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Abstract: The DNA N6-methyladenine (6mA) is an epigenetic modification, which plays a pivotal 
role in biological processes encompassing gene expression, DNA replication, repair, and 
recombination. Therefore, the precise identification of 6mA sites is fundamental for better 
understanding its function, but challenging. We proposed an improved ensemble-based method for 
predicting DNA N6-methyladenine sites in cross-species genomes called SoftVoting6mA. The 
SoftVoting6mA selected four (electron–ion-interaction pseudo potential, One-hot encoding, Kmer, and 
pseudo dinucleotide composition) codes from 15 types of encoding to represent DNA sequences by 
comparing their performances. Similarly, the SoftVoting6mA combined four learning algorithms using 
the soft voting strategy. The 5-fold cross-validation and the independent tests showed that 
SoftVoting6mA reached the state-of-the-art performance. To enhance accessibility, a user-friendly web 
server is provided at http://www.biolscience.cn/SoftVoting6mA/.  

Keywords: DNA N6-methyladenine; convolution neural network; soft voting; cross-species; feature 
fusion; webserver 
 

1. Introduction  

DNA as one of four major types of macromolecules that is not only a fundamental component of 
life but also plays a critical role for holding all the generic information about growth, disease, and 
death. DNA modification is an epigenetics process where specific functional groups are added to the 
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nucleotide residues. Known DNA modifications include 5-methylcytosine (5mC), 5-
hydroxymethylcytosine (5hmC), N4-methylcytosine (m4C), and N6-methyladenine (6mA) [1,2]. The 
DNA 6mA refers to methylation of the 6th position on the adenines in which the methyl functional 
group is added to adenine residue with the help of the MT-70 methyltransferase family [3]. For a long 
period, the 6mA was thought as the most prevalent DNA modification in prokaryotes [4], and present 
with a low prevalence in the eukaryotes. However, over the last ten years, the 6mA has been discovered 
in numerous eukaryotes, including C. elegans [5,6], rice [7], zebrafish [8], and humans [9]. The 6mA 
is a reversible modification, which is formed by the writer methyltransferases and is removed by the 
eraser demethylases. Increasing evidence has shown that DNA 6mA functioned as an epigenetic mark 
regulating some biological processes such as DNA replication and repair, cell defense, and gene 
expression [10]. For example, the 6mA was reported to be associated with Alzheimer’s disease [11]. 
DNA 6mA was found to be involved in hepatocellular carcinoma development [12] and to regulate 
drug resistance of triple negative breast cancer [13]. Therefore, precisely detecting 6mA is of 
importance to further exploring its functions.  

Due to the key roles of 6mA in the cellular process, enormous attention was paid to developing 
methods for detecting 6mA sites. These methods were grouped into two categories: The laboratory and 
the bioinformatics methods. The former includes the 6mA-immunoprecipitation sequencing (6mA-
IPseq), restriction enzyme-based 6mA sequencing (6mA-REseq), high-performance liquid 
chromatography coupled with tandem mass spectrometry (HPLC-MS/MS), and single-molecule real-
time sequencing (SMRT) [3]. For instance, the 6mA-IPseq used a specific 6mA antibody to enrich 
methylated genomic fragments. The advantage of this 6mA-IPseq was that the cost was low, and the 
limitation was that the 6mA antibody preferred the unmodified adenine and thus was unable to precisely 
locate 6mA. In addition, the 6mA-IPseq suffered from bacterial DNA containing 6mA [3,14]. In the 
HPLC-MS/MS, the purified DNA samples were first digested by commercial enzymes, then separated 
by the chromatographic separation system, next ionized by atmospheric pressure ionization (API) 
techniques, and finally detected by the MS/MS based on mass-to-charge ratio. The HPLC-MS/MS was 
subject to laborious conditions [3]. Therefore, these laboratory methods are not only cumbersome, 
time-consuming, and laborious, but also costly.  

