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Abstract

Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes

combined patterns of all species in a community, linking empirical data to ecological theory

and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets

is often computationally demanding and time-consuming. Recent studies have introduced

new statistical and machine learning techniques to provide more scalable fitting algorithms,

but extending these to complex JSDM structures that account for spatial dependencies or

multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM

scalability by leveraging high-performance computing (HPC) resources for an existing fitting

method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that

supports the integration of various dataset types into a single comprehensive model. We

developed a GPU-compatible implementation of its model-fitting algorithm using Python

and the TensorFlow library. Despite these changes, our enhanced framework retains the

original user interface of the Hmsc R-package. We evaluated the performance of the pro-

posed implementation across various model configurations and dataset sizes. Our results

show a significant increase in model fitting speed for most models compared to the baseline

Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times,

demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM

software. This advancement opens promising opportunities for better utilizing the rapidly

accumulating new biodiversity data resources for inference and prediction.

Introduction

The past decade has seen a transformative revolution in data acquisition and sampling meth-

odologies, making large-scale data accessible for ecological research on species communities

[1]. This emergence of novel data resources not only enhances our fundamental understanding

of biodiversity but also establishes a new foundation for sustainable management in the con-

text of global change. However, converting this data into reliable scientific insights presents
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significant challenges in terms of data processing and interpretation. A key statistical develop-

ment in species community analysis is joint species distribution modelling (JSDM), which

combines Species Distribution Modelling with ordination-like approaches to community

assembly assessment [2, 3]. JSDM has become widely used by ecologists and has attracted sig-

nificant interest from statisticians for further methodological development. Several user-

friendly software packages have been created, offering diverse model structures and fitting

algorithms. [4–11].

Since their introduction, the computational scalability of JSDMs for large community data

has been a critical research focus. Initially formulated as a covariate-constrained multivariate

probit (MVP) model [2], JSDMs faced challenges with the small-n-large-p statistical issue

when applied to many species, due to the quadratic growth in estimated parameters with spe-

cies count. This limitation prompted the search for alternative formulations, leading to the

widespread adoption of generalized linear latent variable models (GLLVM) [3] as the most

common design. Subsequent developments integrated Gaussian Processes to account for

potential spatial or spatiotemporal autocorrelation in community data [12, 13], which initially

scaled poorly with the number of spatial locations. Further progress in spatial statistics has

since enhanced the scalability of these spatial JSDMs [14, 15]. Meanwhile, research has also sig-

nificantly advanced the computational efficiency of classic GLLVM fitting through novel tech-

niques for approximating the integration of latent variables [9, 16]. Additionally, scalability

improvements for previously limited MVP-based JSDM formulations have included strategies

such as Monte Carlo integration with stochastic gradient descent and mini-batching [10], as

well as a two-stage divide-and-conquer approach [17].

Recent developments in model-fitting approaches have enhanced the computational scal-

ability of GLLVM and MVP. However, these improvements have not been extended to more

complex JSDM variants. Complex JSDMs not only link species data with environmental pre-

dictors but also explore dependencies on species traits or phylogenetics. Additionally, ecolo-

gists often employ hierarchical multi-level designs [18], which GLLVM or MVP only partially

addresses by assuming the statistical interchangeability of observed sampling units after adjust-

ing for covariates. As ecological datasets expand, their heterogeneity typically increases, under-

scoring the need for accelerated model-fitting methods, especially for large data studies.

Motivated by this unmet need, our study explores a complementary approach to accelerating

JSDM fitting: instead of developing new model-fitting algorithms, we aim to accelerate an

existing algorithm through a novel implementation that leverages modern high-performance

computing (HPC) resources.

In this work, we focus on the hierarchical modelling of species communities (HMSC) [7].

HMSC allows researchers to estimate how species occurrences depend on environmental pre-

dictors and how species-environment relationships are influenced by species traits and phylo-

genetic relationships. It further accommodates various study designs, including spatially or

temporally explicit data and multi-level designs [19]. The HMSC framework is implemented

in the Hmsc R-package, which enables users to define and fit various model types, and subse-

quently post-process model outputs for prediction and inference [20]. While the Hmsc R-

package has demonstrated strong predictive performance [21], it faces computational ineffi-

ciencies with large datasets [22], prolonging model-fitting processes and limiting its utility for

extensive ecological datasets, even with simpler GLLVM models [10].

