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A B S T R A C T

The Leadership Quarterly and the management community more broadly prioritize identifying causal relation-
ships to inform effective leadership practices. Despite the availability of more refined causal identification
strategies, such as instrumental variables or natural experiments, control variables remain a common strategy in
leadership research. The current literature generally agrees that control variables should be chosen based on
theory and that these choices should be reported transparently. However, the literature provides little guidance
on how specifically potential controls can be identified, how many control variables should be used, and whether
a potential control variable should be included. Consequently, the current empirical literature is not fully
transparent on how controls are selected and may be contaminated with bad controls that compromise causal
inference. Causal diagrams provide a transparent framework to address these issues. This article introduces
causal diagrams for leadership and management researchers and presents a workflow for finding an appropriate
set of control variables.

Introduction

The Leadership Quarterly and the management community more
broadly prioritize identifying causal relationships to inform effective
leadership practices (Antonakis et al., 2010; Bettis et al., 2014). Despite
the availability of more refined causal identification strategies (Imbens,
2020), such as instrumental variables (Bastardoz et al., 2023) or natural
experiments (Sieweke & Santoni, 2020), control variables remain a
common strategy in leadership research (François et al., 2023; Spark
et al., 2022; Stefanidis et al., 2022). Control variables are often used
when randomization is not feasible and natural experiments are not
available or hard to find. As such, “non-experimental designs are
sometimes presented as the only feasible way to conduct research in
social science” (Narita et al., 2023, p. 1). Thus, whereas there are often
better strategies for causal identification—as exemplified by the in-
crease of articles using experiments, natural experiments, and instru-
mental variables in Leadership Quarterly—control variables remain a
fallback option for many researchers.

Control variables are not exclusive to regression but are also a
fundamental element of matching strategies (Narita et al., 2023). They

can also be used in instrumental variable models (Bastardoz et al.,
2023). Because of the wide use of control variables, many articles dis-
cussing the selection and reporting of control variables have been pub-
lished in recent years. These articles recommend that control variables
be chosen based on theory (Mändli & Rönkkö, 2023). However, the
current literature provides little guidance on such theory-based control
variable selection, and consequently, how control variables are selected
and used is rarely reported transparently. For example, consider the
recent guidelines on propensity score matching by Narita et al. (2023).
After emphasizing the importance of choosing the right control variables
(covariates), Narita et al. (2023) simply state that “researchers must
identify the appropriate covariates based on theoretical and empirical
grounds” (p. 3) without providing any guidance on how specifically this
can be done.

Causal diagrams, also called causal graphs or directed acyclic graphs
(DAGs), provide a valuable tool for addressing the lack of rigor and
transparency in control variable selection. Causal graphs are graphical
representations of causal theory that lay between a narrative represen-
tation of a theory and a statistical model that expresses the theory as a
set of statistical associations estimated from the data. Unlike algebraic
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approaches—particularly parametric structural equation mod-
els—causal graphs offer the advantage of being fully nonparametric,
avoiding assumptions about functional forms or distributions. This
flexibility makes them especially useful for model specification in
(potentially non-linear) regression models. Graphical representation can
sometimes also help in understanding the model and the constraints that
it implies. Although the technical literature on causal diagrams has
existed for years, management and leadership researchers have mostly
ignored these models.

We begin the article with a general explanation of various strategies
for causal inference and how control variables and causal diagrams
position in the field. After that, we present a taxonomy of controls that
sharpens the reader’s intuition in analyzing causal diagrams and helps
distinguish between good controls that should be used and bad controls
that compromise causal inference. We follow this with a more general
explanation of the backdoor criterion, the cornerstone of using causal
diagrams for control variable selection. Third, we present a workflow
that can be used to construct such diagrams and demonstrate this
workflow by replicating a study of CEO appearance and firm perfor-
mance (Hopp et al., 2023). We also discuss sensitivity analysis, which is
helpful if some confounding variables in the causal diagram are
unobservable.

Theory on control variables for causal inference

Causal claims are challenging to make because causality itself is
unobservable (Hitchcock, 2010). In practice, causality is inferred indi-
rectly through three conditions: 1) association between the assumed
cause and effect, 2) direction of influence, and 3) elimination of rival
explanations (Antonakis et al., 2010). The third condition can be
addressed in two different ways. In experimental and quasi-
experimental designs, the cause is either randomized and manipulated
by a researcher or occurs in a comparable way in nature, eliminating
rival explanations. Even if true experiments are possible in leadership
and management more broadly (Bolinger et al., 2022), they can be
challenging to implement, and thus, many studies fall back to observa-
tional designs. In observational designs, rival explanations are consid-
ered by sampling or statistical modeling. These designs can be further
divided into conditioning, instrumental variables, and establishing an
exclusive mechanism1 (Durand & Vaara, 2009; Morgan & Winship,
2007, p. 26).

Conditioning is a general term for procedures that eliminate the ef-
fect of a third variable by analyzing a variable or a set of variables

holding the conditioned variables constant. In the research design
context, conditioning is often referred to as controlling, and the vari-
ables we condition on are called control variables. Suppose we analyze
whether CEO gender affects firm profitability measured by ROA. In this
case, industry might cause a spurious effect (e.g., some asset-heavy in-
dustries such as mining or heavy industry might be male-dominated).
When conditioning on industry, we eliminate the spurious correlation
by estimating CEO gender’s effect on profitability, mimicking a hypo-
thetical scenario where all companies were in the same industry
(Wooldridge, 2013, p. 76). In practice, conditioning can be done by
selecting the sample so that the conditioned variable is constant (i.e.,
study just one industry) or by statistical adjustment (Bollen, 1989, p.
73). Matching and regression are two common strategies for statistical
adjustments (Morgan & Winship, 2007, Chapters 4–5). Regardless of
how conditioning is done, it assumes we know and can collect data on all
possible sources of confounding, which is not always realistic. Thus,
other strategies should also be considered; when studying the CEO
gender effect, endogenous treatment models provide a compelling
alternative (Antonakis et al., 2010, p. 1110; Clougherty et al., 2016).
Causal graphs can be helpful with these models (Elwert & Winship,
2014), but these applications are beyond the scope of our article.

To be effective, conditioning requires an appropriate set of control
variables. Both including too few and too many controls can lead to
wrong conclusions. Econometrics texts typically focus more on the
omitted variable case and how it can bias the estimates (Wooldridge,
2013, pp. 88–92), giving less attention to the issue of including toomany
controls or controlling for variables that should not be controlled for at
all (overcontrolling) (Wooldridge, 2013, pp. 205–207). For example,
Cameron and Trivedi (2005) state that in the case of including irrelevant
variables, “it is straightforward to show that OLS is consistent, but there
is a loss of efficiency” (p. 93). Unfortunately, including bad controls can
lead to more severe problems than just loss of efficiency, as we explain
later in the article.

Another problem in the econometrics literature is that it focuses on
the entire model with statements such as “correlation between a single
explanatory variable and the error generally results in allOLS estimators
being biased.” (Wooldridge, 2013, pp. 91–92) This claim is incorrect
because omitting a relevant variable may bias some estimates but leave
others unaffected. Moreover, this all-or-nothing view might make sta-
tistical control seem hopeless because the more controls we add, the
more variables we have that possibly correlate with the error term.
Fortunately, it is possible to consistently estimate the parameters of
interest even if some of the variables in the model correlate with the
error term (Hünermund & Louw, 2023). This fact is often overlooked in
econometric texts.

Causal diagrams and causal identification

Valid causal inferences with control variables require theoretical
assumptions about the causal mechanisms that produce the data under
study. The causal diagram is one helpful framework that allows for

Fig. 1. Examples of causal diagrams.

1 The strategy of establishing an exclusive mechanism is sometimes referred
to as the “front-door” approach, and the conditioning strategy as the “back-
door” approach (Bellemare et al., 2024; Morgan & Winship, 2007, Section
6.4.3). Despite the increased attention given to the front-door approach in the
causal analysis literature, we do not focus on this approach because it is rarely
used in leadership and management.
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accessible communication of such assumptions (Pearl, 2009, p. 30).
Causal diagrams are nonparametric versions of structural equation
models. As such, they resemble path diagrams, familiar to leadership
scholars. We will next introduce the concept of causal diagrams and then
use them to select control variables for regression analyses.

To understand causal diagrams and causal analysis more generally,
we need to start with the concept of causal identification. In econo-
metrics, the term identification typically refers to causal identification,2

which “is the ability to isolate the cause and effect mechanism that
creates a relationship between two variables that we study—should one
exist” (Shaver, 2020, p. 2). Causal identification is thus distinct from
estimation or statistical inference (Morgan & Winship, 2007, Section
1.5) and concerns whether the research design and data can support
causal inferences independently of the sample size or how the data are
analyzed.