The bioinformatics method is to exploit the annotated 6mA sequences to learn a classifier and then 
predict unannotated sequences using the trained classifier. Opposite to the laboratory methods, the 
bioinformatics methods are simple and high-throughput. With advances in big data and artificial 
intelligence, more and more attention is given to developing bioinformatics methods for 6mA detection. 
So far, there are no less than twenty bioinformatics methods developed for 6mA prediction [15–20]. The 
bioinformatics methods are further divided into the traditional machine learning-based and the deep 
learning methods. The former depends on both the representations and the learning algorithms [21]. 
The representations for 6mA sequences include electron–ion-interaction pseudo potential (EIIP), 
nucleotide chemical property (NCP), dinucleotide physicochemical properties (DPCP), Kmer, 
trinucleotide physicochemical properties (TPCP), pseudo k-tuple nucleotide composition (PseKNC), 
One-hot encoding, and ring-functions of hydrogen chemical (RFHC). The learning algorithms 
included support vector machine (SVM), XGBoost, gradient boosting (GB), and random forest (RF). 
For example, the iDNA6mA-PseKNC is a bioinformatics method for mouse 6mA site prediction, 
which used PseKNC to represent DNA sequence and SVM as the learning algorithm [22]. The 
iDNA6mA-Rice used three types of representations and employed random forest as the learning 
algorithm [23]. Single representation might be insufficient to characterize 6mA, and a single learning 
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algorithm might be unable to learn the nature of 6mA. Combining multiple representations or multiple 
learning algorithms might be an ideal choice. For example, the 6mA-RicePred used four types of 
representations and employed feature selection to improve predictive performance [24]. The i6mA-
Vote integrated multiple classifiers for 6mA sites prediction [25]. The i6ma-stack not only optimized 
representations from multiple features by recursive feature elimination with cross-validation, but also 
combined the outputs of SVM, logistic regression (LR), RF, and naive Bayes (NB) as inputs to the 
final classifier SVM [26]. Compared to traditional machine learning algorithms, deep learning is of 
powerful fitting ability, especially in the context of big data. The commonly used components of deep 
learning include convolutional neural network (CNN), recurrent neural network (RNN), long short-
term memory (LSTM), attention mechanism, and transformer. For example, the CNN was used alone 
for 6mA site prediction [17,27,28]. The CNN might be combined with the LSTM for 6mA site 
prediction [19,29,30]. The various architecture of the CNN and LSTM resulted in various predictive 
performance. What is the best architecture remained unknown. Le and Ho [31] utilized the transformer 
and the CNN to detect DNA 6mA sites across species. The predictive ability of deep learning depends 
on the number of training samples. The small number of samples is easy to cause overfitting. Therefore, 
we focused on the traditional machine learning algorithms for 6mA prediction. 

LightGBM demonstrates its superiority in terms of performance [7,32], as was evidenced by its 
successful application in predicting viral protein classification by Bao et al. [33]. Therefore, we chose 
LightGBM as a base model in feature selection. The ensemble learning approach has the potential to 
enhance prediction performance [34]. We proposed an improved ensemble-based method (called 
SoftVoting6mA) for predicting DNA N6-methyladenine sites in cross-species genomes. Namely, we 
combined and optimized representations and multiple learning algorithms to improve predictive 
performance. The SoftVoting6mA used EIIP, One-hot encoding, Kmer, and PseDNC were used to 
represent 6mA sequences, and we combined four types of machine learning or deep learning algorithms. 

2. Methods 

2.1. Benchmark datasets 

The cross-species benchmark datasets originated directly from the published work for 6mA-Bert [31]. 
The benchmark datasets consisted of the training and the independent datasets. The former contained 2500 
positive and 2500 negative samples, while the latter comprised 268 positive and 216 negative samples. The 
process of collecting data was briefly described as follows. Feng et al. [22] compiled the mouse 6mA 
datasets from the MethSMRT database [35] with the accession in the Gene Expression Omnibus (GEO) 
GSE71866. After removing the sequences with more than 30 modQV and more than 0.8 sequence identity, 
Feng et al. obtained 1934 positive and 1934 negative samples. Chen et al. [36] constructed a rice 6mA 
dataset from the GEO with accession number GSE103145 [7]. Xu et al. [16] fused the mouse and the 
rice 6mA datasets. Xu et al. further used the cluster programming CD-Hit [37] to reduce sequence 
homology, and subsequently divided all the samples into the training and the independent datasets. All 
samples were 41 bp nucleotides long with adenine at the center. Samples with 6mA modification sites 
were considered as positive samples and otherwise are negative samples. All data can be downloaded 
from the website: https://github.com/yinzhaoting/Softvoting-6mA. 
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2.2. Methodology 

