk otherwise. A
somewhat similar pattern, with a peak in May, was also identified in [29] for measles during
1820–1850 in Finland.

While our HMM was estimated as homogeneous in terms of the transition matrix A,
Figure 2 suggests that the probability of observing deaths by measles changed around 1810.
Before this, the hidden State 1 with the lowest baseline probabilities is the most promi-
nent, after which the pattern of the hidden states appears to change considerably, both in
terms of the baseline probability (transitioning from State 1 to State 2) and more frequent
occurrences in the west coast (State 3). Therefore, as an additional analysis, we aimed to
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Figure 5: Posterior means of the spatial terms σϕϕi,s by state.
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Figure 6: The black dots and line show the posterior mean of the monthly seasonal term
γt. The dark and pale turquoise areas represent the 50% and 95% posterior intervals,
respectively.

identify the most probable point in time where the spatio-temporal dynamics of measles
changed regimes. For this purpose, we estimated a two-state left-to-right HMM, where the
observations consisted of a thousand posterior samples of the state trajectories of our main
model. All trajectories were modeled jointly so that they shared the same model parameters
(state-specific categorical emission probabilities and the single transition probability from
State 1 to State 2), but each trajectory had a separate hidden state process.

From the sampled state trajectories of this left-to-right model, we computed the distri-
bution of the most probable change point, which was identified as November 1812 (with a
95% posterior interval from September 1812 to February 1813). Table 3 displays the esti-
mated emission matrix of this model. From this, we can conclude that the major changes
were the increased probabilities of States 2, 3, and 5 and the decreased probability of State
1 after November 1812. This finding aligns well with the associated administrative changes
that led to transferring the capital towards the east, and to altering the trade connections
[28].

Table 3: The emission matrix of the change point model including the posterior means and
95% posterior intervals of the probabilities of being in each state before and after the change
point.

State 1 State 2 State 3 State 4 State 5

Before
0.69 0.12 0.05 0.11 0.02

(0.69, 0.69) (0.12, 0.13) (0.05, 0.05) (0.11, 0.12) (0.02, 0.02)

After
0.04 0.39 0.34 0.14 0.09

(0.04, 0.04) (0.39, 0.39) (0.33, 0.34) (0.14, 0.14) (0.09, 0.10)

Determining the number of states in HMM is not a trivial task, and there is no definitive
procedure for that, even though some suggestions exist [e.g., 31]. In our case, we utilised five
states, although a corresponding model was also estimated with four and six states. With
six states there were several modes and convergence issues not only between but also within
the chains. The model with four states, on the other hand, passed the convergence criteria
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but was not chosen here. Given that the states exhibited clear differences when there were
five of them, we opted for the model with a greater number of hidden states. Presumably,
this more detailed model also depicts the underlying phenomena more realistically in this
context, since the epidemics are not discrete but continuous processes both in space and
time.

For comparison, the supplementary material contains figures (Supplementary Figures 1–
5) and tables (Supplementary Tables 1–2) for the four-state model, corresponding the ones
represented here for the five-state model in Figures 2–6 and Tables 1–2. Based on Figures
2 and 3 and Supplementary Figures 1 and 2, it seems that States 1 and 2 of the five-state
model have merged into State 1 of the four-state model, but otherwise the states correspond
to each other. Also in the four-state model a change in the dynamics towards the end of
the time series is visible (see Supplementary Figure 1).

4 Discussion

In this study, we illustrated the usage of the hidden Markov models in spatio-temporal
analysis. Our aim was to gain information on the historical Finnish measles epidemics
as a spatial and temporal process by modelling the probability of observing at least one
death caused by measles in each town and month. The proposed HMM approach allowed
us to summarise the information of data that are otherwise complicated and challenging to
understand.

Using reported fatalities of measles in Finns throughout 1750–1850, and the Bayesian
hidden Markov model with state-dependent spatial correlation structure, we identified five
reoccurring epidemic states in Finland. The epidemics were characterised by two states of
low burden of infection (States 1 and 2), and three states of higher infectious burden (States
3, 4 and 5), covering different parts of Finland (see Figure 3).

Our analyses revealed also a distinctive change in the epidemic dynamics between Novem-
ber 1812 and February 1813, matching well with the changes caused by the war between
Sweden and Russia over the area of Finland in 1808–1809, and the imposed large adminis-
trative changes, including the transfer of the capital from Turku to Helsinki, in 1812. These
transformations strengthened the eastern influence and trade connections [28]. The most
notable change in the estimated state trajectory after the annexation of Finland by Russia
was the replacement of State 1 with a generally higher death observation probability of
State 2 as a non-epidemic state. Also the likelihood of States 3 and 5 increased, reflecting
the higher infection burden at southern Finland and Karelian Isthmus, or south-western
Finland, respectively. The view of the strengthened eastern influence is further supported
by the increase of the infection burden especially in the eastern towns during the low epi-
demic states (Figure 3), possibly indicating persistent infectious pressure from the closest
city in the area, Saint Petersburg. Overall, infections became more common across whole
Finland after the war.

The dynamics of measles and other contagious infections are sensitive to population size
[21]. Due to the clear abrupt change in infection dynamics, we can perhaps safely rule out
the role of the gradual population increase [43] here as the main driver of the change of the
epidemics. Further examination considering particularly the spatial effect of the population
sizes remains as a future work due to the missing local population size information. Es-
pecially sparsely populated areas without endemic measles infections follow the changes of
adjacent larger populations [21, 16, 34, 22]. Epidemics are affected by transport networks,
geographical obstacles and borders [42]. Finland and Sweden are separated by a large geo-
graphical barrier: The Gulf of Bothnia is 80–150 kilometers wide and 700 kilometers long,
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and obviously restricting the movement of people—and infections. Sea on the other side
and the Russian border on the other side seem to have kept the infectious burden smaller
in pre-war Finland compared with the post-war era when contacts to Russia and elsewhere
increased [28]. During the history of nations, the borders have changed due to wars and the
directions of transport and trade have shifted frequently, but the dynamics of epidemics due
to such regime shifts have not been closely followed. Luckily, in our case, the administrative
changes did not modify the data collection procedures of parishes so that we had data of
the deaths available. This allowed us to study more closely the dynamics of epidemics due
to changing transmission networks.