To address this computational bottleneck, we developed Hmsc-HPC package, an extension

that enhances the functionality of the Hmsc R-package by efficiently utilizing graphical pro-

cessing units (GPUs) and HPC infrastructure. The central innovation of Hmsc-HPC is the

acceleration of the model fitting process by transitioning from R-coded calculations to a Ten-

sorFlow-based computational backend capable of leveraging GPU acceleration [23]. By
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harnessing the parallel processing capabilities of GPUs, we significantly speed up the execution

of the block-Gibbs sampler used in HMSC fitting. This acceleration markedly reduces the time

required for model fitting and addresses performance limitations related to dataset size,

thereby improving the package’s capability to handle large datasets that were previously com-

putationally prohibitive.

Design and implementation

Integrating Hmsc-HPC with Hmsc R-package

The Hmsc R-package provides a comprehensive statistical framework for integrating data on

species occurrence records, environmental covariates, species traits, and phylogenetic infor-

mation while accounting explicitly for hierarchical, spatial, or temporal study designs [19]. Sta-

tistically, HMSC combines elements of generalized linear models and latent factor approaches

within a hierarchical modelling framework. HMSC is fitted using Bayesian inference via Mar-

kov chain Monte Carlo (MCMC) sampling. The Hmsc R-package enables ecologists to define

models, fit them to data, and utilize the fitted models for prediction and inference (Fig 1):

1. Setting model structure and data: In the first step, the user defines the desired model

structure, which reflects the specifics of the collected data and is tailored to address specific

ecological questions of interest. This step also includes pre-processing the original data into

the assumed input format, specifying the optional model features and fine-tuning prior dis-

tributions of the model if necessary.

Fig 1. Pipeline of community analysis with HMSC. The left path represents the standard approach using the Hmsc R-package [20]. The alternative on the right

describes the newly developed Hmsc-HPC augmentation, which allows for model-fitting deployment on HPC infrastructure.

https://doi.org/10.1371/journal.pcbi.1011914.g001
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2. Model fitting: The defined model is then fitted to the provided data using MCMC sam-

pling. Specifically, the Hmsc R-package employs a block-Gibbs sampler, which iterates over

blocks (naturally defined subsets) of HMSC parameters. Within each block, parameters are

updated collectively while keeping others fixed at their current values, sampled from analyt-

ically derived conditional distributions due to the conditionally conjugate design of HMSC.

These distributions are available in closed form. Subsequently, the resulting MCMC chains

undergo processing through trimming and thinning to mitigate the effects of initial chain

positions and autocorrelation. This refinement aims to approximate the true, non-tractable

posterior parameter distribution in HMSC using a finite number of samples.

3. MCMC fit diagnostics: In this step, the validity of the acquired MCMC chains is assessed

using both formal criteria (such as Gelman-Rubin diagnostics [24]) and visual inspection of

trace plots.

4. Inference and predictions: After obtaining a reliable posterior approximation, this step

encompasses the operations that the user wishes to perform with the fitted model. These

operations may include evaluating the model’s explanatory and predictive capabilities,

exploring parameter estimates, and making predictions [7, 19].

The practical use of the Hmsc R-package for large models is hindered by the computational

intensity of Step 2, due to two main reasons. Firstly, Bayesian inference with MCMC methods

is inherently more computationally demanding than approximate Bayesian methods, such as

integrated nested Laplace approximations (INLA) or empirical Bayes methods. These approxi-

mate methods are designed to be more computationally efficient while still providing reliable

estimates, unlike MCMC which aims to assess the entire posterior distribution–a significantly

more complex and resource-intensive task. Secondly, from a software engineering standpoint,

Step 2 in the Hmsc R-package primarily relies on native R computational routines, which are

less numerically efficient compared to implementations in compiled programming languages

[25]. This reliance on a less efficient computational framework results in significantly poorer

performance for the Hmsc R-package compared to recently introduced alternatives tailored

for highly accelerated model fitting [10].