The framework of our proposed method SoftVoting6mA is shown in Figure 1. Initially, the 
SoftVoting6mA used as many as 15 types of representations to encode positive or negative samples, 
namely, EIIP, One-hot encoding, NCP, Kmer, Pseudo Dinucleotide Composition (PseDNC), RCKmer, 
Dinucleotide-based Auto-Cross Covariance (DACC), Dinucleotide-based Cross Covariance (DCC), 
DPCP, Accumulated Nucleotide Frequency (ANF), Nucleic Acid Composition (NAC), Dinucleotide-
based Auto Covariance (DAC), Trinucleotide-based Auto Covariance (TAC), Trinucleotide-based 
Auto-Cross Covariance (TACC), and Trinucleotide-based Cross Covariance (TCC). We assessed the 
predictive performance by 5-fold cross-validation, and chose four top-performing types of 
representations. Subsequently, we utilized a forward searching strategy to optimize combination of 
representations. We compared six commonly used machine learning algorithm as well as a CNN-based 
method. Six machine learning algorithms are LightGBM [38], XGBoost [39], GB [40], RF [41], LR 
[42], and decision tree (DT) [43]. In these machine learning algorithms, we use default parameters. In 
the CNN-based method, One-hot encoding was employed as representation [44], followed by a 
convolutional layer, a pooling layer, and a fully connected layer. Sigmoid was utilized as the activation 
function for the final fully connected layer, which stand for the probability of predicting as positive 
samples [45]. We sorted seven algorithms in descending order of performance. We further used 
backward strategy to optimize algorithms combination by 5-fold cross-validation. Finally, we used 
optimal combination of representations, ensemble multiple classifiers by soft voting for decision. 

 

Figure 1. Flowchart of the SoftVoting6mA. The SoftVoting6mA first computed 15 
representations, and then selected optimized representations by 5-fold cross validation. 
Subsequently, the SoftVoting6mA selected the model. Finally, the SoftVoting6mA used the 
soft voting to combine multiple classifiers for decision. 
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2.2.1. EIIP 

The EIIP [46] is a very simple but much effective numerical representation of nucleotide 
sequences, which is commonly employed to address function-related problems such as enhancer and 
N4-methylcytosine prediction [47,48]. In this encoding, each nucleotide was assigned to a value 
determined by its electron-ion interaction potential, reflecting the nucleotide's electron density. This 
encoding, as described in Eq (1), was computed as a vector of the same length as the original sequence. 

𝑉 = ൫𝐸ௗభ
, 𝐸ௗమ

, ⋯ , 𝐸ௗಽ
൯,                            (1) 

where L was the length of this DNA sequence, 𝑑௜(𝑖 = 1,2, … , 𝐿) denote the nucleotides that make up 

the DNA sequence, 𝐸ௗ೔
 denoted the EIIP value of the nucleotide 𝑑௜.The EIIP values of the A, C, G, 

and T were 0.1260, 0.1340, 0.0806 and 0.1335, respectively. 

2.2.2. One-hot encoding 

One-hot encoding was initially applied in the field of computer science and later was adopted 
extensively in the field of bioinformatics as a popular technique for handling categorical data [49]. 
In the One-hot encoding, only a bit was 1 and others were zeros. In the study, A, C, G, and T were 
defined as (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1), respectively. The One-hot encoding is a very 
intuitive representation. 

2.2.3. Kmer 

Kmer is a widely used sequence-based encoding method in bioinformatics. The Kmer is defined as 
the occurrence frequency of consecutive k nucleotides in a sequence, which was computed by the Eq (2). 

𝑓(𝑡) =
ே(௧)

ே
,                                 (2) 

where t was an element of the set of consecutive k nucleotides, 𝑁(𝑡) was the occurrence number of t, 
and N was the total number. For example, the sequence “CATCGCAT” can be partitioned into six 3mers: 
“CAT”, “ATC”, “TCG”, “CGC”, “GCA”, and “CAT”. The frequency of the 3-mer “CAT” is 1/3 and 
the other five are 1/6. In this study, we applied 1mer, 2mer, and 3mer to compute representation, which 
resulted in 84-dimensional vectors. 