A causal diagram, such as the ones shown in Fig. 1, consists of circles
representing the causes and effects (variables, here: T,Y, and X;Y
commonly refers to the outcome, T to the potential cause or treatment,
and X is a covariate) and arrows denoting the causal relationship be-
tween them. In the causal analysis literature, the circles are referred to as
nodes, and the arrows are referred to as edges, in contrast to the applied
SEM literature, where they are called circles and arrows (Kline, 2016, p.
121). Edges are directed, indicated by arrowheads pointing from a parent
node to a child node (Fig. 1a shows three directed edges: T→Y,
X→Y and X→T). Because causal relationships are asymmetric, causal
diagrams are usually assumed to be acyclic, which means there can be
no loops in the diagram.3 These two properties are why causal diagrams
are also referred to as directed acyclic graphs, or DAGs, in the literature.

A path in a causal diagram is any sequence of edges connecting two
nodes. These edges do not need to follow the direction of arrows. If they
do, they are called directed paths. Fig. 1a contains two directed paths,
T→Y and X→T→Y, and one undirected one, T←X→Y, between T and Y.
In the more complex causal diagram shown in Fig. 1b, there are three
paths connecting T and Y : T→Y, T←X1←X2 U Y, and
T←X1→X3←Y. The variable U is drawn as a shaded node with dashed
edges to indicate that the variable is unobserved and not available in the
data.4 Unobservable variables, although not usable in most analyses,
should be included in graphs to highlight potential threats to causal
identification.

Causal diagrams are handy for causal inference because they allow us
to easily check statistical independence between variables (Kline, 2016,
Chapter 8; Pearl, 1988). To illustrate, consider the three simplest
possible path configurations of three nodes in a diagram:

1. A chain:A→B→C

2. A fork:A←B→C
3. And a collider:A→B←C

In a chain and fork, the variables A and C are statistically depen-
dent.5 In a chain, A has an indirect causal effect on C; in a fork, both A
and C are statistically dependent because the same parent node in-
fluences both. In both cases, the dependence can be broken by condi-
tioning on the middle variable B. That is, holding B constant renders A
and C conditionally independent (denoted by: A⊥C|B, read as “A is inde-
pendent of C conditionally on B”). In a chain, holding B constant blocks a
mechanism and thus, A can no longer influence C. For example, if
strategic investment affects firm performance exclusively through sales,
investments would be uncorrelated with firm performance in a sample
where all firms had the same sales figures. Likewise, if the common
parent B is fixed in a fork, the remaining variation in A and C is inde-
pendent. Using the example from earlier in the article, this configuration
could be used to model industry (B) as a common cause of CEO gender
(A) and ROA (C).

By contrast, the third configuration, a collider, behaves the opposite
way, which is essential for understanding bad controls. Here, both A and
C are parent nodes of B, but otherwise share no relation. That is why A
and C can be expected to be independent. However, holding B constant
would create a correlation between A and C, because fixing the conse-
quence results in constraints on the values that the causes can have. A
classic example involves a fictional college (Morgan & Winship, 2007,
pp. 66–67), where admission (B) depends on SAT score (A) and moti-
vation rating based on interviews (C). Motivation and SAT scores are
independent in the population, but if we sample only admitted students
(condition on admission), we find a negative correlation between SAT
and motivation scores. That is because if a student in the sample has a
low SAT score, their motivation must be high to be admitted and vice
versa. In the causal diagram language, we say that conditioning on B
unblocks or opens up the path between A and C and renders them sta-
tistically dependent, leading to collider bias. This also holds when we
condition on variables that are causally affected by the collider.

The property of an intermediate node blocking a path between two
variables (and rendering them conditionally independent) is called d-
separation (“d” for “directional“; Pearl, 1988, p. 117). It also holds in
more complex causal diagrams. Returning to our example model in
Fig. 1a, the fork path T←X→Y can be blocked by conditioning on X. In
Fig. 1b there are three paths connecting T and Y: (1) T←X1←X2 U
Y, (2) T←X1→X3←Y, and (3) T→Y. The first path can be blocked by X1
or X2. The second is already blocked due to the collider node X3, but
would become unblocked when conditioning on X3. The third path is the
directed, causal path of interest: T→Y.

Before addressing the control variable selection problem with causal
diagrams, we introduce one additional concept to bring some formality
to the following discussion. A causal diagram is a parsimonious repre-
sentation of an underlying structural causal model or SCM. For example,
Fig. 1a represents the following structural causal model:

x←f1(ε1)
t←f2(x, ε2)
y←f3(t, x, ε3)

(1)

We follow the common notation in the statistical and causal diagram
literature (Pearl, 2009) that uses lowercase letters to denote specific
values taken on by random variables, which are themselves denoted by
uppercase letters. A structural causal model includes four components:
1) endogenous variables that are determined inside the model (X, T, and
Y; or generally Vi); 2) exogenous background factors that are associated

2 In sociological and psychological research on SEMs, “identification” refers
to whether data can yield unique model parameter estimates, assuming access
to the full population (Bollen, 1989, pp. 88–89; Kline, 2016, p. 119). This
concept focuses on the adequacy of the variables for model estimation, inde-
pendent of sample size and without implying causal relationships. It essentially
checks if a model’s free parameters can be uniquely determined rather than
validating the parameters’ causal significance.
3 This means that the causal diagrams we discuss in this paper cannot be used

to express simultaneity and equilibrium conditions (Imbens, 2020), even
though extensions to cyclic graphs exist (Hünermund & Bareinboim, 2023).
Dynamic feedback loops (needed for systems that are not at equilibrium) can be
easily incorporated by introducing time subscripts, At→At+1→At+2. This is
consistent with the idea that causality requires a time delay between the cause
and effect and can thus only go in one direction.
4 In many cases, unobserved factors are not explicitly labeled, as it can be

challenging to formulate a theory for potentially numerous unobserved back-
ground variables. In such instances, bidirected edges ( ) are used to
represent these unobservables. However, we emphasize that explicitly identi-
fying the nature of omitted variables can lead to more productive discussions
about endogeneity.

5 I.e., P(A|C) ∕= P(A)
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with each variable (ε1,…, εn)6; 3) a set of functions, (f1,⋯, fn), that assign
values to each endogenous variable taking as arguments the parent
nodes and background factors to a variable; and 4) a probability dis-
tribution defined over the background factors.

A structural causal model is not a statistical model. It is a tool that
can be used to express the causal assumptions on which a statistical
model (e.g., structural equation model, regression, etc.) is built on.
Structural causal models are purely about theory, and neither the shape
of the functions fi nor the distribution of background factors εi need to be
further specified; they only require assumptions about the qualitative
causal relationships in the data. In contrast, statistical models usually
assume a functional form for fi and a distribution for εi.7 Linear form and
multivariate normal distribution are the most common. With this
background knowledge, we can now solve the control variable selection
problem with causal diagrams. The online supplement (https://osf.
io/q29fb) provides more precise definitions of causal effect and causal
identification (Pearl, 2009).

A taxonomy of controls

We present a taxonomy of controls to give some intuition of the
mechanics of causal diagrams (Cinelli et al., 2022) before providing a
general solution to the problem of choosing control variables with
graphical causal models. We will first focus on “good” controls that can
reduce estimation bias. Afterward, we will discuss “bad” controls, which
lead to bias when used. The general principle is that 1) controls should
be used to block any non-causal path while at the same time 2) avoiding
blocking causal paths or opening up new non-causal ones by controlling
a collider. We demonstrate these models using datasets simulated from
linear models in R. The analysis code (R and Stata) are provided in the
online supplement.

Good controls

Model 1 in Table 1 shows a fully exogenous (since no arrow are
pointing into it) control variable X. Because X exerts an effect on the
treatment T as well as the outcome Y it is a common parent of both
creating a fork. Due to the fork structure, X causes a spurious correlation
on the non-causal path T←X→Y, and this spurious correlation contam-
inates the causal effect of X on Y. The path can be blocked, however, by
conditioning on X to recover the true causal effect. The corresponding
linear causal model is:

x←β01 + ε1
t←β02 + β12x+ ε2

y←β03 + β13t + β23x+ ε3
⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟

υ

(2)

If X is not included as a control variable in the regression of Y on T,
the resulting combined error term is equal to υ = β23x + ε3, which is
correlated with the regressor T, as X is a direct causal influence factor of
T (eq. (2), second line). Thus, since the assumption of exogeneity is
violated, E[υ|t] ∕= 0, ordinary least squares (OLS) will be biased. To
illustrate, we set each component of β = (β01,β02,β12,β03,β13,β23) equal to
one and sample the random background factors from a standard normal
distribution, εi ∼ N(0, 1), with n = 1000. In this setting, if we regress Y

Table 1
Taxonomy of control variables.

