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ABSTRACT
Despite deep learning being state of the art for data-driven model predictions, its application in ecology is currently subject to 
two important constraints: (i) deep-learning methods are powerful in data-rich regimes, but in ecology data are typically sparse; 
and (ii) deep-learning models are black-box methods and inferring the processes they represent are non-trivial to elicit. Process-
based (= mechanistic) models are not constrained by data sparsity or unclear processes and are thus important for building up 
our ecological knowledge and transfer to applications. In this work, we combine process-based models and neural networks into 
process-informed neural networks (PINNs), which incorporate the process knowledge directly into the neural network structure. 
In a systematic evaluation of spatial and temporal prediction tasks for C-fluxes in temperate forests, we show the ability of five 
different types of PINNs (i) to outperform process-based models and neural networks, especially in data-sparse regimes with 
high-transfer task and (ii) to inform on mis- or undetected processes.

1   |   Introduction

Ecology seeks to understand the causes of species abundances 
and distributions, based on the interactions with the environ-
ment and each other (Haeckel  1866; Krebs  2002). Identifying 
the mechanisms is challenging, given the diversity of phenom-
ena, the multitude of environmental drivers and the variability 
of organisms involved (Urban et al. 2017). Ecological research 
has thus always reached across the entire spectrum of causal to 
correlative approaches and sought ways to describe ecological 

patterns from a statistical-correlative angle, as well as from a 
mechanistic one (Geary et  al.  2020). In recent years, the pre-
dictive ability of ecological models has gained more prom-
inence (Clark and Gelfand  2006; Boettiger  2022), both as a 
means to test our understanding under new settings (Houlahan 
et al. 2017; Getz et al. 2018) and as a service to policy (Schindler 
and Hilborn 2015). Indeed, Currie (Currie 2019) and Lewis et al. 
(Lewis et  al.  2023) argue that progress in ecology comprises 
both aspects: getting the prediction right and deriving testable 
hypotheses from such correct statistical models.
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Increasing amounts of data of ecological interest have forged 
a variety of big data activities across ecological disciplines 
such as macroecology (Wüest et  al.  2020), ecosystem ecology 
(Pastorello et al. 2020) and movement ecology (Kays et al. 2022). 
Consequently, deep-learning methods have become popular 
wherever data availability supports it (for a comprehensive re-
view, see 15). Yet, there is often only little or abstract mechanis-
tic insight into the processes yielding the data. Furthermore, 
in many ecological disciplines, data still remain comparatively 
sparse and incomplete. Most ecological and environmental sys-
tems are driven by processes that occur at several spatial and tem-
poral scales and produce observable patterns at varying scales 
(Levin 1992). Rarely are these scales monitored and measured, 
resulting in a patchy representation of ecological processes.

After centuries of ecological research, there are several fields 
with substantial process understanding (reviewed in 17), such 
as fisheries (Jennings, Kaiser, and Reynolds  2009; Fogarty 
and Collie  2020), forest growth (Medlyn, Duursma, and 
Zeppel 2011; Forrester 2019), carbon fluxes (Friend et al. 2007; 
Sitch et al. 2008), ecohydrology (Guswa, Celia, and Rodriguez-
Iturbe 2002; Fatichi, Pappas, and Ivanov 2016), individual-based 
models (Accolla et al. 2021; Malishev and Kramer-Schadt 2021) 
and animal energetics (Kooijman  2010; Kearney, Domingos, 
and Nisbet  2015). Representing data by purely statistical 
means and deep learning does not leverage the opportunity of 
further improving this ecological understanding (Wikle and 
Hooten  2010). Machine and deep learning may be powerful 
tools for prediction given big data (Reichstein et  al.  2019) but 
provide no or only limited improvements over traditional statis-
tical methods for small to moderately sized datasets (Faraway 
and Augustin  2018; Bury et  al.  2021). In a predictive setting, 
they may well be ‘right for the wrong reason’, that is, instead 
of the true causal drivers merely using correlated and hence 
spurious surrogates (McCoy, Pavlick, and Linzen 2019). Prone 
to learning frequent rather than specific pattern in the data, 
highly flexible deep-learning methods are thus expected to have 
low transferability (Pichler and Hartig 2023a; McCoy, Pavlick, 
and Linzen 2019; Karlbauer et al. 2022), unless severely regula-
rised (Belkin et al. 2019). Peeping into successful models using 
‘explainable AI’ is a start (Ryo et al. 2021), but we believe we can 
do, and already have done, much better.

Deep learning has opened another route to joining cor-
relative flexibility and process understanding (Reichstein 
et  al.  2019) using what is sometimes called ‘process-guided 
neural networks’ (or, in physics, ‘physics-informed NN’: 
PINN (Raissi, Perdikaris, and Karniadakis 2019) or, in other 
fields, ‘knowledge-guided machine learning’: KGML (Liu 
et al. 2022)), deep learning augments existing process descrip-
tion and attempts to improve on it (Liu et al. 2022; Ba, Zhao, 
and Kadambi  2019; Karpatne et  al.  2018; Zhao et  al.  2019; 
Karniadakis et al. 2021). The resulting mixture of process and 
correlative model builds on our current understanding of a 
system, yet it offers the flexibility to modify and enrich such 
system descriptions (Karniadakis et al. 2021). As a result, the 
improvements achieved by the statistical component can help 
identify what is missing in the model and suggest elements to 
be trialled in silico or experimentally.