2.2.4. PseDNC 

Inspired by the pseudo-amino acid composition (PseAAC) [50] which is a popular representation 
of protein sequences, Chen et al. [51] proposed PseDNC to represent DNA sequence. The PseDNC 
fused information about both order as well as frequency and thus made up for the loss of sequence-
order information in the Kmer. Due to its powerful representation, the PseDNC was widely used for 
identifying splicing sites [52], recombination spots[51], and N6-methyladenosine site prediction [53] 
The PseDNC of a DNA sequence 𝑅ଵ𝑅ଶ … 𝑅௡ was computed by 
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𝑑௨ = ൞

௙ೠ

∑ ௙೔
భల
೔సభ ା௪ ∑ ఏೕ

ഊ
ೕసభ

1 ≤ 𝑢 ≤ 16

௪ఏೠషభల

∑ ௙೔
భల
೔సభ ା௪ ∑ ఏೕ

ഊ
ೕసభ

16 < 𝑢 ≤ 16 + 𝜆
,                      (3) 

where 𝑓௨  denoted the normalized occurrence frequencies of dinucleotides, λ was the user-defined 
counted ranks (λ ≤ n − 1), w was a weight factor, and 𝜃௝  was calculated by 

𝜃௝ =
ଵ

௡ିଵି௝
෍ ൣΘ(𝑅௜𝑅௜ାଵ) − Θ൫𝑅௜ାଵ𝑅௜ାଵା௝൯൧

ଶ௡ିଵି௝

௜ୀଵ
,                 (4) 

where j = 1,2,3, ⋯ , λ. The function Θ(𝑅௜𝑅௜ାଵ) was defined as the properties of dinucleotide 𝑅௜𝑅௜ାଵ. 

2.2.5. CNN 

The CNN is a deep learning technique primarily used for image processing and computer vision 
tasks. It is a feed-forward neural network with multiple convolutional and pooling layers, as well as 
fully connected layers. CNN can learn complex patterns and structures. It can also handle input images 
of different sizes. The convolutional layer uses a set of filters (also called convolutional kernels) to 
detect pattern. The pooling layer can reduce the complexity of the model while preserving the main 
characteristic of the input data. The flattening layer followed the pooling layers so that it could link to 
the fully connected layers. In the final fully connected layer, we use the sigmoid function, which 
resulted in a probability between 0 and 1. We adopted a grid search approach. Please refer to Tables 
S1–S3 in the Supplementary file for specific screening. The parameters of each layer of the model are 
listed in Table 1. 

Table 1. The shapes of outputs and the numbers of parameters in the CNN model. 

Layers Output Shape Parameters 
InputLayer (41, 4) None 
Conv1D (41, 128) Number of Filters = 128, Kernel Size = 9 
Dropout (41, 128) Dropout Ratio = 0.5 
MaxPooling1D (20, 128) None 
Flatten 2560 None 
Dropout 2560 Dropout Ratio = 0.5 
Dense 8 Number of neurons = 8, activation = ‘relu’ 
Dense 1 Number of neurons = 1, activation = ‘sigmoid’ 

2.3. Soft voting 

The voting strategy is widely used in the field of machine learning to integrate multiple classifiers 
for better prediction accuracy. Balancing the performance between different classifiers, the voting 
strategy also enable better robustness of the integrated model. There are two categories of voting 
strategy: Hard voting and soft voting. The former adopted the principle that the minority obeys the 
majority. For example, if there were 5 classifiers, of which 3 outputted 1, and 2 outputted 0, the final 
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decision of the hard voting was 1. The soft voting computed average outputting probability of each 
classifier over all the classifiers. The class with the best average probability was determined as the final 
class. For example, if there were three classifiers, the outputting probabilities of judging as 1 were 0.9, 
0.3 and 0.6, respectively, while the probabilities of judging as 0 were 0.1, 0.7 and 0.4. The average 
probability for 1 were 0.6, while the average probability for 0 was 0.4. Therefore, the final decision of 
the soft voting was 1. We used four base classifiers and averaged the prediction probabilities of four 
classifiers as the final prediction probability, as shown in Figure 2. 