When it comes to the local transmission routes inside Finland, the definition of the
proximity between the towns plays a crucial role. Other relevant definitions for the neigh-
bourhood could be road or water connections instead of or in addition to the border sharing
we used. As during longer time periods the areal structure is rarely static due to wars
and other environmental changes, it would be interesting to extend the model into a case
in which the spatial structure and neighbours can vary in time. This would require some
further specifications for the state-specific spatial coefficients, as allowing several spatial
structures within one state could result in having not only S, but the number of different
structures times S, states. To set the specifications and try this kind of approach in practice,
one should have further information about the spatial structure and the changes in it, but
technically it could be implemented with our model. Additionally, within a fixed spatial
structure one could estimate if some neighbouring towns did not interact at all so that there
were actually discontinuities, as in Balocchi and Jensen [3].

As mentioned in Section 1, there are several ways to model and estimate spatio-temporal
connections. It would be natural to consider the phenomena as a continuous process instead
of merely inspecting a collection of discrete states. One attractive way for this kind of
more detailed analysis would be to fit a model without any hidden states, using random
walks so that yi,t ∼ Bernoulli(μt + λi + σϕϕi,t + γt), where μt ∼ N(μt−1, σ

2
μ), and ϕt ∼

N(ϕt−1, (D − W )−1). In this case the spatio-temporal parameter ϕi,t may be seen as an
interaction parameter of the temporal and spatial terms, as described for example in Clayton
and Bernardinelli [13]. However, given the large number of time points, spatial units, and
iterations needed for the convergence of the MCMC, this kind of model is computationally
infeasible to estimate in our case. Additional downside would be that due to the parameter
profusion, the results would not be as interpretable or offer such a straightforward insight
as our hidden Markov model.

We allowed for simplified, yet hopefully easy to understand, temporal dependency struc-
ture for the model via the parameters that depend on the state. Our method is especially
convenient when there is a reason to suspect a presence of recurring patterns in the under-
lying phenomena. In other words, as we allow all potential transitions between our states
so that it is possible to return to any of the previously occurred states later in time, also
the latent process consists of repeated patterns. This enables finding the spatio-temporal
epidemic dynamics and transmission routes illustrated by the repeated peak and fade-out
patterns. In addition to the state-specific constants μs and spatial terms ϕi,t, also the local
constant λi, deviation parameter σϕ and the seasonal term γt could depend on state if seen
appropriate. Our attempts to include the state dependent local constants λi and devia-
tions σϕ lead to multimodality and convergence issues. Thus, the inclusion of those further
complexities in our model remains as a future work.

While our focus was on binary data, other observational distributions could be used and
mixed, for example, a joint model of Poisson and Gaussian responses. There are previous
indications of the profitability of the dichotomisation considering the last 30 years of our
data [29]. The model may also be extended to a case with exogenous covariates for the

16



observational distributions or for the transition probabilities.
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Abstract

Countries with stronger support to gender equality tend to invest in policies sup-
porting the dual-earner or earner–carer family models, while countries with stronger
support to conservative gender norms tend to support the male breadwinner model.
However, whilst gender equality norms can be endorsed by the majority of the
population, conservative norms could still be largely supported at the sub-national
level, potentially leading to lower uptake of parental leave among fathers in more
conservative areas.

This study seeks to examine shifting norms in fathers’ parental leave uptake in
Finnish municipalities in the 2010s, around the first reform that gave fathers an in-
dependent right to a 6-week quota of “solo” parental leave. We applied a Bayesian
spatio-temporal model on administrative data from Finnish municipalities and es-
timated local norms based on voting data. Furthermore, we used the proportion of
Swedish residents as a proxy for cross-border policy influences from the neighbouring
country Sweden, where paternal leave-taking has been a longer phenomenon.

Local support to de-familialising policies was found to predict higher leave-
taking, but only under less supportive policy configuration. The proportion of
Swedish-speaking residents was found to be increasingly important for predicting
paternal leave-taking. We interpret this result as a sign of cross-border influences
from Sweden. Interestingly, uptake increased the fastest in a more conservative
region, probably due to its strong linguistic and cultural links to Sweden. Fur-
thermore, we observed spatial dependencies between neighbouring municipalities,
which supports our spillover hypothesis; that interactions among families nearby
lead them to adopt new practices.

These results trigger new theoretical considerations concerning the role of gender
norms in affecting citizens’ behaviour in the family policy field and how these norms
interact with policy reforms, the role of national institutions in affecting welfare state
preferences at the local level, and the importance of community socialisation.

Keywords: Fathers, parental leave, gender norms, geographical context, spatio-temporal
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modelling, Bayesian statistics

Introduction

In recent years, family policies have shifted towards more gender-neutral and father-
specific parental leaves to encourage fathers to take more parental leave (Daly, 2020). This
shift is part of broader efforts to promote gender equality: increasing fathers’ involvement
in care work is seen as crucial for reducing the gender wage gap and improving women’s
economic well-being (Ponthieux and Meurs, 2015). Despite the policy developments, many
fathers still forgo leave or use less than their entitlement (Koslowski et al., 2019). While
fathers have increased leave-taking and the time spent with their children, parenting
remains gendered even in the most supportive policy contexts (Eydal and Rostgaard,
2023; Blum et al., 2023; Duvander et al., 2019).

The design of parental leave policies affect uptake and can support gender equality
or reinforce inequalities (Koslowski et al., 2019; O’Brien and Wall, 2017). Long periods
of low-paid or unpaid sharable leave tend to be predominately taken by mothers, while
ear-marking well-paid, non-transferrable solo leave for the father has been shown to be
effective in boosting active paternal participation beyond infancy to the long term and
shifting gender norms towards more equal parenting (Duvander et al., 2019; Fernández-
Cornejo et al., 2016; Koslowski et al., 2019; O’Brien and Wall, 2017; Omidakhsh et al.,
2020; Ottosen, 2014; Tamm, 2019).

On the other hand, individual gender role attitudes influence the configuration of
family policies: countries with stronger support to gender equality tend to invest in policies
supporting the dual-earner family model or the earner–carer family model, while countries
with stronger support to conservative gender norms tend to have policies supporting the
male breadwinner family model (Duvander and Ellingsæter, 2016; Häusermann, 2018).
However, gender equality norms can be endorsed by the majority of the population at
the national level, whilst conservative norms could still be largely supported at the sub-
national level (Lomazzi, 2017; Pfau-Effinger, 2023). As a consequence, though paternal
leave entitlements may been implemented and available throughout the society, their
uptake can substantially vary: fathers in conservative areas are assumed to be slower to
adopt new leave practices, while their counterparts in more liberal areas may be quicker
to adapt to the expansion of paternal entitlements.