Here we overcome the computational limitations of the Hmsc R-package by replacing its

original model-fitting implementation with a version designed for HPC hardware. This new

package, called Hmsc-HPC, is optimized for deployment on GPUs, which have demonstrated

their effectiveness in various computationally intensive tasks beyond their traditional graphical

applications in recent years. Despite the typically sequential nature of MCMC fitting algo-

rithms, the computations within each MCMC step can benefit significantly from breaking

down into small, independent tasks that can run concurrently on GPU cores. The majority of

operations within the block-Gibbs algorithm are algebraic in nature, lending themselves well

to a “single instruction, multiple data” paradigm. By parallelizing these computations across

the processing units of a GPU, calculations can be executed simultaneously, leading to sub-

stantial efficiency gains [26]. Furthermore, the implementation can run on multicore CPUs as

well as GPUs, leveraging Python and TensorFlow dependencies for optimal performance

across different devices.

To implement Hmsc-HPC, we redesigned and re-implemented the block-Gibbs sampler

routine of the Hmsc R-package using Python language and the TensorFlow library [23]. We

opted for TensorFlow over lower-level GPU programming options due to its robust applica-

tion programming interface, which includes a wide array of linear algebra and statistical rou-

tines. This choice significantly reduced the need for developing standard low-level numerical
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operations or relying on third-party tools. TensorFlow’s computational graph concept is fun-

damental to its functionality and efficiency. It represents the entire computation algorithm as

a directed graph, where nodes correspond to mathematical operations and edges denote the

flow of data between these operations. This graph-based approach offers several advantages,

such as portability, optimization opportunities, and support for distributed computing. Cru-

cially, it decouples the definition of computation from its execution, enabling lazy evaluation

or deferred execution. This separation allows TensorFlow to optimize the computation graph

by combining operations for efficiency and potentially distributing non-sequential computa-

tions across multiple devices for concurrent processing. Graph execution involves running

computations on the constructed graph, typically within a session context. This process entails

evaluating specific nodes or operations to generate results. The clear distinction between

graph construction and execution not only enhances TensorFlow’s performance but also facili-

tates flexibility and extensibility in constructing complex data processing pipelines [27].

In addition to developing the Python code with the TensorFlow-based block-Gibbs sampler

implementation, we made corresponding modifications to the Hmsc R-package. These

changes facilitate the seamless integration of HPC resources during the model fitting phase, as

illustrated in Fig 1:

1. Setting model structure and data: Initially, the user defines the model within R using the

standard workflow of the Hmsc R-package. This step also involves initializing the starting

positions of the MCMC chains.

2. Exporting a specified model to Python: At this stage, the user saves the model as an RDS

file within the R session, which includes the model specification and MCMC settings.

3. Model fitting with TensorFlow: The core step involves reading the RDS file into an inde-

pendent Python session. Model fitting occurs in Python using the GPU-compatible MCMC

sampler implemented in TensorFlow. This process begins with a compilation of the Ten-

sorFlow computational graph, which is subsequently executed. The TensorFlow graph can

be executed on any device with appropriate Python and TensorFlow configurations. For

instance, it can run on a CPU in the user’s laptop and still offer significant speed improve-

ments in model fitting. However, our implementation is optimized for GPUs dedicated to

scientific computations, aiming to achieve the maximum performance for computationally

intensive tasks.

4. Exporting the posterior to R: Once the posterior distribution is obtained, the user saves it

as an RDS file within the Python session.

5. Diagnostics, inference, visualization, and prediction: In this final step, the user imports

the RDS file back into an R session. Post-fitting procedures continue within the standard

workflow of the Hmsc R-package, independent of the framework used for the model fitting.

In addition to leveraging intra-chain low-level parallelization to harness GPU cores for

enhanced performance, we have also implemented an interface that allows for the simulta-

neous computation of multiple MCMC chains. This approach is particularly advantageous in

HPC infrastructures, such as a computational cluster, where multiple jobs from a user can be

placed simultaneously. The internal job scheduler then assigns these jobs to available computa-

tional nodes automatically. Since MCMC chains operate independently and do not require

communication with each other, this setup is ideal for parallelization across chains. Each job

can handle the computation of one or a few chains, maximizing efficiency and utilizing

computational resources effectively.
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In summary, our approach retains the user interface of the Hmsc R-package while enabling

the utilization of HPC infrastructure and GPU acceleration during the most computationally

intensive step. This integrated, cross-language workflow leverages the strengths of R, Python,

and TensorFlow to provide a streamlined and efficient methodology for analyzing large species

community data with models that can account for complex dependency structures.

