
Waltteri Ylitalo 

SOFTWARE-DEFINED NETWORKING, CURRENT 
STATE, APPLICABILITY AND SECURITY 

 
JYVÄSKYLÄN YLIOPISTO 

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA 
2024 



ABSTRACT 

Ylitalo, Waltteri 
Software-defined networking, current state, applicability and security 
Jyväskylä: University of Jyväskylä, 2024, 84 pp. 
Cyber Security, Master’s Thesis 
Supervisor: Hämäläinen, Timo 

This thesis performs a descriptive literature review on software-defined net-
working. SD-networks are a new software-based networking approach where 
the control and data transmission mechanisms are separated. This separation 
alongside a software-based approach allows the network to become highly flex-
ible and efficient to manage through centralized control features. A key reason 
behind SDNs flexibility is formed by the emphasis on using software which 
enables the paradigm to be tailored and customized to fit various different 
types of networks. This thesis finds that SDN can be applied to various applica-
tions such as data centers, internet of things networks, NFVs, and VANETs. 
These applications offer solutions for both large organizations such as cloud 
service providers through efficient control tools as well as individual end users 
through smart home network management. The results of this thesis also find 
that SDN suffers from multiple security issues that reside in each of the archi-
tectures layers. Many of the issues are caused by insufficient authentication and 
verification features. Additionally, results show that SDN can be prone to ser-
vice denial attacks through flooding, injections and communication channel 
overloading.  Finally, this thesis finds that a significant portion of existing litera-
ture focuses on mainly theoretical settings with models using primarily central-
ized models and de facto protocols. As a result, future body of research should 
be expanded by creating a wider range of research settings which are applied to 
real life environments.   

Keywords: software-defined networking, SDN, centralized network control, 
separated control and data transmission, networking paradigm 
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Tämä tutkielma toteuttaa kuvailevan kirjallisuuskatsauksen ohjelmisto-
ohjattuihin verkkoihin. Ohjelmisto-ohjatut verkot ovat uusi ohjelmistopohjai-
nen vaihtoehto tietoverkkojen toteuttamiseen. Ohjelmisto-ohjatut verkot erotta-
vat verkon hallinnan ja data siirron toisistaan. Tämä erottelu mahdollistaa 
verkkojen korkean joustavuuden sekä keskitetyn verkkojen hallinnan. Keskei-
senä elementtinä ohjelmisto-ohjattujen verkkojen joustavuuden ja dynaamisuu-
den mahdollistajana toimii mallin ohjelmistopohjaisuus, mikä mahdollistaa 
verkkojen räätälöinnin sekä kustomoinnin. Tutkielman tulokset osoittavat, että 
SDN teknologiaa voidaan hyödyntää palvelinkeskuksissa, esineiden internetin 
verkoissa, verkon funktioiden virtualisoinnissa sekä ajoneuvojen langattomissa 
verkoissa. Kyseiset käyttökohteet tarjoavat ratkaisuja niin suurille organisaati-
oille esimerkiksi pilvipalveluiden tehokkaalle keskitetylle hallinnalle kuin yksit-
täisille loppukäyttäjille älykotien hallintaan. Tutkielman tulokset osoittavat 
myös, että mallin arkkitehtuuri sisältään useita haavoittuvuuksia jokaisella mal-
lin kerroksella. Monet haavoittuvuuksista johtuvat puutteellisista tunnistautu-
mis- sekä verifikaatiomenetelmistä. Lisäksi tutkielman tulokset osoittavat, että 
ohjelmisto-ohjatut verkot voivat olla haavoittuvaisia erilaisilla menetelmillä 
toteutetuille palvelunestohyökkäyksille. Tutkielman tulokset osoittavat lisäksi, 
että merkittävä osa aihepiiriä käsittelevästä kirjallisuudesta on keskittynyt kä-
sittelemään aihepiiriä rajallisten tutkimusasetelmien kautta. Merkittävä osa tut-
kimusasetelmista on toteutettu hyödyntäen keskitettyjä malleja, jotka käyttävät 
perinteisimpiä protokollia. Tämän seurauksena tulevaisuudessa kirjallisuutta 
tulisi laajentaa toteuttamalla tutkimuksia useammilla verkkojen malleilla sekä 
testaamalla malleja käytännön käyttökohteissa.  
 

Asiasanat: Ohjelmisto-ohjatut verkot, keskitetty verkon hallinta, eriytetty hallin-
ta ja datan välitys, verkon paradigma 



FIGURES 

FIGURE 1 Illustration of SDN architecture. ................................................... 12 
FIGURE 2 Centralized SDN architecture. ....................................................... 17 
FIGURE 3 Distributed flat SDN architecture ................................................. 19 
FIGURE 4 Distributed hierarchical SDN architecture .................................. 20 
FIGURE 5 Hybrid SDN architecture ............................................................... 21 

  

 



TABLE OF CONTENTS 

ABSTRACT ...................................................................................................................... 2 

TIIVISTELMÄ ................................................................................................................. 3 

FIGURES .......................................................................................................................... 4 

TABLE OF CONTENTS ................................................................................................. 5 

1 INTRODUCTION ................................................................................................. 7 
1.1 Methodology ................................................................................................ 9 
1.2 Research questions .................................................................................... 10 
1.3 Thesis outline .............................................................................................. 10 

2 THEORETICAL BACKGROUND OF SOFTWARE-DEFINED 
NETWORKING ............................................................................................................ 11 

2.1 SDN layers .................................................................................................. 11 
2.1.1 Application Plane ............................................................................. 12 
2.1.2 Northbound API ............................................................................... 13 
2.1.3 Control Plane .................................................................................... 14 
2.1.4 Southbound API ............................................................................... 15 
2.1.5 Data Plane .......................................................................................... 15 
2.1.6 Eastbound & Westbound API ........................................................ 16 

2.2 SDN Architectures ..................................................................................... 16 
2.2.1 Centralized architecture .................................................................. 17 
2.2.2 Distributed architecture .................................................................. 18 
2.2.3 Hybrid architecture .......................................................................... 20 

2.3 Benefits of SDN paradigm ........................................................................ 22 
2.4 Performance-based issues of SDN .......................................................... 24 

3 CURRENT STATE OF AVAILABLE SDN TECHNOLOGY ......................... 27 
3.1 Applications ................................................................................................ 27 
3.2 Controllers .................................................................................................. 29 
3.3 Protocols ...................................................................................................... 33 

3.3.1 OpenFlow .......................................................................................... 33 
3.3.2 ForCES ............................................................................................... 34 
3.3.3 LISP .................................................................................................... 35 

4 APPLICATIONS FOR SDN TECHNOLOGY ................................................. 37 
4.1 Internet of Things ....................................................................................... 37 
4.2 Network function virtualization .............................................................. 40 
4.3 Cloud services and data centers .............................................................. 42 



4.4 Software-defined vehicular networks .................................................... 45 

5 SECURITY CONCERNS OF SDN..................................................................... 50 
5.1 General security issues .............................................................................. 50 
5.2 Application layer security ........................................................................ 53 
5.3 Controller layer security ........................................................................... 55 
5.4 Infrastructure layer security ..................................................................... 61 
5.5 Interface security ........................................................................................ 64 

6 DISCUSSION ....................................................................................................... 67 
6.1 Discussion of findings ............................................................................... 67 
6.2 Future research suggestions ..................................................................... 73 

7 CONCLUSION .................................................................................................... 76 

SOURCES ....................................................................................................................... 79 



 

1 Introduction 

Through the rapid development and emergence of information and communi-
cation technologies the world has seen a major shift from an analogical society 
to a digitalized society. This dramatic change has provided countries and socie-
ties with new innovations, opportunities, economic growth, and technologies 
which have fundamentally changed how the world operates only a daily basis. 
Today digital technology and the Internet are a key feature in most economic 
sectors and sections of global infrastructure. In addition to large corporations 
and countries, most individuals around the globe have access to the Internet, 
which has also transferred the way day-to-day life is built.  

The Internet is everywhere and all-around ranging from mobile devices to 
large-scale data centers and from websites to smart appliances. Although the 
Internet is already a key feature and mainstream function of several different 
aspects of society, it is worth noting that the development is certainly not slow-
ing down but rather quite the contrary. The Internet is still being developed, 
integrated, and pushed into more and more elements of our daily lives and 
segments of society. The number of devices with connectivity to the global In-
ternet is rapidly increasing and diversifying through various new network 
nodes such as smart homes and smart appliances (Keertikumar, Shubham & 
Banakar, 2015).  

Although the Internet and smart technology typically represent new cut-
ting-edge innovations, it should be noted that this does not necessarily apply 
for all layers of the Internet. Despite popular belief the Internet itself is rather 
old in terms of its key features and fundamental building blocks. In fact, many 
of the prominent protocols that sustain and operate the global network are sev-
eral decades old and have been originally designed to maintain a very different 
network compared to today’s technical needs. For example, key routing proto-
cols such as the Border Gateway Protocol (BGP) and Open Shortest Path First 
(OSPF) have both been originally designed and implemented in the late 1980s. 
The same phenomenon can be seen with one of the Internet’s most essential 
architectural models, the TCP/IP architecture which was initially standardized 
and deployed in 1983. Naturally, the features and models that form the back-
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bone for the global Internet have been revisited, further developed, and im-
proved since their original deployment but nonetheless this does not change the 
fact, they have been designed to serve very different networking needs com-
pared to today.  

Whilst the aforementioned elements of the Internet work and are still a 
key part of global networking, it is apparent that they contain several re-
strictions and limitations which cause issues for various network nodes, net-
work managers, and in general to new innovations regarding networking. 
These issues range from limitations regarding packet sizes and computational 
power required to operate the TCP/IP architecture (Shang, Yu, Droms & Zhang, 
2016) to inefficient and rigid control features for network administrators (Haji 
ym., 2021). To address the identified issues several different solutions have been 
proposed ranging from quick fixes and patches to entirely new networking ar-
chitecture models.  

A relatively new approach to improving and mitigating issues caused by 
traditional networking paradigms are software-defined networks (SDN). By 
definition these networks are built around various software and make use of 
programmability as opposed to the typical hardware-based approach imple-
mented by traditional networking paradigms. The most prominent feature of 
the software-defined networking approach is the ability to differentiate the con-
trol and data transmission features from each other. This approach provides 
several advantages which are discussed in more detail in the latter sections of 
this thesis, but the most important advantage of this implementation is that SD- 
networks allow for more dynamic and centralized control of networks. Admin-
istrators and network managers are provided with the opportunity to imple-
ment and adjust network configurations through a single point of control which 
is then forwarded to all nodes under the control device.  

The SDN approach is not a newly proposed idea as the paradigm of sepa-
rating data and control planes has been presented initially roughly two decades 
ago (Feamster, Rexford & Zegura, 2014). However, the technology required to 
implement a software-defined network has been in many ways lacking causing 
issues with scalability and reliability especially in large-scale implementations, 
which has caused the approach to be somewhat ignored. As these voiced issues 
have been addressed and SDN technology has been further developed, this ap-
proach has gained popularity even among major technology and networking 
organizations such as Google, Cisco, and Microsoft. With further development 
SDN has the potential to become an even more viable to solutions for individu-
al users as well as organizations to build and manage their networks.  

As SDN has been a focus of many companies and scholars this paradigm 
has produced numerous research papers, architectural approaches, technolo-
gies, software, and use cases which have fragmented the topic. As a result, to-
day SDN provides a large and potentially difficult to understand scope of the 
topic. To address this problem this thesis will conduct a comprehensive litera-
ture review regarding the topic SDN in order to compile an up-to-date review 
of the current state of software-defined networking. In particular, this thesis 
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will focus on four key topics regarding SDN which are the theoretical back-
ground of SDN, the current technological options regarding SDN, the current 
use cases of SDN and finally the prevalent security issues of SDN.   

Finally, this thesis will contribute to existing literature as follows. Firstly, 
the thesis will bring timely relevance to the topic by providing an updated re-
view on the state of SDN. The updated review will bring relevance in particular 
regarding the security of SDN. Secondly, this thesis will expand previous thesis 
by providing a more versatile look into the theory of SDN and its possibilities. 
In many cases the theoretical background regarding SDN is presented through 
the typical architectural structure of SDN. Whilst this is correct it also excludes 
other suitable variations and opportunities provided by the SDN model. Third-
ly, this thesis will provide a collective review into the actual use cases of SDN in 
relation to other technical innovations. Lastly, this thesis will also expand other 
thesis regarding the technical means and applications which can be used to de-
ploy and operate SD-networking. This thesis will also provide a look into pro-
tocols which can be deployed to run and maintain a software-defined network.  

1.1 Methodology 

As previously mentioned, this thesis is conducted as a literature review. By def-
inition, a literature review is research aimed at providing a collective overview 
of a certain topic or phenomenon (Knopf, 2006). Since the nature of this thesis to 
provide a collective and up to date view of SDN a literature review is a justified 
approach. Furthermore, the research questions set for this thesis support this 
approach. None of the research questions provide a hypothesis which could be 
tested in a quantitative setting. As for a qualitative approach several issues 
would also arise.  

In terms of type of literature review this thesis opts for a descriptive litera-
ture review rather than a systematic review. Whilst the aim of this thesis is to 
provide a comprehensive review of the topic, it is worth noting that a fully sys-
tematic approach to this would be unfeasible in regard to the resources of this 
thesis. SDN has captioned the interest of numerous researchers and as such the 
existing body of research regarding the topic is quite extensive. Therefore, at-
tempting a fully systematic review would expand this paper significantly. Sec-
ondly, this thesis focuses on two main parts which are applications and security 
of SDN. Performing a systematic review would require the topic to be further 
narrowed in order to feasible.  

 The research material used for this thesis will be collected through free 
online databases and other databases provided by the university of Jyväskylä. 
In terms of data this thesis uses and acknowledges primarily research which is 
published in forums known and graded by the grading tool Julkaisufoorumi 
(JuFo). This thesis focuses on sources which have received a JuFo grading of at 
least one or higher. However, certain exceptions are be applied for example 
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whilst showcasing available SDN tools and when studying original documenta-
tion of protocols.  

The second limitation regarding the research material is made regarding 
the security of SDN. As previous work and other thesis have addressed the top-
ic of SDN security, it is reasonable to make a limitation on the timely relevance 
of the material. As such, this thesis will only address SDN security research 
from 2018 and forward in order to maintain the timely relevance of the security 
and to avoid repetitiveness.  

1.2 Research questions 

This thesis answers the following research questions: 
 

1) What are software-defined networks? 
2) What are the benefits and disadvantages of SD-networks? 
3) Where can software-defined networks be applied? 
4) What are the main security issues of software-defined networks? 

1.3 Thesis outline 

This thesis is structured in the following way. Chapter one provides an intro-
duction to the topic of the thesis as well as presents the research questions that 
the thesis answers. Additionally, chapter one also addresses the chosen meth-
odology for this thesis and reasons why the approach was chosen. The second 
chapter acts as the theoretical background of the thesis. Chapter two showcases 
different variations of the SDN architecture, different layers and interfaces used 
in SDN and lastly an overview of the benefits and disadvantages of SDN. Chap-
ter three focuses on the current state of available technologies and solutions to 
implement SDN. Chapter three looks at each layer individually and showcases 
the different options for implementing each layer. In addition, the third chapter 
presents various different protocols which can be used for different solutions.  

Chapter four focuses on the current use cases of SDN and present different 
instances where SDN is incorporated or integrated as a part of the technology 
stack. Chapter five provides an updated view on the security issues regarding 
SDN. This chapter also approaches security concerns layer by layer and also 
touches on issues regarding the interfaces. Chapter six provides discussion of 
the thesis findings, and other notions found during the research process. Finally, 
chapter seven presents the conclusion and summary of this thesis.  



11 

2 Theoretical background of software-defined network-
ing 

This chapter presents the theoretical background of the topic. This chapter 
showcases the framework behind software-defined networking and addresses 
each component in more detail. In addition, this chapter presents multiple dif-
ferent architectural models for setting up SDN, compares them and highlights 
their differences. Finally, this chapter also showcases the main advantages and 
disadvantages of the SDN paradigm, primarily from the standpoint of perfor-
mance and feasibility.  

2.1 SDN layers 

The architecture of software-defined networks is split into three layers, which 
each maintain a different function among maintaining the operability of the 
network. These layers include the top layer which is known as the application 
layer or application plane. The application plane is the layer which is visible for 
most of the end users and typically includes various software required within 
the network (Rawat & Reddy, 2016).  Bellow the application plane resides the 
control plane or control layer, which essentially operates as the brains of opera-
tion by managing the networks routing and traffic operations (Xia ym., 2014; 
Rawat & Reddy, 2016). Furthermore, the control plane also acts as the bridge, 
which connects both the application layer and the infrastructure layer. Finally, 
the last layer of the framework is the infrastructure layer or otherwise known as 
the data plane. As implied by its name the infrastructure layer is the part of the 
network which hosts and maintains the nodes that form the network. The infra-
structure layer topically performs three main functions which are data packet 
trafficking, implementing the rules and commands given by the control plane 
and forwarding the aforementioned rules to other nodes (Xia ym., 2014; Haji 
ym., 2021).   
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Alongside the three layers SD-networks consist of at least two interfaces 
which connect the layers together and maintain the operability of the frame-
work. The two required interfaces are typically dubbed as the northbound in-
terface and southbound interface. The northbound interface is an API which 
handles the connection and traffic between the application and control plane. 
Consequently, the southbound interface ensures the connection between con-
trol plane and the infrastructure plane. The previously addressed interfaces are 
required in every implementation of SDN but in addition to these interfaces 
different SDN models can also require additional interfaces, which maintain a 
horizontal connection rather than a vertical one. With more complicated SDN 
structures the networks may have for example several controllers within the 
controller plane which require so called eastbound or westbound interfaces to 
ensure connectivity. These interfaces can also be used as a link to connect so 
called legacy systems operating with a traditional networking model to SDN 
networks.  

Figure 1 presents a simplified version of SDN architecture as well as parts 
of each layer. Next each of the layers and interfaces of SDN will be addressed in 
more detail.  

 
FIGURE 1 Illustration of SDN architecture.  

2.1.1 Application Plane 

As previously stated, the top layer of SDN models is the application plane 
which hosts software used within the network alongside operating as the inter-
face connecting the users to the network. Whilst the controllers are responsible 
for maintaining and implementing network changes the application plane holds 
an important role in network management. The user interfaces provided by 
software enable network managers to monitor the status of the network as well 
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as to give the actual commands which are passed to and executed by the con-
trollers (Haji ym., 2021). Although the application plane is fundamentally re-
sponsible for giving commands to the control plane, it should be noted that the 
plane can also perform and incorporate numerous other functionalities.  

The application plane is able to host and operate many different software 
due to its programmability and can execute various other tasks. The most 
common software include programs which enable network management, rout-
ing, as well as traffic monitoring (Nisar ym., 2020). In addition to traffic moni-
toring, the application plane can also make use of the control planes ability to 
map out network structures by operating programs designed to display the 
current topologies of managed networks (Shafique ym., 2020). These functional-
ities can provide network managers with visual information regarding the cur-
rent physical state of the network. Other network functionality programs ena-
bled by the application plane can include for example load balancing software, 
which are designed to help network managers diversify and redirect traffic 
flows based on occurring circumstances.  

Outside network functionality tools it is worth noting that the application 
plane enables the use of various security related features and software solutions. 
These solutions include traditional tools such as intrusion detection systems 
(IDS), access and authentication solutions, firewalls, and other intrusion pre-
vention systems (IPS) (Li, Chen & Fu, 2019; Chica, Imbachi & Vega, 2020). These 
features can be used to provide security to the network by mitigating attack 
vectors targeted at the application layer.  

2.1.2 Northbound API 

With SDN implementations northbound interfaces are tasked with ensuring 
connectivity between the applications hosted in the application plane and the 
controllers in the control plane. The requirements placed upon this interface 
vary based on the needs and implementation of the application plane as the 
used software dictates data needs. For this reason, there haven’t been many ef-
forts to standardize the northbound interface unlike to southbound interfaces 
(Jarschel ym., 2014). In many cases the protocol deployed to perform the re-
quired functionalities is done on an ad hoc basis depending on the chosen con-
troller or the layout of the application layer (Ahmad & Mir, 2021).  