This approach is not new and has been used even in ecology, 
typically in the form of partially specified models (Wood 2001) 
or as components of hierarchical models in Bayesian frame-
works (Clark and Gelfand 2006; Wikle and Hooten 2010; Hefley, 
Hooten et al. 2017). New is, however, that deep learning frame-
works such as PyTorch facilitate a richer array of PINN struc-
tures with physical information being integrated at different 
aspects of the algorithmic pipeline. These approaches may have 
the potential to reduce data requirements (Raissi, Perdikaris, 
and Karniadakis  2019), the cost of suitability for sparse data 
settings and uncertainty quantification compared with deep 
hierarchical models (Wikle and Hooten  2010; Hefley, Broms 
et  al.  2017), unless Bayesian or Ensemble PINNs are used 
(Psaros et al. 2022; Zou, Meng, and Karniadakis 2023). To our 
knowledge, no systematic study has examined the use of PINNs 
in (ecosystem) ecology, comparing their on-site predictive per-
formance, generalisation beyond the training site or ability to 
reveal unknown processes.

When correlative models were touted as fitting data better and 
process-based models (PMs) being superior in extrapolation 
(Kearney, Domingos, and Nisbet  2015; Mouquet et  al.  2015), 
they often employed the gradient in data availability as argu-
ment: with lots of data, statistical models can effectively rep-
resent the information and make accurate predictions. At the 
other extreme, with only a handful of data points, correlative 
models are undercomplex, while process-based models will out-
perform them (Figure 1) (Dormann et al. 2012). This gradient of 
data availability does not, in our view, call for a switch from one 
model type to another but supports a blended approach (Wikle 
and Hooten 2010).

In the following, we demonstrate from a deep-learning per-
spective how predictive skill and theory development can be 
fruitfully combined, using PINNs with an ecological case study. 
First, we briefly review existing approaches of linking process 
and statistical models. Second, using the example of forest car-
bon fluxes, we evaluate the extrapolation skill of PINNs, com-
pared to a purely process and a purely correlative reference, 
both in time and in space, using a full and a sparse dataset. We 
then explore what the correlative aspect of the PINNs can reveal 
about misspecifications in the PM, allowing us to generate test-
able hypotheses from this combined approach. We close with an 
outlook of current challenges in this field and arising options for 
alternative PINN architectures.

2   |   Methods Overview

The methodological extremes in the context of process-
informed neural networks (PINNs) are set by entirely data-
driven correlative models (regression, machine learning and 
deep learning) on one side and entirely ‘forward’ process-
based  models (process-based model: PM) on the other 
(Dormann et  al.  2012). ‘Forward’ implies that no data were 
used to calibrate, fit or fine-tune the model parameters to the 
observed data at hand, although during model development 
many such data were used, formally or informally, to derive 
the model's default parameterisation.
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2.1   |   Fitted Process-Based Models

One step away from the ‘forward’ PMs are fitted PMs, where 
the model parameters are optimised to describe the train-
ing data (Cabral, Valente, and Hartig  2017), routinely done 
with, for example, population dynamic models (Kéry and 
Royle 2020).

2.2   |   Partial Process-Based Models

In partial PMs, the primary explanatory power is attributed to 
the PM. This has most clearly been described from a hierar-
chical Bayesian perspective, where the framework of ‘General 
quadratic non-linearity’ accommodates the mechanistic and 
statistical aspects of spatio-temporal problems in a shared 
formalisation (Wikle and Hooten  2010). The correlative el-
ements are applied to the residuals, that is, the difference 
between observation y and process-model expectation ŷPM. 
Depending on whether the PM parameters are fitted along-
side, approaches can be separated into ‘residual models’ (Ba, 
Zhao, and Kadambi 2019) and integrated models (Wood 2001; 
Schaub and Abadi 2010). Based on the former, we develop a 
‘parallel physics’ neural network (NN) that optimises the loss 
ℒ function with PM predictions ŷPHY, NN predictions ŷNN and 
observations y as

This approach subtracts the static PM's prediction from the re-
sponse or, when the response variable is non-normal, uses it as an 
offset in the statistical model. In Box 1, we exemplify this by par-
tially integrating a continuous Lotka–Volterra system with an NN.

2.3   |   Bias Correction

Even simpler is bias correction, where the output from the PM 
is used as predictor(s) in a regression-type model. The idea here 

is that consistent differences (bias) in PM prediction ŷPHY can 
be calibrated with observed data y in a post-processing manner 
(Rasp and Lerch 2018). The regression model takes as input the 
(potentially multidimensional) set of ŷPHY and learns to mini-
mise the differences between estimates for ŷNN and y, simply 
given by the loss function

Note that the dimensionalities of ŷPHY and ŷNN can differ. In 
our case studies, ŷPHY consists of three state variables, the gross 
primary productivity, the evapotranspiration and the soil water 
content ({P,E, �}, respectively), whereas in y and ŷNN we target 
only one state variable, namely P.