Good Controls
1.) Exogenous

• X creates a spurious correlation
between treatment and outcome on
the path T←X→Y, which can be
blocked by controlling for X in a
multiple regression

• X is not causally affected by any
other variable and thus exogenous
(standard case assumed in
regression theory)

2.) Endogenous
• X is not exogenous anymore
• X is not a causal determinant of Y
anymore, but only correlated with
it due to the unobserved
confounder U

• The backdoor path T←X

U

Y leads to a spurious correlation
between T and Y, which can be
blocked by controlling for X

Bad Controls
3.) Collider

• X is neither affecting the treatment
nor outcome, but correlated with
both due to unobserved
confounders

• There is no spurious correlation
between T and Y, because the
backdoor path T

U1

X

U2

Y is blocked by the collider X
• Controlling for X unblocks the path
and leads to collider bias

4.) Mediator
• X is a post-treatment variable
because it is itself causally affected
by T

• The total causal effect of T on Y is
identified without any control
variables

• Controlling for X blocks the path
T→X→Y

• In linear models with constant
treatment effects, this allows to
identify the direct effect of T→Y
and to disentangle causal
mechanisms (Imai et al., 2010)

5.) Mediator as collider
• X is a collider on the path T→X

U

Y

(continued on next page)

6 Background factors in the SCM structural causal model framework are
similar to “error terms” in SEM. However, this term is avoided to emphasize the
causal interpretation of ε, in contrast to a mere statistical approximation error
(Pearl, 2009, p. 162).
7 Modern statistics also provide techniques such as double machine learning

(Huntington-Klein, 2022, p. 21.2.4) that support causal inference without
requiring any functional form or distributional assumptions. Because we are
aware of just one article mentioning these models in management research
(Hünermund & Louw, 2023), we do not address them in our article.
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on T without accounting for X, we find a bias of around 50 %. Con-
trolling for X, by contrast, gives the correct causal effect (Table 2, col. 1).

The same holds if X is correlated with either T or Y, as in model 2 of
Table 1. Here there is an unobserved common influence factor U that
affects X and Y, which otherwise share no causal connection. The path
T←X U Y is a combination of a fork and a chain and can be

blocked by conditioning on X. For illustration, we add unobserved U to
eq. (2):

x←β01 + β11u+ ε1
t←β02 + β12x+ ε2

y←β03 + β13t + β23u+ ε3
(3)

Again, we set each element of β to one. Failing to account for X in the
regression of Y on T leads to β̂Y∼T = 1.314, whereas its inclusion gives
an estimate that is much closer to the true causal effect (Table 2, col. 2).

Bad controls

Bad controls compromise causal identification either by blocking a
causal path or by opening up a new non-causal one. Model 3 in Table 1
shows a graph in which X exerts no causal effect, neither on T nor on Y. X
is correlated with both, however, due to the presence of two unobserved
confoundersU1 andU2. Since both unobservables emit arrows that point
into X, the node is a collider on the path T U1 X U2 Y.
According to the d-separation criterion, X thus blocks this path, which
implies that the relationship between T and Y is currently not
confounded. By contrast, if the analyst decided to include X as a control
in the regression; this conditioning would open up the path and lead to
estimation bias.

Consider:

x←β01 + β11u1 + β12u2 + ε1
t←β02 + β12u1 + ε2

y←β03 + β13t + β23u2 + ε3
(4)

with all coefficients set to one, as before. Here, regressing Y on T
gives an unbiased causal effect estimate (Table 2, col. 3). Controlling for
X, by contrast, introduces estimation bias. Analytically, this means that
instead of estimating the correct specification in line 3 of eq. (4), X is
added to the structural equation as:

y←β03+ β13t+ β33
(
β01 + β11u1 + β12u2 + ε1

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
x

+ β23u2 + ε3
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

υ

(5)

Since U2 appears both in the construction of X and the combined
error term υ, E[υ|x] ∕= 0, this example violates the OLS assumption of no
endogeneity (Wooldridge, 2013, p. 86; Assumption MLR.4), and results
in biased estimates.

So far, we have assumed X to be a pre-treatment variable, which
means that it either causally precedes the treatment T or is codetermined
with T by other factors. We now turn attention to the mediator case in
model 4 of Table 1. Here, X is itself causally affected by T, which renders
it a post-treatment variable. The mediation path T→X→Y is a chain ac-
cording to the d-separation criterion. Controlling for X would close the
path and block a mechanism by which T influences Y. This phenomenon
is often described as “controlling away” part of the effect of a treatment.
We simulate data from the following mediation model:

t←β01 + ε1
x←β02 + β12t + ε1

y←β03 + β13t + β23x+ ε3
(6)

The total causal effect of Y on T is a combination of a direct effect and
an indirect effect that is mediated through X. In our simulations, it is
equal to two (β13 + β12 • β23) and can be correctly estimated in a simple
regression of Y on T (Table 2, col. 4). If we control for X, on the other
hand, the estimated effect drops to β̂Y∼T|X = 1.055. In this case, β̂Y∼T|X

corresponds to the direct effect of T and not the total causal effect. The
difference is important because the path T→Y is a parameter of interest
only in a mediation analysis that aims to disentangle the different causal
mechanisms by which an effect comes about, but it would be an incor-
rect parameter to estimate if the objective is estimating the total causal
effect.

One interesting case where the assumptions of simple mediation

Table 1 (continued )

• The total causal effect of T on Y is
identified without any control
variables

• Controlling for X introduces
collider bias

• Direct effect of T→Y is not
identifiable and disentangling of
causal mechanisms fails

Tricky Cases
6.) Unobservable confounder

• U is an unobservable confounder
that is jointly affecting T and Y

• The backdoor path T

U

Y cannot be blocked
• The causal effect of T on Y is not
identifiable via control variables

• Other identification strategies that
take unobservables into account (e.
g., instrumental variables,
difference-in-differences, regres-
sion discontinuity designs, etc.),
might be possible (Antonakis et al.,
2010)

7.) Unidentifiable collider
• X is both a collider on the path T

U1

X

U2

Y as well as a confounder on the
path T←X→Y

• Controlling for X reduces
confounding but creates collider
bias at the same time

• There is no solution for this
problem, the causal effect of T on Y
remains unidentifiable

Unnecessary Controls
8.) X only affecting outcome

• X affects only outcome Y
• Controlling for X is therefore not
necessary in a regression of Y on T

• However, controlling for X might
reduce estimation error and result in
higher precision

9.) X only affecting treatment
• X affects only treatment T
• Controlling for X is therefore not
necessary in a regression of Y on T

• Controlling for X might increase
estimation error and result in lower
precision
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analysis are violated is if the mediator X is itself confounded by an un-
observed variable U, as in model 5 of Table 1. Here, X is a collider on the
path T→X U Y, which means that controlling for X unblocks the
path and leads to a spurious correlation between the treatment and
outcome. Let

t←β01 + ε1
x←β02 + β12t + β22u+ ε1

y←β03 + β13t + β23x+ β33u+ ε3
⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟

υ

(7)

with all βi equal to one as before. A simple regression of Y on T gives
a correct estimate (Table 2, col. 5). The unobserved confounder U thus
poses no threat for the causal identification of the total causal effect.
However, if we control for X, the estimated effect is β̂Y∼T|X = 0.503,
which does not correspond to the direct effect of T or any other causal
parameter because X is associated with U, and thus E[υ|x] ∕= 0 in the last
line of eq. (6). The total effect can likewise not be correctly determined
by the path-tracing rule β̂13+β̂12 • β̂23 (Kline, 2016, pp. 250–252). This
example shows that controlling for a mediator is tricky.

Tricky cases

The correct way to deal with bad controls is to leave them out of the
analysis. In the bad control cases we described so far, the (total) causal
effect was already identified by regressing Y and T, and including X in
the regression only made things worse (or at least more complicated).
Unfortunately, things are not quite so simple for the models we will
discuss now, and solutions to the causal identification problem cannot
be easily found. The most obvious case is the one depicted in model 6,
Table 1, where an important confounder (or a set of confounders)
affecting both T and Y is not included in the data set and thus remains
unobserved. In such a situation, which frequently arises in applied
empirical work, using control variables is not sufficient for causal
identification, and the analyst has to resort to other techniques, such as
instrumental variables, difference-in-differences, or regression discon-
tinuity designs, which can deal with unobservables (Antonakis et al.,
2010).

Much less obvious is the case presented in model 7 of Table 1. Here, X
is both a confounder on the path T←X→Y, as well as a collider on the
path T U1 X U2 Y. This means that while we would, in
principle, like to control for X to close the confounding path, this
automatically opens up the second path, which will in turn create
collider bias. Unfortunately, there is no way out of this dilemma. When
simulating data corresponding to this model, the estimate does not equal

the true causal effect (equal to one) regardless of whether we control for
X or not (Table 2, col. 6). As in the previous case, instead of control
variables, other methods for causal identification would be required.

Unnecessary controls

Finally, we briefly discuss two cases in which accounting for a third
variable is not necessary for causal identification but might affect esti-
mation precision. In models 8 and 9 of Table 1, X only influences the
treatment or the outcome, respectively. This means that X is not a
confounder and does not need to be controlled. However, controlling for
X affects the precision of the estimates.8When simulating data according
to model 8, we find that including X as a control variable increases
precision, as exemplified by the smaller standard error (Table 2, col. 7).
This happens because X is a part of the error term in a simple regression
of Y on T and the precision of the estimates depends on how much un-
explained variance remains in the error term (Wooldridge, 2013, pp.
50–54). By contrast, for model 9, we find that standard errors are lower
when controlling for X (Table 2, col. 8). This is because X is a parent of T
and holding it constant leads to lower estimation precision. This “irrel-
evant regressor” case is often discussed in introductory econometric
texts (Wooldridge, 2013, p. 88).