Although no official standards are imposed there are certain APIs which 
are widely used to maintain the interface. One of the most common implemen-
tation approaches uses the RESTFUL (also known as REST) API to perform the 
communication with basic HTTP requests (Zhu ym., 2021). Alternative proto-
cols to maintain the interface include but are not limited to Simple Network 
Management Protocol (SNMP), Netconf, JSON, Frenetic and Merlin (Shirmarz 
& Ghaffari, 2020; Ahmad & Mir, 2021; Bannour, Souihi & Mellouk, 2017). These 
interface implementations also enable using other means of communication as 
opposed to pure HTTP such as communicating through XML, JSON format and 
specific commands used by SNMP. 
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2.1.3 Control Plane 

The control plane acts as the middleman in all SDN architectures and is primar-
ily responsible for making sure that the whole architecture is able to operate 
smoothly. Furthermore, controllers operating in the network also ensure that all 
of the layers within the model are able communicate through the interfaces 
maintained. The most fundamental and important task for the controller is to 
maintain and configure the network based on the policies and instructions pro-
vided by the application layer (Ahmad & Mir, 2021). Controllers deployed in 
the plane contain various different modules with specified functions that can be 
used to perform each task, such as giving new routing rules to the network 
nodes. These modules typically consist of at least the link discovery, topology 
manager, decision-making, storage manager and flow manager modules (Zhu 
ym., 2021; Ahmad & Mir, 2021). However, the structure of the controller and 
the hosted modules can vary based on the design of the controller, needs of the 
network or protocols used to maintain APIs (Ahmad & Mir, 2021).  

To control the routing of network nodes within the infrastructure plane, 
controllers use flow managers to forward rules that are then later implemented 
by the nodes. Other routing decisions are handled by the decision-making 
module. In case the network nodes are unsure how to route data packets, they 
can send questionnaires to their respected controllers which are then tasked to 
make the final decisions based on how the data packets should be forwarded. 
Outside of managing and configuring routing rules, the controllers also typical-
ly manage features directed at application plane such as maintaining infor-
mation regarding the state of the network (Ahmad & Mir, 2021). In order for the 
controllers to be able to make decision regarding the routing choices, controllers 
also host a feature which can be used to probe the current status and topology 
of the network. Controllers can use their link discovery modules to send out 
requests for all network nodes which can then be used to map out the active 
hosts based on the responses with the topology manager module (Wazirali, 
Ahmad & Alhiyari, 2021). This information is typically stored within the con-
troller and can be used to make routing decision as well as to be provided to the 
application layer. In addition, other statistic regarding the networks functionali-
ty can be collected, stored, and forwarded (Ahmad & Mir, 2021).  

Since the control plane acts as the connecting middle point for the whole 
architecture, it is also required to provide and host all of the required interfaces 
connecting the different layers within the system. Naturally, the control plane 
maintains both the north- and southbound APIs to enable the connectivity and 
functionality of the network. Depending on the structure and complexity of the 
SD-network lateral connectivity may also be required (Ahmad & Mir, 2021). In 
many cases the control plane can contain multiple controllers both for perfor-
mance and security enhancement reasons. As a result, the controllers are re-
quired to communicate with each other through east- or westbound interfaces 
(Zhu ym., 2021). These interfaces can also be used to connect other SDN sys-
tems or legacy systems to the network.  
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2.1.4 Southbound API 

Southbound APIs are interfaces which link together the control plane and data 
plane ensuring that the network nodes can be managed and configured. South-
bound interfaces pass forward routing rules dished out by the controller and 
pass them forward to the network nodes. Unlike the northbound interface, the 
southbound interface has a standardized popular de facto protocol called 
OpenFlow, which is widely implemented in SDN solutions (Haji ym., 2021; Zhu 
ym., 2021). OpenFlow is an open-source code protocol originally developed in 
late 2000s (Lara, Kolasani & Ramamurthy, 2013). Due to its open-source and 
early availability, OpenFlow is widely used as the primary option for maintain-
ing the interface and is sometimes mistakenly even considered as the only op-
tion (Shirmarz & Ghaffari, 2020). However, this is not the case as several other 
protocols have been developed which offer alternative implementation options.  

In addition to OpenFlow, several companies and organizations have cre-
ated alternative protocols to rival OpenFlow and to provide users with proto-
cols enabling new features. Examples of these protocols include Cisco’s onePK, 
IETF’s ForCes and LISP, PCEP, PCE and PoF protocols (Shirmarz & Ghaffari, 
2020; Jarschel ym., 2014). Each of these protocols provide network managers 
with alternative options that can be used to tailor make their network based on 
specific needs. It is however worth noting that unlike OpenFlow all of these 
solutions are not open-source (Shirmarz & Ghaffari, 2020) and thereby free, 
which can also be seen as a factor limiting their popularity.     

2.1.5 Data Plane 

The data plane forms the infrastructure layer of SDN and is responsible for 
transmitting data between various network nodes (Shirmarz & Ghaffari, 2020). 
Typically, in SD-networks the data plane consists of switches, routers, gateway 
points, and virtual devices which under the rules provided by the controller 
transmit data within the network. Outside of data forwarding the data plane 
requires networking nodes to host a specified protocol which enables the han-
dling of traffic flow rules guiding the routing (Wazirali, Ahmad & Alhiyari, 
2021). Each routing device maintains its own flow table consisting of rules pro-
vided by the controller that guide the routing (Shirmarz & Ghaffari, 2020). De-
vices within the data plane also contain a protocol designed to respond to the 
controller’s topology mapping requests. A commonly used variant for this pro-
tocol is the Link Layer Discovery Protocol (LLDP), which is used in OpenFlow 
protocol implementations (Wazirali, Ahmad & Alhiyari, 2021).  

It is worth noting that due to programmability of SDN and the data plane 
the scope of potential network devices is rather heterogenous. Various sensors 
and other data producing devices can be incorporated into the network. Exam-
ples of these devices can include for example mobile devices, Internet of Things 
(IoT) nodes and smart vehicles.   
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2.1.6 Eastbound & Westbound API 

Eastbound and westbound interfaces are typically required in more complex 
SDN architectures such as in distributed models which host multiple controllers. 
They can also be used to connect separate network domains which both host 
the SDN approach (Jarschel ym., 2014). Like with the northbound interface no 
standard for these interfaces exists and the final implementation is often based 
on the requirements posed by the chosen controllers (Zhu ym., 2021). With ar-
chitecture models simply using one controller type these interfaces are typically 
easier to maintain.  

Another variant is a hybrid SDN approach which incorporates legacy sys-
tems running traditional network structures to an otherwise SDN-based net-
work. Since hybrid models incorporate two fundamentally different network-
ing approaches the connection can be established either directly through the 
gateway devices or by utilizing specialized middleware as an exchange point 
(Ahmad & Mir, 2021). Regarding the actual protocols used to maintain connec-
tivity examples include the Border Gateway Protocol (BGP) (Zhu ym., 2021; 
Ahmad & Mir, 2021) and Multi-Protocol Label Switching (MPLS) (Jarschel ym., 
2014). 

As a final note regarding the aforementioned interfaces, it is worth noting 
that neither the east- or westbound interface has a specified function and either 
one can be used for example as the interface for incorporating a legacy system.   

2.2 SDN Architectures 

Due to the flexible and programmable nature of SDN network managers are 
able to configure and setup various different networking topologies based on 
the needs of the operations. SDN-based networks can be optimized to serve dif-
ferent needs and qualities for different kinds of networks by simply selecting a 
desired architecture type, which is implemented using the aforementioned ele-
ments. For this reason, SDN networks can be used for a wide range of implica-
tions ranging from small home networks to large-scale data centers consisting 
of thousands of nodes. Existing literature regarding SDN, and typical architec-
ture models typically present primarily three models which are centralized 
models, distributed models, and hybrid models. The key feature separating 
these architectural models is the implementation of the control planes structure 
and the connections between the controllers. In essence, the architectural model 
is determined by the controllers and how they maintain the network.  

It is worth noting that although this thesis only presents three main archi-
tectures the possible implementations have more variety and options in reality. 
For example, distributed or hybrid models can be implemented in many differ-
ent ways or by using different tools to establish connectivity. However, regard-
less of the intricate details the models are still considered as one of the previ-
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ously mentioned and will not be addressed in more detail in this thesis. Next up 
the three architectures are addressed in more detail. 

2.2.1 Centralized architecture 

The simplest solution to SDN architectures is the centralized controller model 
showcased below in figure 2. This approach uses a single controller to control 
the networks routing and flow rules as well as maintaining the connection to 
the application plane. With the centralized approach the control of the network 
is simple as the network administrators have to only deal with one single con-
trol device and maintain its functionality (Paliwal, Shrimankar & Tembhurne, 
2018). Furthermore, with centralized models eastbound and westbound inter-
faces are not required reducing the workload and requirements posed upon the 
controller. Centralized models also enable benefits regarding the versatility of 
the application plane, especially with small network implementations. Since the 
managed networks are small and the control is tightly restrained, new applica-
tions can be integrated in the network more easily (Ahmad & Mir, 2021).  
 

FIGURE 2 Centralized SDN architecture.  

However, despite the simplicity centralized controller models do also face diffi-
culties which often limits its applicability in real life use cases. Centralized 
models are typically most suitable for small network that do not pose too much 
traffic and workload because a single controller can become a choke point when 
overwhelmed (Alsaeedi, Mohamad & Al-Roubaiey, 2019).  In essence, if the 
controller becomes overloaded with network traffic or is targeted with a cyber-
attack the entire network can be rendered useless. As such, centralized models 
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are not the most suitable for network environments that host thousands of 
nodes.  

In addition to actual physical hardware, dynamic networks can also pose 
limitations on the feasibility of centralized SDN networks. In certain networks 
dynamic scalability is required which means that based on the workload new 
network nodes or virtual devices may be needed within the network. With cen-
tralized networks this can cause issues as the joining and dropping of network 
nodes requires the controllers topology manager to keep track of the topology 
causing an increase in workload (Alsaeedi, Mohamad & Al-Roubaiey, 2019; 
Ahmad & Mir, 2021). This can be seen as major issue as one of core benefits of-
fered by the SDN paradigm is the promise of increased and cheaper scalability 
of the network.  

2.2.2 Distributed architecture 

Distributed architecture models expand the centralized models by incorporat-
ing multiple controllers into the control plane. With the distributed approach 
the workload of the control plane is shared among numerous controllers re-
moving choke points and increasing both the scalability as well as performance 
of the networks (Paliwal, Shrimankar & Tembhurne, 2018). With distributed 
models network managers have more possibilities in regard to structuring the 
networks and domains controlled by each controller. This can be used to share 
the workloads of the controllers by making use of load balancing which enables 
upscaling and applicability in dynamic networks. Distributed network models 
can also be used to increase the resilience and reliability of the network by 
providing alternative controllers for network nodes in case the primary desig-
nated controller becomes unusable (Bannour ym., 2017).  

Existing literature presents two distinctive alternatives for structuring and 
maintaining a distributed SDN approach. These options are dubbed as the flat 
(also known as horizontal) approach and the hierarchical (also known as verti-
cal) approach (Ahmad & Mir, 2021). With both these approaches the workload 
of the control plane is shared with numerous controllers but the main difference 
between the approaches comes with the communication of the controllers. With 
a flat distributed controller approach there are no layers or hierarchy among the 
controllers. This means that each controller maintains its designed domain or 
network segment and coordinates with the other controllers by for example 
transmitting the current network situation. This is illustrated bellow in figure 3.  
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FIGURE 3 Distributed flat SDN architecture  

Key benefits with the flat approach include cutting off bottlenecks and good 
resilience as the network segments can make use of other controllers in the case 
of failure (Ahmad & Mir, 2021). With a flat distribution model, a key concern is 
the ability to maintain a constant view of the topology and status of the net-
work. As the controlling duties are shared among the controllers none of the 
controllers knows the status of the full network on its own. This poses require-
ments for the controllers to share information about the network between each 
other regularly and in a synchronized manner. This can cause issues in the form 
of network workload or if a controller is not working properly (Alsaeedi, Mo-
hamad & Al-Roubaiey, 2019).   

With the hierarchical distribution option, the control plane is implemented 
in a way where the control plane contains additional vertical layers. Essentially, 
with this approach the control plane is split into two or more layers containing 
controllers at different layers. These layers have a specific predetermined task 
that they are responsible for maintaining. For example, in a two-layer approach 
this could be structured in a way where the bottom layer controllers are respon-
sible for maintaining their appropriated domains whereas the top layer control-
ler is tasked with maintaining control of the entire network (Ahmad & Mir, 
2021). This approach is illustrated in figure 4. With this approach the top layer 
controller only has to worry about guiding the bottom layer controllers and 
about preserving a view of the global network. In essence, this approach offers 
more centralized control as the controllers only need to maintain a connection 



20 

to the top-level controller reducing the network traffic required. In addition, 
with the hierarchical approach the topology of the network is not fragmented 
between multiple devices as at least one entity is responsible for sustaining this 
feature.  

FIGURE 4 Distributed hierarchical SDN architecture  

Although distributed SDN models contain numerous benefits and are applica-
ble for medium and large-scale implementations they do also contain certain 
limitations. First, with the hierarchical model it is possible that the top-layer 
controllers form bottlenecks if they manage too many controllers at once. With 
the flat model network administrators on the other hand lose a portion of cen-
tralized control as the tasks are divided among many devices. A key issue can 
also arise with the controller’s interoperability in case a variety of different con-
trollers are deployed (Ahmad & Mir, 2021; Bannour ym., 2017).  

2.2.3 Hybrid architecture 

The third architectural group presented in existing literature are the hybrid 
SDN models. With hybrid implementations a key aspect in the model is inte-
grating two different networking paradigms together in order to form a cohe-
sive network. Basically, the network is designed to implement and run a SDN-
based approach but a legacy system running on traditional networking meth-
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odologies is also incorporated through either the eastbound or westbound in-
terface. A key challenge regarding the hybrid model is making sure that not 
only can the heterogenic systems co-exist but also communicate with each other 
in a meaningful manner (Sinha & Haribabu, 2017). The level and the depth of 
the interoperability can vary based on design but simply put hybrid systems 
can require interoperability with the control plane, data plane, or with both the 
control and data plane based on the design of the system (Sinha & Haribabu, 
2017). As such the limitations and technical means to provide these functionali-
ties vary. A simplified version of hybrid SDN is presented in figure 5.  

FIGURE 5 Hybrid SDN architecture 

Whilst a hybrid SDN network can be most difficult to implement initially due to 
interoperability requirements, the model does offer benefits to the network ad-
ministrators. Hybrid SDN models make use of existing traditional networks 
instead of completely disregarding them. Traditional networks are typically 
reliable as they have been developed for decades and as such provide stability 
and reliability to the model (Ahmad & Mir, 2021). Secondly, a hybrid SDN solu-
tion can be a cost-effective option in shifting to a new updated networking 
model. In many cases swapping entirely from a traditional network to a SDN 
network can be expensive and require new skilled labour (Amin, Reisslein & 
Shah, 2018). By implementing SDN gradually these requirements can be miti-
gated lowering the threshold of switching.  
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Furthermore, hybrid SDN systems can seek to avoid typical transition 
problems such as unintended downtime by gradually shifting and booting up 
new systems since the original systems are still left operational (Sinha & 
Haribabu, 2017). Finally, hybrid models also provide options for network ad-
ministrators who only need SDN properties for small segments of the network. 
SDN operations can be incorporated into small segments of the networking 
domain where some of the paradigms benefits are required without a major 
transition on networking systems and with reasonable and justifiable costs 
(Ahmad & Mir, 2021).  

2.3 Benefits of SDN paradigm 

As stated previously, the new shift in networking paradigm brought up by the 
software-defined networking approach offers several tempting advantages for 
both the implementation and management of networks. The most prominent 
feature of SDN is the separation of the control and data planes which provides 
network managers with numerous benefits in regard to managing and setting 
up the networks. The most important benefit of this separation is the centraliza-
tion of network controls. Unlike with the traditional networking approach net-
works can be controlled and thereby, managed through a single network node. 
This centralized control provides managers with more efficient tools to imple-
ment their tasks as the configurations and orders are passed to all devices from 
a single source and are implemented as such to all data forwarding nodes. In 
addition to pure efficiency, this feature also provides managers with benefits to 
act dynamically to events within the networks. For example, in the case of 
cyber-attack, network managers can simply implement routing rules to circum-
vent a potentially effected route. Secondly, network managers can also optimize 
the routing in terms of load balancing. In case certain segments of the network 
are being overloaded with traffic, network managers can simply establish new 
rules that guide the traffic to new desired routes. 

Another advantage brought forward with the separated planes comes in 
the form of computational requirements of networking devices. With the tradi-
tional networking approach each routing device must be equipped with the 
capability of handling both the routing related traffic as well as the data. As 
such these devices require sufficient computational power and memory to per-
form these acts (Haji ym., 2021). With the SDN approach these requirements 
can be reduced as the infrastructure layer nodes do not require intelligence re-
garding the routing decisions. As such the burden placed upon the infrastruc-
ture layers CPUs and memory can be reduced by delegating the routing intelli-
gence to the controllers (Haji ym., 2021).   

This is especially advantageous regarding IoT devices and other low-
power network nodes. A key issue regarding IoT is the lack of computational 
power with devices and the lack of memory, which can limit the feasibility of 
applying these devices. For example, in many cases the traditional TCP/IP 
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structure causes issues for these nodes as the framework and its packet sizes are 
not optimal for these low powered devices (Shang ym., 2016).  

Outside of data trafficking and control commands a key feature provided 
by the SD-network is the often built-in topology manager module alongside a 
graphical user interfaces (GUI) or a web-based interfaces developed for several 
controllers (Zhu ym., 2021). SDN controllers traditionally maintain the ability to 
map out the current state and topology of the running network which is used 
for routing decision but also can be forwarded as a feature for network manag-
ers (Zhu ym., 2021). The global topology can be forwarded to the application 
plane through the northbound interface and be presented through a GUI. This 
provides network managers with real time information regarding the state of 
the network in an often easier to comprehend format as opposed to simply 
viewing router information through terminals or command line interfaces as is 
done with most configurations (Bwalya & Zimba, 2021). Outside of simply be-
ing in a visual format, this feature also helps to maintain a complete view of the 
network. With traditional networking approaches routers typically do not 
know the status of the network outside its own routes and as such cannot pro-
vide network managers information outside their own routing information, or 
the information provided by its links.  

The second prominent advantage provided by the SDN approach is the 
emphasis on software over hardware. With the traditional networking ap-
proach, the majority of networking functionalities are implemented through 
hardware whereas with SDN features can be run through programs. Favouring 
software over hardware comes with several benefits of which the flexibility of 
the network is essential. With traditional networking the needs of the hardware 
dictate to a large extend how the network must be configured and implemented. 
Because of this in many cases the chosen devices pose vendor specific require-
ments for the commands and policies used to manage the network causing limi-
tations and potentially incompatibilities with other devices (Chica ym., 2020). 
However, with SDN chosen software handles the configurations and manage-
ment reducing these dependencies. This also enables the developers of systems 
to opt out for higher level programming languages which can ease develop-
ment and provide more options for choosing the language used to code the 
software (Chica ym., 2020).  

Outside of simply managing the network, the software-based approach al-
so provides the option to further develop the networks with new innovations or 
extensions as they can be simply coded and integrated into the existing system. 
As software is not tied to the physical hardware, developers can develop new 
modules or functionalities to be integrated within the application plane (Haji 
ym, 2021). As a result of this programmability SD-networks holster various dif-
ferent options for all of the architectures elements and provides network man-
agers with numerous options when creating the network structures. For exam-
ple, the final shape of the network can vary greatly based on the chosen control-
lers, interfaces, or architecture models. Since these variants contain different 
advantages, networks can be tailored to specific needs of organizations or use 
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cases. This customizing can provide increased efficiency on predetermined 
segments of the network as well as better focus on using networking resources.  

In addition to developing new features, the programmability and soft-
ware-based approach also provides network managers advantages in regard to 
automating and making use of scripts. With traditional networking the routers 
communicate with each other and update their routing tables automatically, but 
the actual configurations needed for each device are typically done manually 
(Karakus & Duressi, 2017; Bwalya & Zimba, 2021). As such, this process can be 
time consuming and error prone as the configuration settings are prone to hu-
man errors such as typos or other mistakes that effect the actual routing process 
(Bwalya & Zimba, 2021). With SDN these processes can be automated through 
code or other scripts. In essence, setting up a new device to the network is easi-
er as the required settings for the flow tables and other configurations can be 
run through code, allowing for faster setup times and reducing the workload of 
network administrators (Bannour ym., 2017). 