Performance comparison

We conducted a performance assessment of the GPU-accelerated HMSC implementation

across different models characterized by varying data dimensions, including the numbers of

sampling units and species analyzed. Additionally, we explored diverse model structures that

varied in whether or not phylogenetic information was included, the design of random levels,

and the choice of spatial method. The execution of the Hmsc R-package used as a baseline ref-

erence, was performed and timed on a consumer-level laptop CPU. In contrast, the Hmsc-

HPC implementation was run on NVIDIA Volta V100 GPUs located in the AI partition of the

Puhti cluster, operated by CSC—IT Center for Science, Finland.

We set up the computational performance experiment using the same case study as previously

employed to compare the numerical performances of alternative spatial methods in the Hmsc R-

package implementation [14]. This case study serves as an illustrative example of the challenges

encountered when using the Hmsc R-package with large datasets, even for relatively simple mod-

els. The dataset consists of spatially-referenced recordings of plant presence-absence in South-

West Australia, along with several environmental predictors. After excluding most rare species

(those with fewer than five occurrences), the dataset comprises of 622 species recorded at 25,955

locations. Additionally, the dataset includes a set of binary traits for each species. We also incor-

porated information regarding species’ taxonomy based on the GBIF Backbone taxonomy [28].

We conducted experiments closely following the design of the original study [14], evaluating

the model fitting performance for five distinct variants of HMSC models. These model variants

cover different approaches to handle the spatial context of the data [12, 14]: 1) a spatially igno-

rant model, 2) a spatial model with a full Gaussian process (GP) structure for latent factors, 3) a

spatial model with predictive GP approximation [29] (PGP, with 55 predictive process knots dis-

tributed along a uniform hexagonal grid spanning the study area), 4) a spatial model with near-

est neighbour GP approximation [30] (NNGP, with ten neighbours), and 5) a spatially ignorant

model that accounts for taxonomical relationships, thus using taxonomy as a proxy for phylog-

eny to estimate the phylogenetic signal in species responses to environmental predictors [7]. All

models included the data on species traits. We introduced variation in two key dimensions: the

number of species (ns = {40, 160, 622}) and the number of sites (ny = {100, 200, 400, 800, 1600,

3200, 6400, 12800, 25955}). This allowed us to create diverse sub-datasets, ranging from reason-

ably small data sizes to fairly large datasets. To facilitate comparison across varying data dimen-

sions, we kept the number of latent factors fixed at 10. For each sub-dataset, we fitted each of the

five HMSC variants with both the Hmsc R-package and Hmsc-HPC, excluding cases for which

the full GP spatial model was infeasible due to insufficient RAM/VRAM. We recorded the total

fitting time for each model-dataset combination and quantified the execution time required for

a single cycle of the block-Gibbs sampler. While different models may require different numbers

of samples to converge, our primary focus is the relative comparison between alternative imple-

mentations of the same mathematical algorithm. Therefore, comparing the computational effort

per Gibbs cycle provides a relevant characterization of the observed differences.

Results

The results presented in Fig 2 clearly demonstrate the computational benefits of fitting HMSC

models on a high-end specialized GPU device. The speed-up of Hmsc-HPC over the Hmsc R-
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Fig 2. Performance comparison on GPU. Panels A-E represent execution time per block-Gibbs cycle for different HMSC models with respect to the

number of sites and species. Red, blue and green colours stand for ns = 40, 160 and 622 species correspondingly. Solid lines depict the execution times for

model fitting with the R backend, and dashed lines for fitting with the TensorFlow backend. In some panels, the lines of different colours overlap due to

the minor effect of the number of species on execution times. Panel F summarizes the overall comparison of execution times between the R backend and

the TensorFlow backend. This figure shows the same data as depicted in panels A-E, but the times are multiplied by 200,000 to exemplify total

computation times for a typical number of MCMC iterations in a model fit with a transient of 100,000 and 1000 samples obtained with a thinning of 100.