This study seeks to examine shifting norms in fathers’ parental leave uptake in Finnish
municipalities in the 2010s, around the first reform that gave fathers an independent right
to a six-week quota of ”solo” parental leave, intended to be taken after the mother’s return
to work or studies. While Finland represents the Nordic family policy model, where both
parents are considered responsible for both earning and caring (Korpi, 2000; Lewis, 2009),
and has a long tradition of supporting maternal labour force participation, Finland used to
lag behind its Nordic counterparts when it comes to developing leave policies that support
gender equality and fathers’ independent leave entitlements. Using administrative data
from Finnish municipalities and an innovative method for determining local gender norms
as well as cross-border policy influences from Sweden—the neighbouring country that
has been the forerunner in gender-equal parental leave—this study provides new insights
into regional analysis and how local contexts and cultural influences shape responses to
national policies.
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Gender Norms and the Shape of Family Policy: The-

oretical Considerations

The evolution of gender norms

There is a very well-informed literature that has investigated how social norms contribute
to shaping family policy at the national level (e.g., (Sjöberg, 2004; Pfau-Effinger, 2014;
Kangas and Rostgaard, 2007; Rossier et al., 2011; Emmenegger and Manow, 2014; Pavolini
et al., 2021)). With social norms, we refer to those shared modes of regulations connected
to forms of social recognition (Dubois, 2002). Social norms rest more or less explicitly on
underlying values, pointing to what is socially acceptable and what is not (Bicchieri et al.,
2023). Consequently, social norms are prescriptive since they imply sanctions for those
who decide not to comply with them (Rossier et al., 2011). Furthermore, social norms
are plural since a diverse and even conflicting array of norms may coexist in the same
sphere—including the family one (Rossier et al., 2011). Norms supported and promoted
by the highest source of authority—such as the State or the most influential group—are
defined as dominant and end up being shared by the majority of the society, though to a
different extent.

When focusing on the family sphere, individual attitudes concerning gender norms are
assumed to influence the specific configuration of family policy at the national level. These
attitudes can be interpreted as the cognitive representation of what is believed appropriate
for males and females in a specific context and are thus associated with preferences for
a specific family model and gender roles inside and outside the labour market (André
et al., 2013; Lomazzi, 2017; Lomazzi and Seddig, 2020). Individual attitudes concerning
gender norms, however, are not static; on the contrary, they have evolved in parallel with
societal modernisation (Inglehart, 1997). The theory of modernisation asserts that as a
society attains significant levels of existential security, people become more receptive to
adopting new social norms that match emerging post-materialist desires like autonomy
and self-fulfilment (Inglehart, 2008; Inglehart and Norris, 2003).

Over the past seven decades, there has been a transition in Western societies from
norms centred around survival to those emphasising individuality (Inglehart, 2018). The
move toward individual-oriented norms has resulted in a progressive alteration of citizens’
perceptions regarding gender roles. The rise of secularisation, increased educational at-
tainment, greater participation of women in the workforce, and elevated divorce and single
motherhood rates have catalysed a movement towards gender equality values (Inglehart
and Norris, 2003). Consequently, the proportion of individuals embracing egalitarian or
libertarian views, advocating against gender-based segregation within and outside the
household, has significantly grown (Lomazzi and Seddig, 2020). In various national set-
tings, this demographic now surpasses those adhering to conservative or authoritarian be-
liefs favouring gender-specific roles, where women are predominantly assigned caregiving
responsibilities. In most Western European countries, this value shift became prominent
mainly from the 1990s onward. Nevertheless, the pace and scale of this transformation
differ among countries (e.g., Pavolini et al., 2021), and traditional gender norms—though
having substantially weakened—have not disappeared and still coexist with the liberal
ones (Giuliani, 2022, 2024).
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Gender norms and the configuration of family policy instruments

The comparative literature has identified two macro-policy instruments within family
policy (Leitner, 2003; Häusermann, 2018; Saraceno, 2022; Giuliani, 2024). On the one
hand, familialising policy instruments intend to strengthen the family’s caring function,
primarily through passive measures (Leitner, 2003). Within this category, we find family
allowances, child benefits, cash-for-care, and tax rebates for families. Regarding gender
equality, these measures do not alter the uneven distribution of paid and unpaid work
within the household (Jenson and Jacobzone, 2000). On the contrary, they may reproduce
and reinforce the gendered specialisation of tasks, disincentivizing women to enter (or
re-enter) the labour market (Duvander and Ellingsæter, 2016). For this reason, such
instruments tend to be associated with the male breadwinner family model, where men
work, and women care for children and the frail elderly.

On the other hand, de-familialising policy instruments facilitate care outside the fam-
ily (Leitner, 2003; Saraceno and Keck, 2011). In this regard, childcare represents the main
instrument for achieving this goal. Parental leave is a more complex policy instrument to
classify. Empirical research has pointed out that relatively short and well-paid leave influ-
ences positively the mother’s chances of re-entering the labour market (e.g., (Pylkkänen
and Smith, 2004; Petersen et al., 2014; Ferragina, 2019)). Simultaneously, women’s em-
ployment outcomes will likely improve when periods reserved for fathers are present and
associated with high replacement rates (Kotsadam and Finseraas, 2011). De-familialising
policy instruments thus foster the consolidation of the dual-earner family model, where
both parents are fully employed (Häusermann, 2018). Regarding gender equality, child-
care has a de-gendering effect since outsourcing care has a positive effect on the female
employment rate (Korpi, 2000). However, it did not explicitly affect the redistribution
of unpaid work per se. On the contrary, fathers’ leave uptake is associated with a direct
de-gendering goal since it helps to re-distribute caring tasks within the family between
mothers and fathers in a more equal way. Fathers’ leave is thus said to be associated with
the earner–carer family model, where both parents are in the labour market and share
caring responsibilities (Misra et al., 2007; Ciccia and Verloo, 2012).