With the automated configuration capabilities also comes benefits regard-
ing the scalability of the system. With old networking paradigms scalability is 
fundamentally achieved through increasing the amount physical hardware that 
can serve users. In order to achieve this increased scaling organizations must 
implement expensive devices as well as deploy manual labour to configure the 
nodes (Karakus & Duressi, 2017). This can be both costly and time-consuming 
which may cause issues when dynamic scaling features are needed. With SDN 
these issues can be circumvented as the setup of a new router can be done rap-
idly through an automated configuration script. In addition, the problems re-
garding the cost of new devices can be mitigated by making use of virtual de-
vices hosted within network (Chica ym., 2020; Rana, Dhondiyal & Chamoli, 
2019; Karakus & Duressi, 2017). 

Finally, SDN also offers network managers benefits in terms of security as 
the fundamentally different approach to routing and data trafficking in many 
cases mitigates well-known risks and attack vectors. For example, SDN-based 
networks allow for intricate traffic monitoring which can be analysed to find 
suspicious activities (Chica ym., 2020). SDN also provides more options for im-
plementing security software such as IDS systems to different layers where 
these programs can monitor traffic flows directly (Chica ym., 2020). However, it 
is important to acknowledge that whilst SDN provides security enhancement 
features through its concept, it also generates new threat vectors which need to 
be taken into account.   

2.4 Performance-based issues of SDN 

While SDN-based solutions provide network managers with several benefits 
they also generate new concerns and issues which must be addressed in order 
to make the network paradigm shift feasible. Existing literature highlights these 
issues often focusing on three distinctive elements limiting the applicability of 
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SDN. These issues include the scalability, reliability, and security of SDN (Ban-
nour ym., 2017). Security questions regarding SDN pose major potential issues 
and are present within all the layers of SDN. As such, these security concerns 
have been a major focus point of researchers. Therefore, this thesis addresses 
these issues on their own in more detail in chapter 5.  

Scalability of the network is feature which represents a networks ability to 
handle situations where the networks traffic reduces or increases dynamically. 
This is more prevalent usually in cases where the network sees a rapid increase 
in traffic. With traditional networks these issues typically arise when the exist-
ing group of devices is unable to handle the influx of data packets leading to a 
need for more devices, which as previously presented is slow to setup. Soft-
ware-defined networks are able to bypass these issues as the deployment of 
new networking devices can be done more efficiently through software. How-
ever, the issue of scalability is not completely solved as fundamental root cause 
of is not addressed.  

With SDN these questions regarding scalability are usually directed at 
controllers. This is a direct result of SDNs centralized network control logic. In 
essence, if the controller is not able to handle the new networking devices and 
their traffic, the whole network will become unusable as a result of the control-
ler’s overload (Bannour ym., 2017). In order to solve issues regarding the scala-
bility network managers must implement various solutions to ensure SDNs fea-
sibility to large-scale solutions. This can be done through architectural solutions 
or by opting to use controllers that have specifically been designed and built to 
provide high performance (Shirmarz & Ghaffari, 2020; Haji ym., 2021; Ahmad 
& Mir, 2021).  

In addition to scalability another concern regarding SDN is the reliability 
of the networks. With traditional networks one key advantage is the fact that 
the networking structures are reliable due to years of development and fine 
tuning (Ahmad & Mir, 2021). However, with SDN reliability can become an 
issue in many ways. For example, in use cases where network nodes are geo-
graphically sparsely populated, the distance between the network nodes and 
the location of controller can cause issues regarding latency. In cases where the 
latency becomes too high this can cause issues regarding the timeliness of rout-
ing rules which in turn causes limitations regarding the updating of flow rules 
leading to issues regarding the reliability and scalability of the network (Kara-
kus & Duressi, 2017). 

Outside geographical issues another key factor regarding the reliability of 
the network is formed by the controllers design and its ability to handle and 
tolerate unexpected failures. In certain cases, the design of the controllers has 
been built around increasing the controller performance thus increasing its 
scalability but at the expense of ensuring reliability and security (Ahmad & Mir, 
2021). As such, issues can arise from incorrect packet header information which 
can cause controllers to malfunction leading errors or even crashes (Ahmad & 
Mir, 2021). In these cases, the networks reliability is compromised which leads 
to issues when maintaining a resilient and fault-tolerant network is a necessity. 
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 Another issue regarding SDN can also arise when using distributed SDN 
architectures, which alleviate a single controller’s workload. With distributed 
SDN models various controllers are deployed simultaneously providing resili-
ence, more computational power and as such more scalability. However, these 
controllers must communicate and operate in a synchronized manner in order 
to fulfil the required tasks. This communication taking place in the control 
plane can cause issues for both the scalability and reliability. Depending on the 
amount controllers deployed the communication traffic needed to coordinate 
the controllers can limit the networks ability to serve the data plane and as a 
result reduce the amount traffic that can be forwarded (Karakus & Duressi, 2017; 
Ahmad & Mir, 2021). Furthermore, with distributed models the synchroniza-
tion requirement can cause reliability and resilience issues in case the control-
lers are not able to efficiently communicate with each other, regarding the cur-
rent status of their respected network segments (Benzekki, El Fergougui & 
Elbelrhiti Elalaoui, 2016).  

Finally, performance related problems can also arrive from SDN applica-
tions making use of multiple different controllers or through integrating legacy 
systems. With SDN implementations an advantage is the fact that the network-
ing devices are typically not vendor specific as they can be programmed based 
on the needs of the network. However, with this flexibility the cost is the lack of 
standardization which can cause issues with interoperability with devices limit-
ing the options of controllers that can be utilized (Bannour ym., 2017). For ex-
ample, if a network manager wants to implement a distributed model using 
both performance and reliability optimized controllers, they might have to de-
veloped software that can ensure mutual communications. Whilst this is not 
necessarily a technical challenge, the issue arises from the increased need for 
the controller to execute these codes leading more workload on the controllers 
(Karakus & Duressi, 2017). 

Similar interoperability related issues can arise from deploying a hybrid 
SDN model. Like with different controllers the mutual communication with 
SDN and legacy systems needs to be established through dedicated software or 
interfaces. Based on the complexity of the hybrid format this can pose addition-
al workload for the controllers involved in the case that they must also config-
ure and control the legacy systems (Ahmad & Mir, 2021). This can lead to scala-
bility issues if the controllers need to dedicate copious amount of computational 
power to these tasks. It can also lead to reliability issues in the case that the 
functioning SDN network portion and legacy domain are not synchronized in 
an adequate manner (Ahmad & Mir, 2021).  
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3 Current state of available SDN technology 

This chapter presents the current state of available SDN technology and show-
cases potential solutions for implementing SD-networks. The chapter focuses on 
layers individually as well as showcases the protocols which can be used to im-
plement APIs. Applications are approached from a more generic view as they 
are more versatile and can be carried out in a more ad hoc basis. Emphasis is 
placed on the controllers as they are the most prominent technology addressed 
in existing literature. Finally, individual protocols are showcased particularly 
for implementing the southbound interface as these protocols are SDN specific 
and primarily developed with the paradigm in mind.   

3.1 Applications 

With the development and wider adaptation of the concept of software-defined 
networking, applications and services have also increased. Originally SDN was 
largely based on open-source solutions which offered users the chance to intro-
duce the technology freely into action, however today SDN-based solutions are 
also offered commercially by both major industrial organizations as well as by 
smaller companies. Because of the versatile nature of SDN it can be applied to 
many concrete use cases and therefore, pose different needs for different im-
plementations. As such the chosen or required programs can typically be cho-
sen on an ad hoc basis from either commercial or open-source avenues. They 
can also be developed by the users with adequate programming and network-
ing knowledge, which enables them to be refined to perfectly fit the needs of 
the solution. 

Commercial applications are offered to users in both large bundles and 
through smaller service packages. Several networking industry leaders such as 
Cisco and Juniper develop and offer SDN-based networking solutions that host 
by default several tools and applications that provide users with both security 
and management features. An example of a commercial SDN solution is Ciscos 
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Meraki SD-WAN, which offers an SDN-based approach to managing Wireless 
Area Networks (WAN). This approach includes several security features such 
as Cisco Snort IDS, Cisco Umbrella SIG cloud security, and Cisco AMP end-
point threat Grid, which are integrated into the network (Cisco SD-WAN, 2023). 
In addition to the security software SD-WAN contains business and manage-
ment tools such as programs dedicated to monitoring the status and health of 
the network, VoIP and web-applications (Cisco, 2023; Cisco SD-WAN, 2023). A 
key emphasis has also been placed in making sure that the information and 
functionalities provided by these solutions is presented in a visual manner 
through dashboards and other graphical approaches. 

Another commercial bundle solution is offered by Juniper Contrail Net-
working which offers users a versatile cloud-based hybrid-SDN network. In 
this solution emphasis is placed in making use of virtualization technology as 
well as existing cloud technologies such as Kubernetes and OpenStack. Junipers 
SDN bundle also includes various applications to ensure security such as regu-
lar and virtual firewalls, network traffic monitoring, and other policy-based 
filters and rules (Juniper, 2023). Furthermore, additional security is offered 
through Junipers Cloud Workload Protection shields, which are applications 
intended to manage zero-day threats that cannot be picked up by traditional 
signature-based systems (Juniper, 2023). 

In addition to security, Junipers offered applications include features de-
signed to visualize the status of the network such as dashboards and software 
management tools. Graphical tools can also include debugging tools that can be 
integrated to provide tools for solving issues or bugs that may arise within the 
network. Finally, this approach also provides embedded routing services such 
as BGP as a service, which improves the routing through reducing the costs and 
complexity of routing through regular means (Juniper, 2023). 

Naturally, the aforementioned SDN bundles provide network managers 
with a lot of prebuilt tools which can be integrated and put into action rather 
quickly. This reduces the need for inhouse development and also provides reli-
ability through tested software. However, it is worth noting that these solutions 
can be expensive and include unnecessary features for smaller networking im-
plementations. Furthermore, as the applications are prebuilt this reduces the 
flexibility of the tools as they are provided by the vendors.  

Alongside commercial bundles SDN applications can also be acquired in 
smaller quantities by simply purchasing individual software designs to perform 
specific actions. These can include for example security features that are de-
signed to mitigate a prominent attack vector. DefenceFlow is security program 
developed and offered by Radware and which is designed to mitigate distribut-
ed denial of services (DDoS) attacks against cloud and SDN networks (Radware, 
2023). DefenceFlow is designed to provide automated and centralized protec-
tion against DDoS attacks through a single management point and by provid-
ing automated responses to noticed anomalies (Radware, 2023). 

Another venue for acquiring SDN software is by making use of the open-
source projects still developed to date. Many controllers are developed through 
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a crowdsourced effort and include modules and applications coded by other 
users which are available in public repositories. For example, projects such as 
Floodlight, OpenDayLight and Ryu are all open-source developments with ex-
isting free to use applications. These applications include firewalls, topology 
managers, authentication and access controls and IDS prevention systems such 
as SNORT to name a few (Ryu, 2023; OpenDayLight, 2023). These applications 
can be used to secure and manage networks without purchasing commercial 
solutions.  

The aforementioned projects also provide users with prebuilt ways of fur-
ther developing personalized apps. For example, Ryu, a Python-based SDN so-
lution offers an application manager which can be used to manage newly de-
veloped features (Ryu, 2023). A similar approach is offered by the Java-based 
OpenDayLight which enables further developing software and integrating it 
through the use of Maven-repositories (OpenDayLight, 2023).   

Naturally, it is worth noting that open-source implementations do main-
tain their issues. Firstly, whilst open-source projects consist of freely available 
repositories there is no guarantee of the quality and reliability of the applica-
tions. Whilst the repositories do attempt to prevent malicious or harmful code 
from being deposited, occasionally malware is stored to the list of applications. 
These supply-chain attacks can cause issues for the security of the network.  
Furthermore, these applications may require more technical capabilities in or-
der to be booted and configured initially to the system as there is no commer-
cial expert teams to help with this process. Finally, keeping the code up-to-date 
can be an issue as security requires constant progression to be achieved. In the 
case of open-source code, if the development of the code is halted, then it is up 
to the users to maintain and fix issues that can arise from for example zero-day 
vulnerabilities.   

3.2 Controllers 

Controllers are the key element which enable the SDN paradigms feasibility 
which is why they have received a lot of attention among scholars. Existing lit-
erature presents several different versions of controllers that are more often 
than not tailored to provide features to distinct SDN architectures or to resolve 
existing challenges. Because existing controllers exist in double digit numbers it 
is not feasible to address all of them in this thesis. Therefore, this thesis will 
showcase controller options for each of the aforementioned SDN architecture 
types to provide a general idea of the popular available options and their gen-
eral approach. However, for more comprehensive listings this thesis recom-
mends papers by Ahmad & Mir (2021) and Zhu ym., (2021).  

Centralized SDN implementations are often recommended for smaller 
scale networks such as small WANs for university campuses or other small 
networks, which is why the existing controllers often lack computational power 
(Ahmad & Mir, 2021). One of the first variants of centralized controllers is the 
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NOX controller initially showcased in the late 2000s. Whilst still a potential so-
lution for small networks, NOX has also served as a steppingstone for newer 
more powerful and better suited solutions, which have been developed based 
on the previous features of NOX. These controllers include the more powerful 
NOX-MT, the developer-oriented POX and NOX-Verity (Ahmad & Mir, 2021; 
Zhu ym., 2021).   

In addition to the NOX-based controllers existing literature also provides 
several centralized open-source solutions such as Ryu, Floodlight, and Maestro 
(Bannour ym., 2017). These controllers are developed mainly through the use 
Java with the exception being the Python-based Ryu. Whilst these controllers 
are still applicable and usable, they lack the required features for large-scale 
commercial applications, which is why they are often suggested to be used for 
academic purposes or other testing (Ahmad & Mir, 2021). However, due to their 
older nature, existing documentation (Zhu ym., 2021) and relatively simple de-
sign they can also be used as an option for small scale networks, which require 
further development.   

Newer and more unique options for centralized controllers represent con-
trollers such as ParaFlow (Song, Liu, Liu & Qian, 2017) and Ravel (Wang ym., 
2016). ParaFlow is a controller presented in 2017 with the idea of providing a 
highly scalable and efficient centralized controller which could be deployed to 
manage large-scale networks. The primary idea behind ParaFlow is making use 
of multiple cores that can be utilized more optimally by making use of fine-
grained parallelism with both the controller event handlers and task handlers 
(Song ym., 2017). Ravel on the other hand is a controller which seeks to inte-
grate the SDN paradigm with databases and in particular SQL language. In es-
sence Ravel is incorporated into a database which provides SDN data through 
SQL (Wang ym., 2016). The main benefits suggested by this approach are re-
ceived from having a high-level and well-known language, SQL, which is used 
to control and further develop the controller (Wang ym., 2016). 

 For distributed SDN architectures network managers can choose from a 
variety of options based on the structure of control plane. Overall, existing re-
search suggests that the flat distribution seems to be the more popular option in 
terms of controllers as it hosts considerably more variety. Two existing options 
include the Onix controller and Onos controller, which make use of instances to 
provide cohesive distributed control (Ahmad & Mir, 2021). With Onix the gen-
eral idea is to create multiple instances of Onix controllers, which share infor-
mation between each to maintain the global view of the network (Ahmad & Mir, 
2021; Koponen ym., 2010). The use of instances enables Onix to be run on a sin-
gle physical device with several instanced controllers providing scalability to 
the network (Koponen ym, 2010).  

Onos is another instance-based controller designed to carry out distribut-
ed SDN networks. Unlike Onix, Onos is a fully open-source approach making it 
a more applicable and feasible alternative for network managers to implement 
(Zhu ym., 2021). Whilst Onos also follows an instanced model, it differs from 
Onix since Onos itself makes use of a centralized controller Floodlight to per-
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form the actual SDN functions. The Onos controller deploys several centralized 
Floodlight controllers that it then connects to provide the required distribution 
architecture (Berde ym., 2014).  

An alternative to the aforementioned controllers is the HyperFlow control-
ler, which offers distribution and scalability through running several central-
ized controllers. The design of HyperFlow is built upon enhancing the NOX 
controller by utilizing the existing design on NOX and by adding the applica-
tion features of HyperFlow (Tootoonchian & Ganjali, 2010).  In essence, each of 
the controllers sees the global network status reducing the need for lateral 
communications, but the actual management is divided by HyperFlow. Hyper-
Flow is also responsible for maintaining the required information for each of 
the physical controllers (Tootoonchian & Ganjali, 2010).  

As for the hierarchical distribution approach popular controllers include 
Kandoo and Orion. Kandoo is controller suggested initially in 2012 that creates 
a two-level control plane to provide hierarchical control. The idea behind Kan-
doo is quite typical for hierarchical control as the controllers are split into local 
and root controllers (Hassas Yeganeh & Ganjali, 2012). Local controllers are de-
signed to manage and handle request that are frequent whereas unusual or rar-
er instances are passed forward to the root controllers (Hassas Yeganeh & Gan-
jali, 2012). With Kandoo all of the controllers are the same, meaning that all of 
the controllers can act as either the root or local controllers. To determine which 
layer needs to make the decision is done through an extra flag among to data 
packets (Hassas Yeganeh & Ganjali, 2012).  

Orion controllers provide large versatility as they can actually form both a 
flat and hierarchical control plane. Unlike Kandoo, Orion controller deploys a 
three-layer control plane consisting of the bottom, middle, and upper layers 
(Ahmad & Mir, 2021). With Orion the bottom layer consists of typical network-
ing nodes forming a sub-domain, which is controlled by the middle layer con-
sisting of controllers with a view of the global network (Fu ym., 2014). Finally, 
the upper layer consists of another set of controllers that parse together infor-
mation passed by the middle layer (Fu ym., 2014). 

Finally, as the last showcased distributed controller acts the controller 
Beehive. Beehive is hierarchical controller model initially presented in 2014. 
Beehive is developed with the Go programming language and consists of two 
key components being the programming model and the control platform (Ye-
ganeh & Ganjali, 2016).  Beehive seeks to provide network managers with con-
troller that is both simple to program as well as a controller that produces good 
results in terms of efficiency. 

With hybrid SDN controllers’ availability is somewhat more limited in 
comparison to other architectural approaches, but nonetheless existing litera-
ture provides options for network implementations. Older variants of hybrid 
controllers include RouteFlow and HybNET presented in the early 2010s at the 
pioneering stages of the SDN paradigm. RouteFlow is a hybrid architecture 
controller making use of OpenFlow and virtualization, by deploying a 
RouteFlow server dedicated to maintaining a virtual routing environment 
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(Nascimento ym., 2011). The basic idea behind RouteFlow is that the applica-
tion plane of the model contains the virtual routers hosted by RouteFlows serv-
er and the northbound interface is established through the same server (Nasci-
mento ym., 2011). The RouteFlow server communicates with controllers in the 
control plane whilst the physical infrastructure plane runs on older legacy net-
working protocols such as BGP and OSPF (Nascimento ym., 2011).  

Another older solution is HybNET which unlike RouteFlow is built upon 
a specifically designed controller to ensure interoperability between SDN and 
legacy nodes. With HybNET networks are built with at least one pair of a regu-
lar SDN controller supporting OpenFlow and with a specific HybNET control-
ler (Lu ym., 2013). The first step in the networking process is done by the Hy-
bNET controller which collects the networking request from both the legacy 
and SDN nodes. The HybNET controller then parses all of the requests to the 
required format and then passes the requests to the actual controller which then 
makes the required decisions regarding the network functionality (Lu ym., 
2013). This approach enables both the legacy and SDN nodes to be hosted and 
run within a single network domain.  

Lastly, a newer option for creating hybrid SDN networks is the Hybrid-
Flow controller. HybridFlow is a controller that makes use of two popular rout-
ing protocols OpenFlow and OSPF and existing network nodes that are 
equipped to be able to run both routing protocols simultaneously (Guo ym., 
2021). HybridFlow controller is built upon the idea that in many cases legacy 
networking solutions such OSPF are sufficient in managing the network and 
can as such be used. However, in cases where more dynamic and specific net-
working is needed HybridFlow also provides the ability to calculate special 
crucial routes with the use of SDN (Guo ym., 2021). With this approach much of 
the networking can be achieved making use of traditional methods and the ad-
vantages and abilities of SDN are tapped into when required.     

Due to SDNs development and increased attention among scholars, also 
the amount of controller options has also increased rapidly. As such network 
managers have a wide range of implementations to choose from. However, it is 
also worth noting that although several controllers are available through open-
source channels, there are also several factors which effect the applicability of 
individual controllers. Firstly, different controllers pose limitations on operat-
ing systems that can be used by the controller. Most of the controllers’ support 
Linux and Windows-based systems, but in particular with MacOs the options 
are more limited (Ahmad & Mir, 2021). As such when choosing potential solu-
tions this can prove to be a contributing factor. 