 

Figure 2. (A) The flowchart of the soft voting process. (B) Specific steps for SoftVoting. 
P1 stands for Probability1, P2 stands for Probability2, P3 stands for Probability3 and P4 
stands for Probability. 

2.4. Evaluation metrics 

We adopted both the 5-fold cross-validation and the independent test to examine our method. In 
the 5-fold cross-validation, the training dataset was randomly grouped into five parts, of which four 
were used for training and one was used for testing. The process was repeated five times until each 
sample was used for testing only a time and for training four times. In the independent test, the testing 
data did not appear in the training set. The purpose of the independent test is to examine the 
generalization ability of our method. We employed sensitivity (SN), specificity (SP), accuracy (ACC), 
Matthew correlation coefficient (MCC), F1-score, and area under the curve (AUC) to measure 
performances. The first five metrics were mathematically defined as follows: 

SN =
்௉

்௉ାிே
,                                    (5) 
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SP =
்ே

ி௉ା்ே
,                                    (6) 

ACC =
்௉ା்ே

்௉ାிேାி௉ା்
,                               (7) 

MCC =
்௉×்ேି ×ிே

ඥ(்௉ାிே)(்௉ାி )(்ேାிே)(்ேାி௉)
,                      (8) 

F1 − score =
ଶ×ௌே×ௌ௉

ௌேାௌ௉
.                              (9) 

In the above mathematical formulas, TP, TN, FP, and FN represent true positive, true negative, false 
positive, and false negative, respectively. The receiver operating characteristic (ROC) curve was drawn 
by linking true positive rates against false positive rates under various thresholds [54]. The area under 
the ROC curve (AUC) was also employed to measure the performance, which was computed by 

𝐴𝑈𝐶 =
∑ ௥௔௡௞೔ି

ಾ×(భశಾ)

మ೔∈೛೚ೞ೔೟೔ೡ೐೎೗ೌೞೞ

ெ×ே
.                        (10) 

Here, M represents the count of positive samples, while N corresponds to the quantity of negative samples. 

3. Results and discussion 

3.1. Feature combination optimization 

An effective representation can significantly enhance the model’s performance and generalization 
capabilities. Hence, selecting an appropriate representation is essential for accurate identification of 6mA 
modification sites. We calculated 15 common representations of DNA sequences by iLearn [55], i.e., 
EIIP, One-hot encoding, NCP, Kmer, PseDNC, RCKmer, DACC, DCC, DPCP, ANF, NAC, DAC, TAC, 
TACC, and TCC, and further examined the performance of various representations by 5-fold cross-
validation. We compared four learning algorithms (LightGBM, XGBoost, AdaBoost, and SVM) and 15 
representations. The predictive performances were listed in Tables S4–S6 and Table 2. It was evident 
that the LightGBM outperformed others in terms of ACC. Therefore, we chose LightGBM as the 
learning algorithm for feature selection. Table 2 displayed SN, SP, ACC, MCC and AUC. The EIIP 
reached the best ACC (0.798), followed by the One-hot encoding with an ACC of 0.797, by the NCP 
with an ACC of 0.788, by Kmer with an ACC of 0.680, and then by the PseDNC with the ACC of 0.642. 
The ACC of DAC, TAC, TACC, and TCC were less than 0.6. We also draw the ROC curves, as shown 
in Figure 3. The AUC of the EIIP, the One-hot were better, and the AUC of the Kmer, and the PseDNC 
was worse. 
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Table 2. The performance of single representations using LightGBM. 