The national configuration of the family policy consists of a mix of these policy instru-
ments. The degree (weak vs. strong) to which both these policies are developed varies
across welfare states; analysing their combinations, four different varieties of familialism
emerge (Leitner, 2003; Häusermann, 2018). Explicit familialism strengthens the caring
functions of the family but does not provide any alternative to family care. Optional
familialism implies the parallel development of familialising and de-familialising policies;
the family can be supported in its caring functions but alternatives are also offered. Im-
plicit familialism provides neither de-familialisation nor active support for the caring tasks
of the family. Finally, de-familialism is characterised by highly-developed de-familialising
policies which unburden families from caring activity.

Overall, individuals showing pro-gender equality attitudes favour de-familialising mea-
sures, which foster the consolidation of the dual-earner family model and even the earner–
carer one (Korpi, 2000; Pavolini et al., 2021). Those with more conservative/authoritarian
attitudes prefer familialising policy instruments, which reinforce the male breadwinner
model (Wood et al., 2023). Family policy reforms in a specific national context are
expected to be affected by the gender norms endorsed by the most influential group. If
libertarians are the majority, gender equality norms will be dominant, and de-familialising
policy instruments will be expanded. On the contrary, if authoritarians are still in a pow-
erful position, conservative gender norms remain dominant and familialising instruments
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will be maintained.

Political party articulation of gender norms

Partisan politics operates under the assumption that a political party’s welfare priorities
are influenced by the interests of its voter base (e.g. Korpi, 1989). In the realm of family
policy, this means that parties adjust their policy agenda based on the cultural inclina-
tions of the electorate regarding gender norms (Pavolini et al., 2021). Generally speaking,
on the left pole of the political spectrum, Social Democrats, the Radical Left, and the
Greens usually rely on a cultural-progressive constituency favouring gender equality. Con-
sequently, they are more inclined to support de-familialising measures such as childcare
and fathers’ parental leave (Häusermann, 2010, 2012).

On the right pole, the picture is more nuanced. Support for liberal parties has tra-
ditionally been rooted among libertarian electors (Häusermann, 2010). Thus, it is not
surprising that the parties—especially in the Nordic countries—have historically sup-
ported de-familialising measures and the dual-earner family model (e.g., (Hiilamo and
Kangas, 2009)). On the contrary, Christian democratic and conservative parties have
been long associated with a traditionalist electorate. As a result, they have been said
to promote familialising measures, such as cash-for-care (van Kersbergen, 2003; Leitner,
2010; Blome, 2016). However, societal modernisation has also impacted their voters in
the last decade: in several Western European countries, centre-right supporters—first
of all, working women—have gradually endorsed gender equality norms (Ferragina and
Seeleib-Kaiser, 2015). As a consequence, in the post-Fordist era, the Christian democrats
and conservatives have been increasingly incentivised to move away from a pure familis-
tic agenda and to back de-familialising measures in order to avoid electoral punishment
(Emmenegger and Manow, 2014).1 In such a new modernised context, the preferences
of authoritarian electors are increasingly often represented by the Radical Right parties,
which, consequently, have adopted strict familistic stances (Giuliani, 2023; Meardi and
Guardiancich, 2021). The relative strength of political parties at the subnational level can
provide valuable information about the geography of gender norms and, therefore, about
the individuals’ current use of de-familialising policy instruments, such as fathers’ parental
leave. In those contexts where parties displaying strong support for de-familialisation re-
ceive a high electoral score, we can expect these instruments to be used to a great extent.
On the contrary, in those areas where parties showing an explicit endorsement for famil-
ialisation obtain a high electoral success, we can expect a low uptake of the same policy
instruments.

Parental leave in Finland

Finland has a generous social policy regime and a long tradition supporting the dual-
earner family model. Promoting gender equality in terms of both parents having the
right to both paid work and caring for their young children has been the focus of Finnish
and other Nordic family policies for decades (Duvander et al., 2019; Huttunen and Eerola,
2015). As mothers started being employed at similar rates to fathers, the focus of gender
equality shifted from enhancing women’s employment to increasing fathers’ participation
in unpaid work.

1In Finland, the Christian Democrats are a religious-niche party with less than 5% support, mainly
from fundamentalist Christians (Arter, 2022).
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In the late 1970s, Finland and Norway were the first countries in the world to introduce
paid paternity leave, followed by sharable parental leave soon after (Huttunen and Eerola,
2015). Despite this, the development of individual parental rights of father was slower in
Finland than its Nordic counterparts, and fathers’ uptake of solo parental leave has been
a more recent phenomenon (Lammi-Taskula, 2017). In 2002, the leave scheme consisted
of 18 weeks of paid maternity leave and 3 weeks of paid paternity leave (usually taken
around birth), 43 weeks of sharable paid parental leave, and childcare leave with a low,
flat-rate cash-for-care compensation available until 36 months. Most paid leave was (and
still is) income-compensated at 70% up to a ceiling (around median income) and lower
above that, with no upper limit. Parents with no or low income received a minimum flat-
rate allowance. The eligibility to parental leave and childcare leave has been a universal
benefit, with no requirements regarding employment or income, but only fathers married
to or cohabiting with the mother were eligible before 2017.

Despite the sharable leave being available to fathers, it was almost always fully used
by mothers (Kellokumpu, 2007). To encourage fathers to take solo parental leave, Finland
followed its Nordic counterparts by introducing the first non-transferrable father’s quota
in 2003. At first, however, this “daddy month” was conditional on the mother’s consent
to share parental leave: the father got two bonus weeks after the parental leave period
if they used at least two weeks of the sharable parental leave. Relatively few families
took advantage of the daddy month, so a reform in 2007 increased its flexibility, allowing
postponement of leave until 18 months, and another in 2010 increased the duration up to
54 days in total (3 weeks of birth-related leave and 6 weeks of solo parental leave). Still,
less than a third of fathers used their quota leave before 2012. In 2013, Finnish fathers
finally got an independent right to a six-week quota available until 24 months (Salmi
and Närvi, 2017). In 2022, Finland introduced a fully gender-equal parental leave reform
granting both (custodial) parents an independent right to 6.5 months of parental leave,
of which 16 weeks is non-transferrable (Kinnunen et al., 2024).