Secondly, the built-in functionalities and API support varies between con-
trollers. For example, most of the controllers are designed to support using the 
de facto southbound API OpenFlow, but there is a lot of variation between 
which versions are supported. The previously addressed POX controller only 
offers inbuilt support for OpenFlows 1.0 version whereas Ryu comes with sup-
port for any of the versions between 1.0 -1.5 (Ahmad & Mir, 2021). Naturally, 
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these issues can be circumvented with further development, but this is some-
thing that should be noted in case ready to go solutions are desired.  

Continuing with further development another factor that should be con-
sidered is the chosen coding language. A large portion of the available control-
lers have been developed through either Java or Python, with Java being the 
more popular language (Ahmad & Mir, 2021). If further development and cus-
tomization is expected this should be noted when choosing the controllers to 
ensure the required knowhow. 

Finally, a factor that may be important to consider is the amount of docu-
mentation of the controllers. Existing literature highlights that although several 
of the controllers are freely available through open-source code, the documenta-
tion is insufficient or even lacking (Zhu ym., 2021). As such if the paradigm of 
SDN is unfamiliar or the chosen controller is unfamiliar, adequate documenta-
tion may be significant factor in the choosing process.   

3.3 Protocols 

As SDN consists of three layers different protocols are required to connect each 
layer and possibly lateral movement through EB or WB interfaces. Since there 
are no mandated solutions and the paradigm relies on software, network ad-
ministrators have a wide range of options which can be utilized. The north-
bound interface is often suggested to be implemented through more traditional 
protocols such as REST, a version of JSON or NetConf. These are not SDN spe-
cific and will therefore not be addressed in more technical detail in this thesis. 

On the contrary the SBI is often suggested to be implemented by protocols 
which are specifically designed for the architecture and are such unique to the 
technology stack. The most well-known and often the de facto standard proto-
col for implementing SBIs is a version OpenFlow. However, despite its popular-
ity it is not the only available option as other protocols are also developed by 
reputable and significant actors in the networking field. Commercial organiza-
tions such as Cisco have developed their own competing communication proto-
col called LISP that is deployed for the SBI. Other options include ForCes which 
has been created by the Internet Engineering Task Force (IETF).  

The aforementioned will be addressed in more detail below to showcase 
their key characteristics. Naturally, this is by no means an exhaustive listing as 
new protocols can be created and deployed when necessary, but the main goal 
is to highlight options from currently existing protocols produced by major con-
tributors and which are already applicable to networks.    

3.3.1 OpenFlow 

OpenFlow is the most widely applied SBI protocol and is originally developed 
and still maintained by the Open Networking Foundation. An OpenFlow 
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switch consists of two key elements which are the control channel and flow ta-
bles. Each device contains at least one flow table and group table which are 
used to store cached information about previously issued flow rules that are 
delivered by the controller through the control channel (Open Networking 
Foundation, 2015). These rules are stored to flow tables as flow entries. Each 
flow entry is further broken down into smaller metadata components which are 
match fields, counters, instructions, priority, timeouts, cookies, and flags (Open 
Networking Foundation, 2015).  

When an OpenFlow switch receives a flow entry it begins a matching pro-
cess where it compares the newly received flow matching information to previ-
ously cached entries. If the device finds a flow entry where all the match fields 
match the flow, a new query is performed to the instructions component which 
tells the devices what actions should performed on the packets (Open Network-
ing Foundation, 2015). For example, when a matching flow rule is met the in-
structions may direct the switch on where to forward the data packets or how 
to modify them. Conversely, packets may also be dropped if they are not al-
lowed to traverse to a certain location or if none of the flow tables contain a 
matching entry. 

 Because SD-networks are designed to be dynamic it is expected that 
packets that do not match the flow table will be detected. As such OpenFlow 
devices typically contain a so-called table-miss entry. When a switch receives a 
packet that it cannot process it can send a Packet-IN message to the controller 
via the table-miss entry to ask for guidelines on what actions to perform to the 
packets (Open Networking Foundation, 2015). The controller will send the 
switch either a Packet-OUT response or new rules for a flow entry through 
Flow-MOD packets which tells which actions to apply to packets (Open Net-
working Foundation, 2015). 

Flow-MOD packets can also be applied to generally add, modify, group, 
or delete existing flows to cause changes to the network and how data is being 
forwarded (Open Networking Foundation, 2015). For example, each flow has a 
dedicated priority field which contains a predetermined value. This priority 
dictates which flow entry is used if there are multiple matches. A network man-
ager can alter the routing by sending a Flow-MOD packet which changes these 
priority values, thereby also changing which entry is used.     

3.3.2 ForCES 

ForCES (Forwarding and Control Element Separation) is an older protocol 
which predates SDN by over a decade. The protocol is originally developed and 
conceptualized by the IEFT in late 2003 as an early conceptualization of separat-
ing packet forwarding and network controls. The protocol is actually an ele-
ment in a larger framework called the ForCES framework which is intended to 
act as a unifying force for the forwarding elements and control elements ena-
bling them to communicate via a standardized protocol (Haleplidis ym., 2015). 
ForCES protocols role as standardized communication format enables the 
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framework to be more dynamic by allowing a wider range of customization for 
the forwarding elements (Haleplidis ym., 2015). 

Typical to the SDN paradigm ForCES framework adopts a format where 
the forwarding elements which are responsible for packets transmission can 
asks the controlling elements on guidance in case, they are unable to make the 
routing decision on their own (Haleplidis ym., 2015). Although the framework 
differs from traditional networking with the separation features, the control 
elements can still make use of traditional routing algorithms such as RIPE or 
BGP which provide a routing decision that is then relayed by the ForCES proto-
col (Haleplidis ym., 2015). 

The ForCES protocol actually consists of two protocol layers which have 
their set of requirements and roles (Haleplidis ym., 2015). These are the protocol 
layer and the transport layer. As the name suggests the transport layer is re-
sponsible for the actual transmission of the communication between the control 
and forwarding elements. The chosen protocol for this task is Stream Control 
Transmission Protocol (SCTP) (Haleplidis ym., 2015). The protocol layer is im-
plemented using ForCES (Haleplidis ym., 2015). Much like traditional tcp-
connections before transmitting data, a connection needs to be established be-
tween the control element and forwarding element (Haleplidis ym., 2015). After 
this connection has been achieved control messages can be transmitted. 

ForCES protocol specifications are designed to be simple to ensure that the 
protocol is viable regardless of the forwarding element designs. The protocol 
contains ten different message types of which three are for setting up the initial 
SCTP connection, one being a heartbeat message, and the last six being control 
messages (Haleplidis ym., 2015).  These control message types are config and 
config response messages, queries and query responses, event notifications, and 
packet redirection messages (Haleplidis ym., 2015). The message types also 
have predefined operations that include functions such as get, set and delete 
which are directed at the targeted devices (Haleplidis ym., 2015).  Because of 
the designs light nature, the protocol and its functionalities do not impose sig-
nificant limitations for other elements of network.        

3.3.3 LISP 

LISP or Location Identifier Separation Protocol is a protocol that uses a decou-
pling design to perform its routing (Rodriguez-Natal ym., 2015). Unlike tradi-
tional SDN, LISP is designed to separate the location identifier and the hosts 
rather than control and data packets. LISP maintains a set of Endpoint identifi-
ers (EID) and routing locators (RLOC) that enable the protocols functionality 
(Rodriguez-Natal ym., 2015). To connect various EID through the use of RLOCs 
LISP also maintains a mapping system which acts in a similar fashion as SDN 
controllers (Rodriguez-Natal ym., 2015).  

A simplified description of the protocols functionality can be presented as 
such. Data needs to be transmitted from one EID to another but the router in 
charge of doing this does not know the routing locator needed. Rather than 
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waiting for typical routing advertisements or using a default route the router 
sends a control query to the mapping system (Rodriguez-Natal ym., 2015). The 
mapping system as the name suggests has mapped out all of the RLOCs that 
connect the different EID and responds with the required RLOC (Rodriguez-
Natal ym., 2015). To avoid causing unnecessary overhead communication the 
router then updates its routing cache to contain the information that it has re-
ceived which in turn means that it can directly use this information for future 
transport (Rodriguez-Natal ym., 2015). 

LISP contains different versions to its detailed implementation. The proto-
col has both open-source and commercial variations (Rodriguez-Natal ym., 
2015). For example, Cisco has adopted the protocol and tailored it into their 
own specific needs to support their own operating system software (Cisco, 
2024). The protocol is also developed by the IEFT and general guidelines for 
maintaining the protocol adaptability are maintained.    
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4 Applications for SDN technology 

Chapter four offers a dive into currently existing or outlined concepts that inte-
grate SD-networks as a solution for enabling technical architectures. This chap-
ter presents four different technologies which utilize SDN to either improve 
existing technical solutions or as a solution to resolve identified issues ensuring 
the feasibility of the suggested frameworks. Naturally, the applications present-
ed in this chapter are not an exhaustive listing of solutions for SDN, however 
the aim is to provide a general sense of the current state as well to showcase the 
wide range of possibilities regarding the future of this networking paradigm. 

4.1 Internet of Things 

A common use case for SDN technology is formed by networks making of use 
smart devices otherwise known as IoT devices. Internet of Things devices are 
often commonly used items such as watches, televisions, sensors, and other 
household appliances which are connected online. They are commonly de-
signed to enhance the quality of these devices by offering digital features such 
as automatization, remote usability, and optimization. These devices maintain 
two distinctive features which are that the pool of devices is generally hetero-
genous and that the devices are often equipped with limited computational 
power and resources. Whilst these characteristics ensure that the IoT devices 
costs remain small and that the devices are widely available for a large number 
of use cases, they also create problems in particular for networking.  

Since IoT devices lack computational power, they can often struggle with 
running traditional networking protocols leading to issues with routing optimi-
zation and efficiency. Furthermore, the heterogeneity of individual devices can 
cause issues in ensuring the connectivity of each device as traditional networks 
are typically rigid and company specific. Software-defined networks enable 
circumventing both of these issues due to the decoupling of routing and data 
transmission as well as having a less rigid programmable approach.  
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A survey conducted by Younus, Islam, Ali, Khan and Khan (2019) pro-
vides insights into smart home designs built around SD-networks. According to 
their survey smart homes have been an important and largely supported devel-
opment for the future of cities and housing. However, despite the promising 
benefits that smart living accommodations can provide for the environment and 
residents, the quality of service in these solutions is often limited due to issues 
with traditional networking (Younus ym., 2019). The survey notes that smart 
homes primarily comprise of several individual smart devices which combine 
their efforts into creating a smart home. 

 Although the survey does not present a direct implementation of a smart 
home architecture the scholars note key features that are present in other bodies 
of research and which they present as fundamental advantages of SDN enabled 
smart home networks. In their perception of SDN smart homes Younus ym., 
(2019) approach the network structure through centralized network models 
where the communication through the SBI is handled through OpenFlow. 
Smart devices which act as the infrastructure layer nodes are connected to so 
called sink nodes which in turn communicate with the controller of the network. 
The connectivity between the sink nodes and IoT devices can be established 
through either WiFi, Bluetooth, Zigbee, and LiFi (Younus ym., 2019). 

The generic model presented in the survey places importance on pro-
grammability of the control plane by suggesting the use of existing data analyt-
ic tools to gather information regarding the state of the network and its nodes. 
The authors suggest placing Python-based data analytics, API management and 
analysis tools on the centralized controller to provide efficient resource man-
agement and processing as well as to optimize the flow decision algorithms 
(Younus ym., 2019).  

Finally based on their literature survey they present seven key benefits to 
smart homes enabled by SDN. These are more flexible network management, 
improved reliability, optimized bandwidth performance, improved quality of 
services, enhanced security, reduced latency, and improved energy efficiency 
(Younus ym., 2019). However, it should be noted that although these presented 
advantages are based on existing research, they are conditional regarding the 
implementation of the network. This means that the benefits might not be feasi-
ble based on purely the most bare bones architectural models but rather 
through making use of further developed technologies that SDN devices are 
able to maintain and utilize in their operations.  

    A second approach to incorporating SDN into IoT device routing is pre-
sent by Rabet ym., (2022) in their paper regarding highly dynamic and mobile 
IoT networks. Highly dynamic and mobile IoT networks are networks where 
the connected devices are moved inside rapidly within the network causing 
sudden changes in the network topology. As showcased by Rabet ym., (2022) in 
their work, these networks have dedicated protocols which have been designed 
to service the needs of lower powered IoT device routing. However, these pro-
tocols excel in stable networks where the topology of the network remains 
mostly static and begin to suffer serious performance issues if the topology 
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changes rapidly and continuously (Rabet ym., 2022). To address this Rabet ym., 
(2022) conceptualize and showcase their own protocol for mobile IoT networks 
called SDMob (Software Defined Mobility management) which through the use 
of a controller improves existing IoT protocols by offering a solution for rapidly 
changing topologies.  

In their model Rabet ym., (2022) make use of all the layers present in SDN 
to implement existing technical solutions to cater to needs of a dynamic mobile 
IoT network. The infrastructure layer of the model consists of two different 
types of nodes which are dubbed mobile nodes and static nodes. As the names 
suggest, these nodes serve a different role in the layer to provide the controller 
required information of the network status. Static nodes perform the actions of 
a sink which acts as the mediator between the mobile nodes and controller al-
lowing the controller to collect localization information (Rabet ym., 2022). The 
control plane consists of two pieces, a controller and a border router, which are 
hosted as Linux processes. The border router is used as processes which is re-
sponsible for parsing and processing the network traffic into a suitable format 
for the controller to handle. Finally, the application layer consists of several par-
ticle filters which are software designed to run existing algorithms used to pre-
dict the most likely future locations of the mobile nodes (Rabet ym., 2022). It is 
worth noting that the solution presented by Rabet ym., (2022) makes use of the 
flexibility of SDN as the interfaces are not implemented by the most common 
protocols such as OpenFlow but rather by existing solutions for IoT networks.  

   The flexibility of the paradigm is also present in additional features inte-
grated into SDmob as several quality-of-service features can be implemented to 
mitigate known issues. These include collision avoidance which is used to miti-
gate unnecessary overhead caused by MAC transmissions caused by mobile 
nodes, stronger links caused by controllers preferring non-mobile static nodes, 
more rapid topology updates by having the ability to make use of downward 
links and using parallel filters and buffers to handle major increases in network 
traffic caused by rapid mobile node movement (Rabet ym., 2022). 

 Advantages regarding the model include making use of existing IoT net-
work tools such as already defined algorithms in the application plane, allow-
ing for a lightweight deployment of the architecture as the controller and the 
required border router are hosted as processes rather than as physical hardware, 
and finally by providing increased reliability and quality by circumventing 
known issues of common IoT routing protocols (Rabet ym., 2022). Identified 
issues include maintaining a centralized SDN model which can limit the num-
ber of mobile nodes that can be hosted in the network, as the controller may 
form a chokepoint if the congestion control mechanisms are overloaded by 
overhead traffic (Rabet ym., 2022). 

Lastly, another SDN-based model for smart homes is presented by Gilani 
ym., (2024). The framework consists of a distributed hierarchical two-layer SDN 
implementation, where the network is built by using a parent-child connection. 
This approach is intended to provide depth to the framework whilst mitigating 
some of the issues faced by distributed models, such as synchronization re-
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quirements. In essence, the model consists of a primary SDN controller as well 
as a local SDN controller. The primary controller resides outside of the local 
area network and is responsible for dealing with external services and network-
ing whilst the local SDN controller handles the LAN functions (Gilani ym., 
2024). Furthermore, the framework also includes a switch running OpenFlow 
which is connected to a local controller as well as the network nodes, in this 
case primarily smart sensors (Gilani ym., 2024).  

 Whilst the local SDN controllers are intended to host less demanding 
computational actions, the primary controller is equipped with more resources 
and power by making use of cloud platforms (Gilani ym., 2024). This ensures 
that the network does not begin to experience reduced quality of service even in 
resource heavy functions.  

The local controller is responsible for keeping an up-to-date view of the 
smart home network and the status of its devices. To achieve this the frame-
work makes use of state request queries which are broadcasted regularly to ser-
vices and nodes hosted in the network (Gilani ym., 2024). Based on the received 
response controllers update their topology to both account for offline devices as 
well as potential new nodes (Gilani ym., 2024). The framework also suggests 
automated responses and debugging for cases where issues are identified (Gi-
lani ym., 2024). To manage the system Gilani ym., (2024) showcase a custom-
made user interface containing a dashboard, settings, service summary, and 
statics (Gilani ym., 2024). This enables the end user to survey the status of the 
network from a centralized unit, showcases the collected and processed data in 
the form of statistics, and the ability to administer the network and services.      

4.2 Network function virtualization 

Another concept born from virtualization technology is network function virtu-
alization (NFV) which as its name suggests performs various network functions 
through software. Much like virtual machines, virtualized network functions 
are performed on top of a virtualized layer that uses its hosts hardware re-
sources (Li & Chen, 2015). Much like SDN, NFVs provide its user with more 
flexibility as the functions of the network are longer bound tightly to the device 
but are rather an implemented piece of software. SDN and NFV can be used to 
complement each other creating a network which is both controlled through 
software, and which has its functions virtualized through software (Li & Chen, 
2015). This creates a highly flexible and automatable solution for network man-
agers.  

A framework of SDN enabled NFV is presented by Li & Chen (2015) who 
showcase a general architecture utilizing both technologies. Their solution con-
sists of three components, a control module, forwarding devices, and a NFV 
platform, which are used to create the architecture (Li & Chen, 2015). The NFV 
platform consists of various pieces of hardware that are equipped with the ca-
pability to run hypervisors enabling virtual machines. These virtual machines 
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run software-based network functions such as firewalls and proxies that enable 
the network to operate (Li & Chen, 2015). The NFV platform is also connected 
to the forwarding plane which hosts numerous forwarding devices that for-
ward data through the network (Li & Chen, 2015).  

To control the aforementioned pieces of the framework a control module 
is implemented consisting of a SDN controller and NFV orchestration mecha-
nisms. Essentially, the orchestration system is responsible for controlling the 
network function while the controller is responsible for making network rout-
ing decisions (Li & Chen, 2015). This approach enables combining NFVs for 
multiple devices inside a single network as the orchestration system is able to 
tell the controller what needs to be done for the network to operate optimally 
whilst the controller is able calculate an optimal routing for these functions in-
side network (Li & Chen, 2015). 

 Another combination model of NFV and SDN is presented by Boubendir, 
Bertin & Simoni (2016) who showcase a framework for dynamic Network-as-a-
Service (NaaS) models. Like other more traditional as-a-service models, NaaS 
seeks to provide its users with paid networking services that can be acquired 
from an external provider. In essence, a customer is able to purchase network-
ing features such as routing and the required infrastructure from a NaaS-
provider, enabling them to cut off their own in-house infrastructure and opera-
tions. Similar to Li & Chen (2015) Boubendir ym., (2016) unite virtualized NFV 
features with SDN networking in an attempt to provide highly dynamic NaaS 
services that can be tailored to a customers needs.  

Boubendir ym., (2016) NaaS architecture consists of four key components 
which are the SDN layer, NFV layer, Network Exposition Layer and a user in-
terface. The SDN layer is responsible for maintaining a view of the networks 
state and topology. Controllers manage network traffic inside the service infra-
structure as well as chain together various network function services that a cus-
tomer might choose to purchase. On top of the SDN layer resides the NFV layer 
which consists of predetermined network functions that the NaaS providers is 
willing to provide (Boubendir ym., 2016). These functions are run through vir-
tualization which enables them to be dynamic, isolated, as well as easy to boot 
or shutdown if required. These virtualized network functions are connected 
through an interface to the network exposition layer which is responsible for 
managing the offered services as well as acquiring the requests from customers 
(Boubendir ym., 2016). 

