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Abstract

Despite the growing interest in the nonhuman animal emotionality, we currently know little about the human brain processing of 
nonconspecific emotional expressions. Here, we characterized the millisecond-scale temporal dynamics of human brain responses to 
conspecific human and nonconspecific canine emotional facial expressions. Our results revealed generally similar cortical responses 
to human and dog facial expressions in the occipital cortex during the first 500 ms, temporal cortex at 100–500 ms and parietal cortex 
at 150–350 ms from the stimulus onset. Responses to dog faces were pronounced at the latencies in temporal cortices corresponding to 
the time windows of early posterior negativity and late posterior positivity, suggesting attentional engagement to emotionally salient 
stimuli. We also utilized support vector machine-based classifiers to discriminate between the brain responses to different images. 
The subject trait-level empathy correlated with the accuracy of classifying the brain responses of aggressive from happy dog faces and 
happy from neutral human faces. This result likely reflects the attentional enhancement provoked by the subjective ecological salience 
of the stimuli.
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Introduction
Domestic dog (Canis familiaris) is the first domesticated animal 
(Larson et al. 2014), today forming mixed-species social groups 
with human families. Dogs are involved in many kinds of coop-
erations with humans—e.g. in agility sports, scent detection, or 
as service dogs. This kind of cooperation requires some interpre-
tation of another species, and human social cognition appears 
to partially extend to nonconspecifics (Harrison and Hall 2010). 
As face perception gives rise to an experience of agency (Broad-
bent et al. 2013), it is important to comprehend whether the basic 
neural processing of facial expressions extends from human to 
dog faces. Recent scientific studies have pioneered this direction 
(Blonder et al. 2004, Spunt et al. 2017, Bunford et al. 2020), but we 
still know little about the human neural processing of the canine 
companions.

Human brain processing of conspecific faces has been exten-
sively mapped with functional magnetic resonance imaging 
(fMRI; for reviews, Haxby et al. 2000, Kanwisher and Yovel 2006). 
Similarly to human faces, dog faces activate the human brain 
regions within the lateral fusiform gyrus and inferior occipital 
gyrus (Blonder et al. 2004, Bunford et al. 2020, Boch et al. 2023). 

However, activation in the medial fusiform gyrus—or function-
ally localized fusiform face area—is often stronger for human 
than dog faces (Blonder et al. 2004, Boch et al. 2023; but see Bun-
ford et al. 2020). Also, amygdala and posterior superior temporal 
gyrus show stronger activation for human versus dog faces (Blon-

der et al. 2004, Bunford et al. 2020). Human and nonhuman faces 

also trigger similar emotional attribution (Spunt et al. 2017). Gen-

erally, adult humans detect the valence of dog facial expressions 

likewise to those of humans (Schirmer et al. 2013, Kujala et al. 

2017), and human brain activation to emotional human faces dif-

fers from dog faces only within superior temporal sulcus (Spunt 

et al. 2017). However, as the focus has been on haemodynamics 
rather than electrophysiology, the fast dynamics of these neural 
responses is not known.

Affective processing guides attention towards ecologically rel-
evant stimuli in the environment (for reviews, Pourtois and 
Vuilleumier 2006, Olofsson et al. 2008, Wieser et al. 2014). 
Generally, negative visual stimuli may amplify early process-
ing, whereas stimulus arousal affects processing at the later 
stages (Olofsson et al. 2008). Negative or threatening conspe-
cific faces enhance early visual responses at 90–110 ms (Halgren 
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et al. 2000, Pourtois et al. 2004), possibly reflecting rapid modula-
tion of primary visual cortex by feedback from emotion-related 
subcortical regions (Anderson and Phelps 2001, Amaral et al. 
2003, Vuilleumier et al. 2004). Threatening emotional stimuli 
further enhance subsequent, attention-driven processing of non-
emotional visual targets in lateral occipital regions peaking at 
135 ms (Pourtois et al. 2004, 2005, Rellecke et al. 2012). Instead, 
the face-sensitive response peaking approximately at 170 ms in 
the occipito–temporal regions (Bentin et al. 1996, Kanwisher et al. 
1997) appears less sensitive to the emotional content (Streit et al. 
2000, Sato et al. 2001, Balconi and Pozzoli 2003).