The entitlement to early childhood education and care (ECEC) starts at nine months,
although the majority of families (around 90 %) have used at least some childcare leave
as an extension to parental leave (Österbacka and Räsänen, 2022). In 2015–2021, about
a third of all 0–2-year-olds participated in ECEC (Statistics Finland, 2021).

During our study period, taking paternity leave was already common: For children
born in 2009–2017, on average 76 percent of all fathers and 83 percent of employed fathers
took at least some leave, typically the three-week paternity leave with the mother and
their newborn. Taking father’s quota was less typical, with 36 percent of all fathers and
40 percent of employed fathers taking father’s quota, although the share was strongly
increasing with the period, especially before the 2013 reform (increasing from 22% to
44%; own calculations). Fathers’ share of recipients and leave days has been growing over
the years, but leave use has remained gendered: about 89 percent of all parental leave
days were paid to mothers in 2019 (Kela, 2020).

Hypotheses

Individual attitudes and gender norms also have a geographical dimension (Lomazzi,
2017; Uunk and Lersch, 2019). While at the national level, gender equality norms can be
endorsed by the majority of the population—thus triggering de-familistic policy reforms—
at the sub-national level, conservative norms could still be largely championed. As a
consequence, though de-familialising instruments are de jure implemented and available
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throughout the whole national territory—such as father’s quota of parental leave—their
uptake can substantially vary: in those territories where conservative gender norms are
still dominant, the actual use of national de-familialising measures is expected to be lower.
Thus, we hypothesise:

H1: Fathers’ quota use increased faster in municipalities with more support
for liberal gender norms.

Finland has a Swedish-speaking language minority (about 5% of the population) that
mainly lives in three regions: Uusimaa, Southwest Finland, and Ostrobothnia. The first
two regions are bilingual, with Finnish being the dominant language in most municipal-
ities, while Swedish is the dominant language in the Ostrobothnia region. Due to the
shared language, the Swedish-speaking population has stronger cultural ties to Sweden
and individuals feel strong affinity with the neighbouring country, especially in the Os-
trobothnia region (Lindell, 2020). As Sweden has been the forerunner in gender-equality
promoting parental leave, with high shares of fathers taking leave (Duvander et al., 2019),
the Swedish-speaking population in Finland may have been acculturated to paternal leave-
taking earlier than the Finnish-speaking population. We thus assume that the policy
feedback effect—according to which welfare institutions shape citizens’ welfare policy
preferences (Svallfors, 1997; Pierson, 2001; Jordan, 2013)—triggered by the Swedish fa-
ther’s quotas has indirectly “crossed the border”, therefore affecting fathers’ leave uptake
amongst the Swedish-speaking minority in Finland. Hence, we hypothesise:

H2: Fathers’ quota use increased faster in municipalities with more Swedish-
speaking residents.

Finally, neighbouring municipalities are likely to share a common cultural heritage,
including cultural norms. If care practices start shifting in one area, we expect it has a
spill-over effect on the neighbouring area (e.g., Bertrand et al., 2000; Bobba and Gignoux,
2019) when families in close geographical proximity interact and share information. As
such, we hypothesise:

H3: Fathers’ quota use varied spatially so that uptake was more similar in
neighbouring municipalities, even after accounting for their socioeconomic and
cultural characteristics.

Data and methods

Party Manifesto content analysis and family policy positions in
Finland

Following the established tradition in comparative politics and comparative welfare state
literature, to assess Finnish parties’ family policy positions, we performed a content anal-
ysis of their manifestos of political programs issued during the 2019 elections (Budge,
2001; Enggist and Pinggera, 2021; Giuliani, 2024).

To identify the extent to which political parties support familialism and de-familialism,
we recoded the data as quasi-sentences from the Comparative Manifesto Project Database
(CMP). The quasi-sentences were assigned to three categories: Domain A, “Familialising
Policy Instruments”; Domain B, “De-Familialising Policy Instruments”; and Domain C,
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“Ambiguous Policy Instruments”. We also coded whether the sentiment was positive
(expanding) or negative (retrenching).

The quantitative results of the content analysis were used to construct a De-Famil-
ialisation/Familialisation Party Index (see Section A of Supplementary material, avail-
able on https://github.com/tihepasa/paternal leaves). We plotted the values of the two
indexes in a Cartesian graph, where it is possible to see the combined positions of the
political parties (Figure 1).
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Figure 1: Parties’ combined position in the multi-dimension of political conflict. In order
to avoid bias in the calculation of the final positions, two threshold values were identified.
Familialisation and De-familialisation Index values ranging from 0 to 15 respectively show
very low support for familialising and de-familialising policy instruments and therefore
are treated as neutral positions. The black horizontal and and vertical lines mark these
thresholds. Source: Authors’ own elaboration on Comparative Manifesto Project Data.

Overall, the Finnish party system in 2019 is biased toward support for de-familialising
policy instruments. Indeed, all the Left/Green (Social Democrats, Left Alliance, Green
Union) and Liberal (Swedish People’s Party) parties are located in the “De-familialism”
quadrant. In other words, they show low or no support for familialising measures and a
moderate–high backing for de-familialising measures. Even the main centre-right party,
the National Coalition, is located in this quadrant.

The Christian Democrats in Finland, on the other hand, are positioned in the “op-
tional familialism” quadrant: the party both endorses familialising and de-familialising
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measures. However, its position is more biased toward the former ones. Finally, the
Finnish Centre (a former agrarian party) and the Finns Party (former True Finns; radical
right) are located in the “explicit familialism” quadrant, indicating that they champion a
familistic agenda. In particular, the Finns Party strongly oppose de-familialising measures
and promote the male breadwinner family model.

We can draw two conclusions from the analysis of the Finnish party manifestos. First,
at the national level, there is a sort of “de-familialism” consensus within the Finnish party
system, suggesting that gender equality norms are dominant and that libertarian citizens
are the majority. However, the political strength of familistic parties is not irrelevant:
altogether, the Christian Democrats, the Finnish Centre, and the Finns Party obtained
35% of the votes. As a result, the total weighted mean falls just within the optional
familialism quadrant. This suggests that conservative gender norms are still spread in
the country—co-existing with the progressive ones—and that authoritarian citizens are
a powerful minority. We expect that in those territories where the Christian Democrats,
the Finnish Centre, and the Finns Party have obtained solid electoral success, the uptake
of paternal leaves will be lower.