This layer consists of two key components which are the service descrip-
tion module and the service broker. The service broker is exposed to the cus-
tomers and acts as the interface that services customer orders from a user inter-
face (Boubendir ym., 2016).  This module enables the customers to browse the 
offered and exposed services and to create requests which are passed on to the 
service description module (Boubendir ym., 2016).  The service description 
module is implemented as a registry which holds information about the under-
lying services that are exposed and available to request.  
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As the NaaS architecture is required to be dynamic in nature, Boubendir 
ym., (2016) suggest that the model could be built in three different ways to pro-
vide the required services. The first option would be to host the NFV-services as 
a constantly running service which are either used or not. The infrastructure is 
constantly running the services meaning that they do not need to be booted up 
after a request is made by the customer. The second showcased option is an 
event-based model were by default no services are run but rather booted up 
after an event or a request is submitted (Boubendir ym., 2016). This approach 
leverages the dynamic and rapid nature of both virtualized solutions as well as 
SD-networks to provide on-demand services. Lastly Boubendir ym., (2016) sug-
gest a customized deployment model. In this model standard features are of-
fered through the constantly running model but for certain clients’ customiza-
ble options are offered. In this model specialized deployments are not run by 
default but rather built and booted when required (Boubendir ym., 2016).  

4.3 Cloud services and data centers 

A key feature of many modern network solutions is making use of large-scale 
data centers and cloud services to setup the required networking infrastructure 
and platforms. Large-scale tech companies provide various services to satisfy 
the technical needs of the network by offering their networks, servers, and 
communication channels to customers, often removing the need to host in-
house networking infrastructure. Data centers are often massive in terms of in-
frastructure in order to cater to the needs of potentially thousands of customers, 
creating a need for efficient network management and routing to ensure a sus-
tainable upkeep as well as to keep to the quality of service high. Furthermore, 
on top of simply infrastructure and platforms, many cloud services also provide 
application solutions creating further requirements for flexible networks. As 
such, SDN can be viewed as lucrative option for managing cloud networks in-
side data centers due its flexible nature, centralized command features, as well 
as its complete view of the networks topology.  

The first solution making use of SDN in cloud service implementations is 
presented by Conti, Kaliyar & Lal (2019). This solution dubbed CENSOR is a 
framework for heterogenous IoT networks that use cloud services for computa-
tional power as well as storage. CENSOR consists of all of the standard SDN 
layers, an application layer which hosts IoT applications that are used to control 
the sensors, the control layer which hosts several centralized controllers that 
also have an API to a cloud provider, and the infrastructure layer which has the 
switches, sink nodes, and IoT sensors (Conti ym., 2019). CENSOR makes use of 
OpenFlow as the SBI and utilizes OpenFlow switches which connect the sensors 
as well as the infrastructure plane and controller. These switches are also 
equipped with fog computing capabilities in order to provide computing power 
close the data sources, in this case the sensors, and to reduce unnecessary traffic 
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on the SBI which would happen if all the heavy computing would be done 
through cloud services (Conti ym., 2019). 

The framework places emphasis in data collection and utilization which is 
present through the fog computing capabilities, cloud APIs, and application 
tools residing on the application layer. CENSOR makes use of the cloud ser-
vices by storing the required data inside a cloud, reducing the need of building 
storage capabilities inside the network (Conti ym., 2019). Furthermore, a key 
issue for many SDN implementations is the scalability and resilience of the 
network under large-scale data flows causing issues for many popular control-
lers. CENSOR attempts to circumvent this with fog computing on the infra-
structure layer, reducing traffic on the controller and by also making use com-
puting power inside cloud (Conti ym., 2019). This reduces the stress on the con-
trollers as support can be acquired from bigger network providers and also in-
creased scalability as many of the cloud services are quick to boot up and shut-
down if there are significant changes in the networks traffic quantities.  

On top of utilizing data collection and analysis, CENSOR also makes use 
of SDNs programmability in its security implementation by performing period-
ical multi-layer attestation procedures. In essence, all of the nodes residing in 
the infrastructure layer have so-called IoT agent modules installed inside the 
device. This agent is inspected periodically in accordance with the set time in-
terval by a device placed higher in the architecture. In practice this means that 
IoT nodes are inspected by their local switches and these switches also hosting 
the agent module are checked by their respective controllers (Conti ym., 2019). 
To avoid foul play or other interference that an adversary might attempt, verifi-
cation is calculated through hashing algorithms stored inside the read-only 
memory of the device. Furthermore, a secret input is stored inside the verifying 
device that is passed as a parameter for the hashing algorithm. After the soft-
ware of the device has been hashed with the source code and the secret parame-
ter, the formulated hash will be sent back to the verifier which compares the 
result to a previously stored valid hash (Conti ym., 2019). If these hashes match, 
the integrity of the software can be validated.  

A second framework is presented by Cziva, Jouet, Stapleton, Tso & Peza-
ros (2016), who showcase a solution for more efficient management of virtual 
machine-based data centers. Their work makes use of an existing framework S-
Core which is further developed to more accurately measure network loads and 
to offer quick links for flows to circumvent bottlenecks (Cziva ym., 2016). The 
framework consists of two key capabilities which are the migration features of 
virtual machines between independent hypervisors and SDNs efficient network 
control mechanisms that can be distributed rapidly to numerous devices.  

The underlying feature of S-Core is an algorithm which is designed to cal-
culate communication costs between data links inside a large network or data 
center. In essence, this algorithm calculates a cost for each data link and based 
on those figures derives an optimized suggestion on which hypervisor the tar-
get virtual machine should be transferred to ensure a better cost for the data 
link and to optimize the resource utilization (Cziva ym., 2016). Cziva ym., (2016) 
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use this algorithm as a foundation for their framework, which extends the algo-
rithm by incorporating SDN to mitigate known flaws such as a static topology 
view and required manual operations for moving the virtual machines. 

The architecture follows a typical model for SD-networks. The application 
plane consists of key software that is used by the data centers management such 
as management applications for the machines. The controller layer consists of 
controllers that use key SDN modules such as a topology manager and link dis-
covery to provide the S-Core algorithm an on-demand view of the network. 
Lastly, the infrastructure layer consists of the virtual machines, hypervisors 
above them, and software-based switches which connect these machines to the 
control plane. The NBI is implement using REST and the SBI through Open-
Flow (Cziva ym., 2016).  

The framework provides several benefits that are brought forward by 
SDN. Firstly, since the controller is required to maintain an up-to-date view of 
the networks topology, the required modules are already implemented in exist-
ing solutions. Furthermore, because the networks routing and control features 
are centralized individual virtual machines do not need to main a view of the 
network. This makes S-Core more dynamic as the topology changes can be up-
dated from a single source rather than having to be implemented in each of the 
machines (Cziva ym., 2016). Secondly, when S-Core derives a result on a data 
link that warrants a VMs migration to another hypervisor this information can 
be propagated more efficiently through SDN flows to other devices (Cziva ym., 
2016). Thirdly, the added advantage of SDN is also present through decoupling 
the routing and data transfer as the controller and application plane are tasked 
with running S-Core and propagating migration decisions (Cziva ym., 2016).   

   Finally, as the last cloud-based SDN solution presented in this thesis is a 
security model SeArch developed by Nguyen, Phan, Nguen, So-In, Baig and 
Sanguanpong (2019). SeArch is an architectural model intended to provide se-
curity to IoT networks utilizing software-defined cloud networks. The core idea 
behind SeArch is to implement various intelligent intrusion detection systems 
in various devices in the network. This is done by running IDS inside the gate-
way devices to catch suspicious activities rapidly and further emphasised by 
deploying IDS in multiple layers to create a hierarchical security solution with 
depth (Nguyen ym., 2019). Key components in enabling the IDS solutions in 
SeArch are machine learning algorithms that are used as protection against ma-
licious network traffic.  

Unlike in typical SDN architectures SeArch does not follow a strict appli-
cation, control, and infrastructure plane approach but rather views the architec-
ture through edge, fog, and cloud computing layers. The edge computing layer 
hosts switches as gateway devices which are responsible for maintaining con-
nectivity with the controllers residing in the fog computing layer. The cloud 
computing layer acts as the application layer. Unlike many SDN implementa-
tions, in SeArch the majority of generated data is stored in cloud devices as they 
offer the most computational power and resources. Essentially in SeArch data 
generated by IoT sensors is both stored and processed in the application or in 
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this case cloud layer (Nguyen ym., 2019).  Naturally the required applications 
are also run on this layer as well.  

The technical implementation of SeArch is formed through creating addi-
tional layers within the three aforementioned. The lowest level IDS is simply 
placed on the gateway device connecting the edge and fog layer. This IDS im-
plementation does the initial inspection to the traffic that is forwarded to the 
controller inside the fog computing layer. On the fog layer an additional link is 
created between the controllers and a SDN application. This application is used 
to host and run the IDS process. Finally, on the cloud layer the IDS is run direct-
ly with the clouds resources (Nguyen ym., 2019). On top of maintaining a hier-
archical model SeArch also provides horizontal support for the edge computing 
systems. Essentially, the gateway nodes can also run with a distributed ap-
proach providing additional shared computing resources and thereby forming 
a hybrid of hierarchical and distributed SDN paradigms. 

This hierarchical approach comes with several recognized advantages that 
seek to provide additional security as well as resilience against denial-of-service 
attacks. SeArch uses several different machine learning algorithms which are 
distinct in each of the layers (Nguyen ym., 2019). This provides more security as 
algorithms can be chosen to complement each other and to emphasize different 
inspection parameters. Furthermore, this enables running less resource inten-
sive machine learning algorithms on the lower levels reducing bottlenecks and 
disturbance on the edge layer nodes (Nguyen ym., 2019). On top of simply ana-
lysing traffic SeArch also provides mitigation tools for countering malicious 
activity. The edge layer IDS is running the lightest algorithm is intended to 
simply block traffic that is suspected to be malicious (Nguyen ym., 2019). This 
provides an initial solution. Further tools are available on the fog layer which is 
designed to create evasive manoeuvres such as changing flow routes or policies 
(Nguyen ym., 2019). These provide the network with several layers where secu-
rity and response actions can be performed.       

4.4 Software-defined vehicular networks 

Outside of traditional IoT devices another rapidly developed sector of Internet 
connectivity is formed by vehicles that host increasing amounts of software and 
networking protocols. For example, modern cars are typically are equipped 
with various software with direct Internet access providing the owners with 
tools such as voice-controlled assistance and inbuilt navigation features. How-
ever, due to their dependencies for wireless technology and mobile nature these 
vehicles create new requirements for network infrastructure. To accommodate 
these requirements various solutions have been presented to create so-called 
vehicular ad hoc networks (VANETs). Much like traditional networking 
VANETs are also facing an increasing amount of issues in providing quality 
and reliable networking due to increased data loads, increased demands of data 
processing and requirements for timely traffic information (Barolli, Spaho, 
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Qafzezi & Bylykbashi, 2019). Whilst data processing and storage related issues 
have been partially circumvented by fog and cloud services the fundamental 
issues regarding network management and controls still prevail (Barolli ym., 
2019).   

SDN provides a solution to resolve issues regarding network management 
and controls through its programmability and efficiency thus making it a lucra-
tive option to complement existing VANET architectures. SDN features such as 
controllers are incorporated into to the network to provide centralized control 
mechanisms and to enable rapid topology shifts that alongside with cloud and 
fog services provide end users with data driven services (Barolli ym., 2019).  

The first solution regarding SDN enabled VANETs is presented by Barolli 
ym (2019). Their solution called Fuzzy-based System for Resource Management 
(FSRM) integrates SDN controllers into an existing architecture for VANETs. 
FSRM makes use of cloud computing services to perform resource heavy com-
putational operations and fog computing to bring beefed up computing re-
sources near the user of the vehicle. This provides three layers of data pro-
cessing when counting the initial processing performed by the integrated com-
puter inside vehicle (Barolli ym., 2019). The actual management of the network 
is performed by SDN modules which are incorporated in various sections of 
model.  

FSRM implements SDN through two key component which are a SDN 
module that is placed inside a vehicle and SDN controllers which are placed in 
the fog layer of architecture (Barolli ym., 2019). In their model Barolli ym (2019) 
use SDN both vertically and horizontally. The vertical features are conducted 
through typical SDN means where the vehicles module sends a request to a 
controller inside the fog layer if it needs decisions that the module cannot han-
dle. On top of this horizontal connections are made when two or more vehicles 
are equipped with SDN modules in order to share information and to provide 
close proximity computing and reduced latency (Barolli ym., 2019). Among 
shared information are details such as the vehicles current position, speed, and 
direction which are used to gather intel for the vehicles applications. 

  A key detail regarding VANETs is the mobility and speed of the vehicles 
using the services provided by the network. Because of high speeds and con-
stant movement of the vehicles it is critically important for the network and se-
curity applications to produce rapid and timely information for the vehicles 
systems. To ensure this FSRM employs features that use the provided SDN 
modules information to determine where the computed data will be processed 
(Barolli ym., 2019). For the most urgent computing lower layer computing e.g. 
module and fog services are also used to reduce latency and to provide timeli-
ness. For other events the speed of the vehicle is used to determine where the 
data will be forwarded for further processing (Barolli ym., 2019).  

More in-depth analysis regarding VANETs controller requirements are 
provided by Rotermund, Häckel, Meyer, Korf & Schmidt (2020) in their work 
assessing fundamental requirements for SDN controllers to enable VANET 
functionality. Whilst SDN requirements in particular for controllers have been 
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studied previously regarding data centers, less work has been done for 
VANETs (Rotermund ym., 2020). Work done by Rotermund ym., (2020) pro-
vide a standardized baseline for minimum requirements that SDN controllers 
must meet in order to be both safe and viable options for performing on-board 
networking inside VANETs. 

The analysis creates a fundamental presumption that each vehicle is 
equipped with its own controller creating a local on-board network for every 
vehicle (Rotermund ym., 2020). This expands the concept of Barolli ym., (2019) 
which depends more on external servers to make networking decisions. This 
approach brings more computing capabilities to an individual vehicle as both 
the data forwarding and network control can be performed locally reducing 
otherwise mandatory latency.  

Rotermund ym., (2020) divide their findings into three primary groups in 
terms of minimal requirements. These include real-time requirements, safety 
requirements, as well as security requirements (Rotermund ym., 2020). Alt-
hough safety and security requirements can be seen as overlapping in many 
ways, in this classification safety requirements address on-board safety of the 
vehicle whereas security is addressed through the lens of cyber security. The 
real-time requirements posed for the controller revolve primarily around ensur-
ing rapid services for the vehicles to provide adequate service quality and 
availability (Rotermund ym., 2020). These include demands such as rapid boot 
times for network devices and ability to host existing standards for VANET ex-
tensions. Essentially, the network devices are not continuously operated unlike 
in traditional networks but are powered off when the vehicle is shutdown. As 
such when the vehicle is started the on-board controller needs to be ready to go 
almost instantaneously. 

On top of timeliness several safety requirements are also presented which 
are designed to ensure that vehicle and its control devices have built-in fail-safe 
mechanisms in case the network experiences issues. These include flow state 
validation checks, hard-coded paths, link failure detection capabilities, and al-
ternative controllers points for cases where the primary controller malfunctions 
(Rotermund ym., 2020). These requirements highlight the need for reliability 
and fault-tolerance for VANETs and SDN network equipment. Essentially, a 
SDN controller must have safety features such as emergency links, backup con-
trollers and fault detection systems that can act if the primary system encoun-
ters issues (Rotermund ym., 2020). 

Lastly are the security features which are required to mitigate and defend 
against malicious activities against vehicles or VANETs in general. These fea-
tures are described quite vaguely but revolve primarily around integrity and 
validation checks. Rotermund ym., (2020) place emphasis on providing secure 
communication channels for both SBI and NBI. Furthermore, they suggest that 
the flows guiding the network should be locked for each application to ensure 
that only the validated application can interact and change established flows. 
Finally, adequate authentication mechanisms are required to ensure sufficient 
access controls (Rotermund ym., 2020).   
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After analysing existing controller solutions with these set requirements 
Rotermund ym., (2020) conclude that none of the widely used existing solutions 
met with these standards. These findings highlight that although SDN is mar-
keted as a highly versatile technology a lot of its implementations are central-
ized around the same use cases. Furthermore, Rotermund ym., (2020) note that 
their analysis suggests that the despite existing security features that have been 
implemented into SDN controllers, they are still too insecure for VANET use 
cases in particular with insecure NBIs.  

  Finally, as the last implementation of SD-VANETs is presented by Islam, 
Khan, Saad and Kim (2021) who survey existing solutions for conducting rout-
ing inside SD-VANET with varying SDN models. In their survey Islam ym., 
(2021) showcase various implementations of VANETs which make use of all of 
the SDN models, centralized, distributed, and hybrid architectures. These seek 
to provide solutions to existing issues present in the SD-VANET solutions. In 
regard to routing, Islam ym., (2021) note that traditional routing protocols are 
not well suited for VANETs as calculating optimal routes is quite slow and re-
quires stable and static paths. As vehicles naturally move around, they pop in 
and out of certain network segments creating a situation where traditional pro-
tocols are simply not able to keep up. Because SDN requires an up-to-date view 
of the topology these issues can be circumvented as a controller should con-
stantly have a full view of the network and can therefore propagate control 
messages to moving nodes (Islam ym., 2021). 

To resolve the routing protocol related issues, existing solutions are pre-
sented and grouped into three categories being cluster-based routing, single 
path routing and multi-path routing (Islam ym., 2021). These categories are 
combined with a chosen algorithm to provide the actual routing protocol ap-
proach (Islam ym., 2021).  With the cluster-based solutions a fundamental idea 
is to group vehicles inside a certain network area into a cluster with a designed 
“head” node. This head node acts as a link between the controller and other 
vehicles in case other vehicles inside the cluster fall outside the connective zone 
(Islam ym., 2021). This ensures that connection is not lost even after moving 
from one zone to another and helps reduce unnecessary traffic that is needed to 
maintain new connections and links. As the clusters head node is tasked with 
keeping the network connected it is important that the cluster-based routing 
solutions use efficient algorithms to decide which nodes are denoted.  

The second part of the routing protocol is formed by the path decision 
format which Islam ym., (2021) categorise into single and multi-path groups. 
The fundamental difference between these approaches is how complex the de-
cision process is. With single path protocols the algorithm chooses a single link 
based on several parameters such as distance and density and then uses this 
link to forward data. With multi-path approaches this is changed as before 
transmitting data the source vehicle has several paths where it can choose from. 
This means that an algorithm must also be deployed to choose the link which  
data is transmitted from.     
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Of the surveyed VANET protocols the majority comprised of a solution 
using single path routing and clustering features (Islam ym., 2021). The chosen 
routing algorithm presents more variety as several different algorithms are de-
ployed. A key finding of the survey is that a large portion of the proposed pro-
tocols are classified as highly complex and are primarily tested through simula-
tion platforms (Islam ym., 2021). These findings highlight that although SDN 
can be used to resolve underlaying issues for VANETs, the solutions can be 
complex and difficult manage.  
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5 Security concerns of SDN 

This chapter addresses currently known security issues regarding SDN as a 
whole and provides a more detailed view of security concerns on each compo-
nent of SDN. Although SDN resolves several issues regarding current network 
and routing security, it is worth noting that attack vectors and vulnerabilities 
are also generated with a software-based solution. As such in order to be a fea-
sible option for future large-scale networking solutions, these concerns require 
identification and mitigation. Security concerns are present in each of the layers 
creating several challenges which need to be addressed. Furthermore, issues are 
also generated with the architectural model of SDN as the functionality and 
availability of all the layers is required for the paradigm to operate successfully. 

5.1 General security issues 

To preface security concerns, it is worth addressing the entire architectural 
stack of SDN. As the previous chapters have demonstrated, the paradigm con-
sists of three layers and their respected interfaces which enable the model to 
exist and operate smoothly. Whilst this provides acknowledged advantages it 
also generates severe issues in terms of the security of the networking model. In 
essence, in order for SD-networks to function, each of the components needs to 
run as intended. This presumption can lead to several scenarios where a single 
malfunctioning component can essentially lead to a complete failure of the net-
work structure. The most notable example of this can be showcased through a 
centralized SDN-model, where the network is managed through a singular con-
troller. If the controller experiences issues whether through malicious or non-
malicious origins, it can completely hinder the networks’ ability function lead-
ing to the administrators to be unable to command the controller through the 
application plane and simultaneously rendering the data planes nodes unable 
to update their flow tables. 
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The previous example showcases a critical issue in the functionality of the 
network, however this issue can also arise from more trivial impediments such 
as issues in an interface and can be a serious security concern for environments 
which require absolute reliability. As such these security issues can cause net-
work managers to opt for traditional networks which provide reliance through 
having more fault tolerance in routing as a single routers failure does not neces-
sarily impact the other devices ability to provide routes (Maleh, Qasmaoui, El 
Gholami, Sadqi & Mournir, 2023).  