The backdoor criterion

The taxonomy shown in Table 1 helps understand the basic princi-
ples of causal models and covers many cases that researchers might face.
However, it is not exhaustive. The key to general causal identification is
to block all spurious paths while keeping open genuine causal paths that
transmit an effect of a treatment T on an outcome Y. The backdoor cri-
terion formalizes this notion9:

Definition (Backdoor Criterion; Pearl, 2009, p. 79) Given a treat-
ment variable T and outcome variable Y in a causal diagram, a set of

Table 2
Regressions related to the taxonomy of controls in Table 1.

Scenario

Good controls Bad controls Tricky cases Unnecessary controls Fig. 1 (b)

Exogenous Endogenous Collider Mediator Mediator as
collider

Unidentifiable
collider

X only
affecting
outcome

X only
affecting
treatment

Only
controlling
X1

Only
controlling
X2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

X is omitted as a control variable
(Inter-
cept)

1.011 0.398 0.984 1.974 1.960 0.553 1.980 1.047 ​ ​
(0.067) (0.062) (0.055) (0.061) (0.107) (0.071) (0.065) (0.055) ​ ​

T 1.499 1.314 1.006 2.071 2.066 1.705 1.022 0.991 ​ ​
(0.027) (0.024) (0.032) (0.044) (0.077) (0.022) (0.046) (0.022) ​ ​

X is included as a control variable
(Inter-
cept)

1.049 0.600 0.833 1.049 0.545 0.833 1.049 1.049 0.392 0.555
(0.055) (0.061) (0.050) (0.055) (0.061) (0.050) (0.055) (0.055) (0.076) (0.073)

T 0.963 0.935 0.771 1.055 0.503 0.771 0.963 0.963 1.014 0.995
(0.033) (0.039) (0.032) (0.047) (0.049) (0.032) (0.033) (0.033) (0.040) (0.027)

X 1.055 0.568 0.419 0.963 1.485 1.647 1.018 0.055 0.306 0.491
(0.047) (0.049) (0.027) (0.033) (0.028) (0.051) (0.032) (0.047) (0.046) (0.039)

Note: Standard errors in parentheses. “Unobservable confounder” case is omitted because an unobserved variable cannot be controlled for.

8 X that only affects the outcome affects the scaling of the coefficients of
certain generalized linear models, such as logit and probit models. However,
the scaling of plots that are virtually always preferred when interpreting the
magnitude of the effects in management research are unaffected (Rönkkö et al.,
2022). See Endnote 13 in Rönkkö et al (2022) for further explanation of the
issue.
9 The backdoor criterion is not the only way to identify results in a causal

graph—it’s sufficient but not essential. For more complex cases, advanced
identification rules like do-calculus (Pearl, 2009) and methods beyond single-
equation regression (Hünermund & Bareinboim, 2023) are required.
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variables Z satisfies the backdoor criterion (i.e., Z is backdoor-admissible)
relative to (T,Y) if no node in Z is a descendant of T, and Z blocks (in the
d-separation sense) every path between T and Y, that contains an arrow into
T.

In non-technical terms, we should block all paths with an arrow
pointing into T (i.e., they enter “through the backdoor”) but no paths
that start from T and form a causal chain. When the backdoor criterion
holds for the set of variables Z, controlling for these variables in multiple
regression, propensity score matching, inverse probability weighting, or
any other conditioning technique allows to consistently estimate the
causal effect of T on Y.10

Given a causal diagram, finding backdoor-admissible variable sets is
straightforward. Start by listing all backdoor paths connecting T and Y
and then determine the variables that block them all while avoiding
accidentally unblocking collider paths. We demonstrate this using
Fig. 1b. T and Y are connected by three paths: the direct (causal) path
T→Y and two backdoor paths T←X1←X2 U Y and T←X1→X3←Y.
The latter is blocked by the collider X3 and does not induce a spurious
correlation. However, controlling for X3, or its descendant X4, would
activate the path, making both variables bad controls. The first backdoor
path contains no collider and is, therefore, currently open. This path can
be blocked by controlling for X1 or X2, which is why both variables
satisfy the backdoor criterion.

The backdoor criterion leads to three important control variable
principles. First, two studies sharing the same outcome do not need to
use the same set of controls. This is because backdoor-admissible control
variable sets are always relative to the pair of variables (T,Y). Second,
backdoor-admissible control variable sets need not contain all cova-
riates. In Fig. 1b, it is an error to control for the bad controls X3 and X4;
doing so would introduce collider bias. In addition, while both X1 and X2
fulfill the backdoor criterion, it is not necessary to include both in the
analysis. Controlling for only one variable is beneficial for statistical
precision and allows one to economize on data collection costs (Witte
et al., 2020). Third, the estimated coefficients for the control variables in
a regression do not always have causal interpretations (Hünermund &
Louw, 2023). This is because backdoor-admissible control variable sets
do not typically include all causes of Y and can contain endogenous
variables (see Model 2, Table 1).

To demonstrate that control variables may not have causal in-
terpretations, we simulate data from a linear model according to Fig. 1b
with n = 1000, all βi set to one, and the error terms have standard
normal distributions.11 Previously, we demonstrated how the causal
effect could be estimated by controlling for either X1 or X2. We run the
two regressions corresponding to these choices and obtain the following
results:

ŷ = 0.392+ 1.014× t + 0.306× x1 and (8)

ŷ = 0.555+ 0.995× t + 0.491× x2 (9)

In both cases, estimates for T are close to the true causal effect. By
contrast, the coefficients on X1 and X2 are positive and significant
(Table 2, col. 9 and 10), although neither X1 nor X2 exerts a causal effect
on Y in the causal model depicted in Fig. 1b. The example above illus-
trates that the regression results for control variables in a regression are
not very meaningful and should not be interpreted (Hünermund &
Louw, 2023). Each variable requires its own careful causal identification
argument if the corresponding regression estimates are interpreted
causally. This is impractical to do for all controls.

Illustrating the process of choosing control variables

A systematic application of causal diagrams serves three purposes:
(1) It guides the choice of control variables, (2) it clarifies which vari-
ables should not be controlled (i.e., avoid bad controls), and (3) it makes
the reporting of these decisions more transparent. On a high level of
abstraction, choosing appropriate control variables consists of con-
structing a causal diagram and applying our taxonomy of controls or,
more generally, applying the backdoor criterion. The first phase is much
more challenging because few causal diagrams are available
(Huntington-Klein, 2022, Chapter 7). The second phase is more
straightforward and involves just the application of causal identification
rules based on the diagram, which is a mechanical exercise that is well-
explained in multiple literature sources (Pearl, 2009), and that can be
automated by a computer algorithm (Textor et al., 2016).

Table 3
Longlist variables for the link between CEO appearance and performance.

Variable Supporting Literature

Firm Size (Total
Sales)

Rule & Ambady (2011)

Firm Size (Total
Assets)

Tosi et al. (2004); Waldman et al. (2004); Zhu et al. (2005);
Nemanich & Keller (2007); Carmeli et al. (2010); Carmeli
et al. (2011); Wang et al. (2011); Devine et al. (2021); Clark
et al. (2014); Reina et al. (2014); Adams (2016);
Georgakakis et al. (2017); Schepker et al. (2017); Zhang
et al. (2017); Bechtoldt et al. (2019); Chiu&Walls (2019); Li
& Patel (2019); Yang et al. (2019); Vitanova (2021);
Bachrach et al. (2023); Kiss et al. (2022); Ormiston et al.
(2022); Weng et al. (2022)

Firm Age Carmeli et al. (2010); Carmeli et al. (2011); Wang et al.
(2011); Bechtoldt et al. (2019); Yang et al. (2019); Kiss et al.
(2022)

Leverage Clark et al. (2014); Bechtoldt et al. (2019); Kiss et al. (2022);
Chiu & Walls (2019)

Capital Exp. Li & Patel (2019)
R&D Expense Nemanich & Keller (2007); Li & Patel (2019); Kiss et al.