2.4   |   Physics Regularisation

Physics regularisation is structurally similar to the parallel phys-
ics approach (Figure 2D) but cannot be rephrased as regression-
style problem. The NN maps environmental covariates X  to the 
environmental state variable Y . PM predictions ŷPHY are used 
only in the loss function during training, such that the fitted NN 
minimises deviation from observation, while maintaining also 
minimal distance to PM predictions. Loss ℒ is calculated based 
on NN predictions ŷNN, PM predictions ŷPHY and the observed 
y as

with � ∈ (0, 1] determining the strength of the regularisation 
and being defined in the hyper-parameter search. The larger the 
�, the stronger the predictions are tied to the PM.

2.5   |   Domain Adaptation

Domain adaptation differs structurally from the above ap-
proaches, as it consists of a specific training protocol instead of 

(1)ℒ =ℒMSE

(

y, ŷNN + ŷPHY
)

.

(2)ℒ =ℒMSE

(

y, ŷNN
)

.

(3)ℒ =ℒMSE

(

y, ŷNN
)

+ � ℒMSE

(

ŷPHY, ŷNN
)

,

FIGURE 1    |    Schematic overview of expected performance sweet spots of neural networks (NN), process-based models (PM), Bayesian hierarchical 
models (BHM) and physics-informed neural networks (PINN). We differentiate between five PINNs with increasing theory constraint for which we 
expect performance sweet spots, especially in data-sparse regimes and high-transfer tasks, and highlight parts of the algorithmic pipeline in which 
the constraint applies.
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architectural modifications (Figure 2E): the NN is (i) pre-trained 
on a rich and purely artificial dataset generated by the PM, 
yielding an emulator, followed by (ii) fine-tuning the parame-
terised network by re-training to the observations y (Gongora 
et al. 2019). The pre-training dataset XSIM, ySIM is generated by 
simulating ySIM from the PM, based on an input similar to X , 
XSIM. Here, XSIM is generated by generalised additive models de-
scribing X  as a function of time. Parameters � of the PM were 
sampled from their prior distributions in a Latin hypercube de-
sign. The number of inputs of the domain adaptation network is 
the same in pre- and re-training. It takes environmental covari-
ates as explicit inputs but ignores the parameter prior samples, 
as that information is represented in PM-simulated XSIM and 
ySIM (for technical details, see Supporting Information).

2.6   |   Physics Embedding

Finally, the parameters of the PM can be turned from constants 
into functions of the input. This is what happens in ‘physics 

embedding’ (Figure 2F), where a parameter network represents 
the optimal parameters as a function of the model input, see 
also (Meng et  al.  2021) for learning functional prior distribu-
tions with NN embedding instead of parameter point estimates. 
A bias correction re-calibrates the PM output to fitted values. 
The key step of input-driven, non-constant PM parameters posi-
tions this approach closest to correlative modelling approaches: 
only the PM structure remains as a constraint but not its actual 
parameters.

The framework comprises three steps (Figure  2F). First, an 
multi-layer perceptron (MLP)-type ‘parameter network’ with 
multiple linear layers and ReLU activation maps environmental 
covariates X  to the PM parameters �. Second, the PM is run with 
the parameter estimates � from this parameter network and the 
environmental covariates X . Third, the PM predictions ŷPHY are 
bias corrected with another MLP-type network akin to the bias 
correction setup above, using all model outputs ŷPHY to estimate 
Y . In the loss function, the contribution of the PM to the overall 
loss is regularised (Equation 4) as

BOX 1    |    PINNs With Continuous Processes.

We exemplify PINNs in a simulated scenario with an ODE PM. We use a Lotka–Volterra model with a sigmoidal feeding rate (type 
III functional response) to generate data and as PM a simplified version with a linear feeding rate (type I functional response). We 
test the predictive performance of PINNs under three conditions: (i) data sparsity, (ii) data sparsity + structural error in the PM 
and (iii) data sparsity + structural error in the PM + observation noise.
Data-generating model. We consider the predator-prey Lotka–Volterra system:

where r is the growth rate of prey, m is the mortality rate of predators and b is the feeding rate of predators described by a type III 
functional response with prey searching time s (Case 2000). We simulate the densities of predators and prey over 130 time units 
with initial densities x0 = 10, y0 = 10 and parameter values r = 0.1, b = 0.02,m = 0.04, s = 0.025.
Observations. We observe prey densities at nine random times. In (i)–(ii), the observed prey densities are used to calibrate the 
models. In (iii), we add Gaussian noise to the observed densities as xt +N(0,0.5).
Process-based model. In (i), we assume that the PM exactly matches with the data-generating model. In (ii, iii), we simplify the 
data-generating model by changing the type III to the type I functional response. The PM is thus:

assuming initial conditions x0 = 12, y0 = 10.
PINNs. We compare the performance of a parallel physics NN with the PM and an MLP. Both PINN and MLP condition xtn, the 
density of prey at observation n, on the previous observation xtn-1 and times tn−1, tn. For simplicity, both models use two hidden 
layers of size 50.
Training and evaluation. We train models in a leave-one-out cross-validation with stochastic gradient descent (Kingma and 
Ba 2017) and mean squared error as loss function, using all data points in one batch. We train the PM for 60, 000 epochs with 
learning rate 10−5, the MLP and the PINN for 200, 000 epochs with learning rate 10−4. We evaluate each model on the full sim-
ulated time series (130 time units with time difference 0.5) and compute mean and standard error of predictions over the cross-
validation folds.
Results.
Conclusion. PINNs improve on the MLP under all conditions but remain inferior to the (approximately) true PM. Since in real-
ity PMs may be structurally incorrect in multiple ways, the improvement relative to the MLP is the main advantage of PINNs 
(Figure 3).

(5)

dxt
dt

= rxt−b
x2t yt

1+ sx2t
,

dyt
dt

=b
x2t yt

1+ sx2t
−myt,

(6)

dxt
dt

= rxt−bxtyt,

dyt
dt

=bxtyt−myt,
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Parameter network and bias correction network are optimised si-
multaneously. Physics embedding dynamically estimate parame-
ters for the PM and thus conceptually differs from the stand-alone 
PM calibration. To correct for this additional flexibility towards 
the PM, we set the evaluation batch size to one, equivalently to the 

full time series. Parameter estimates are averaged over nodes and 
data points so that the PM receives only one value each, similar to 
the stand-alone PM. Technically, the PM is defined as a forward 
pass connecting only the output layer of the parameter network 
and the input layer of the bias correction network. To guarantee 
gradient flow in the backpropagation through the PM, it needs to 
satisfy tensor compatibility in PyTorch.1 Thus, every elementary 
operation in the PM code was changed to its tensor equivalent.

(4)ℒ =ℒMSE

(

y, ŷNN
)

+ � ℒMSE

(

y, ŷPHY
)

,

FIGURE 2    |    Schematic overview of the structure of five PINN approaches (B-F) and a naïve neural network (A) for comparison. Blue elements mark 
model parameters of the process-based model, grey mark data (environmental covariates X , model predictions Y  and process predictions ŷPHY). Note 
that the structure of physics regularisation is identical to that of the parallel physics, but the physics regularisation does not add process predictions 
to its own predictions. Instead, it evaluates both in a joint likelihood. Ellipses (…) indicate more layers and nodes, according to architecture and hyper-
parameter search. The physics embedding encodes the process-based model as a forward pass in the neural network architecture and thus during 
training information of the gradients flows backwards through the process-based model.
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3   |   Applying the Approaches

We tested the presented framework of physics-informed neural 
networks (PINNs) in a case study focusing on three common eco-
logical prediction problems using carbon and water fluxes from 
forest ecosystems measured using eddy covariance. The predic-
tion problems were (i) temporal on-site prediction, (ii) spatial 
multi-site prediction and (iii) spatio-temporal multi-site predic-
tion. For each problem, we considered two data availability sce-
narios: (A) rich data, using the pre-processed daily time series, 
and (B) sparse data, where the time series from (A) was reduced to 
1 day/week. For each combination of prediction problem and data 
scenario, we conducted separate parameter calibration, training, 
evaluation and post hoc variable importance analysis.

3.1   |   Naïve Neural Network

Neural networks (NN) do the mapping f:X↦ Y  through a hi-
erarchically structured latent feature space, that is, hidden lay-
ers (Figure 2A). The latent space allows for the representation 
of hidden processes alongside the measured input X . Through 
layer-specific transformations, that is, activation functions, the 
approximated function f  can be highly nonlinear. The output of 
an NN with a single hidden layer is defined as

where y =
{

y1, … , yj
}

∈ Y  is the j-dimensional output vector 
and x =

{

x1, … , xi
}

∈ X  is the i-dimensional input vector. The 
weight matrix Wji and the bias vector bj are network parame-
ters that are learned during the training procedure. The linear 
combination of inputs, weights and bias is transformed by the 
activation function �, which is part of the hyper-parameters of 
the network. Here, we used the most basic NN type, that is, a 
fully connected MLP. Through the choice of the linear activation 
function in the last layer and the mean squared error as the ob-
jective function, the MLP performs a regression task under the 
assumption of normality. Used without process guidance, this 
MLP is hereafter referred to as the naïve NN.