Another potential cause for security concerns brought forward by SDN ar-
chitectures is the importance of controllers in the model. Since the controllers 
are mainly responsible for the intelligence of the network and for executing the 
commands issued by the administrators, they are also a prime target for any 
malicious actor looking the attack the network. Since the controllers act as a 
mediator between all the layers, they are also to a certain degree accessible by 
every component or layer (Chica ym., 2020). This can cause several security is-
sues directed at the controller even if the actual device or layer is properly se-
cured.  

For example, a poorly configured node in residing within the data plane 
can send harmfully crafted networking packets causing the controller to suffer 
from wasted computing resources leading to a dip in performance or even a 
crash in the worst-case scenario. Also, the interfaces connecting the different 
layers may cause issues if for instance the interface alters the integrity of the 
data packets or drops the packets as a result of a man-in-the-middle (MitM) at-
tack. As such the architecture of SDN should be carefully studied and under-
stood in order for network managers to be able to grasp the full extent of the 
increased attack vectors existing with the new network paradigm.  

Other common security issues brought forward by the general architec-
ture of SDN include misconfigurations and weak authentication mechanisms 
that reside in all of the present layers. Although these issues are not per say 
SDN specific, they pose various security challenges that may result in security 
breaches through unauthorized access. Weak authentication mechanisms typi-
cally refer to security features which do not enforce secure authentication pro-
cedures such as strong passwords or multi-factor authentication and as a such 
potentially compromise the system or devices protected by the measure. With 
traditional routing models, servers and routers are protected by some authenti-
cation mechanisms such as login credentials, that ensure sufficient confidential-
ity. With this approach if the routers authentication credentials are secure the 
integrity of the routing device is quite secure.  

However, with SDN the network is pieced together by all three layers 
which all can host applications and devices used within the chain. This means 
that potential attackers have a wider attack surface which they can seek to uti-
lize to gain access to a component inside the SDN model. For example, weak 
passwords or even worse default login credentials can be present in poorly con-
figured and maintained networks, which can be used by attackers to gain access 
to the controller, through either security software placed running inside the ap-
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plication layer or by data nodes operating within the data layer. As a result, 
SDN networks can be more vulnerable to exploitation even with adequately 
protected controllers, if the other components of the model are not up to par 
regarding their authentication controls. Therefore, it is very important that net-
work managers and other users with access to tools controlling the network to 
withhold strong security procedures and to ensure that the authentication 
mechanisms are both enforced and strong in terms of their configuration.  

Outside of authentication, other misconfigurations pose several vulnera-
bilities for SD-networks. As showcased in previous chapters, SD-networks offer 
network managers much greater variety and options for the architecture, tech-
nology, protocols and design of the network as opposed to traditional TCP/IP 
models. However, with this freedom comes the responsibility of adequately 
configuring and maintaining the chosen stack of technology running the net-
work. This means that network managers must be equipped with the skills to 
deal with and understand the chosen components that are used to create the 
network structure. Alongside simply understanding the solution, network 
managers must also be aware of constantly discovered vulnerabilities and im-
plement the required security solutions or patches that are rolled out.  

The list of security issues emerging from misconfigurations is quite broad 
and dependent on the technology used, but these can for example be vulnerable 
encryption ciphers, outdated software versions running code enabling the exe-
cution of known exploits, or a general lack of enforced and mandated security 
features. For example, with the most common implementation of the south-
bound interface OpenFlow, it is up to the network managers to setup the re-
quired public key infrastructure (PKI) to maintain the standard TLS-encryption 
model that encrypts data transmission between the controllers and data layer 
nodes (Maleh ym., 2023). This essentially means that network managers must 
be able to correctly setup up to PKI structure, generate the necessary public-
private key pair, choose an up-to-date encryption algorithm, and configure 
model. 

Other misconfigurations examples can include running outdated versions 
of protocols and software. For example, with older versions of OpenFlow or 
certain controllers, TLS encryption is not supported or mandated to begin with 
(Maleh ym., 2023; Chica ym., 2020) meaning that in order to provide secure 
means of communication network managers need to be able to identify and uti-
lize a correct version to reach the desired outcomes. Security issues can also be 
found with outdated code containing bugs that enable for example injections. 
An example of this could be with the northbound interface that is implemented 
with the REST-API. If a vulnerability is found within this API, it is up to the 
network administrator to make sure that they are aware of this finding and that 
they download and install the required patches to mitigate the found vulnera-
bility.  

Besides technical security issues the paradigm of SDN also contains gen-
eral security related issues due its relative novelty which can result in security 
issues within the design process and lack of standardization. As previously ad-
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dressed, SD-networks are still quite young which has resulted in the technology 
needing time to mature and becoming more fault tolerant and secure. As such, 
existing research and development has resulted in considerable effort being di-
rected at the feasibility and performance of model. Whilst this has greatly im-
proved the aforementioned features, it has often been done somewhat at the 
expense of security leading severe vulnerabilities that have later been patched 
or mitigated. However, this approach has led to several key SDN technologies 
which have been originally designed with a lack of security features, which 
have been attempted to be resolved through existing security frameworks or 
extensions. Although these suggested extensions showcase potential, they are 
still fundamentally bandages to underlying issues that should be taken into ac-
count for future designs.  

In addition, key protocols such as OpenFlow offer the option to run com-
munications through simply uncyphered TCP-channels meaning that even 
built-in secure features are optional (Chica ym., 2020). Thereby, even critical 
features ensuring confidentially can be circumvented and are not mandated 
whilst this it would be technically feasible.  

A key issue in terms of security is also the lack of standardization which is 
a result of the flexibility with SD-networks. Existing standardizations and best 
practices can optimally act as a guideline for security procedures that can be 
used to enhance the security of the network. They can also provide assistance to 
network managers who for instance adopt new devices or software in their sys-
tems helping with the initial configurations and setups of the devices. With 
SDN the amount of existing documentation is often limited and can be com-
pletely lacking in particular with non-commercial solutions. Even with estab-
lished technology such as OpenFlow protocol, documentation regarding best 
security practices and principles is quite limited and does not provide an exten-
sive step-by-step approach to security (Deb & Roy, 2022, Nisar ym., 2020).  

5.2 Application layer security 

The application layer maintains the applications used by network administra-
tors to control and command the network through controllers. Since the layer is 
fundamentally dedicated towards enabling the use of various applications, it is 
no surprise that many of the security issues regarding the layer are focused on 
issues and vulnerabilities that the applications can possess. Firstly, as the appli-
cations can be used to issues commands towards the networks controllers it is 
critically important to secure these applications behind strong authentication 
and identification processes. This is particularly important for networks which 
can be maintained remotely through the Internet. Weak credentials or default 
access credentials can lead to compromised software which potential adver-
saries can use to gain a foothold within the network compromising the availa-
bility of the system (Chica ym., 2020). 
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Another major group of security issues concerning the application layer 
resides in the code used in the software. Coding related security issues are a 
large group of vulnerabilities which may arise from poorly designed or written 
code that cause security issues in any of the major security elements such as 
confidentiality, integrity, or availability of the code (Deb & Roy, 2022). Vulnera-
bilities brought forward by bad coding practices can be both accidental or due 
to lack of better knowledge which result in security issues such as injections, 
resource hogging, denial of service, or other unexpected bugs. An example of 
bad quality coding arises from injection vulnerabilities, which are a result of 
insufficient sanitation of user inputs and often a lack of structure within the 
code. Injection attacks are attacks where the attackers are able to pass their own 
code, operating system (OS) commands, or queries through input fields which 
require user interaction. These injections can allow attackers to for example ac-
cess file systems through inputting OS commands within the URL field of 
browsers. In SD-networks system injection vulnerabilities can allow attackers to 
inject their own flow rules or temper with existing rules guiding the controller’s 
decision making (Maleh ym., 2023). However, it is also worth noting that SD-
networks are also vulnerable to traditional OS injections if the application allow 
OS commands to be injected in the machines hosting the control applications. 

  Outside of injections, another security issue regarding code is the optimi-
zation and limitations of computational resource distribution for hosted appli-
cations (Maleh ym., 2023). Excluding the most significant tech giants such as 
Google or Microsoft, most networks operate with a finite number of computa-
tional resources, which must be distributed amongst the hosted applications. 
Resource management must ensure that each of the required applications has 
access to a sufficient amount of computational power or otherwise decide 
which applications are given priority in conflicting situations. If this is neglect-
ed or resource greedy software is run, the availability and reliability of the net-
work can be compromised (Maleh ym., 2023). These addressed resource-based 
vulnerabilities and potential security issues can be caused by poorly coded in-
house or third-party software in which the efficiency of the code is not noted, 
by malware designed to hog resources, or by simply misconfigurations 
(Shaghaghi, Kaafar, Buyya & Jha, 2020). These vulnerabilities can also be trig-
gered by bugs with are not caught during testing which use infinite loops or 
other resource heavy processes that get stuck in the application. 

In addition to the previously described issues, third party and opensource 
SDN software can also provide network managers additional issues regarding 
the validity and integrity of the code used within software. With traditional 
networking nodes purchased from well-known manufacturers and vendors, a 
certain level of trust can be placed in the internal validation process of the 
products security. Also, additional security features such as hard coded reposi-
tory addresses and checksums are often present which can help administrators 
to verify that the intended updates or features are downloaded from the correct 
source and that the code has maintained its integrity throughout the process of 
downloading and installation. However, with opensource products this is not 
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necessarily the case as the products can lack these features altogether. Thereby 
it is significantly more important to determine who is behind the development 
of the SDN applications and what their dedication to quality is. As such, more 
emphasis is placed on the network managers responsible for choosing and im-
plementing the SD-network components.  

With third party and opensource software administrators have to inspect 
the source code more thoroughly to establish that the code is legit and not con-
taining unintended malicious segments (Maleh ym., 2023). This is further ham-
pered by the fact that most source code comprises of several pieces including 
imported libraries that can also be prone to security threats. Therefore, even if 
the source code used to create SDN application is valid and secure, security is-
sues can arise from the supply chain if malicious software has successfully 
found its way towards public repositories. For example, a popular opensource 
Java-based controller OpenDayLight is available through Javas public Maven 
repository. Albeit rare there have been instances where malware has been able 
to avoid security checks and has been instated into the Maven repository. This 
can cause issues if the controller uses for example components or libraries from 
the repository that are later discovered to be malicious.  

Other issues of a similar nature may arise if the codes supply chains are 
tricked into downloading code that has been masked to resemble the original 
code. In these cases, the malware contained in the repositories can be accidently 
downloaded and integrated into the applications causing security issues. Alt-
hough the previously presented example addressed the supply chain of a con-
troller, this can also be applied into other applications such as various control 
applications.   

Lastly, application related security issues can also be generated from a 
general lack of standardization present with SDN. Since SD-networks operate 
through software rather than hardware, the networks are considerably more 
flexible to serve the needs of users. However, with this flexibility also comes the 
added risk of having to potentially integrate various traditionally incompatible 
software or protocols into a single framework. As such network managers 
might have to rely on either publicly available or self-made solutions to com-
bine the software. This can again result in several vulnerabilities if the code uni-
fying the pieces is insecure and vulnerable to exploits. This again highlights the 
need for qualified operators and managers who are aware of proper security 
practices and that can assess potential dangers before proceeding to integrating 
new features.     

5.3 Controller layer security 

Controllers are the key pieces in ensuring the applicability of the SDN para-
digm and largely determine the networks functionality. Because the controllers 
hold such an important role in the architecture, they are also a popular topic 
among cybersecurity scholars as well as potential adversaries and attackers 
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(Han ym., 2020).  Existing literature has identified multiple security limitations 
regarding popular controller models which can cause several potential issues 
ranging from man-in-the-middle attacks to complete service denials attacks. 

 To begin with, a lucrative threat vector for potential attackers is formed 
by the controllers tools for routing. As the controllers are tasked with making 
routing decisions based on given flow rules and network topologies, adver-
saries can attempt to make an impact on the network by manipulating either of 
the aforementioned. An example of such attack can be performed by dynamic 
flow tunnelling. Dynamic flow tunnelling is an attack which occurs when mali-
cious actors are able to pass flow rules to the controller either through vulnera-
ble applications, injections or otherwise unrestricted methods (Chica ym., 2020). 
The vulnerability allows attackers to pass forward their own flows rules which 
can alter existing flow table entries by replacing them or create new rules lead-
ing to new unintended routing links (Chica ym., 2020). In addition to routing 
changes dynamic flow routing can also be used as a denial-of-service attack if 
attackers are able pass flows that are conflicting with existing rules. If the con-
troller is not equipped with the ability to resolve the contradiction, it might be-
come unable to continue its routing duties (Chica ym., 2020). 

Another security issue regarding the controllers routing tools is known as 
Spanning Tree poisoning (Chica ym., 2020). In this vulnerability malicious par-
ties attempt to disturb the controller’s topology manager module by abusing in-
built link discovery features. Since only controllers are allowed to perform rout-
ing related decisions it is paramount that they possess a full and up-to-date 
view of the hosted paths and devices within the network. This is done typically 
through the use of LLDP packets which inform controllers of the node’s status. 
However, if an attacker has access to for example a rogue network node resid-
ing within the infrastructure layer, they can attempt to influence the topology 
by sending purposefully crafted LLDP packets. In essence, an attacker can cre-
ate malicious packets that mislead controllers to think that new more lucrative 
links are present leading to controllers performing new flow rules that are then 
dispatched to other nodes under the controllers influence (Chica ym., 2020). 
This attack can thereby create security issues as legitimate links between devic-
es can be cut leading to availability issues as well as confidentiality risks if the 
manipulated links enable man-in-middle actions.  

Similarly to Spanning Tree poisoning, the networks links can also be vul-
nerable to path modifications if attackers are able to enumerate information re-
garding the links metadata. In networks using OpenFlow as the SBI, different 
links between network nodes are distinguished by datapath identifiers (DPID) 
which are unique to each link (Chica ym., 2020). If attackers are able to gather 
information regarding the datapath identifiers through for instance unencrypt-
ed network traffic and have access to a rogue device inside the network, they 
can craft packets with the modified header information in an attempt to spoof 
existing datapaths. If these spoofing attempts are successful and the controllers 
are tricked by the should be unique DPID forgeries, existing links are discon-
nected leading forced disconnections of legitimate devices (Chica ym., 2020).  
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Outside of attacking data links and paths another major security issue re-
garding controllers is spoofing and other controller poisoning attacks (Han ym., 
2020; Chica ym, 2020). Similarly to the previous addressed vulnerabilities at-
tackers can also attempt to craft network packets that seek to trick controllers 
into thinking that devices outside the setup network are in fact a part of the 
managed network. A technique dubbed controller poisoning seeks to achieve 
this again by making use of forged LLDP packets that are designed to trick con-
trollers into adopting the rogue devices into its switch table and also into the 
networks topology (Chica ym, 2020). If the network and controller lack suffi-
cient authentication and integrity checks attackers can seek to use this security 
problem to gain a foothold inside the network.  

It is worth noting that although previously discussed vulnerabilities often 
use forged LLDP packets it is not the only protocol which can be spoofed. Simi-
larly other layer 2 and 3 protocols can be abused to create spoofed tracks. Re-
searchers have shown that also protocols related to traditional networking such 
as IP and Address Resolution Proctol (ARP) can be faked in attempt to hijack 
traffic (Han ym., 2020). For example, Han ym., (2020) note in their literature re-
view regarding SDN controller security issues and mitigation solutions that 
popular open-source controllers such as OpenDayLight and Floodlight have 
been shown to be prone to spoofing attacks highlighting their risks.  

Although many of the spoofing threat vectors target controllers from other 
layers of the architecture they can also be initiated from inside the control plane. 
More complex and larger network models make use of distributed SDN models 
which means that more than one controller is applied to provide resilience, ad-
ditional computation power as well as to mitigate bottlenecks. As such it is to 
be expected that the network contains multiple simultaneous functioning con-
trollers that communicate with each other. However, this can be weaponized by 
attackers if they are able to add a new rogue controller into the network. With-
out proper security implementations adversaries can hijack controller locations 
and instate their own rogue controllers into the network (Rahouti ym., 2022).  If 
the attackers manage to successfully integrate their own controller into the net-
work, they can then seek to disrupt or modify routing decisions. 

Another security issue present in the control plane are the EBI and WBI 
links between the controllers in distributed SDN architectures (Maleh ym., 
2022). In distributed models each controller is only in responsible for their des-
ignated segment of the network, which mean that in order to have access to the 
entire network topology or flow information in other segments, they need to 
communicate with other controllers. This communication can therefore become 
a target for attackers that seek to cause service denials. If attackers are able to 
cause issues or block communication between controller links, the controllers 
are not able to synchronously share information between each other causing 
functionality issues (Maleh ym., 2022).  

Finally, as a last security concern regarding controllers routing decisions is 
an attack known as switch table flooding. As the name suggests, this attack in-
volves an attacker having access to a device, for example a compromised switch 
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which is then used to spam traffic to its controller (Chica ym., 2020). This can be 
achieved by making use of network traffic that seeks to inform the designated 
controller that a new device has entered the network and is in need of routing 
guidelines. This attack is primarily applicable in networks which lack authenti-
cation mechanism for new devices (Chica ym., 2020), as the absence of these 
security features leaves the controller unable to recognize the difference be-
tween legitimate devices and rogue devices. As a result of this attack, targeted 
controllers must constantly dedicate computational resources to processing the 
forged traffic and managing its internal switch tables to account for the so-
called new nodes. This can lead to issues with availability in particular with 
small, centralized implementations as well as in the routing decisions being al-
tered. Also, if the attack is successful enough controllers might become unable 
to add and process new switches that are later added into the network as the 
switch table components have become full.  

   Outside of security issues plaguing controllers, another key vulnerability 
is formed by denial-of-service attacks. As previously discussed, a fundamental 
issue for SDN models has been a lack in reliability with in particular larger scale 
implementations. Although, several controller designs have attempted to in-
crease the power and efficiency among the devices, this does not necessarily 
eliminate the risks brought forward by network traffic that is purposefully and 
maliciously produced. As such, DoS attacks are still a major security concern 
due to their relative ease in execution as well as variety in attack vectors.  

Possibly the simplest variation of DoS attacks against controllers can be 
performed in the form of packet-in flooding. This attack can be performed by 
making use of the SBI and a device that has been compromised in the infra-
structure plane. To exploit this vulnerability an attacker in essence only has to 
program the compromised device to begin sending request to the controller in 
the form of packet-in format (Chica ym., 2020). Since these requests are natural-
ly occurring in a SD-network the controller will begin to resolve them in order 
to provide routing decisions. However, as each of the request needs a certain 
amount of computing resources, less efficiency optimized and centralized con-
trollers can become overrun quickly with the never-ending stream of requests. 
This leads to a DoS for other devices in the network as the controller is unable 
to store and process their requests (Chica ym., 2022).  

Another vulnerability regarding DoS attacks is caused by the possibility of 
reverse or infinite loops (Rahouti ym., 2022). In these technique malicious actors 
attempt to modify the routing links in a manner that forms a never-ending loop 
in an attempt to make sure that the network traffic is never delivered and whilst 
making sure that the controllers need to process the request multiple times as a 
result. Because network routing needs to be dynamic to account for new devic-
es entering or existing devices dropping, controllers typically have inbuilt 
mechanisms that seek to identify potential infinite loops that might form as a 
result (Rahouti ym., 2022). However, as Rahouti ym., (2022) present in their pa-
per it has been shown that this security mechanism can be bypassed meaning 
that the security threat is still relevant. Attackers with the right technical capa-
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bilities and access to compromised devices can attempt to perform this attack 
leading to a denial of service if successful.  

A third major vulnerability group is formed by operating systems used to 
run controllers in the control plane. The programmable and flexible nature of 
SDN is also applied and present in the control plane meaning that controllers 
used by the network also provide the option for running applications on top of 
the operating system (Deb & Roy, 2022). This is not inherently a security issue 
on its own as it is done on purpose and enables network administrators to for 
example setup security software such as additional firewalls, IDSs, packet in-
spection tools, and other security frameworks also on the controllers. However, 
it can lead to major issues if known vulnerabilities are not accounted for and 
actively mitigated.  

As with any operating system a critically important security threat is 
formed with injection attacks. Operating system injections are attacks where a 
malicious user is able to pass OS commands as a part of the data payload which 
is processed and afterwards executed in the operating system. Os injections can 
cause several issues for the controller depending on the format of the injections. 
These can include for example attacks that seek to modify the data contents of 
the controller such as altering the topology managers data, attacks that seek to 
remove or destroy data such as flow rule lists, or simply leak additional infor-
mation about the system to the perpetrator for further enumeration (Chica ym., 
2020). In addition, common security issues not specific to SDN also include in-
stalling backdoors and deploying rootkits which can be used to gain a more 
permanent foothold inside the system for later exploitation (Chica ym., 2020). 