Subsequent brain electrophysiological responses, early poste-
rior negativity (EPN) and late posterior positivity (LPP) are modu-
lated by the interaction of emotion and task (Schindler et al. 2020, 
Schupp and Kirmse 2021). EPN is a sustained deflection provoked 
by affective stimuli, detectable at temporo-occipital EEG sensors 
and peaking at 200–350 ms (Schupp et al. 2004). Such long-latency 
responses are detected for emotional stimuli such as picture 
assemblies (Bekhtereva et al. 2015) and facial expressions of fear, 
anger, pain, or happiness (Kujala et al. 2009, Calvo and Beltrán 
2013, Sawada et al. 2014, Yoon et al. 2016, Schindler et al. 2020). 
Observation of angry human facial expressions enhances the 
response amplitude of all the abovementioned processing stages 
irrespective of the task, even with corresponding low-level visual 
properties (Rellecke et al. 2012). However, no evidence exists on 
whether threatening facial expressions of nonconspecifics such 
as dogs provoke similar responses as those of conspecific humans.

Empathy is divided into cognitive and emotional subparts 
(Davis 1980), and subject empathic abilities are related to their 
visceral responses (De Vignemont and Singer 2006). Observing 
affective images of dogs results in brain activation of areas asso-
ciated with emotional empathy (Franklin et al. 2013), suggesting 
the extension of emotional empathy to nonconspecifics. Empa-
thy also appears to enhance electrophysiological brain responses 
during observation of emotional stimuli (Choi et al. 2014). More 
empathic individuals are quicker and more accurate in evaluat-
ing the emotion from human facial expressions (Besel and Yuille 
2010, Kosonogov et al. 2015) and show enhanced facial mimicry 
(Rymarczyk et al. 2016). More empathic subjects also rate threat-
ening facial expressions of both humans and dogs more quickly 
and strongly, while empathy increases the ratings of positive 
expressions only for conspecific humans (Kujala et al. 2017). As 
emotional empathy directed toward humans and animals are 
linked (Paul 2000), these results suggest a more general role of 
emotional empathy in processing both human and nonhuman 
expressions.

Classifying observed visual stimuli from the brain activity was 
first performed in fMRI studies differentiating low-level stimulus 
properties (Kamitani and Tong 2005, Haynes and Rees 2006) and 
image categories, including faces (Haxby et al. 2001, Carlson et al. 
2003, Cox and Savoy 2003). In electrophysiology, decoding brain 
activity with machine-learning algorithms has also utilized the 
available temporal information (Carlson et al. 2013, Ramkumar 
et al. 2013). Classification studies have dissociated the neural pro-
cessing of animate versus inanimate as well as conspecific versus 
nonconspecific image categories (Contini et al. 2017), and shown 
that attention enhances the prediction accuracy of objects from 
nonobject stimuli (Carlson et al. 2003). Recently, individual dif-
ferences between subjects, such as personality traits, have been 
differentiated based on spatial configurations of fMRI data in idle 
tasks (Dubois et al. 2018, Hsu et al. 2018, Jiang et al. 2018, Misra 
et al. 2021). However, how factors such as empathy contribute 

to the classification accuracy of individual neurophysiological 
responses is largely unknown.

Our main aim was to characterize the temporal dynamics 
of human neurophysiological responses to conspecific human 
and nonconspecific dog emotional facial expressions, and to 
examine the accuracy of classifying the brain responses with 
machine-learning approaches. We were interested in the accu-
racy of differentiating dog and human facial expressions (happy, 
neutral, aggressive) from the brain responses; if the classification 
of dog and human facial expressions follow similar patterns; and 
whether biologically relevant threat-processing of human and dog 
faces occurs alike. Finally, we examined the subjective contri-
bution for the success of differentiating between emotional face 
stimuli: How does subject trait-level empathy contribute to the 
individual variability in success of the classification accuracy?

Methods
Ethics statement
The experimental protocols of the study were approved by the 
Aalto University Research Ethics Committee (Board Meeting 6 
March 2014). Participants gave their informed consent prior to the 
experiment, and all methods were performed in accordance with 
the relevant regulations.

Subjects
Subjects were 15 healthy volunteers, aged 28 ± 4 years
(mean ± SD; 8 F/7 M). All had normal or corrected-to-normal 
vision, and all subjects were right-handed according to the Edin-
burgh Handedness Inventory (Oldfield 1971). Six subjects had 
lived in a family with a pet dog, and 3/15 had some experience 
as a dog handler through hobbies (eg dog shows, hunting). The 
subjects had thus relatively low expertise of dog behavior.

Stimuli
Eight different categories of stimuli were obtained from our pre-
vious study with dogs (Kujala et al. 2020). The stimuli were 
color photographs of faces [threatening/aggressive dogs/humans 
(AD/AH), neutral dogs/humans (ND/NH), and pleasant/happy 
dogs/humans (HD/HH), household objects (OB) and phase-
scrambled images (S; Supplementary Fig. S1)]. The low-level visual 
properties of the face stimuli versus objects, or emotional expres-
sion categories did not differ, but human faces differed from dog 
faces, as previously reported (Kujala et al. 2020). For details of 
the face stimuli, see Somppi et al. (2016); for objects, Stacy and 
colleagues (1997) and for phase-scrambled images, Kujala et al. 
(2017).