3.2   |   Process-Based Model

The PM used to predict carbon and water fluxes in this case study 
is PRELES (PREdict Light-use efficiency, Evapotranspiration 
and Soil water content) (Peltoniemi et al. 2015). PRELES is a 
semi-empirical model that predicts gross primary productivity 
P, evapotranspiration E and soil water content � at a daily time 
scale. More specifically, PRELES does the mapping f:X↦ Y  
with X =

{

T,D,�,R, faPPFD,
[

CO2

]

, d
}

 and Y = {P,E, �}, where 
T, D, �, R, faPPFD, 

[

CO2

]

 and d are air temperature (in Celsius), 
vapour pressure deficit (in kPa), photosynthetic active radia-
tion (in mmol/m2), precipitation above the canopy (in mm), 
absorbed proportion of photosynthetic active radiation (−), 
(constant) atmospheric carbon dioxide concentration (in ppm) 
and day of the year, respectively. The mapping f  consists of 
three coupled subsystems for P, E and �. The calculation of � is 
based on a three pool formulation, splitting � into soil, surface 
and snow pools. The state of �k at day k depends on the state of 
the previous day, �k−1. The subsystem for P-prediction at a day 
k is based on a general model for light-use efficiency (Mäkelä 
et al. 2008):

with � as the potential light-use efficiency and 
∏

ifi,k the product 
of exogenous-driven modifiers for �. One of these modifiers, the 
soil water modifier fW,P, links the subsystems of � and P. In the 
third subsystem, E is calculated as directly depending on P. The 
subsystem is connected to � by a modifier fW,E. For more details 
on the PM structure, see (Peltoniemi et al. 2015).

3.3   |   Process-Informed Neural Networks

In the section on methods overview, we proposed five differ-
ent PINN-like approaches that combine process knowledge 
with NNs (Figure 2). For our case studies, we constructed the 
PINNs such that they map environmental covariates, which the 
PM takes as input, X =

{

T,D,�,R, faPPFD,
[

CO2

]

, d
}

, to the gross 
primary production P. Bias correction does not take these envi-
ronmental covariates as input, but rather the PM predictions, in 

(7)yj = �

((

∑

i

xi ×Wji

)

+ bj

)

,

(8)Pk = ��kfaPPFD
∏

i

fi,k,

FIGURE 3    |    Comparison of evaluation predictions and mean absolute error (MAE) of the parallel physics (blue) with PM (red) and a deep NN 
(orange). Models were parameterised (i) under sparse observations, (ii) with additional structural error to the PM and (iii) with additional observation 
noise.
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our case gross primary production, evapotranspiration and soil 
water content: ŷPHY = {P,E, �}.

3.4   |   Study Sites and Data

We selected five forest sites from the PROFOUND database 
based on their data availability of environmental covariates 
and carbon turnover (Reyer et al. 2020). The forest sites cover 
deciduous, mixed and coniferous forest types with varying 
dominating species. The environmental covariates of the for-
est sites represent mediterranean, temperate and boreal cli-
mate. The PROFOUND database provides eddy-covariance 
measurements from FLUXNET at a daily or half-hourly res-
olution and satellite imagery data from MODIS at an 8-day 
resolution. We chose variables and their resolution based on 
the PM requirements. Carbon turnover was measured as gross 
primary productivity GPP, P, that were taken from FLUXNET 
at daily resolution. The fraction of absorbed photosynthetic 
active radiation was taken from MODIS at 8-day resolution 
and converted to daily resolution by assuming constant values 
within the 8-day periods. The dataset was aligned in terms 
of resolution and units in a pre-processing procedure (see 
Supporting Information), resulting in daily measurements of 
covariates and carbon turnover for five forest sites over four 
to 7 years. For the sparse dataset, we used only one data point 
per week, systematically selected from the full dataset for 
training.

3.5   |   Network Architecture Search

We selected NN architectures (number of hidden layers and 
nodes) and the parameters of the optimisation algorithm 
(learning rate and batch size) based on a combined random 
grid search. We first randomly drew architecture structures 
and parameter values and then tested their combination for 
each model. For physics regularisation, we additionally sam-
pled the regularisation parameter �. Only for the physics 
embedding network, the architecture was selected manually 
with � for simplicity set to 1.

3.6   |   Training and Testing

3.6.1   |   Neural Network

We split the data into training, validation and test set. We 
used training and validation data during the parametrisation 
procedure (training) and held out a test set of 1 year for evalu-
ation. Training was done in a (temporally, spatially or spatio-
temporally, for case studies 1–3) blocked cross-validation 
(Roberts et al. 2017) such that the models could be validated for 
a full year in each fold. The test year 2008 was always held out 
from the cross-validation and only used to evaluate the models 
for their predictive error and uncertainty (Bates, Hastie, and 
Tibshirani 2024). Models are trained for 5000 epochs with the 
Adam optimisation algorithm (Kingma and Ba 2017).

3.6.2   |   Process-Based Model

We calibrated 13 model parameters in a block-cross-validation 
using an MCMC algorithm with a DREAMZ sampler (Vrugt 
et  al.  2009) over 50,000 iterations and three chains, using the 
R-package BayesianTools (Hartig, Minunno, and Paul  2019). 
Following previous works that conducted model calibrations 
of forest productivity (Rödig et  al.  2017; Minunno et  al.  2019; 
Stocker et  al.  2020), and based on the assumption of normal-
ity in the machine learning models (Liu et  al.  2016; Montero 
et al. 2024), we used a Gaussian likelihood function with model 
predictions as mean and a standard deviation of one (ter Braak 
and Vrugt 2008), even though being aware of the strength and 
limitations of this assumption.