Outside of injections controllers are also vulnerable to similar code and 
malware related issues as addressed previously in the application layer security 
section. Controllers can be improved and modified due to their programmabil-
ity which means that the risk for buggy or dangerous code is always present 
(Deb & Roy, 2022). Furthermore, network managers can install additional ap-
plications and other third-party code that is processed and run by the opera-
tions system. Code downloaded from untrustworthy sources can contain seri-
ous vulnerabilities and might not be updated with regular security patches 
(Deb & Roy, 2022). On top of this, it should also be noted that available codes 
can also contain malware that is hidden among the other components (Deb & 
Roy, 2022). As the controller is a critical piece of the network with significant 
access to making decisions, they are a tempting target for bad actors with the 
capability of producing said malware. 

A less often addressed issue that is present for controllers is the physical 
security of the devices. Although controllers and SDN can largely be run on 
virtual devices, there are still physical devices that run the software. This means 
that security issues targeted towards the physical hardware used to host the 
controllers are also directly linked to the controller’s security (Han ym., 2020). 
This is particularly true for centralized controllers where a single controller can 
be solely responsible for maintaining the network. In the worst-case scenario, 
unsustainable and recoverable damage to the physical server can also take out 



60 

the controller and thereby, the entire network. Because of SDNs relative new-
ness and design it is not as robust as traditional networks to recovering from 
physical device failures. Traditional networks are decentralized meaning that if 
a single router in a certain region fails others will simply calculate new routes if 
possible. Because this is not case in smaller SD-networks the physical threats 
should be treated with sufficient importance.  

Physical threats to SDN infrastructure can be both intentional and unin-
tentional. For unintentional security threats issues such as natural disasters or 
fires could cause significant issues. Also, other issues to the physical devices 
that are completely unrelated to SDN could in the worst-case crash servers 
leading to simultaneously crashing the controller. As for intentional attacks, 
attacker can seek to purposefully destroy the physical devices or infect them 
with malware through portable means such as USB-sticks if they manage gain 
access to the infrastructure.  

Finally, as the last of set security threats addressed in this thesis are the 
miscellaneous threats that concern controllers. As discussed earlier in this chap-
ter injections can pose significant issues to the controller. Although a primary 
concern is often placed on OS commands, other common injection-based attack 
vectors can also be used by malicious parties. If the network makes use of an 
incorporated database, SQL injections can also become a significant threat (Han 
ym., 2020). With SQL injections attackers create traffic where the data payload 
contains SQL operators that are mistaken as legitimate database queries. With 
controllers SQL injections can be used by attackers to leak valuable information 
from for example small in-memory databases that the controllers are running 
(Han ym., 2020). 

Another less often addressed security threat is formed again by the topol-
ogy manager of the controller. Like previously showcased the topology manag-
er can be targeted by various spoofing and flooding attacks which mess with 
integrity of the data. However, as discussed by Rahouti ym., (2022) the topolo-
gy manager can also be targeted with the polar opposite approach. As SD-
networks are designed to be flexible it is expected that the network topology 
changes due to natural circumstances, which is noted and acknowledged by the 
controller. However, attackers can also target this process through an attack 
called topology freezing, where the main goal is to disrupt the controller topol-
ogy module leaving it in a state where implementing the updates within the 
network becomes impossible leaving the controllers network view essentially in 
a static state (Rahouti ym., 2022). Although this attack does not necessarily 
cause immediate issues it can cause problems if new nodes are not able to join 
the network or when existing once are dropped.  

Lastly, the final controller security issue discussed in this thesis are side-
channel attacks and data leaks. As the controller acts as the brains of the net-
work it also processes and stores a lot of information interesting to adversaries. 
As such attacks targeted at simply enhancing enumeration findings can cause 
severe issues. This is particularly true with centralized SD-networks where a 
single controller manages the network and thereby, knows almost everything 
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about the network. If the attacker is able to gain access to the controller either 
directly or by through for example rogue nodes within the infrastructure plane, 
they can in the worst case extract the entire architecture of the network from the 
topology manager or all of the maintained links stored in the flow table (Deb & 
Roy, 2022). This can naturally be leveraged for future attacks by determining 
the other valuable targets or by finding links that form chokepoints for potential 
DoS attacks.  

Other threats regarding enumeration and fingerprinting controllers are al-
so present through more traditional side-channel leak attacks. As a network 
operates certain things can be measured even without direct unauthorized ac-
cess. Attackers can seek to measure various features such as latency, response 
times, routing paths and other information regarding devices operating in the 
network (Maleh ym., 2023). Whilst side-channel attacks are not specific to SDN 
and are typically difficult to mitigate due to their nature of being a normal by-
product of an operating network, they are worth addressing especially in SD-
networks which require high levels of resilience and reliability.  

5.4 Infrastructure layer security 

The infrastructure layer is dedicated to transmitting data inside the network 
which is why a large portion of identified security threats address threats that 
seek to interfere and disturb this transmission. Existing literature consists of 
several security threats that can be leveraged to cause denial of service attacks 
on the network itself or more specifically individual nodes or switches that re-
side in the network. These security issues often attempt to utilize the lack of 
intelligence in regard to routing that the devices have or simply seek to over-
whelm the limited and often rigid computational resources that infrastructure 
layers nodes typically have. Furthermore, as popular protocols that are de-
ployed in the southbound interface and infrastructure layer lack mandated, 
built-in and standardized encryption and integrity features, malicious actors 
can seek to exploit existing SDN tools to achieve the exploitation of the afore-
mentioned security issues.  

One of the most common security issues are denial of service attacks that 
are targeted specifically towards the infrastructure layers devices. These can be 
both individual network nodes that an attacker seeks to isolate or disconnect 
entirely from the network or switches connecting multiple nodes if larger ser-
vice denials are attempted. Several scholars (Rahouti ym., 2022; Maleh ym., 
2023; Chica ym., 2020) present in their body of work that service denials can be 
achieved through both traditional methods such as through TCP-packet flood-
ing attacks or through SDN specific methods such as flow table or path link at-
tacks.  

TCP packet flooding attacks are a form DoS where the attacker abuses the 
TCP handshake to exhaust the devices computational resources by continuous-
ly sending TCP packets that either seek to establish new connections with SYN 
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packets or never send the required ACK-packets to acknowledge the connection 
(Rahouti ym., 2022). As a result, the devices will attempt to finish the required 
TCP-handshake by resending the unacknowledged packets leading to an ex-
haustion of available connections and wasted network bandwidth. In addition 
to wasting available connection and bandwidth, TCP flooding attacks can also 
be leveraged against switches running OpenFlow by filling up the limited buff-
ers that reside in them (Rahouti ym., 2022). If the network becomes clogged, 
switches awaiting rules from controllers can store data inside their buffers. 
However, if the DoS attack continues these buffers can runout of memory (Ra-
houti ym., 2022) leading to either packets having to be dropped or congestion 
avoidance features having to be deployed. This limits the amount data that can 
be transmitted leading to service denials in worst case scenarios. 

Another attack vector for performing denial of service attacks is formed by 
the flow tables and flow rules installed inside the switches. Because SDN archi-
tecture separates control and data transmission the switches operating in the 
infrastructure layer are fully reliant on the controller on instructions how to 
function. As such they typically lack the ability resolve a potential conflict of 
two flow rules or the ability manage flow rules that lack required headers. This 
coupled with the fact that OpenFlow-based solutions do not require any integri-
ty and validation checks causes severe vulnerabilities that can be exploited by 
attackers (Rahouti ym., 2022; Deb & Roy, 2022).  

An example of exploiting these vulnerabilities comes in the form of forged 
flow rules, which can be utilized in a wide variety of attacks. Attackers can send 
flow rules that are designed cause conflict into switches that due to a lack au-
thentication and validation install new rules in their flow tables causing them to 
become unable to transmit data to its nodes (Deb & Roy, 2022). However simply 
causing conflictions is not the only way this vector can be leveraged, as attack-
ers can also seek to cause service denials by sending forged commands that in-
struct the switches to drop their flow tables altogether, by filling the flow tables 
with nonsense rules that have no real purpose, or by installing rules that cause 
the traffic to be directed to new malicious switch causing man-in-the-middle 
attacks (Rahouti ym,, 2022; Maleh ym., 2023). These man-in-the-middle attacks 
can be used to perform service denials if the switches are instructed to drop the 
captured network traffic, causing in essence a black hole effect. 

Another DoS attack vector available for advisories to exploit is provided 
through ARP protocol. ARP is a layer 2 protocol that is used in the infrastruc-
ture plane to determine the MAC address each device. In essence ARP is used 
to determine which MAC address corresponds to which IP address or in other 
words which IP address is connected to a specific device. Due to a of lack au-
thentication mechanisms an attacker can attempt to spoof an ARP address by 
simple sending out forged responses for broadcasted ARP queries (Rahouti ym., 
2022). If the attacker is successful, the device broadcasting the queries, most 
likely a switch, will append its ARP cache with the spoofed MAC address, lead-
ing to a scenario where traffic is directed to a malicious node. Since the traffic is 
routed to a rogue device controlled by the attacker, they again have the option 
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of stopping the traffic by simply refusing to forward it to the legitimate holder 
of the queried MAC address, causing a service denial.  

  Finally, as the last showcased attack vector for causing DoS attacks is tak-
ing advantage of network latency. As previously mentioned SDN switches and 
nodes rely on rules and instructions from controllers to function and make deci-
sions. As such it is vital that the instructions are received in the first place and 
that they delivered in a timely manner. If attackers can cause traffic or conges-
tion inside the network, they can seek to increase the latency of the responses 
from the controller. If this latency can be sufficiently increased switches can be 
left in a state where they again have to begin buffering data as they wait for in-
structions from the controller (Maleh ym., 2023). This can used to create service 
denials if the attackers are able to gather enough data into the buffer whilst 
simultaneously ensuring that the switch does not receive the required rules to 
start forwarding data and thereby emptying its buffers.   

Although DoS attacks form a considerable threat to the infrastructure lay-
er they are by no means the only attack that malicious actors can seek to utilize. 
Another major attack that can be performed in various ways is the previously 
showcased man-in-the-middle attack which can be also used as a tool for 
eavesdropping the network and to gather information passing through. Because 
encryption and tools for verifying data integrity are not mandated by default 
(Deb & Roy 2022; Jimenez ym., 2021) attackers can have access to a wide range 
malicious tools when performing a MitM. Firstly, if TLS or other encryption 
methods are not deployed an attacker with a successful MitM setup can simply 
capture and read all the data as it is transmitted in plane text format. This can 
be used to gather valuable information about the target, to steal information 
that should be private, or simply monitor the activity of the network.  

Furthermore, attackers can utilize the lack integrity validation to monitor 
the data before passing it forward. Because there aren’t any mandated integrity 
checks attacker who have access to a rogue device in the middle of the connec-
tion can simply change the transmitted data as they please before forwarding it 
towards the rightful recipient of the data. However, as no tools for ensuring 
integrity such as hashes are used, the recipient node has no chance of validating 
the data leading to a situation of simply having to believe that the received data 
is intact (Deb & Roy, 2022). In networks that require high levels of confidentiali-
ty and data integrity results can be catastrophic.  

The aforementioned issues can also be compounded in the future when 
encryption tools are being setup in the form of an TLS-based PKI system. If an 
attacker has gained access to a malicious device and has successfully created a 
MitM setting, they can simply interfere with the key forming and exchange pro-
cess essentially completely negating the security feature. In essence, the attacker 
can simply use the MitM device to generate its own set of PKI keys which it 
then uses to decrypt the traffic from the sender and then to re-encrypt it is own 
keys before passing the data to the real target.  

Lastly, on top of simply eavesdropping on data, a lack of integrity and val-
idation can also be used by attackers to perform injections on other devices in 
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the layer. Because the switches do not contain tools for validating data sources 
attackers can also create malicious payloads that contain various commands 
that are designed to cause the target device to execute various tasks. These can 
include tasks such as disconnections, shutdowns and other operating system 
commands depending on the system that the device runs on (Chica ym., 2020). 
Injections offer the attackers several attack vectors to follow but they can in-
clude for example service denial by shutting down key switches that form 
chokepoints, redirecting traffic to desired nodes by removing existing links be-
tween nodes and switches, and enumeration by gathering information about 
devices through OS commands.  

5.5 Interface security 

Existing security research often devotes rather limited resources towards study-
ing and addressing vulnerabilities within communication links or interfaces 
connecting the network. As such existing work often does not go into as much 
detail regarding interface security compared to for example security concerns in 
controllers leading to limited in-depth analysis. These generalized and con-
densed findings typically address security issues within the northbound and 
southbound interfaces neglecting the interfaces used to handle communications 
between controllers in distributed and hybrid SDN models. Furthermore, alt-
hough SDN doesn’t contain any enforced standards regarding the protocols 
used to implement these interfaces, much of the existing research is conducted 
using the most commonly applied protocols such as OpenFlow for the south-
bound interface and REST for the northbound interface leading to limited view 
of potential issues. 

Since the interfaces are used to connect different layers of SDN and are de-
signed to handle the communication between these layers, it is no surprise that 
many of the most commonly presented security issues revolve around these 
features. Two of the most common showcased and discussed topics regarding 
interface security are denial of service attacks and uncyphered communication 
channels which are present in all the security sources used in this thesis. A ma-
jor problem regarding existing solutions used for implementing the interfaces is 
a lack proper authentication and verification mechanisms (Jimenez ym., 2021), 
which limit the devices ability pick up on fraudulent and malicious activities. 
Because there are no standardized and mandatory authentication mechanisms, 
attackers who have a foothold in the network can simply generate overwhelm-
ing amounts of traffic that cause severe overhead in the network leading to at 
minimum a loss in efficiency and in the worst-case total denial of service 
(Jimenez ym., 2021).  

Another major security threat is brought forth by a lack of verification re-
garding data integrity and its origin. As with the previously discussed authen-
tication, existing SDN models typically do not enforce and require strict verifi-
cation regarding data passed among the network by default. As such if network 
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managers do not implement their own vetted solutions attackers can take ad-
vantage of this vulnerability and cause numerous forms of damage. Firstly, at-
tackers can seek to take advantage of OpenFlows lack of integrity checks and 
simply forward spoofed data through the southbound interface (Deb & Roy, 
2022). This can cause various issues such as passing unauthorized network 
commands to nodes residing on the infrastructure plane.  

Secondly, another major issue can be present with larger scale distributed 
SDN models. Like showcased earlier in chapter two, distributed SDN models 
host multiple controllers that share the responsibilities of managing the net-
work. Depending on the model, these controllers must communicate with each 
other to ensure that topology of the network stays up-to-date and in a synchro-
nized state. Because the eastbound and westbound interfaces also lack integrity 
tools, attackers with a foothold in the controller plane can seek to interfere with 
other controllers as well. Attackers can simply attempt to disrupt the overall 
topology view of the network by sending forged information that is accepted 
and updated by other controllers (Jimenez ym., 2021). This can later be lever-
aged to perform other actions. Attackers can also attempt to cause service deni-
als by impeding the synchronization process in flat distributed networks. In flat 
distributed SD-networks none of the controllers deployed have a full view of 
the network topology and as such rely on regular communication with other 
controllers. If a controller does not respond to its peers or is simply out of sync 
with the other controllers, the network cannot maintain an up-to-date view of 
the current network state. This can also result in other controllers having to 
start managing other segments of the network, which can lead to unintended 
consequences such as a lack of efficiency or unplanned reroutes.  

The second major concern prominent in most research is the lack of en-
cryption regarding the communication channels used to operate the interfaces. 
As discussed many times prior in this thesis, most common SDN models do not 
provide or require mandated encryption and ciphering to protect their commu-
nication. As such maintaining and instating sufficient security features falls into 
the hands of network managers leaving potential attack surfaces for attackers to 
exploit. In SD-networks that do not maintain up to date and reliable encryption 
formats potential adversaries can monitor the traffic data gathering information 
about the networks structure, topology, control commands and management 
(Chica ym., 2020; Rahouti ym., 2022; Maleh ym., 2023).  

Another form of data leaking can be caused by exploiting a listener mode 
feature present in SD-networks which have implemented the southbound inter-
face through an older version of OpenFlow switches (Deb & Roy, 2022; Jimenez 
ym., 2021). Listener mode enables attackers to gather additional information 
about the network and its configurations due to an emphasized lack of authen-
tication present in this mode (Jimenez ym., 2021). Because strong authentication 
is not required and listening mode is enabled, attackers can attempt to open 
connections to the devices to gain a foothold within the network and to gather 
further reconnaissance (Deb & Roy, 2022; Jimenez ym., 2021). 
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   Lastly, on top of the most commonly presented security concerns exist-
ing literature also identifies vulnerabilities regarding the functionality of inter-
faces. As SDN is by its nature intended to utilize programmability its interfaces 
are also built to support these features. However, this also leaves them vulnera-
ble to attacks such as injections (Jimenez ym., 2021; Chica ym., 2022; Rahouti 
ym., 2022). These injections can include SQL injections targeted at breaching 
databases residing in controllers (Jimenez ym., 2021), data extraction through 
passed commands (Rahouti ym., 2022), destruction of network information 
such as flow rules or other stored information (Rahouti ym., 2022) and shutting 
down legitimate devices through operating system commands (Chica ym., 
2022). It is worth noting that this list could be expanded based on the actual im-
plementation of the interface as different protocols have their own known 
weaknesses and special features. However, the aforementioned should be seen 
as common issues that are often causes for concern in many of the chosen im-
plementations.  
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6 Discussion 

This chapter analyses the results of this study and discusses observations made 
during the literature review process. The observations address the overall state 
of SDN, feasibility of various existing frameworks, and potential improvements 
that could be made to the existing body of research. This discussion addresses 
the observations from a general point of view and from a more direct viewpoint 
of applications and security research. Finally, this chapter also presents direct 
recommendations for future research regarding SDN.  

6.1 Discussion of findings 

The results of this thesis show that SDN is technological paradigm which has 
drawn the attention of scholars both from the standpoint of providing new in-
novative frameworks for future technical infrastructure as well as from the 
standpoint of cybersecurity. Although, this thesis set strict timely limitations to 
ensure the timeliness of the source material, searches to databases provided suf-
ficient results. In addition, these databases and libraries show that literature 
regarding the topic has significantly increased in the past few years showing 
the topic is relevant. This can be seen as natural development as numerous re-
search articles studied during this process highlight the need for innovation 
regarding the development of future networking.  

SDN is typically advertised as a solution which is flexible due to its pro-
grammability. This is apparent when reviewing the search results of database 
queries as the results showcased that the architecture has been widely applied 
to many frameworks and applications. It is also worth noting that albeit the 
paradigm is a large component on its own, several research papers have inte-
grated it as a relatively small background component to support another 
framework. This highlights that SDN can be applied widely as a supporting 
component to larger technical architectures rather than acting as the key com-
ponent of the model.  
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Although this thesis approached the topic from various angles certain 
commonalities were present in the body of research which caused limitations to 
existing work. Since the topic is quite recent from the standpoint of theoretical 
background, a lot of the research is still recent and has a large focus in ensuring 
the overall feasibility of the paradigm. This can be seen as a natural step in the 
evolution of this research direction as a working foundation needs to be estab-
lished before implementing and widely adopting SDN. However, this also re-
sults in the research being directed towards similar research angles and causes 
limitations on more directed and specific research targets.  This can be seen 
clearly when analysing the setup of SDN models present in both the studies 
regarding the applications of SDN as well as security research.  

For example, most research papers addressing purely theoretical SDN as 
well as this thesis present multiple architectures for implementing SDN includ-
ing centralized, distributed, and hybrid models. On the other hand, the majority 
of studies discussed in this thesis adopt a centralized model excluding the other 
options entirely. This can be seen as a justified choice from the viewpoint of the 
research as centralized models are easier to implement and test through emula-
tors. However, this leaves a wide gap in the body of research as centralized 
models cannot and should not be the only choice for future SDN implementa-
tions. Although, controllers have been developed and their performance has 
been enhanced it can be seen as unlikely that a single centralized controller 
could be used to administer large networks such as data centers or widely 
spread networks such as VANETs. This is because a centralized controller is 
always to a certain extent a bottleneck and because it is unlikely that a single 
controller could possess sufficient computing power, regardless of the level de-
velopment and optimization. As such it is important that research is also per-
formed and tested through the other models to test their feasibility and to dis-
cover potential unique limitations or opportunities that they may offer.   