Feature Type SN SP ACC MCC AUC 

EIIP 0.856 0.741 0.798 0.601 0.869 

One-hot 0.849 0.746 0.797 0.598 0.869 

NCP 0.841 0.734 0.788 0.579 0.866 

Kmer 0.645 0.715 0.680 0.361 0.748 

PseDNC 

RCKmer 

DACC 

DCC 

DPCP 

ANF 

NAC 

DAC 

TAC 

TACC 

TCC 

0.625 

0.624 

0.645 

0.635 

0.605 

0.588 

0.593 

0.589 

0.532 

0.538 

0.521 

0.660 

0.656 

0.621 

0.620 

0.650 

0.652 

0.626 

0.590 

0.587 

0.579 

0.580 

0.642 

0.640 

0.633 

0.628 

0.627 

0.620 

0.609 

0.586 

0.559 

0.558 

0.550 

0.285 

0.280 

0.266 

0.255 

0.255 

0.240 

0.219 

0.172 

0.119 

0.117 

0.101 

0.710 

0.703 

0.684 

0.666 

0.697 

0.664 

0.656 

0.631 

0.585 

0.590 

0.573 

 

Figure 3. The ROC curves are based on LightGBM of individual features in 5-fold cross-validation. 

We chose the top-performing five representations (EIIP, One-hot, NCP, Kmer, and PseDNC) for 
further fusion. A forward-searching strategy was employed to search for optimal representations of 
6mA sequences. We started with the best-performing EIIP as the initial representation and then 
sequentially added a type of representation one time. The order of adding representations was One-hot, 
NCP, Kmer, and PseDNC. If the addition of a representation improved the overall performance, it was 
retained and otherwise it was excluded. As shown in Table 3, the addition of the NCP caused the ACC 
and the MCC to reduce. Thus, the NCP was removed. The combination of EIIP, One-hot, Kmer, and 
PseDNC generated the best performance with an ACC of 0.827 and an MCC of 0.656. Consequently, 
we combined the EIIP, the One-hot, Kmer, and PseDNC as the final representations of the DNA 
sequence. Figure 4 showed the ROC curves. 
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Table 3. Performance of combining different representations. 

Feature Type SN SP ACC MCC AUC 

EIIP 0.856 0.741 0.798 0.601 0.869 

EIIP +One-hot 0.860 0.744 0.802 0.608 0.871 

EIIP+One-hot+NCP 0.846 0.746 0.796 0.596 0.872 

EIIP+One-hot+Kmer 0.850 0.795 0.823 0.647 0.892 

EIIP+One-hot+Kmer+PseDNC 0.854 0.801 0.827 0.656 0.893 

EIIP+One-hot+Kmer+PseDNC+RCKmer 0.851 0.798 0.825 0.651 0.892 

EIIP+One-hot+Kmer+PseDNC+DAC 0.853 0.785 0.819 0.640 0.891 

EIIP+One-hot+Kmer+PseDNC+DACC 0.849 0.789 0.819 0.639 0.890 

EIIP+One-hot+Kmer+PseDNC+DPCP 0.852 0.795 0.824 0.649 0.891 

EIIP+One-hot+Kmer+PseDNC+ANF 0.855 0.792 0.824 0.649 0.893 

EIIP+One-hot+Kmer+PseDNC+NAC 0.850 0.810 0.825 0.651 0.894 

EIIP+One-hot+Kmer+PseDNC+DAC 0.854 0.792 0.823 0.648 0.891 

EIIP+One-hot+Kmer+PseDNC+TACC 0.856 0.796 0.826 0.653 0.891 

EIIP+One-hot+Kmer+PseDNC+TAC 0.842 0.798 0.820 0.641 0.889 

EIIP+One-hot+Kmer+PseDNC+TCC 0.856 0.794 0.825 0.651 0.893 

 

Figure 4. The ROC curves based on LightGBM of the different features in 5-fold cross-validation. 

3.2. Model selection 

The predictive performance relies not only on representations but also on learning algorithms. We 
compared six popular machine learning algorithms (LightGBM, XGBoost, GB, RF, DT and LR). Table 
4 listed the evaluation metrics. The LightGBM reached the best ACC, the best MCC, and the best AUC, 
followed by the XGBoost, and then by the GB. The LR and the DT performed worse. Additionally, we 
built a deep learning-based model (called CNN) for comparison, which consisted of convolutional 
layers, max-pooling layers, and fully-connected layers. One-hot encoding representation was used as 
the input for the deep learning model. The CNN was inferior to the LightGBM, the XGBoost, and the 
GB in terms of ACC, MCC, and AUC. 
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Table 4. Performance of different machine learning algorithms. 