Administrative data

Our spatio-temporal data have been obtained from registers maintained by Statistics
Finland and the Social Insurance Institution of Finland, Kela. The data consist of several
variables describing the Finnish population on municipality level, based on the availability
of parental leave data between 2009 and 2019. During this time period there were two
legislative changes related to the parental leaves that entered into force, one in 2010 and
another in 2013. All the data are presented on a yearly level using the municipal division
as of 2023. The analysis considers only mainland Finland, excluding the self-governing
autonomous Åland Islands—this results in 293 municipalities in total.

We used three different sources to prepare our data. First, the information about
parental leave uptakes (share and number of fathers using father’s quota, i.e., more than
the three-week paternity leave), total number of fathers, and proportion of entrepreneurs
were derived from licensed data modules from Statistics Finland and the Finnish Health
Institute (THL). The averages over time of the share of fathers taking father’s quota are
visualised in Figure 3. The yearly maps of the original values can be seen in Supple-
mentary Figure 6. Secondly, the spatial information about the proportions of registered
mother tongues (variable code name in the database is 11ra), of low income (127y), and
of unemployed (12tf), as well as the educational level (12bs) and the party support shares
(13sw) are gained from the open database of Statistics Finland. Also all these variables
are reported on a yearly level with the exception of the party support information which
is based on the votes in the Parliamentary elections typically occurring every fourth year.
Thirdly, the map of the municipalities is retrieved via R library geofi (Kainu et al., 2023)
that returns the areal division used by Statistics Finland in their datasets.

Most of the data are available in the Supplementary material. However, due to privacy
reasons we are unable to publish data on 2637 year-municipality combinations with small
cell sizes (fewer than three quota users or non-users; about 9.5%). We conducted the main
analysis using the full, uncensored data in a secure environment but also show replication
codes and results using the censored data in the Supplementary material. The variables
and descriptive statistics, apart from the voting statistics, can be found in Supplementary
Table 7.
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Constructing (de)familialisation scores for municipalities

Based on the Parliamentary election information, we know the proportions of votes for
each party in each municipality in each election. The variables describing support to
(de)familialising policies in given municipalities are derived from the party shares. To
gain more robust approximations that are less sensitive to electoral volatilities, the shares
are averaged locally over the years 2007, 2011, 2015 and 2019. The familialisation and de-
familialisation scores in each municipality are calculated from the vote shares according to
the transformation coefficients in Giuliani (2023) and supplemented with the coefficients
for the Christian Democrats (derived using the same methodology). Explicitly, we have

familialisation score =32 · FP + 0 · SDP + 0 · NCP + 67 · Centre + 0 ·Green

+ 11 · Left + 44 · CD,
de-familialisation score =− 23 · FP + 63 · SDP + 100 · NCP + 11 · Centre + 95 ·Green

+ 85 · Left + 30 · CD,
where the letter abbreviations denote the average percentage of election votes for each
party: FP = Finns Party (Perussuomalaiset in Finnish), SDP = Social Democratic Party
(Suomen Sosialidemokraattinen Puolue), NCP = National Coalition Party (Kansalli-
nen Kokoomus), Centre = Centre Party (Suomen Keskusta), Green = Green League
(Vihreä liitto), Left = Left Alliance (Vasemmistoliitto), and CD = Christian Democrats
(Suomen Kristillisdemokraatit). Votes for the Swedish People’s Party (SPP) were not
accounted for in the main analyses, despite being the majority party in several municipal-
ities, as SPP supporters generally do not make their voting decisions based on culturally-
oriented considerations but linguistic identity (see Section A in Supplementary material,
and Supplementary Table 8 for descriptive statistics on (de)familialisation scores with and
without the SPP votes).

Further inspection revealed that familialisation and de-familialisation scores have a
strong correlation in the Finnish case (ρ = −0.95). Thus, we performed a principal
component analysis via singular value decomposition on these two variables to gain un-
correlated variables. The original familialisation and de-familialisation scores, as well as
the principal components, are illustrated in Figure 2.

The first principal component may be interpreted as a scale from explicit familialism
to de-familialism (with higher values indicating higher support to de-familialising poli-
cies and lower support to familialising policies). This component alone explains 97.5%
of the variance in the familialisation and de-familialisation scores. The second principal
component can be interpreted as the left-over variation in the direction between optional
familialism and implicit familialism (with higher values indicating higher preference to-
ward the latter), and it explains the remaining 2.5% of the variation, i.e., very little.

Descriptive statistics

Figure 3 illustrates the shares of fathers’ quota use and Swedish-speaking residents and
the two principal components, showing an average across the study period. Overall, the
fathers used quota more in and around big cities (especially the capital region, Turku,
and Tampere) and in the Swedish-dominant Ostrobothnia region. Uptake was the lowest
in rural areas further away from bigger cities. See Section B of Supplementary material
for annual descriptive statistics.
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Figure 2: Scatter plot of the local familialisation and de-familialisation scores, and the
principal component axes derived from them as black arrows. The length of the arrow
reflects the share of variation in the scores the component captures. The appearance of
the score observation indicates the main party in the municipality.

Regarding the first principal component, PC1, liberal municipalities with high pref-
erence for de-familialism (marked with yellow) were located in and around the biggest
cities, while higher preference for explicit familialism (marked with dark blue) was pre-
dominately found in the smaller municipalities in the Finnish-dominant regions of South,
Central, and North Ostrobothnia. Regarding the second principal component, PC2, which
differentiates municipalities in their preference between optional familialism and implicit
familialism, the map shows small differences between Lapland in the north (more op-
tional familialism) and the rest of the Finland (less optional familialism), but overall the
differences are negligible in comparison to the first principal component.