(2022);
Leader Gender Zhu et al. (2005); Wang, Tsui & Xin (2011); Adams (2016);

Georgakakis et al. (2017); Vitanova (2021); Bachrach et al.
(2023); Weng et al. (2022); Zhang et al. (2017)

Leader Nationality Georgakakis et al. (2017); Yang et al. (2019)
Leader Educational
Level

Tsui et al. (2006); Nemanich & Keller (2007); Wang et al.
(2011); Reina et al. (2014); Li & Patel (2019); Zhang et al.
(2017); Vitanova (2021); Kiss et al. (2022); Bachrach et al.
(2023); Stefanidis et al. (2022)

Leader Age Wang et al. (2011); Reina et al. (2014); Li & Patel (2019);
Zhang et al. (2017); Kiss et al. (2022); Stefanidis et al.
(2022)

Leader Tenure Waldman et al. (2004); Nemanich & Keller (2007); Rule &
Ambady (2011); Wang, Tsui & Xin (2011); Georgakakis
et al. (2017); Zhang et al. (2017); Yang et al. (2019); Kiss
et al. (2022); Vitanova (2021); Weng et al. (2022)

Founder Leader Reina et al. (2014); Zhang et al. (2017); Vitanova (2021)
Leader Pay Li & Patel (2019)
Board Size Georgakakis et al. (2017); Yang et al. (2019); Adams (2016)
Lagged ROA Rowe et al. (2005); Reina et al. (2014); Schepker et al.

(2017); Kiss et al. (2022); Ormiston et al. (2022)
Growth Options Wang et al. (2011)
Net Income Rule & Ambady (2011)
Cost Barrick et al. (1991); Chiu &Walls (2019); Vitanova (2021)
Asset Intensity Kiss et al. (2022);
Org. Culture Tsui et al. (2006); Wilderom et al. (2012); Wang et al.

(2011)
Leader Style Waldman et al. (2004); Wilderom et al.(2012); Banks et al.

(2017)
Stakeholder
Engagement

Treadway et al. (2009)

CEO Reputation Treadway et al. (2009)
CEO Narcissism Reina et al. (2014); Zhang et al. (2017)
Empowerment of
TMT

Ling et al. (2015); Adams (2016); Schepker et al. (2017);
Chiu & Walls (2019); Weng et al. (2022)

State-owned Ling et al. (2015)

Note: Complete references for the table are available in the online supplement.

10 In addition, various statistical techniques come with auxiliary assumptions
such as linearity in the case of OLS.
11 The simulation equations were X2 = U + eX2, X1 = X2 + eX1, T = X1 + eT ,
Y = T + U + eY , X3 = X1 + Y + eX3, X4 = X3 + eX4, where U and all error
terms e were independently generated from the standard normal distribution.
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We suggest a three-step process for drawing a causal diagram con-
sisting of (1) longlisting variables, (2) selecting the most relevant vari-
ables on a shortlist, and (3) specifying the causal relationships between
them.12 We emphasize that drawing a causal diagram is a conceptual
exercise separate from data availability; even if a relevant control cannot
be measured, it should be documented. This is important when assessing
the trustworthiness of the study. It is also helpful for sensitivity analysis
and for future research that might be able to measure the respective
variable.

To illustrate our approach, we replicate a recently published article
by Hopp et al. (2023). The paper replicates a study by Rule and Ambady
(2008) on the relationship between CEO appearance and company
performance. They reported a positive correlation between individuals’
perceptions of personality traits inferred from CEO faces and financial
performance in a cross-section of Fortune 1000 firms. Hopp et al. (2023)
do a conceptual replication, using return on assets (ROA) instead of
profits as the primary outcome variable. They replicate the original
cross-sectional results, but their extended analysis shows that the rela-
tionship between CEO appearance and performance disappears after
adding fixed effects to the regression. In the following, we will use this
context (more specifically, models 1–3 in their Table 3) as an example
for creating a causal diagram and discuss why some of the previously
used controls in this literature might be problematic. The online sup-
plement (https://osf.io/q29fb/) contains R and Stata code for the
replication.

Longlisting variables based on prior literature

Developing a causal model starts with a literature review to produce
a longlist of variables that will be considered for the causal model. The
review should ideally follow established guidelines for systematic re-
views (Ferguson et al., 2020; Siddaway et al., 2019) and be done in a
study’s conceptual phases instead of deferring it until the data are
collected. The review should focus on (1) the theorized causal mecha-
nisms and (2) the variables that other researchers have considered when
studying the phenomenon empirically. Of particular interest are vari-
ables that causally affect either the treatment or the outcome (or both),
even if only indirectly, because they are the ones that lie on potential
backdoor and mediating paths in the causal diagram.

The list of control variables used in a study does not need to follow
prior research and can also include variables not studied before. First,
the justification of controls in prior studies may be weak; therefore,
some of these controls might be unnecessary or even bad controls (e.g.,
Becker et al., 2016). Even so, longlisting all prior controls is essential

because it allows documenting unnecessary or bad controls so that other
researchers know to exclude them. Second, the prior literature may have
ignored important controls. For this reason, the variables identified from
the literature can and should be complemented by the author’s intuition
(e.g., if the relevant literature studying a phenomenon is still in its
infancy).

Correlation tables should also be inspected—albeit with care. A
correlation does not imply causation, and conversely, a lack of corre-
lation does not mean a lack of a causal relationship. Thus, correlations
should not be used to directly infer causal relationships or a lack
thereof.13 In particular, weak correlations may not be interpreted as
evidence of causal independence because there are many reasons why a
study might estimate a correlation incorrectly, such as weak measures
and small or biased samples. However, if there is strong evidence that
two variables have a non-trivial correlation, it should be accounted for
in the causal diagram. According to the d-separation criterion, if two
variables are (unconditionally) associated, they must be linked by an
open path. This path can either be a directed (and therefore causal) or a
backdoor path, in which case a common ancestor node produces the
association. Even if such common causes cannot be named, they should
be indicated as unobserved nodes in the causal diagram. Thus, con-
structing a causal diagram forces a researcher to ask why correlations
exist.

To provide an example of a longlist, we reviewed strategy and
leadership articles that used firm performance as an outcome variable.
Our search criteria included the terms “Firm performance”, “Return on
Assets”, or “ROA”. We focused on performance rather than CEO
appearance because we are unaware of other studies besides Hopp et al.
(2023) that would have used this variable. Table 3 contains our longlist,
which mainly consists of variables used as control variables in the
reviewed studies. All these variables share a plausible connection to CEO
appearance via a potential direct causal mechanism (e.g., age) or the
selection of better-looking managers into leadership roles (e.g., in some
industries).

Shortlisting variables for inclusion

The second step is shortlisting the variables. A shortlist is based on
the previous longlist, and here, researchers must decide which variables
to include and which ones to exclude from the final causal diagram.
While the longlist contains potential influence factors that are either

Table 4
Shortlist of variables included in the causal diagram (based on Hopp et al., 2023).

Variable Theoretical Rationale Empirical Support

ROA Outcome variable. ​
CEO Attractiveness Treatment variable. ​
Firm Size (Total Sales) Increased sales is one possible mechanism by which CEO attractiveness affects ROA. Rule & Ambady (2011)
Firm Size (Total Assets) Asset intensity in an industry might affect the choice of CEO. Total assets are used in

the calculation of ROA.
Wang et al. (2011); Schepker et al. (2017); Zhang et al. (2017);
Chiu & Walls (2019); Devine et al. (2021)

Growth Options Growth options in an industry affect investment cost and sales growth. Industry
dynamism might affect types of CEOs chosen.

Zhang et al. (2017)

Asset Intensity Asset intensity is equal to sales over total assets. ​
Leverage Highly leveraged industries (e.g. as oil and gas) might opt for different types of CEOs. Chiu & Walls (2019); Devine et al. (2021)
Gender Perception of CEO attractiveness varies by gender. Zhang et al. (2017); Devine et al. (2021)
Cost Costs are a plausible mechanism by which CEO attractiveness affects ROA. Costs are

also affected by growth options, leverage and total assets.
Barrick et al. (1991); Rule & Ambady (2011); Devine et al.
(2021)

Net Income ROA is calculated by dividing net income by total assets, which means that net
income is a mediator for the effect of sales on ROA.

​

Note. Complete references for the table are available in the online supplement.

12 For an alternative approach relying on domain experts and brainstrorming,
see Rodrigues et al (2022).

13 Technically, inferring causal information from associational information
requires an assumption of causal faithfulness, which rules out pathological cases
of two causal mechanisms completely canceling each other out and is
frequently invoked in the literature on so-called causal discovery (Peters et al.,
2017).
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related to the treatment or the outcome, only variables that affect both
at the same time should be shortlisted. The choice should be guided by
(1) how compelling the theoretical rationale for a causal relationship is,
and (2) how strong the existing empirical evidence in prior literature is.
It is unavoidable that the theoretical rationale depends on the re-
searcher’s judgment and contextual understanding.

Table 4 shows an example of such a shortlist for the context of CEO
appearance. We focus on a CEO’s attractiveness as the treatment vari-
able for simplicity since the graph would otherwise become very com-
plex.14 The relevant confounders for the other dimensions of CEO
appearance would be either equivalent or at least very similar. For ease
of exposition, we keep the firm fixed effect in Hopp et al.’s (2023)
analysis implicit and include only time-variant variables in the causal
diagram. Furthermore, we did not include lagged ROA for two important
reasons. First, Hopp et al. used lagged variables “to control for events
that took place in preceding years” (p. 6), which brings us to an essential
difference between a statistical model and a causal model. While it is
indeed possible to use a lagged dependent variable to control for some
unobserved causes in a statistical model (Wooldridge, 2013, p. 313), in
this case, lagged ROA itself is not assumed to be a cause of current ROA
because it is not the profits but their determinants that persist over
time.15 Second, including a lagged outcome variable in a fixed effects
model leads to dynamic panel bias in traditional panel data regressions
(Dishop & DeShon, 2022).16 Therefore, to avoid dynamic panel bias and
to keep our example as simple as possible, we do not include lagged
values of ROA in the shortlist.