Methods SN SP ACC MCC AUC 
LightGBM 0.854 0.801 0.827 0.656 0.893 
XGBoost 0.842 0.801 0.821 0.643 0.888 
GB 0.840 0.795 0.818 0.636 0.889 
CNN 0.844 0.768 0.811 0.625 0.887 
RF 0.864 0.754 0.809 0.621 0.875 

LR 0.772 0.774 0.773 0.547 0.849 

DT 0.738 0.727 0.733 0.466 0.733 

Compared to a single learning algorithm, the ensemble learning has the potential to enhance the 
model's predictive capacity and reduce the risk of overfitting. Therefore, we further explored ensemble 
learning to promote predictive performance using soft voting. We applied a recursive elimination 
strategy to search for an optimal integration of the learning algorithm. All seven learning algorithms 
were first combined by soft voting for 6mA prediction. Then, starting from the worst-performing one, 
learning algorithms were removed from the combination in sequence. If the removal improved 
performance, the learning algorithm was truly removed and otherwise the learning algorithm was 
reserved. The process was repeated until no algorithm was removed. As shown in Table 5, the removal 
of the DT increased ACC by 0.001, and MCC by 0.003, indicating that the DT contributed negatively 
to the prediction. Subsequently, we removed the DT from the ensemble learning. Similarly, we removed 
the LR and the RF. The elimination of the CNN, GB, XGBoost, and LightGBM reduced ACC by 0.007, 
0.002, 0.002 and 0.003, respectively. Therefore, the CNN, the GB, the XGBoost, and the LightGBM was 
an optimal combination. 

Table 5. Performance of optimal features combined with values of different soft voting models. 

Methods SN SP ACC MCC AUC 

LightGBM+XGBoost+GB+CNN+RF+LR+DT 0.859 0.788 0.823 0.648 0.891 

LightGBM+XGBoost+GB+CNN +RF+LR  0.858 0.792 0.824 0.651 0.898 

LightGBM+XGBoost+GB+CNN +RF 0.864 0.794 0.829 0.659 0.899 

LightGBM+XGBoost+GB+CNN 0.866 0.794 0.830 0.662 0.901 

LightGBM+XGBoost+GB 0.852 0.794 0.823 0.647 0.896 

LightGBM+XGBoost+CNN 0.861 0.795 0.828 0.657 0.899 

LightGBM+GB+CNN 0.865 0.792 0.828 0.659 0.899 

XGBoost+GB+CNN 0.859 0.795 0.827 0.655 0.900 

3.3. Comparison with state-of-the-art methods 

So far, there are no less than 10 machine learning-based methods for 6mA prediction. We 
compared SoftVoting6mA with the 6mA-Bert [31] by both 5-fold cross-validation and the independent 
test. As shown in Table 6, the SoftVoting6mA outperformed the 6mA-Bert over the 5-fold cross-
validation. The SoftVoting6mA obtained the SN of 0.866 ± 0.026, the SP of 0.793 ± 0.019, the ACC 
of 0.830 ± 0.016, the MCC of 0.662 ± 0.033, and the AUC of 0.901 ± 0.018, elevating SN by 0.002, 
SP by 0.105, ACC by 0.054, MCC by 0.011, AUC by 0.06 over the 6mA-Bert, respectively. The F1-
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score was 0.836. 
The comparison of performance over the independent test was shown in Table 7, the SoftVoting6mA 

obtained a SN of 0.884, a SP of 0.787, an ACC of 0.841, a MCC of 0.677, and an AUC of 0.901. 
Compared to the 6mA-Bert, the SoftVoting6mA increased SN by 0.041, SP by 0.056, ACC by 0.048, 
MCC by 0.097, and AUC by 0.096. The SoftVoting6mA obtained a F1-score of 0.860. We also provide 
the ROC curves for the 5-fold cross-validation and independent tests as shown in Figure 5A,B. 

Table 6. Performance comparison by the 5-fold cross-validation. 

Methods SN SP ACC MCC AUC 
6mA-Bert 0.864 0.688 0.776 0.651 0.841 
SoftVoting6mA 0.866±0.026 0.793±0.019 0.830±0.016 0.662±0.033 0.901±0.018 

Table 7. Performance comparison by the independent test. 