3.7   |   Inference

We conducted a first step into inference by evaluating trained 
models in a post hoc variable importance analysis (Ryo 
et al. 2021; Molnar 2022). We computed individual conditional 
expectations by varying explanatory variables separately over a 
predefined range. For each model and each varying explanatory 
variable, we predicted daily GPP values for four 2-week periods 
that include the following days in March (representing spring), 
June (representing summer), September (representing autumn) 
and December (representing winter). The average over this 2-
week period displays the partial dependence of the model pre-
dictions on each climatic variable.

4   |   Prediction Problem 1

4.1   |   Prediction Problem 1: Same Site, Other Year

We evaluated the predictive performance of PINNs in temporal 
extrapolation, relative to the PM and MLP. We used time series 
data from the forest stand Hyytiälä, at which PRELES was de-
veloped. We used the years 2004, 2005 for the network architec-
ture search and the years 2009–2012 for training and PM model 
calibration. We evaluated the performance of all models in the 
year 2008 (Figure 4A).

All models predicted GPP as accurately as or better than 
PRELES (Figure  4B1,2), except the bias correction network, 
and the physics embedding network in full data scenario. The 
naïve network was outperformed only by the parallel physics 
network. Relative performances comparing sparse and full data 
scenario were consistent. Errors increased with magnitude for 
almost all models, and the GPP was slightly overestimated 
(Figure  4B3,4). Inference using conditional variable impor-
tance analysis allowed us to compare variable effect shapes and 
sizes between models (Figure 4C). The visual analysis implied 
that photosynthetically active radiation � was the most import-
ant variable: the effect was small in PRELES but well developed 
in all PINNs. For precipitation R, all PINNs showed stronger 
effect sizes than PRELES. The regularised PINN was sensitive 
to low temperatures.
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4.2   |   Prediction Problem 2: Same Year, Other Site

We evaluated the predictive performance of PINNs in spatial 
extrapolation, relative to the PM and MLP. We used data from 
the forest stands Hyytiälä, Bily Kriz, Collelongo, Solling and Le 
Bray, which differ substantially in climate and forest composi-
tion. We used time series data of the year 2004 for all forest sites 
for the network architecture search. Models were trained on the 
years 2005 and 2008 of all sites but Hyytiälä and evaluated on 
data of 2008 for Hyytiälä (Figure 5A).

Accuracy decreased generally compared to prediction prob-
lem  1, except for the physics embedding network that per-
formed similarly in spatial and temporal predictions (compare 
Figures  4B1,2 and 5B1,2). The bias correction outperformed 
the MLP under full and the physics embedding network under 
sparse data setting. Most models overpredicted GPP, aside from 
bias correction and physics embedding (Figure  5B3,4) which 
were both well correlated with PRELES predictions in lower 
and higher ranges. The results of best accuracy and association 
scores aligned: bias correction and physics embedding had low-
est errors in both evaluation approaches.

For prediction problem 2, the visual variable importance anal-
ysis implies higher sensitivity of all NNs to climatic predictors 
(Figure 5C). While their trends remained broadly the same, the 
PINNs differed stronger from PRELES in effect shape and size. 
Overall, the PINNs showed higher sensitivity for R and less for 
�, compared to PRELES. Furthermore, for �, effect curves for 

the PINNs remained clear but became linear, while their non-
linearity in R increased relative to the temporal prediction.

4.3   |   Prediction Problem 3: Other Site, Other Year

We evaluated the predictive performance of PINNs in spatio-
temporal extrapolation, relative to the PM and MLP. We used 
data from the forest stands Hyytiälä, Bily Kriz, Collelongo, 
Solling and Le Bray and employed the same network architec-
tures and parameters as in prediction problem 2. We trained the 
models on time series data of the year 2005 for all forest stands 
but Hyytiälä and evaluated the models on data of the year 2008 
and site Hyytiälä (Figure 6A).

PRELES, the naïve and the bias correction network per-
formed similarly accurate (Figure  6B1,2). All three showed 
a clear deterioration from the full to the sparse data setting. 
The other PINNs improved slightly on the naïve network and 
PRELES, while predictive error bars overlap. An improved 
performance of all PINNs but the bias correction could be 
detected in the sparse data setting. In both data availability 
scenarios, the physics embedded network performed best, 
showing a similar magnitude of accuracy for full and sparse 
data availability. Bias correction and physics embedding net-
work again correlated best with PRELES in the full and sparse 
data setting. In all three case studies, some cross-validation 
folds caused high variance in accuracy. These uncertainties 
increased from the full to the sparse data setting. We further 

FIGURE 4    |    Overview of (A) the data usage in the temporal analysis, (B) predictive performance for gross primary productivity of PINNs compared 
to a PM and an MLP in accuracy (mean absolute error) (1 and 2) and in quantile association (3 and 4), and (C) the post hoc variable importance 
analysis in during growing season in a 2 week period in June for temperature (T), vapour pressure deficit (D), precipitation (R), photosynthetic active 
radiation (�) and the fraction of absorbed photosynthetic active radiation ( faPPFD). The models with best performance in accuracy are marked in bold 
and with an asterisk in (B).
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note a stronger overestimation of GPP in the winter season 
for almost all PINNs (Figure 6B3,4). PRELES generally under-
estimated GPP for high production values, especially under 
sparse data availability.