Drawing the causal diagram

The final step is to connect the variables in the causal diagram based
on the shortlist. Draw the included variables as circles (nodes) and
connect them with arrows (edges) following the assumed causal re-
lationships. It is essential to justify why each edge is included and other

possible edges are excluded. Excluding an edge from the diagram is a
stronger assumption than including one because it means that the causal
effect is precisely zero. In contrast, including an edge means just a
possible causal association that does not need to be large.

Fig. 2 shows the causal diagram. Cost and net income are marked as
unobserved shaded nodes in the diagram because the data from Hopp
et al. (2023) does not include these variables. The graph also includes
bidirected edges without labels. These are shorthand, sometimes used to
indicate the presence of unobserved common parents. That is,X2
Y thus serves as a shortcut notation for X2 U Y (with at least one
unobservable U).

Choosing the controls based on the causal diagram

We will now use Fig. 2 to select control variables. The application of
the backdoor criterion leads to two important differences in control
choices, as Table 5 shows. Hopp et al. (2023) report that “we controlled
for the size of the company during each year using total sales (as the
natural logarithm) and the book value of total assets (as the natural
logarithm).” (p. 6) Controlling for sales is problematic. ROA is defined as
Netincome
Totalassets and net income is sales subtracted by all expenses and taxes. This
means that increasing sales is one of the mechanisms by which CEO
appearance would affect performance. This turns sales into a mediator
variable, making it a bad control (case 4 in the taxonomy), as discussed
earlier.

Hopp et al. (2023) control for asset intensity in their regressions.
While the authors might have theoretical reasons to expect it to be
related to the other variables, the article does not explain the reasoning
for inclusion. Asset intensity (commonly defined as Totalassets

Sales ) is affected
by sales and total assets by definition.17 However, we do not see why
asset intensity should affect return on assets in the same period.
Therefore, a respective edge is missing in Fig. 2. This makes asset in-
tensity an unnecessary control, as it does not lie on a backdoor path
connecting CEO appearance and performance (the situation is akin to
case 9 in the taxonomy, although asset intensity is causally affected by
the treatment).

Fig. 2. Causal model for the link between CEO appearance and firm performance (based on Hopp et al., 2023).

14 In complex applications, causal graphs can be drawn and parsed with the
help of a computer (Textor et al., 2016).
15 For a discussion on how lagged dependent variables can be used to identify
causal effects, see Section 6.4.1 in Morgan and Winship (2007).
16 The firm-specific fixed effect exerts an influence on the outcome variable in
every time period: ROAt ,ROAt− 1,ROAt− 2,⋯. . At the same time, the fixed effect
is part of the error term in a within-variation specification. Lagged outcome
variables are thus correlated with the error term, which renders them
endogenous.

17 We note that Hopp et al. (2023) used a more focused definition: “We also
included the asset intensity of the firm using the ratio of property, plant, and
equipment to sales.” (p. 5) We use the more general definition because it
simplifies the causal diagram. Using the Hopp et al. definition would not change
the conclusion.
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Replication results

Table 6 shows the replication results.18 The first model replicates the
original model 3a results from Hopp et al. (2023) exactly. The following
three models omit sales, asset intensity, and all sales and asset-related
variables. All three models show non-significant effects for attractive-
ness. In this case, omitting a possible mediator (sales) or an irrelevant
control (asset intensity) has no effect because there was no effect to be
mediated to start with.

Controlling for a mediator has severe consequences if a causal effect

exists in the data. To demonstrate this, we created an alternative version
of the Hopp et al. (2023) dataset where attractiveness strongly affected
ROA. This effect is mediated through sales, which was already strongly
associated with ROA in the original data. We adjusted the sales variable
so that it depends on all leadership variables. Then, we used our original
model to predict new fitted values for ROA using this new dataset and
added the original residuals. Estimating this model produced the same
coefficients as the original regression, shown in our model 5.19 This is
the expected outcome because while the causal path Leadership→Sales→
ROA now exists in the data, it is blocked by controlling sales (controlling
for mediator). When we drop sales as a control in model 6, the path
opens, and we get a large and highly significant regression coefficient.
This example illustrates how controlling for a mediator would have
produced a very misleading result if a causal effect had existed in the
data.

Testing the causal model against data

Causal diagrams can often be tested empirically. Once a causal dia-
gram has been specified, the d-separation relationships implied by the
graph may be used to check whether the hypothesized model is
compatible with the data (Kline, 2016, Chapter 11). For example, Fig. 1b
implies the following d-separation relationships:

T ⊥ X2|X1; T ⊥ X3|X1,Y; T ⊥ X4|X3; X1 ⊥ X4|X3
X2 ⊥ X3|X1,Y; X2 ⊥ X4|X3; Y ⊥ X1|T,X2; Y ⊥ X4|X3.

(10)

If any of these conditional independencies does not hold in the data,
the hypothesized model should be revised. With linear models and
jointly normal error terms, this would involve regressing one of the
conditionally independent variables on another, controlling for the
variable(s) that the independence depends on. For example, to test
T ⊥ X2|X1, we would regress T on X1 and X2 and check the statistical
significance of the regression coefficient of X2.20 Compared to global
goodness of fit tests, such as the χ2 statistic from the SEM literature
(Kline, 2016, Chapter 12), assessing the model based on conditional
independencies has the advantage of providing concrete clues about
where the graph is incompatible with the data. Instead of simply
rejecting the entire model, the researcher only needs to adjust certain
parts of the model locally, which allows for a more targeted approach.

Our causal diagram model for the CEO appearance context in Fig. 2
gives rise to the following conditional independencies:

1. Attractiveness ⊥ Asset Intensity | Gender, Growth Options, Leverage,
Sales, Total Assets(p = 0.212)

2. ROA ⊥ Asset Intensity | Gender, Growth Options, Leverage, Sales,
Total Assets(p = 0.810)

3. Growth Options ⊥ Gender(p = 0.598)
4. Growth Options ⊥ Total Assets(p = 0.558)
5. Leverage ⊥ Gender(p = 0.248)

The p-values in parentheses provide the corresponding conditional
independency test based on fixed effects regressions using the plm
package in R and estimated with cluster-robust standard errors. We find

Table 5
Applying the backdoor criterion rules.

Variable Descendant of
Attractiveness

Blocked backdoor
path

Used as
control

Gender No Attr. ← Gender →
Sales

NI → ROA
Attr. ← Gender

Cost

NI → ROA

Yes

Growth
Options

No Attr. ← GO → Sales

NI → ROA
Attr. ← GO

Cost

NI → ROA

Yes

Leverage No Attr. ← GO

Leverage

Cost

NI → ROA
Attr. ← GO

Leverage
→ Sales

NI → ROA
Attr. ← Leverage

GO → Sales

NI → ROA

Yes

Total Assets No Attr. ← Gender

TA

Cost

NI → ROA
Attr. ← Gender

TA → ROA
Attr. ← Gender

TA → Sales

NI → ROA

Yes

Asset
Intensity

Yes ​ No

Sales Yes ​ No

Note: Backdoor paths blocked by another control variable are omitted for
simplicity. Attr. = Attractiveness, NI = Net Income, TA = Total Assets, GO =

Growth Options.

18 The R code for producing this table is included in an online supplement.

19 The R2 is larger because the independent variables correlate more strongly
than in the original model.
20 Such a regression tests uncorrelatedness, not statistical independence. In
general, uncorrelatedness does not imply independence. Conditional indepen-
dence testing for non-Gaussian data is a complex topic that goes beyond the
scope of this paper. The interested reader is referred to the literature on
constrained-based causal discovery methods (e.g., Shah & Peters, 2020)(e.g.,
Shah and Peters, 2020). It is also possible that a conditional independence holds
for just a subset of the data. We refer the reader to the literature on context-
specific independence (CSI) for discussion of this scenario (Corander et al.,
2019).
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that none of these d-separation relationships can be rejected at a 5 %
significance level. Therefore, the model is compatible with the data from
Hopp et al. (2023).21

Sensitivity analysis

Sensitivity analysis is applicable when an unobserved confounding
cannot be ruled out (as in model 6 of Table 1). We are aware of two
general approaches to sensitivity analysis. The first starts with the esti-
mated effect and asks howmuch confounding there would need to be for
the inference on the existence of an effect to be compromised. The
second focuses on the point estimate (i.e., regression coefficient) and
how much it would change with different levels of confounding (Kiviet,
2020; Kripfganz & Kiviet, 2021). This result is then either summarized
by plotting the estimate as a function of confounding or used to adjust
confidence intervals to be wider to take the uncertainty due to con-
founding into account. These techniques require specifying the
confounder effects, and are thus useful for testing specific assumptions

such as a lack of correlation between error terms in mediation models
(Imai et al., 2010) or the exclusion restriction of instrumental variable
models (Conley et al., 2010). We focus on the first kind of sensitivity
analysis because it is more commonly discussed in this context and also
has gained popularity in management research recently (Busenbark
et al., 2022). However, regardless of how sensitivity analysis is carried
out, it does not absolve researchers from finding identification strat-
egies—such as natural experiments (Jacquart et al., 2024)—ex-ante, as
Lonati and Wulff (2024) explicitly point out.