Model

The interest here is to model the uptake of father’s quota taking into account the location
and time. We denote each location with i = 1, . . . , N and each time point with t =
1, . . . , T , where N and T denote the numbers of municipalities and years, respectively.
As a response variable, yi,t, we use the amount of fathers who have taken father’s quota
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Figure 3: Descriptive statistics of the main variables of interest. The top panel shows
municipal-level averages of the shares of fathers’ quota use for child cohorts 2009–2017 and
the shares of Swedish-speaking residents in 2009–2017. The lower panel shows principal
components based on familialisation and de-familialisation scores (see the main text for
more information). White spots show the locations of the main cities in each region.

of parental leave. They are modelled with binomial distribution and inverse logit link:

yi,t ∼ Bin(ni,t, pi,t), (1)

where the first parameter of the distribution, ni,t, denotes the total number of fathers in
the municipality i during the year t, and the second parameter denotes the probability
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of taking father’s quota in that municipality and year. The second parameter, or the
probability of quota use, is our main interest and tool for answering the research questions,
and it is defined as

pi,t = logit−1

(
ct + σϕϕi,t +

K∑
k=1

βk,txi,k,t

)
, (2)

where K is the number of explanatory variables. This probability consist of three parts.
First of all, there is the time dependent nationwide constant ct, describing the average
probability of taking father’s quota. This parameter is constructed as a random walk
ct ∼ N(ct−1, σ2

c ).
Secondly, the spatial effect that cannot be explained with other included variables

is captured by the term σϕϕi,t. We assign an ICAR (Besag, 1974) structure for this
component so that municipalities close to each other have more similar effects than those
far from each other. As ICAR requires the knowledge of the neighbourhood of each site, we
define that municipalities sharing borderline are neighbours. Based on this neighbourhood
structure, we define a matrix W indicating the neighbourhood such that

wi,j =

{
1, when locations i and j are neighbours, and i �= j

0, otherwise,

and a diagonal matrix D collecting the numbers of neighbours of each location i as

di,j =

{
number of neighbours of location i, when i = j

0, otherwise.

Then, the ICAR structure for the spatial random variables at each time point can be
written as ϕt ∼ N(0, (D − W )−1). The symbol in bold denotes a vector of length N .
This results in having for each year spatially dependent variables that are independent
between the years.

Finally, the probability of taking father’s quota is explained with a general regression
term using the covariates available. The regression coefficients are let to depend on time
monotonically in a similar way as in Bürkner and Charpentier (2020), so that the effect
is decreasing or increasing across the years but it cannot alter between these during the
time window. This is done with helper vectors bk of length T , with the first element fixed
to zero and the rest summing up to one, thus constructing a simplex for each covariate k.
The regression coefficients at the first and the last time point, βk,1 and βk,T , are defined
separately, in Bayesian context we set priors for them individually. Using the helper
simplexes, the coefficients at the other time points are defined as

βk,t = βk,1 + (βk,T − βk,1)
K∑
i=1

bi

for all k = 1, . . . , K, and t = 2, . . . , T − 1. In our case, all the explanatory variables
are standardized based on their mean and standard deviation on each year individually.
This facilitates the comparison between the covariates but also has to be taken into
consideration when interpreting the results.

The model is fitted via Bayesian approach, which requires setting prior distributions
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for the unknown parameters. The full listing of the priors we use is

c1 ∼ N(0, 12),

ct ∼ N(ct−1, σ2
c ), for all t = 2, . . . , T,

σc ∼ N(0, 12)[0, ],

σϕ ∼ N(0, 12)[0, ],

ϕt ∼ N(0, (D −W )−1), given
N∑
i=1

ϕi,t = 0, for all t = 2, . . . , T,

βk,1 ∼ N(0, 12), for all k = 1, . . . , K,

βk,T ∼ N(0, 12), for all k = 1, . . . , K,

bk,2:T ∼ Dirichlet(11, . . . , 1T−1), for all k = 1, . . . , K,

(3)

where N(., .)[x, ] indicates that the distribution is left-truncated at x and the indexation
bk,2:T denotes the components from 2 to T of the vector bk. These priors are mostly
weakly informative and merely set to enhance the computation (see Banner et al., 2020).

The model was estimated with Markov chain Monte Carlo (MCMC) using rstan (Stan
Development Team, 2023), which is an R interface (R Core Team, 2023) for the probabilis-
tic programming language Stan for statistical inference (Stan Development Team, 2024).
The posterior samples were drawn using the NUTS sampler (Hoffman and Gelman, 2014;
Betancourt, 2018) with four chains. Each chain consisted of 8,000 iterations, of which
the first 1,500 were discarded as a warm-up. The estimation was done on Statistics Fin-
land’s Fiona remote access system, equipped with 2.3 GHz Intel Icelake processors and 64
GB of RAM. The estimation took approximately 30 minutes using four parallel chains.
According to the MCMC diagnostics available in rstan (Vehtari et al., 2021), the model
converged appropriately. All the R̂ statistics were less than 1.005 and the effective sample
sizes were approximately between 1,200 and 27,000.

Results

The upper panel of Figure 4 illustrates the nationwide regression coefficients of the local
Swedish-speaking proportion and the principal component values describing the scales
from explicit familialism to de-familialism and from optional familialism to implicit famil-
ialism. The lower panel shows the effects of changing the covariate values on the predicted
probability of taking the fathers’ quota, calculated as average marginal predictions.

For the two principal components, we compared the upper and lower quartiles of the
observed covariates. The effects of the first principal component PC1 (explicit familialism–de-
familialism) and the second PC2 (optional familialism–implicit familialism) were decreas-
ing throughout the study period. The effect of PC1 decreased abruptly between 2012 and
2013, which coincides with the 2013 policy reform. The effect of PC2 is slightly decreas-
ing but very small. Due to having very little variation in the data (see Figure 3), this
dimension does not have any practical significance at the population level. Overall, we get
partial support for hypothesis H1: Municipalities with higher support to de-familialism
have a greater probability of using the fathers’ quota, but only before the 2013 parental
leave reform.

In the case of the Swedish-speaking population, we compared cases of 50 percent
Swedish-speaking residents (approximately the proportion of Swedish-speaking residents
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in the Ostrobothnia region) and 0.2 percent, which is the median of the Swedish-speaking
residents across all municipalities. The effect of having more Swedish-speaking residents
increased over time, suggesting a multiplicative effect of supportive policies and accultur-
ation to paternal leave-taking and giving support to hypothesis H2.
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Figure 4: Regression coefficients (top) and predicted probabilities (bottom) for the pro-
portion of fathers taking father’s quota of parental leave in Finnish municipalities for child
cohorts 2009–2017. In the upper panel, the dark lines show the posterior mean (with 95%
posterior interval as shaded area) of regression coefficients βk,t for the two principal com-
ponents and the proportion of Swedish-speaking residents. In the lower panel, the lines
depict the average marginal probabilities of taking the fathers’ quota comparing the effect
of changing the values of the covariate being considered, and the shaded areas their 95%
posterior intervals. The yellow lines represent the cases of higher values of the covariate
(50% for Swedish, upper quartile for the other two) and turquoise the cases of lower values
(median for Swedish and lower quartile for the other two).