In the variable importance analysis, we found trends and effect 
sizes very similar to those of prediction problem  2, except for 
temperature, where PINN effect curves displayed stronger non-
linearity (Figure 6C). In the case of �, the parallel physics net-
work corrected PRELES predictions downwards in high ranges, 
implicitly indicated by the negative slope. This was similar to 
prediction problem  1, while a slightly positive correction was 
visible in prediction problem  2. Looking at the full prediction 
over 2008 (Figure 6C), the MLP and the PINN (Figure 6C par-
allel physics network) showed a slightly positive bias outside the 
growth season.

5   |   Discussion

We developed and compared five process-informed neural net-
works (PINNs) that integrate data-driven learning with process 
theory. For the example of carbon and water fluxes in forest 
ecosystems, the predictive performance of the PINNs was eval-
uated along a gradient of extrapolation and data availability. 
The relevance of PINNs is founded in three classical problems 
in process-oriented environmental and ecological modelling: 
(i) low data availability, which limits options for process-based 
model (PM) calibration and the use of deep neural networks 
(NNs) (Reichstein et al. 2019); (ii) limited process understanding, 

which manifests itself as structural mis-specification in PMs 
(Wood 2001); and (iii) complex ecosystems, limiting the transfer-
ability of PMs (Yates et al. 2018). The approaches we presented 
complement a long-existing and large body of works that inte-
grate correlative and PMs in a Bayesian hierarchical framework 
(Wikle and Hooten  2010; Hefley, Broms et  al.  2017; Hefley, 
Hooten et al. 2017) by a deep-learning perspective.

In each of our three prediction problems, at least one of the 
five PINN approaches showed the potential to outperform both 
the PM and the naïve NN in predictive accuracy. Our system-
atic evaluation of PINNs suggests that they may be preferable 
to a stand-alone PM or NN with increasing complexity of the 
modelling task, in our case, especially in a sparse multi-site 
spatio-temporal transfer task (Figure  6). The PINNs' power is 
most notable when these approaches are combined, and the 
PM is fully integrating into the NNs' architecture, as in ‘physics 
embedding’. The post hoc variable importance analysis used to 
interpret the PINNs process representation (Molnar 2022) sug-
gests their similar sensitivities to climatic predictors.

5.1   |   Process Information for Better Predictions

Each prediction problem indicated that PINNs can improve pre-
dictive performance towards a stand-alone naïve NN and a PM 
(Figures 4–6). PINN performs best varied with the complexity 
of the problem and data availability (Figure 1). Contrary to the 
results of the spatial and spatio-temporal experiment, in the 
temporal experiment the more flexible models outperformed 

FIGURE 5    |    Overview of (A) the data usage in the spatial analysis, (B) predictive performance for gross primary productivity of PINNs compared 
to a PM and an MLP in accuracy (mean absolute error) (1 and 2) and in quantile association (3 and 4), and (C) the post hoc variable importance 
analysis in during growing season in a 2-week period in June for temperature (T), vapour pressure deficit (D), precipitation (R), photosynthetic active 
radiation (�) and the fraction of absorbed photosynthetic active radiation ( faPPFD). The models with best performance in accuracy are marked in bold 
and with an asterisk in (B).
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the more constrained models (Figure  4B). Especially the high 
performance of ‘parallel physics’ indicates the potential of ex-
plaining PM residuals by environmental covariates. In the 
spatial experiment, where PM predictions show a systematic 
bias, the simple ‘bias correction’ outperformed the other mod-
els. Such ability of NNs in post-processing of systematic errors 
has been shown in ensemble weather forecasting (Rasp and 
Lerch  2018). Physics embedding combines dynamic PM para-
metrisation with different PINN approaches (regularisation and 
bias correction). It performed best in the most complex tested 
case with spatio-temporal prediction under low data availability. 
Related works have shown the potential of this approach, for ex-
ample, when parametrising ODEs from highly structured data 
(Köber et  al.  2022) or parametrising light-use efficiency mod-
els from different forest stands (Bao et al. 2023), and our results 
suggest they should be investigated more widely, despite their 
high computational costs. While the required tensor compati-
bility in PyTorch may limit full integration of large numerical 
models with NNs, JAX as an alternative framework combines 
numpy with automatic differentiation (Frostig, Johnson, and 
Leary 2018), the usage of which we demonstrate alongside our 
showcase in Box 1 (see Methods section).

5.2   |   Process Information for Better 
Transferability

A prominent motivation for the integration of PMs and data-
driven approaches is the latter's expected low transferability 
under new conditions (Pichler and Hartig  2023a; Karlbauer 

et al. 2022). In our most difficult transfer experiments, the spa-
tial and spatio-temporal prediction, naïve NNs exhibited a sys-
tematic bias of under-prediction of primary production in the 
non-growing season (see Supporting Information). We interpret 
this as an inability of PRELES to represent both deciduous tree-
dominated summer GPP and coniferous tree-dominated winter 
GPP. Compared to the NN, the PM captures shared across-site 
processes only in the model parameters, whereas physical rela-
tionships between parameters, climate data and environmental 
state variables remain the same.