We start our discussion on sensitivity analysis by focusing on the
ITCV technique. This technique is inferior to more modern alternatives
and we thus recommend against its use. However, we present it first
because it may be familiar to readers (Busenbark et al., 2022) and serves
as a starting point from which to understand more sophisticated tech-
niques. Consider the regression equation:

y = β0 + β1t + β2x+ β3z+ ε (11)

with outcome Y, treatment T, error term ε, an observed confounder

Table 6
Results of replicating Hopp et al. (2023).

Model 3a Without
Sales

Without Asset
Intensity

Without anything assets
related

Model 3a,
simulated

Without Sales,
simulated

Model 3d

(1) (2) (3) (4) (5) (6) (7)

Dependent
variable

ROA ROA ROA ROA ROA ROA CEO Compen-
sation

Leadership − 0.074 0.0003 − 0.070 − 0.039 − 0.074 0.941*** 0.035
(0.772) (1.000) (0.784) (0.891) (0.800) (0.001) (0.433)

Competence 0.261 0.255 0.253 0.315 0.261 1.206*** 0.047
(0.530) (0.550) (0.546) (0.471) (0.530) (0.005) (0.537)

Dominance − 0.188 − 0.216 − 0.187 − 0.155 − 0.188 0.739* − 0.019
(0.599) (0.575) (0.601) (0.687) (0.627) (0.052) (0.716)

Likeability 0.008 0.046 0.014 0.032 0.008 0.992*** − 0.012
(0.981) (0.893) (0.967) (0.928) (0.982) (0.004) (0.879)

Maturity 0.192 0.180 0.188 0.233 0.192 1.132*** − 0.002
(0.471) (0.571) (0.480) (0.471) (0.485) (0.000) (0.976)

Trust − 0.575* − 0.561 − 0.574* − 0.533 − 0.575 0.387 − 0.024
(0.096) (0.144) (0.097) (0.190) (0.119) (0.303) (0.775)

Attractiveness − 0.028 − 0.076 − 0.033 − 0.004 − 0.028 0.880*** 0.080**

(0.894) (0.735) (0.877) (0.986) (0.909) (0.0001) (0.036)
Affect 0.096 0.039 0.095 0.027 0.096 0.997*** − 0.034

(0.577) (0.831) (0.579) (0.887) (0.653) (0.000) (0.329)
Gender 0.186 0.294 0.202 − 0.070 0.186 0.281 − 0.017

(0.742) (0.641) (0.725) (0.917) (0.742) (0.651) (0.834)
Total Sales (log) 6.192*** ​ 6.099*** ​ 6.192*** ​ 0.025

(0.000) ​ (0.000) ​ (0.000) ​ (0.827)
Total Assets (log) − 5.073*** − 1.260*** − 5.011*** ​ − 5.073*** − 1.740*** 0.266**

(0.000) (0.002) (0.000) ​ (0.000) (0.000) (0.023)
Growth Options 1.589** 1.853** 1.580** ​ 1.589** 1.820** 0.003

(0.049) (0.041) (0.048) ​ (0.049) (0.041) (0.974)
Asset Intensity 0.153 − 2.054*** ​ ​ 0.153 − 1.776*** − 0.097

(0.774) (0.002) ​ ​ (0.774) (0.005) (0.196)
Leverage − 1.994* − 1.922** − 2.015* ​ − 1.994* − 1.931** − 0.238

(0.055) (0.046) (0.053) ​ (0.055) (0.045) (0.158)
ROA ​ ​ ​ ​ ​ ​ 0.019***

​ ​ ​ ​ ​ ​ (0.006)
Firm-fixed
Effects

Yes Yes Yes Yes Yes Yes Yes

Year-fixed
Effects

Yes Yes Yes Yes Yes Yes Yes

P > chi-square 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Overall R2 0.213 0.135 0.214 0.010 0.304 0.373 0.341
Within R2 0.236 0.104 0.236 0.037 0.469 0.398 0.286
Between R2 0.259 0.159 0.259 0.000 0.308 0.372 0.410
Observations 3,237 3,237 3,237 3,237 3,237 3,237 3,183

Note: These results in this table are estimated and reported in a similar fashion to columns (3a − 3d) in Hopp et al. (2023). We use a fixed-effects regression panel
regression with return on assets (column 1–6) and natural log of CEO compensation (column 7) as dependent variable. The first line reports the unstandardized
coefficients and the second line reports the p-value estimated with cluster robust standard error. *p < 0.1; **p < 0.05; ***p < 0.01.

21 Some of the bidirected dashed edges in Fig. 2, indicating unobserved
common parents, were chosen to make the causal graph compatible with the
data in Hopp et al. (2023).
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X, and an unobserved confounder Z.22 Frank (2000) defines the impact of
the unobserved confounder Z as RY∼Z|XRT∼Z|X. This corresponds to the
product of the two path coefficients on the path T←Z→Y, i.e., the partial
correlations of Z with the treatment and outcome. Based on this defi-
nition, Frank calculates a threshold (the so-called impact threshold for a
confounding variable, ITCV) at which the impact of Z would be large
enough to make the estimate β̂1 statistically indistinguishable from zero.
To compute the impact threshold, only information on the estimated
coefficient, its standard error, and the degrees of freedom is necessary,
which can be obtained from published studies (Rosenberg et al., 2022).

An important limitation of the ITCV approach is that there is only an
indirect relationship between the omitted variable bias in a linear model
and the impact of an unobserved confounder as defined by Frank (Cinelli
& Hazlett, 2020; Lonati &Wulff, 2024). Oster (2019) provides a formal
causal identification result that allows assessing the magnitude of the
omitted variable bias under realistic scenarios and benchmark the
strength of Z with that of the observed control variables X, which is a
useful basis for comparison. To do so, she defines the two quantities Rmax
and δ. The former corresponds to the maximum explanatory power (in
terms of R2) that can be attained in the regression in (12). The latter
denotes “a value for the relative degree of selection on observed and
unobserved variables” (Oster, 2019, p. 188). A formal sensitivity anal-
ysis then requires the analyst to specify plausible ranges for these two
parameters to assess the potential bias in β̂1 .

Cinelli and Hazlett (2020) improve on both previous approaches.
They likewise derive a formal causal identification result to bound the
effect of an unobserved confounder that is assumed to be ‘k times’ as
strong as the observed control variable X (with k being specified by the
analyst) on the coefficient estimate β̂1 . Compared to Oster’s (2019) δ
parameter, which has a rather complicated statistical interpretation (see
section 6.3 in Cinelli & Hazlett, 2020 for more details), their approach
requires the analyst to reason about the explanatory power that the
unobserved confounder Z would add if it were included in a treatment
and outcome regression, i.e., R2Y∼Z|X,T and R2T∼Z|X.23 This straightfor-
ward interpretation makes it easy for applied researchers to bring in
substance knowledge from prior research to judge the robustness of their
results. An open-source software implementation of their approach is
available in R, Python, and Stata (Cinelli et al., 2020), which addition-
ally provides useful graphical tools for sensitivity analysis.

While the replication by Hopp et al. (2023) suggests that there is no
effect of CEO appearance on performance, their analysis shows a sig-
nificant positive relationship between CEO attractiveness and compen-
sation (with a one standard deviation change in mean attractiveness
ratings resulting in a 5.1 % change in annual executive compensation,
Model 3d). We test the sensitivity of this finding with the procedure
proposed by Cinelli and Hazlett using the “sensemakr” package provided
in R (Cinelli et al., 2020). Results indicate that an unobserved
confounder which explains 5.65 % of the residual variance in the
outcome regression (R2Y∼Z|X,T) and 5.65% of the residual variance in the
treatment regression (R2T∼Z|X) would drive the effect of attractiveness on
compensation to zero. To put these numbers into perspective, other
regressors can be used as a benchmark. For example, the time-varying
control variables used by Hopp et al. (2023) and depicted in Fig. 2

jointly explain 3.4 % of the residual variance in the outcome regression
and 7.08 % in the treatment regression. Thus, the unobserved
confounder would need to attain an explanatory power of 166 % (=
5.65/3.4) of the rest of the outcome model (excl. fixed effects) to nullify
the measured effect size, which makes their result appear quite robust.24

Discussion

Causal diagrams may be helpful, but they are not a silver bullet for
making causal claims with observational data. We introduced causal
diagrams as a tool to increase rigor in both control choices and reporting
practices, highlighting that this tool can be used to determine when a
variable should not be controlled for, which the previous guidelines on
control variables do not address. Yet, we recognize that adopting causal
diagrams as a standard practice may face significant barriers because
graphs can be difficult to construct. A key challenge in leadership and
management is that compared to, e.g., economics, our theories are often
weak, tested just once, and relying on research designs that do not allow
for drawing robust causal conclusions (Antonakis, 2017). Nevertheless,
even if we cannot know for sure whether a causal diagram is correct,
their use presents an improvement over the current ad hoc approaches to
control variable selection.