The spatial components ϕi,t, describing the spatial variation not captured by the
covariates, are illustrated in Figure 5. There seem to be clear spatial dependencies between
neighbouring municipalities since the coefficients of adjacent areas are more similar than
those of areas far apart. Overall, we find support to H3 about spill-over influences from
neighbouring municipalities.
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ϕi,t

Figure 5: The posterior means of the spatial variables ϕi,t showing the spatial dependency
not explained by the covariates.

Predictions from the model correspond well to the observations (see Section C of the
Supplementary material, which also includes detailed results of all the model parame-
ters). We also estimated a number of additional models with differing specifications and
conducted model comparisons. Due to resource limitations of the secure environment,
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these were conducted using the censored data. Based on the comparison of the full data
and censored data, both resulted in similar results. In order to verify the importance of
the spatial component ϕi,t, we made comparisons between our main model and another
model without the spatial component, based on which we determined that the model
with the spatial component fits the data better. We also contrasted the binomial model
with the beta-binomial model for accounting for potential overdispersion, but this did not
improve the model fit, and the main conclusions from both distributional assumptions
were identical. Further details about the model comparisons can be found from Section
D of the Supplementary material.

We also tested how robust our results were to the exclusion of the SPP votes. This
alternative specification resulted in a model with qualitatively similar conclusions but the
effects were slightly smaller in magnitude for the main variables of interest. The results
can be found from the Supplementary material Section D.

Discussion

The present work has examined to what extent gender norms at the local level and
cross-border policy influences from Sweden were associated with fathers’ parental leave
uptake in Finnish municipalities in the 2010s—around the time when a policy reform
provided fathers with an independent right to a six-week quota of ”solo” parental leave.
We formulated three interconnected hypotheses. First, we expected fathers’ quota use
to increase faster in municipalities with more support for liberal gender norms. Second,
we hypothesised that the policy feedback effect triggered by the Swedish leave policy has
indirectly “crossed the border”: we thus expected fathers’ quota use to rise speedier in
municipalities with more Swedish-speaking residents, as they are more exposed to the
influences of the Swedish leave practices through media. Third, we assumed that fathers’
quota use varied spatially so that uptake was more similar in neighbouring municipalities,
since we expected that families in close geographical proximity interacted and were more
likely to adopt new practices when seeing them being used by others.

By using administrative data from Finnish municipalities and familialisation/de-famil-
ialisation indexes from a content analysis of Finnish party manifestos for approximating
local gender norms, three main findings emerge from the empirical analysis. First, lo-
cal support for de-familialising policies—which denotes more liberal attitudes concerning
gender norms—predicted higher quota use, but only before the 2013 reform, i.e. when
the father’s bonus leave was conditional on the mother shortening her leave. After the
2013 reform, when fathers got an independent right to a six-week quota of parental leave,
local gender norms lost importance. We can explain this result in two alternative ways:
either the 2013 reform was effective in equalising leave-taking between families across the
country or local gender norms may be more important in affecting the duration of mater-
nal leave-taking than whether fathers take leave—at least during the time when father’s
quota was measured in weeks rather than months. Therefore, our first hypothesis was
only partially confirmed: gender norms do likely affect fathers’ parental leave uptake, but
such an effect seems to decrease due to effective changes in the institutional arrangements.
This result triggers new theoretical considerations concerning the role of gender norms in
affecting citizens’ behaviour in the family policy field and how these norms interact with
policy reforms. Future research can explore these interaction dynamics at the theoretical
and empirical levels.

Second, a higher proportion of Swedish-speaking residents was found to be increasingly
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important factor over the years, especially after the 2013 reform. Our second hypothe-
sis was thus confirmed. We interpret this result as a sign of cross-border policy influence
from Sweden: the combination of supportive policies and exposure to behavioural changes
seem to produce a multiplicative effect boosting paternal leave-taking. Such results sug-
gest that foreign national policy feedback effects can cross the border, heading to those
close regions inhabited by culturally and linguistically-related minorities, and thus can
contribute to shaping these populations’ preferences even before a similar policy is en-
acted at the national level. This finding triggers new theoretical considerations regarding
the role of national institutions in affecting welfare state preferences at the local level,
thus potentially sparking new avenues of research within the literature on the comparative
welfare state and Historical Institutionalism.

Interestingly, the region where uptake increased the fastest is Ostrobothnia, which is
predominately Swedish-speaking but is also the region with the most support for conserva-
tive values among the Swedish-speaking population (Lindell, 2020). Within the Swedish-
speaking population, residents of Ostrobothnia feel more affinity with Sweden (Lindell,
2020) and consume Sweden-Swedish media more often than Swedish speakers in other
regions of Finland (see Section A of Supplementary material). This finding of a conserva-
tive region being the driver of paternal leave-taking suggests that in some circumstances,
family policy preference formation is more institutionally-driven than culturally-driven.
Furthermore, it raises the question of whether (relatively) more conservative families are
inherently more resistant to leave-sharing, or simply tend to be slower to adapt, e.g. due
to observing fewer examples of cultural change or due to facing more barriers.

Third, there are spatial dependencies between neighbouring municipalities, which sup-
ports our ”spillover hypothesis”: the interactions among families nearby likely lead them
to adopt new practices. This result stresses the importance of community socialisation,
and new research could better investigate the dynamics of the spill-over effect, especially
in the most deprived areas.

To conclude, fathers’ parental leave uptake is a highly timely topic, as, since 2022,
all European Union member states have been compelled to offer at least four months of
parental leave to each parent, of which at least two must be non-transferable (Directive
2019/1158). Across Europe, a considerable proportion of parental leave is now reserved
for fathers (or social parents) on a “use-it-or-lose-it” basis (Blum et al., 2023), even though
several countries—especially in Southern and Eastern Europe—continue to lag behind in
the uptake of paternal leaves. Unveiling the factors affecting the variation in fathers’
parental leave uptake and adopting a local-level perspective thus appear increasingly
important in order to analyse the effectiveness of policy reforms.
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