In our spatial and spatio-temporal experiments, the PM pa-
rameters showed higher variances compared to the on-site 
prediction experiment (see Supporting Information), which 
could mean that shared across-site processes remain misrepre-
sented, undetected and unlearned from the observational data 
in the PM calibration. This is not unexpected when adapting a 
model to data and also not a critical problem when the goal is 
prediction (Hefley, Broms et al. 2017); however, for more gen-
eral application, such process ideally would form part of the 
PM. PINNs are more flexible than the PM to learn and repre-
sent shared across-site processes from the observational data 
while additionally being constrained with site-specific process 
knowledge.

In the more flexible and less constrained PINNs, we see biased 
predictions in the high-transfer experiments (prediction prob-
lems 2 and 3). The more constrained ‘parallel physics’ and es-
pecially the most constrained ‘physics embedding’ correct for 
this bias. Thus, we expect that with high-transfer tasks, where 

FIGURE 6    |    Overview of (A) the data usage in the spatio-temporal analysis, (B) predictive performance for gross primary productivity of 
PINNs compared to a PM and an MLP in accuracy (mean absolute error) (1 and 2) and in quantile association (3 and 4), and (C) the post hoc 
variable importance analysis in during growing season in a 2-week period in June for temperature (T), vapour pressure deficit (D), precipitation 
(R), photosynthetic active radiation (�) and the fraction of absorbed photosynthetic active radiation ( faPPFD). The models with best performance in 
accuracy are marked in bold and with an asterisk in (B).
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training and evaluation data do not share all physical relation-
ships, constraining an NN with physiological knowledge is es-
pecially powerful.

5.3   |   Process Information for the Inference 
of Undetected Processes

One drawback in the application of deep NNs and also of inte-
grated approaches is the poor interpretability of the fitted model 
parameters and the causes of specific predictions. The field of 
explainable machine learning is just emerging (Pichler and 
Hartig 2023b), and model-agnostic tools applicable for regression 
models can also be applied to NNs and PINNs (Molnar 2022; Ras 
et al. 2022). The visual conditional variable importance analysis 
allows us to compare size, trend and shape of sensitivities between 
models. In our analysis, photosynthetic active radiation � and its 
absorbed fraction faPPFD showed highest sensitivities for predicted 
gross primary production across all models, reflecting the PM's 
foundation in a light-use efficiency model (Peltoniemi et al. 2015).

The PINNs' sensitivity to precipitation increases over the com-
plexity of the transfer task from temporal to spatio-temporal 
extrapolation, a trend we interpret as more and more correc-
tion of the simplistic light-use efficiency model when data 
allow the NN to do so. Especially the parallel physics network, 
which learns the PM error as function of PM inputs, reduces 
the PM's sensitivity to precipitation. Thus, we conclude that 
for general use in different forest ecosystems PRELES might 
be too sensitive to precipitation. However, we cannot causally 
draw the conclusion that the PM is mis-specified, for which 
further tests are needed.

Nevertheless, our variable importance analysis indicates trends 
of corrections and new sensitivities compared to the PM, which 
highlights the potential of PINNs for gaining process under-
standing. This global and exploratory inference approach could 
well be extended by local interpretable model-agnostic explana-
tions or Shapley values (Ryo et al. 2021).

5.4   |   Conclusion

We systematically developed and compared five process-
informed neural networks to investigate their suitability for 
environmental and ecological modelling tasks and beyond. 
Individual PINNs can improve results in ecological and envi-
ronmental prediction experiments along the data availability 
and transfer task spectrum. This line of research is develop-
ing fast in physical applications and for differential equations 
(Karlbauer et al. 2022; Raissi, Perdikaris, and Karniadakis 2019; 
Karniadakis et al. 2021). We have presented here the potential 
applicability of PINNs for ecosystem flux prediction as an ex-
ample but see their potential for all ecological research where 
mechanistic understanding is available, yet structurally in-
complete. Combining PMs with neural networks may allow for 
better interpretability of the neural network component by ad-
dressing mis-specification in the PM.

While we assessed the predictive capabilities of PINNs, their 
suitability and optimal choice depend on the specific problem. 

A dynamic physics-informed neural network (PINN) calibra-
tion (Meng et  al.  2021), that is, physics embedding, might be 
valuable when high computational resources are available and 
accuracy is needed. When both process-model simulations and 
observations are available, the cost-effectiveness of parallel and 
regularised physics makes them a good benchmark. Similarly, 
a bias correction method is useful for correcting errors in model 
predictions. Pre-training a neural network on a large but not 
identical dataset, that is, domain adapting, can improve accu-
racy with sparse data and reduce computational costs (Erhan 
et al. 2010). Overall, the PINN approaches offer a complemen-
tary tool to stand-alone mechanistic or correlative models, suit-
able for various stages of model development.
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