Causal diagrams provide a helpful tool for more rigorous and
transparent control variable selection and reporting but have been only
passingly discussed in journal editorials (e.g., Maula & Stam, 2019).
Similarly, articles applying causal diagrams have only recently started to
emerge (Frake et al., 2024; Lee & Bettis, 2022). One possible reason for
the slow adoption is that most writings on causal diagrams are some-
what technical, lacking links to the kind of applied research manage-
ment researchers do. However, this does not explain why the uptake of
causal graphs has been slow in more technical disciplines like eco-
nomics. Imbens (2020) notes two likely reasons why economists have
not embraced causal graphs so far. First, causal graphs do not add much
to the relatively small set of causal identification strategies frequently
used by economists, such as regression discontinuity designs or
difference-in-differences, which have been mostly developed within the
potential outcomes framework. Second, articles advocating for causal
graphs have so far failed to present convincing, realistic examples of the
methods used, and instead have often adhered to “toy examples” that do
not intend to approximate a real-world application. In more realistic
settings, models will be necessarily more complex, and specifying all
causal relationships between many variables is a difficult task that re-
quires a high degree of domain knowledge about the phenomenon under
investigation.

The lack of real-world examples is an issue that will be resolved over
time as causal diagrams are taken into use in empirical research. Indeed,
our article demonstrates what a realistic application might look like. To
facilitate going beyond “toy models”, we have proposed a three-step
procedure involving (1) longlisting of potential variables, (2) short-
listing them, and (3) specifying the causal relationships between the
variables. This process should be guided by existing theory and empir-
ical evidence. However, this requires a sound evidence base to draw on,
which some fields might not have yet produced. As such, we see this
process as a collective task for an entire research community, as dis-
cussed in the next section. Until sufficient high-quality evidence is
accumulated, the causal assumptions encoded in causal diagrams—and
any causal conclusion drawn using the diagrams—must be regarded as
preliminary. Still, even if imperfect, causal diagrams can improve the
rigor and transparency of control variable selection over the current ad

22 For ease of exposition, we will assume Z to be a single omitted variable.
Extensions to vector-valued confounders are straightforward and are provided
by each of the papers we discuss.
23 Note that in contrast to Frank (2000), here R2Y Z|X,T is also conditional on T
(see section 6.2 in Cinelli & Hazlett, 2020).

24 If statistical significance is used as a criterion, an unobserved confounder
would need to account for a smaller portion of the residual variance. The
sensemakr package features testing the robustness of t-statistics; however, the
version employed in this paper (0.1.4) does not yet support cluster-robust
standard errors, which are utilized in Hopp et al. (2023).
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hoc approaches.
Instead of focusing on causal diagrams, Imbens (2020) recommends

focusing on a few well-understood identification strategies, often
involving quasi-experimental (as-if) randomization, like instrumental
variable estimation and regression discontinuity designs, or model-
based assumptions in difference-in-differences and synthetic control
designs. We fully agree with this recommendation; these strategies
should be understood by every researcher who uses observational de-
signs. However, some of these methods still depend on control variables
for various justifications. Consequently, even with quasi-experimental
designs, selecting valid control variables and avoiding collider bias re-
mains crucial and this is where causal diagrams are helpful.

Extensions beyond selection on observables designs

Causal diagrams and the backdoor criterion extend beyond statistical
control and observable selection designs, such as regression with control
variables or various matching techniques (Narita et al., 2023). For
example, causal diagrams can be used to express instrumental variable
designs and designs where causal identification is accomplished by
establishing an exclusive mechanism. This can be useful in teaching and
when explaining the assumptions behind an empirical study because
“Compared to the traditional econometrics setup where the critical as-
sumptions are expressed in terms of the correlation between residuals
and instruments, […] the DAGs are superior in clarity” (Imbens, 2020, p.
1138).

Since key identifying assumptions are relatively easily recognizable
in a causal diagram—once familiar with the methodology—their use can
clarify explanations of identification strategies other than control vari-
ables. This is especially important when combining multiple identifi-
cation strategies. Consider, for example, the recent article on
assumptions of instrumental variable models (Bastardoz et al., 2023).
The article mentions that combining instrumental and control variables
is possible, noting that if a control correlates with (shares variance with)
an instrument, it must be controlled for. This can be easily seen in the
instrumental variable causal diagram in Fig. 3: Unless controlled for, C
opens up a backdoor path from Z to Y, compromising causal inference.25

Presenting the models and their assumptions as causal diagrams pro-
vides an alternative to equations that might be easier for some readers to

understand.
Causal models have also been applied to various other designs to

eliminate unobserved confounders. Examples include our replication of
Hopp et al. (2023), who used fixed effects to address unobserved con-
founding in CEO appearance and firm performance studies; Hünermund
and Bareinboim (2023), who reviewed z-identification, a generalization
of instrumental variable estimation using surrogate experiments; Steiner
et al. (2017), who discussed regression discontinuity designs in causal
diagrams, closely aligning with IV designs near the discontinuity
threshold; and Zhang et al. (2021), who developed a framework for
incorporating equality constraints in graphical causal models, essential
for capturing assumptions like parallel trends in difference-in-
differences designs.

Future prospects of causal diagrams in leadership and management

A key challenge in applying causal diagrams is that formulating a
valid causal model and thoroughly testing it may be too much to ask
from one single paper. Instead, we see this as a gradual effort where
causal diagrams build on and refine previously presented diagrams. As
such, the first diagrams can be simpler and incomplete, and later, more
refined versions can be presented. The approach to causal diagrams thus
needs to be programmatic. This can occur either on an individual
researcher level, where a researcher who specializes in, e.g., CEO
appearance builds and develops a causal diagram about this variable, or
it can occur on an academic community level, where researchers come
together and engage in a process of cumulative theory building,
embedded in a larger research program (Shaver, 2020). Initial contri-
butions might be more explorative and involve, e.g., qualitative research
designs. In more mature stages, theory testing will then become
increasingly relevant.

An important question for causal modeling is how to deal with
complexity and scope. The fields of management and leadership show a
tendency towards exploration and developing new theories instead of
probing and pruning existing causal hypotheses from the literature
(Antonakis, 2017; Bettis et al., 2016). This results in a complex theo-
retical landscape that can be hard to capture adequately in a causal
diagram. For example, across all fields of management, there are prob-
ably hundreds or thousands of variables that have been used to explain
ROA. Going through all these variables and thinking if they might relate
to, e.g., CEO appearance or other variables already in the graphs, is an
impossible task. Modeling, therefore, requires a fine Occam’s razor,
which focuses on the main mechanisms that are relevant in a particular
context. After all, a model must always remain an abstraction of reality
to be useful (Box, 1976). Preference should, therefore, be given to well-
established causal relationships and constructs supported by a sub-
stantial body of literature over time.

Fig. 3. Causal diagrams for instrumental variable model and exclusive mechanism model.

25 Bastardoz et al. (2023) further note that “If controls are themselves
endogenous, they may only be added when they are uncorrelated with the IV z;
otherwise, they—against all intentions of IVE—will reintroduce bias into the
estimated effect of x on y” (p 3). Why this is the case becomes apparent if one
were to draw it as a causal diagram; there are multiple possible ways of doing
so. For example, if C and Y in Fig. 3 are affected by an unobserved confounder,
and C correlates with Z, we have a case of an unidentifiable collider (Case 7 in
Table 1). In this case, omitting C leads to omitted variable bias, but controlling
for C leads to collider bias, making valid causal inference impossible.
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Conclusion

We introduced causal diagrams and proposed a workflow that can be
implemented in leadership and management research. Causal diagrams
provide a helpful framework for finding controls that will help make
causal claims between the variable of interest and the outcome variable.
In contrast to prior guidelines, causal diagrams are also helpful in
identifying bad controls that may compromise causal inference. How-
ever, causal diagrams are not the be and end-all of causal inference. In
the words of Imbens (2020) “Should it be the framework of choice for all
causal questions, everywhere, or at least in the social sciences, as
[Pearl’s The Book of Why] argues? […] In my view the answer […] is
no.” (p. 1172) Control variables, and more generally conditioning, is not
the only possible causal identification strategy. If there is no suitable
adjustment set in which all control variables are observed, alternative
solutions would be to employ quasi-experimental research designs
(Sieweke & Santoni, 2020) or even true experiments (Bolinger et al.,
2022). While these strategies come with their own sets of assumptions,
they are often preferred over statistical controls due to their ability to
address unobserved confounders.
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