Methods SN SP ACC MCC AUC 
6mA-Bert 0.843 0.731 0.793 0.580 0.805 
SoftVoting6mA 0.884 0.787 0.841 0.677 0.901 

Figure 5. The ROC curves for (A) the 5-fold cross-validation and (B) the independent tests. 

For a fair comparison with IDNA6mA-PseKNC [22,28], csDMA [56], and ilM-CNN [28], we 
used all the samples as the training dataset. The performance over the 5-fold cross-validation was 
shown in Table 8. Obviously, the SoftVoting6mA outperformed the iDNA6mA-PseKNC, the ilM-CNN, 
and the csDMA in terms of ACC. The SoftVoting6mA reached the SP of 0.804, the ACC of 0.828, the 
MCC of 0.656, and the AUC of 0.900, elevating the ACC by 0.063 over iDNA6mA-PseKNC [22], by 
0.029 over csDMA [56], and by 0.004 over ilM-CNN [28]. 

To assess the stability of our method, we utilized external dataset from rice, which comprised 
154,000 positive and negative samples. The comparison with Meta-i6mA and ZayyuNet [57,58] were 
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listed Table 9, The SoftVoting6mA reached an ACC of 0.910, outperforming two other methods. 

Table 8. Performance comparison by the 5-fold cross-validation. 

Methods SN SP ACC MCC AUC 
iDNA6mA-PseKNC 0.762 0.769 0.765 0.531 0.844 
csDMA 0.863 0.735 0.799 0.603 0.879 
ilM-CNN 0.869 0.780 0.824 0.651 0.892 

SoftVoting6mA  0.851 0.804 0.828 0.656 0.900 

Table 9. Performance comparison on external independent dataset. 

Data SN SP ACC MCC 

Meta-i6mA 0.960 0.520 0.740 0.530 
ZayyuNet 1.000 0.520 0.760 0.593 
SoftVoting6mA 0.900 0.918 0.910 0.809 

The training and testing datasets were cross-species dataset. We conducted single species test. As 
listed in Table S7, the mouse reached the best performance, followed by the rice and then by cross species. 
This indicated that identifying 6mA site cross species was more difficult than over single species. 

3.4. Web server 

For users’ convenience, we have implemented SoftVoting6mA as a user-friendly web server. 
Users can access it at http://www.biolscience.cn/SoftVoting6mA/. Users have the option to either 
upload a FASTA file or directly paste DNA sequences into the text box (Figure 6A). It is mandatory 
that the length of the submitted sequences is equal to 41. Afterward, users click the submit button and 
wait for the prediction results, which will be presented in a new interface (Figure 6B). Predictions are 
made based on a probability threshold of 0.5. If the prediction probability exceeds this threshold, it 
was decided to be 6mA, and otherwise it was non-6mA. In addition, users have the option to download 
the datasets from the website. 

 

Figure 6. SoftVoting6mA web server (A) interface and (B) results interface. 
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4. Conclusions 

DNA 6mA plays a crucial role in the cellular process. Precisely detecting 6mA sites remains 
challenging. To address this issue, we proposed a soft voting-based ensemble learning method for 
predicting DNA 6mA sites cross species, including rice and mice. By optimizing combinations of 
representations and learning algorithms, we demonstrated remarkable performance and showcased its 
universality and applicability cross species. To further validate the effectiveness of our model, we 
conducted validation using an external rice dataset. This validation not only enhanced the reliability 
of our method in rice but also provided a reliable benchmark for evaluating its performance on different 
datasets and species. For the convenience of researchers, we developed a user-friendly webserver, 
allowing free access for predicting 6mA sites. The server not only facilitates easy predictions for 
researchers but also extends the application across species, providing support for a broader range of 
biological studies. 

In conclusion, we verified the wide applicability of our method through cross-species experiments, 
offering a fresh perspective on understanding the function and regulation of DNA 6mA in different 
species. However, we focused solely on two species. In future studies, we will prioritize exploring 
relevant sites in a broader range of species to gain a more comprehensive understanding of the 
distribution and function of 6mA sites in biodiversity. 
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