Another way this issue is emphasized is through the selection of protocols 
used to implement in particular the southbound interface of models. A key ad-
vantage that many scholars recognize is the ability to avoid been caught up in 
vendor and specifications related limitations due to the flexible nature of SDN. 
This in essence means that network administrators and architects can freely 
choose which protocols are used to connect each layer. Although several proto-
cols exist, an overwhelming majority of proposed models opt to use OpenFlow 
to manage the SBI link. This once again has its advantages as OpenFlow is often 
considered as the de facto protocol for the SBI and it is the most widely applied 
protocol, but this causes a lack of research for the other options and somewhat 
unintentionally locks OpenFlow as the primary option for SDN.  

Furthermore, this also has an impact on the development of network 
nodes and applications as OpenFlows heavy impact guides developers towards 
creating software which is intended primarily to support OpenFlow. This limits 
the flexibility of the paradigm and pushes it back towards a state where end-
users become locked with existing solutions that dominate the field. More effort 
should be placed on both research and development of SDN which attempts to 
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provide more options for implementing the SBI to avoid getting caught with a 
singular choice and its potential vulnerabilities and weaknesses.  

Another issue regarding existing literature comes in the form hybrid mod-
els and the interfaces that are used integrate legacy and SDN systems. Since a 
large portion of research opts to use centralized models this as a consequence 
excludes EBI and WBI implementations out of the scope of the work. This caus-
es several issues regarding security, adaption of SDN, and knowledge of avail-
able options. One major hurdle regarding transitioning to SDN systems is the 
initial entry cost of building a new system. In addition, many potential end-
users may have old and highly reliable implementations of legacy systems. This 
can cause managers to be reluctant to undergo a shift to newer models. Hybrid 
models reduce this initial step as the network can be partitioned to only use 
SDN for a segment of the network which most benefits from its features.  

Because hybrid models are not often included and researched, this can 
limit knowledge regarding the possibilities and thereby prevent the shift. Fur-
thermore, this creates a lack particularly in security research that is specifically 
aimed at understanding the security implications and vulnerabilities specific to 
hybrid SDN models. Although, this thesis made a distinct decision to choose 
only recent publications and several vulnerabilities were discussed, security 
issues for hybrid models were not really present in the literature.  

 Another theme raised in many publications is the general lack of stand-
ards and standardizations for SDN layers, protocols, or models. This can be 
seen as expected mainly because SDN is still a new paradigm, versatile, and not 
really solely developed by any dedicated organization. Generally, the only rec-
ognized set of standardized is created and maintained by Open Networking 
Foundations OpenFlow which might also contribute to its popularity. Creating 
a predetermined and maintained set of best practices or standards is likely dif-
ficult, as without creating restrictions the scope of the project expands and even 
then, it is unlikely that these standards would cover all implementations.  

However, having at least some form of official standards and best practic-
es could be seen as beneficial as this would provide help for network operators 
who are less familiar with SDN and also create a baseline of rules that system 
architects could expect to encounter. Also, it is likely necessary to agree upon a 
general set of rules for larger scale implementations which require collaboration 
between several manufacturers. This could include for example smart home 
sensors that need to support a certain communication channel or posses a pre-
determined number of computing resources. This should not be considered 
lightly though, as creating these guiding baselines is balancing between creat-
ing a common ground for collaboration but at the same time unnecessary re-
strictions and limitations should also be avoided. One option could be to tailor 
these best practices and guidelines to match a smaller setup. This would natu-
rally limit their applicability but also enable them to be less restrictive and tar-
geted.  

 Outside of general observation it should be noted that both the applica-
tion focused, and security focused research contain features that are worth not-
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ing. Firstly, when processing SDN applications it become clear that the topic 
was applied to timely relevant technological research. Topics such as VANETs 
and IoT networks are a general research target which has also transitioned into 
practical applications. This highlights that SDN provides functionalities and 
features that can create an impact on already existing solutions and can be used 
as a foundation for future development in these fields. Furthermore, as SDN 
matures and gains more practical implementations it can be presumed that it 
will become more well-known and viable to a further range of applications.  

This thesis addressed four different applications for SDN which can be 
grouped into use cases for services and use cases for individual end-uses. The 
use cases intended for service providers include data centers and cloud applica-
tions as well as NFVs. For these cases designed SDN solutions present solutions 
and frameworks to known existing limitations and can therefore be seen as lu-
crative options. The solutions follow a general trend of utilizing virtualized ser-
vices alongside providing services to reduce the requirements for in-house solu-
tions. They also provide the user, in this case larger service providers with 
modern tools to improve their services through both efficiency and automatiza-
tion, as well as through improved visibility for network management.  

As the targeted end users are presumably large organizations with signifi-
cant resources and technical capabilities, it can be assumed that the solutions 
are feasible to implement. However, work regarding these use cases is still 
largely theoretical and also tested on primarily simulated environments leading 
to a need in both testing in real world environments as well as further research 
regarding the practical applicability.  

As for the use cases regarding individual end-users a common theme 
among the research is that many of the proposed models are rather ambitions 
and their realistic feasibility can be somewhat questionable. For example, mod-
els regarding IoT infused smart homes provide frameworks which integrate 
various network nodes that are connected to cloud and fog servers that are then 
used to process the user data for various applications (Conti ym., 2019). Whilst 
this model might be technically possible, it is worth considering is it really 
worth it for an individual homeowner from the standpoint usage, privacy, cost, 
and maintainability. Although an increase in sensors connected to an IoT net-
work will naturally increase generated data, it is still unlikely that the collected 
data masses will require cloud storage and processing power. Furthermore, in-
tegrating these features will provide additional costs to the users on a consistent 
basis as the required services need to be purchased from the cloud providers. 
Even if these issues are circumvented the question of privacy should not be ig-
nored. Transmitting personal data that is continuously gathered into a remote 
processing facility to be stored can be seen as an issue which could put off po-
tential users.  

Another example of potential feasibility issues comes in the form of 
VANET implementations. Existing research has proposed solutions where all of 
the vehicles would form a constantly evolving network and where the re-
sources of these vehicles are jointly shared. Whilst this approach appears rea-



71 

sonable and even supportable to a certain extent, it should be noted that this is 
still a far reality. Firstly, as previously addressed there are currently very few 
actual standards when it come to SDN which means that existing manufactures 
have little to base their designs on. As such for the proposed model to work all 
of the major automobile manufacturers would have to agree to a universal 
standard that would have to followed. Alternatively, a certain producer of the 
networking technology could be chosen to create the required equipment, but 
this would again constrict the design heavily.   

Secondly, forming a network of all traffic participants could form signifi-
cant issues from a security standpoint. Like discussed in chapter five rogue de-
vices are a security issue that plague SDN. If VANETs would be built with a 
mindset where new vehicles could simply pop into the network, infiltrating a 
rogue device into the network would become significantly easier. As safety is a 
top concern when it comes to vehicles, a lack of security and possible disturb-
ances could have even fatal consequences. Also, personal privacy could become 
an issue as data would have to be shared with other cars.  

Lastly, proposed models also require additional infrastructure to be built 
in order to serve the networks needs. These will require additional investments 
and would require a set of ground rules to operate efficiently between potential 
car manufacturers.  

In general, the applications designed for individual users should carefully 
assess the frameworks viability in particular from the standpoint of an average 
user. If SDN is to become a primary source of network management for an av-
erage household, the technology cannot be overly complicated and overwhelm-
ing to shift into. This would reduce the initial step and help bring the technolo-
gy closer to a larger userbase. One option to achieve this is to make use of SDNs 
ability run preinstalled scripts and software, which could be leveraged into au-
tomating the initial setup process to a large extent. If retailers are able sell essen-
tially preinstalled and configured devices, even less tech savvy users could 
make use of SDN. 

Finally, in regards to security literature certain patterns are also present in 
existing literature. Similarly to a heavy bias towards utilizing centralized SDN 
models existing security research has also been predominantly directed to-
wards studying controllers and their security flaws. This can be seen as a natu-
ral step as the controller is the most important single device in the architecture 
and possesses the ability to manage the network, but nonetheless it is not the 
only possibly vulnerable element. With the emphasis being so heavily on con-
trollers, interfaces connecting the layers are often left quite untouched leading 
to a lack in literature regarding their vulnerabilities and potential solutions to 
mitigate their vulnerabilities. This is particularly true for eastbound and west-
bound interfaces which were addressed very rarely. Furthermore, even for the 
southbound and northbound interfaces research is quite narrow and the solu-
tions often revolve around applying TLS encryption to at least provide confi-
dentiality.  
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Another important aspect visible in many literature pieces regarding secu-
rity is the mindset used to design the controllers. In many cases it would appear 
that the primary focus around the topic has been to ensure that the controller is 
operational and that certain computational thresholds are met. Naturally, this is 
important as a controller that does not meet the demands of the network is not 
useful and leaves security redundant if the whole project is scrapped. However, 
this can also create serious vulnerabilities in case performance is prioritised 
over everything else. This approach can be seen in many papers reviewed for 
this thesis as despite the fact that security related work was only a couple years 
old, older existing problems were still noted and present. In addition, rather 
than combating the identified vulnerabilities the typical approach to mitigating 
them was applying an extension or other software to cover vulnerability. 

It is reasonable to expect that additional security software will be neces-
sary regardless of the security design as the threat landscape constantly evolves 
and because SDN enables the ability to host additional software. However, it is 
also worth considering whether old and known vulnerabilities should be miti-
gated already during the design of SD-network nodes and controllers. For ex-
ample, older OpenFlow versions and SDN nodes typically lack authentication 
and encryption mechanisms for data transmission between the infrastructure 
plane and control plane. Rather than integrating a machine learning framework 
to expose malicious activity, controller designers could attempt to create a 
model which integrates these features into to the design by default. This could 
be done through various ways with existing authentication tools and encryp-
tion ciphers to create a stronger foundation. Also, security could be buffed by 
simply creating mandatory security features such as using TLS from the start.  

Generally, the added security solutions could prove to be effective and 
worth the investment but simply relying on patching vulnerabilities as they are 
discovered with security tools seems quite difficult manage and unsecure. With 
this approach the worst-case scenario is that the network is running dozens of 
security frameworks and software which are all intended act as bandages for 
known issues. 

 Another observation found in the literature surveyed was that for many 
papers which performed a survey on available controller solutions, the primary 
advantage that was highlight focused on the computational capability of the 
controller. None of the surveys emphasized or highlighted the security of the 
controller. This can be considered odd as one of the key concerns regarding 
SDN is its ability to match traditional networks is reliability. Many researchers 
approach reliability through the lens of the networks and often the controllers 
ability to function under abnormal or high traffic conditions but this is too 
sparse of a viewpoint. A fundamental element of cybersecurity is the availabil-
ity of resources which directly ties into the reliability of SDN. If the availability 
of the network or its devices is compromised it directly affects the reliability of 
the system. For example, if an attacker overflows a controllers flow rule table 
this can render it unable to operate and issue new commands, essentially crash-
ing the network and causing a loss availability in the process. As such, security 
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elements should be more carefully and thoroughly included when thinking 
about a controllers reliability and suitability.  

6.2 Future research suggestions 

This thesis recognizes several research avenues which should be advanced in 
the future to both further the existing body of research as well as to cover for 
identified gaps. Firstly, for future research applied SDN models should make 
more use of distributed models as well as hybrid models. If SDN is to be ap-
plied on a larger or even global scale, making use of these models is likely 
mandatory as centralized controllers will not be sufficient enough and will risk 
being bottlenecks hindering the reliability and security of network. Larger net-
works and infrastructure hubs will require distributed control which creates a 
need for these architectures to be studied in more detail.  

Future research should consider using a distributed model even for re-
search where the network is simulated to better understand the additional limi-
tations that the shared control causes. This can also be used to measure addi-
tional overhead that the traffic inside the control plane while generate and to 
identify how much of an impact this will have on the network as a whole. Fur-
thermore, this setting can be used to study how easily potential adversaries 
could disrupt the synchronization process and cause serious security issues. For 
hybrid models it would be advantageous to study practical examples of organi-
zations who have shifted to using this approach. This practical research ap-
proach would give researchers data of real-world applications and realistic 
models of the model to study.   

Another research avenue which should receive more attention in the fu-
ture is practical research applications using SDN. As addressed in this thesis a 
large portion of literature regarding the topic is still theoretical and lacks testing 
in a real-world setting. Future researchers should continue their work by apply-
ing their models or frameworks to actual networks. This would provide proof-
of-concept to their models as well as expand knowledge about SD-networks 
applicability to real-life settings. For many of the applications this step may be 
harder to perform as many of the models would require sizeable investments to 
facilitate the models needs but for security applications this should be a natural 
progression.  

As various security extensions and frameworks are offered as a solution 
for acknowledged security issues researchers should attempt to apply these so-
lutions to real controllers to test their effectiveness. This would once again pro-
vide proof-of-concept and act as a relatively low entry point to test actual real-
world applicability.  

Research could also be expanded from the standpoint of security. Alt-
hough SDN security has received attention in particular for controller security, 
much of the research is focused either around identifying vulnerabilities or de-
sign research for security extensions. This should be expanded through at least 
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two different approaches. Firstly, researchers should study creating SDN 
equipment and software with a security first approach. Much of the work re-
garding SD-networks has revolved around making the paradigm work at the 
expense of security. Because existing literature presents several acknowledged 
vulnerabilities which have not been mitigated, researchers should conduct de-
sign research that would attempt to create a solution that has built-in features to 
secure for example known controller vulnerabilities. Focusing on a security-
oriented controller could provide end-users with a more secure option that is 
more resilient to common threats and thereby more reliable.  

The second direction that should be explored would be comparative re-
search specifically targeting SDN controllers and applications security qualities 
and features. Existing research has performed comparative research particularly 
towards SDN controllers and their performance capabilities. A similar approach 
should be applied to security features as well as. This would have several bene-
fits. A comparative analysis between the most common and well-known con-
trollers would expand the users knowledge about each controllers security fea-
tures and how they compare. This would assist them in choosing which control-
ler to apply into their network. Furthermore, this would also provide a clear 
body of literature regarding the overall state of current options. While existing 
literature showcases vulnerabilities it can be hard to put them into to perspec-
tive as they are universal and not device specific. As such a comparative analy-
sis would showcase how commonly these vulnerabilities are present in the 
most popular controllers and applications as well as create a generalized view 
of the currently most pressing security issues.  

Finally, as the last recommendation showcased in this thesis is research 
targeted towards creating informative guidelines or even general standards re-
garding future SDN implementations. Like discussed earlier in this thesis creat-
ing standards for SDN is not a simple process as creating mandated restrictions 
could limit the flexibility of the paradigm and thereby create more harm then 
benefits. However, certain guidelines should be considered to ensure that fu-
ture networks and frameworks remain compatible. For example, VANETs 
should have some set of general principles which designers and engineers de-
veloping the technology can rely on and expect.  

One approach to creating adequate and non-restrictive standards would 
be to limit the scope of the standards. This would mean that instead of attempt-
ing to create a universal set of guidelines for the whole SDN paradigm re-
searchers should simply narrow down the scope to a predetermined target, for 
example a set of standards for southbound interfaces, VANETs, smart homes 
and such. This approach would be more manageable as the scope narrows 
down the requirements and reduces the number of factors that need to be con-
sidered. In addition, this approach would avoid causing restrictions that might 
negatively affect other applications as they could operate under a different set 
of guidelines.  

Lastly, researchers and developers should also continue maintaining the 
few existing standards that already exist. For example, the standards for Open-
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Flow and ForCES act currently as a general set of rules due to the protocols 
wide adaptation. Continuing the development of these guidelines will have a 
large impact in also guiding the development the paradigm.   



76 

7 Conclusion 

This thesis performed a descriptive literature review on research regarding 
software-defined networking. Software-defined networking is a relatively new 
paradigm which seeks to improve and resolve issues facing traditional net-
working models, by separating the control and data transmission features of 
networking. This separation alongside transitioning from hardware-based net-
working to software-based networking attempts to create more sufficient net-
working through centralized control mechanisms and through flexibility. This 
thesis looked at the current state of SDN from the standpoint of available tech-
nologies, potential applications avenues, and currently existing security issues 
and as such the research questions guiding the thesis were the following: 

 
1) What are software-defined networks? 
2) What are the benefits and disadvantages of SD-networks? 
3) Where can software-defined networks be applied? 
4) What are the main security issues for software-defined networks? 

 
This thesis finds that the main benefits showcased in existing literature revolve 
around the flexible and programmable nature of SDN. Due to its software-
based approach, SD-networks are able to break free of previously imposed re-
strictions caused by hardware. SD-networks allow for large customization of 
the network as new features can be integrated simply through further devel-
opment and programming. In addition, network administering can be en-
hanced as further automatization can be achieved with better scripting capabili-
ties. Another key benefit enabled by a SD-network is a centralized and efficient 
control point inside the network. As opposed to traditional networking, SDN 
enables network administrators to manage the network and routing decisions 
through a single controller which propagates flow rules rapidly to nodes resid-
ing in the infrastructure layer.   

The main identified disadvantages of SD-networks are the paradigms reli-
ability and scalability in particular for centralized models. As the network can 
be controlled through a single control device it can form a bottleneck hindering 
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the networks reliability and limiting its scalability. Since the control and deci-
sion are limited to a finite number of predetermined control devices if these 
controllers face issues the whole network can become unusable. Furthermore, 
scalability can become an issue if large numbers of nodes are incorporated into 
the network, as it is difficult to create a controller with sufficient computing re-
sources to handle all the new devices.  

For the applicability of SDN technology showcased literature typically us-
es the paradigm to mitigate previously identified issues inside a larger frame-
work or technical architecture. SDN is applied for IoT networks, VANETs, 
NFVs and data centres. These applications typically make use of two SDNs 
prominent features which are the ability to integrate heterogenous devices, of-
ten present in IoT networks, to a single network as well as the ability to manage 
a often and rapidly shifting network topology. Furthermore, SDN is used for 
managing larger networks present in data centres which require efficient tools 
to manage numerous devices simultaneously and efficiently. 

As for the security issues regarding SDN, existing literature raises multi-
ple vulnerabilities, exploits, and issues which are present in each layer and 
component of the architecture. Since SDN consists of three distinct layers as 
well as the connecting interfaces it is reliant in all of the components working. 
As such the paradigm can be prone to significant security issues if a key com-
ponent like the controller is compromised. Existing literature places heavy em-
phasis in studying and understanding security issues regarding the control 
plane and centralized controllers in particular. Whilst this provides important 
understanding for this security aspect, it also leaves gaps in literature regarding 
the safety of other components.  

Chapter five of thesis provides a comprehensive look at identified security 
concerns. These can be grouped into three main categories which are a lack of 
authentication and integrity checks, denial of service issues, and potential con-
fidentiality issues. Because many SDN devices and protocols do not require and 
impose authentication and integrity checks, potential adversaries can attempt 
various injection attacks which can attempt to alter flow rules or tables that are 
stored inside networking nodes as well as controllers. Furthermore, this lack of 
security features can also enable malicious nodes to enter a network. Another 
key issue is formed by denial of service attacks which can be used to cripple the 
availability of the network. Malicious actors can simply flood the network with 
various packet types or flow rules which in turn exhaust a controllers compu-
ting resources or a network nodes flow table. These issues can be tied to a lack 
of authentication as potential rogue devices can be difficult identify as a result 
of lacking security features.  

   Based on the results of the literature review this thesis highlights 
emerged general observations regarding the body research in the discussion 
chapter. SDN is considered and advertised as a highly flexible and adaptable 
solution for networking. However, this not often present in chosen research 
settings as much of the literature opts to use a narrow scope of the technology 
using primarily centralized models with de facto protocols. This trend of opting 
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for a similar research design setting limits work on other SDN implementations 
and architectures leading to a gap in knowledge regarding their applicability 
and also guides users to adopt this approach causing restrictions on the para-
digm.  

Another theme present in the literature is a general lack of research ap-
plied to real-life settings. The majority of literature utilizes simulated environ-
ments to conduct measurements for their SDN-based frameworks or designs. 
This should be further expanded in the future to also include follow up research 
to assess the true feasibility of the proposed models. Conducting additional re-
search with real-life settings would provide information about the models reli-
ability and feasibility in experimental settings that are not as controlled and po-
tentially highlight issues which might emerge from overly ambitious designs.  

Finally, much of the work regarding security research focuses on control-
ler security and generally favours applying frameworks or extensions to fix 
identified issues. For future research this should be accounted for by expanding 
research to cover less studied areas such as interface security or security of hy-
brid and distributed models.  
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