Dashed grey lines indicate ratios between TensorFlow and R computational performance, thus showing how many times faster or slower TensorFlow is

compared to R. The symbols and colours represent different model types and numbers of species, matching those used in Panels A-E (as indicated in the

legend).

https://doi.org/10.1371/journal.pcbi.1011914.g002
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package increases with the size of the dataset and the overall computation time. Notably, even

for a non-spatial model, the GPU-based execution outperforms the similar R-based execution

by nearly 1000 times for the largest dataset, equating to an acceleration of three orders of magni-

tude. For full GP and PGP models, this acceleration is evident even with smaller numbers of

sites, as these models involve operations with large matrices that are highly suitable for GPU

acceleration. Models incorporating taxonomy exhibit a similar pattern, but the acceleration is

more closely aligned with the number of species rather than the variation in the number of sites.

In contrast to the other model variants, the results for the NNGP models did not indicate a

clear benefit from using Hmsc-HPC. The HMSC algorithm for handling the NNGP approxi-

mation for spatial latent factors relies on sparse linear algebra operations, specifically the Cho-

lesky decomposition of sparse symmetric positive definite matrices and left-hand division with

sparse triangular matrices. Currently, these operations are not available in TensorFlow. To

address this, we used the capability to “inject” the necessary sparse operations from another

Python package into the TensorFlow graph, resulting in these operations being conducted on

the CPU. The introduced device-host communication overhead appears to bottleneck the

overall execution, diminishing the benefits of accelerated GPU execution for the remaining

operations. The NNGP approaches have been identified as superior to low-rank representa-

tions of spatial covariance matrices [14, 30, 31], and thus solving this bottleneck is a key chal-

lenge for future work. However, we note that the current Hmsc-HPC package enables fitting

models to large spatial data using the GP and especially the PGP approaches.

Conclusion

In this study, we introduced a novel Hmsc-HPC package that provides a parallel and efficient

implementation of HMSC fitting using a GPU-compatible TensorFlow backend. This develop-

ment is designed as an optional add-on to the existing, well-established Hmsc R-package to

enhance its usability for JSDM practitioners. Our evaluation, conducted on an extensive data-

set of species occurrence records, demonstrates that the new implementation yields speed

improvements of over 1000 times compared to the Hmsc R-package approach when the

model fitting problem is sufficiently computationally intense to start with (Fig 2). This effec-

tively means that models which previously required five years to fit can now be processed in

just one day. The achieved speed-up significantly expands the practical boundaries of fitting

HMSC models to large ecological datasets.

While GPU utilization is standard in machine learning, its application in statistical model-

ling remains relatively uncommon. To our knowledge, among existing JSDM software, only

s-jSDM [10] is designed to leverage GPU devices. Our findings on the speed-up achieved

through GPU porting complement recent developments in model fitting approaches that have

greatly advanced scalability for JSDMs, particularly on structurally simpler models. These

results underscore the potential benefits of further developing JSDMs to target GPU accelera-

tion. However, our work also highlights challenges with GPU porting, such as the limited

availability of efficient sparse linear algebra routines in TensorFlow, which hindered the imple-

mentation of computationally efficient approaches for NNGP models.

Looking forward, we outline four directions for advancing Hmsc-HPC and potentially

other GPU porting efforts in JSDM. First, recent studies have extended the NNGP method

[31], previously viewed as the pinnacle of scalable spatial statistics, to generalize neighbor-

hood-only conditional dependence to blocks of spatial locations [32] and proposed algorithms

independent of sparse linear algebra [33]. GPU-based implementations of such block spatial

models may be computationally advantageous over the NNGP models. Second, while here we

implemented a fixed floating-point precision (FPP), it may be advantageous to use mixed FPP
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within the model fitting algorithm [34], thereby leveraging enhanced GPU acceleration with

low FPP for precision-insensitive calculations. Third, leveraging TensorFlow’s auto-differenti-

ation capabilities enables efficient integration of gradient-based generic MCMC samplers like

Hamiltonian Monte Carlo [35] into block-Gibbs fitting algorithms used in Hmsc-HPC. This

hybrid MCMC sampling approach may mitigate the drawbacks of individual sampling

schemes, yielding universally superior MCMC convergence properties at the cost of minor

additional computational overhead [36]. Finally, we aim to broaden our evaluation across

diverse datasets and hardware configurations, including those incorporating explicit phyloge-

netic information. These efforts will enhance our understanding of the computational and pre-

dictive capabilities of our enhanced HMSC framework.
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