Additionally, the color stimuli of previous studies were trans-
formed to grayscale versions, and the low-level visual properties 
(spectrum, histogram, and intensity) of the grayscale images were 
equalized with the SHINE toolbox in Matlab (Willenbockel et al. 
2010). Therefore, two sets of stimuli were used in the experiment: 
original color stimuli and the grayscale stimuli with equalized 
low-level properties.

Experimental procedure
The study comprised (i) simultaneous electroencephalography 
(EEG) and magnetoencephalography (MEG) acquisition with an 
acquisition protocol as closely matching our previous experiment 
with noninvasive dog EEG (Kujala et al. 2020) as possible; (ii) 
a behavioral measurement with stimulus emotional rating and 
behavioral questionnaire, and (iii) an anatomical T1-weighted 
MR image. Behavioral, EEG/MEG and MR measurements were 
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scheduled on different days; EEG/MEG acquisition preceded the 
behavioral measurement.

Behavioral questionnaires and stimulus rating
Subjects completed the Big Five Inventory sampling person-
ality (John and Srivastava 1999); the Interpersonal Reactivity 
Index sampling trait-level empathy (IRI, Davis 1980); and animal-
directed IRI (Norring et al. 2014) sampling empathy for animals. 
IRI is divided in four factors: two cognitive empathy factors 
Perspective-taking (PT) and Fantasy Scale, and the emotional empa-
thy factors Emotional Concern (EC) and Personal Distress. On the basis 
of previous literature (Besel and Yuille 2010, Kujala et al. 2017), we 
focused on the cognitive empathy factor PT and the emotional 
empathy factor EC as the main features affecting emotion detec-
tion from both human and animal-directed IRI. The IRI samples 
the trait-level empathy, but for simplicity, we henceforth refer to 
it with the term “empathy”. The subjects also rated the amount 
of valence, arousal, and six discrete emotions on a 7-point scale 
for each stimulus image, while their responses and the response 
times were recorded. Statistical analyses of the behavioral data 
are shown in Supplementary Materials.

Neurophysiological EEG/MEG and anatomical 
data acquisition
EEG and MEG data were acquired simultaneously in a magnet-
ically shielded room in the MEG Core of Aalto Neuroimaging 
Infrastructure, Aalto University. EEG was acquired with an EEG 
cap with 32 Ag/AgCl electrodes, placed according to the inter-
national 10/20 system; MEG was acquired with the 306-channel 
whole-head Elekta Neuromag™ Vectorview MEG system (MEGIN 
Oy, Helsinki, Finland). The data were filtered to 0.03–200 Hz and 
sampled at 600 Hz. The head position was measured at the begin-
ning of each measurement; additionally for two subjects, con-
tinuous head tracking was used due to the low quality of the 
initial head position measurement. In the subsequent analyses, 
we focus mainly on the MEG data.

During the EEG/MEG data acquisition, the stimuli were pro-
jected on a back-projection screen located 1.23 m in front of the 
subject. The stimulus presentation was controlled with Presenta-
tion® software (http://nbs.neuro-bs.com/). Stimuli were overlaid 
on a gray background on a screen area of 47.6 cm × 26.8 cm, and 
the stimulus images were on average 23 cm × 24.5 cm in size at the 
center of the presentation screen. Stimuli were presented in four 
consecutive presentation sequences, with short breaks between 
the sequences. Half of the sequences contained the color images 
and other half the grayscale versions; the presentation order of 
the stimulus sequences was counterbalanced.

The sequences started with a fixation cross in the middle of 
the screen. The stimuli were shown in blocks of 15–19 images, with 
duration of 500 ms per stimulus and a 500–1500 ms interstimulus-
interval; the interval between the stimulus blocks was 5 s, during 
which a text “Break” was shown. Each of the 80 different stimuli 
were repeated 8–10 times resulting in 176 stimuli per category (88 
color + 88 grayscale images).

Standard anatomical T1-weighted MR images were acquired 
in the Advanced Magnetic Imaging Centre of Aalto Neuroimaging 
Infrastructure, Aalto University; three sets of MRIs were obtained 
from previous research, with the permission of the subjects.

MEG data preprocessing
MEG data were preprocessed with MNE Python (Gramfort et al. 
2013). First, sensor-level noise was suppressed with the Over-
sampled Temporal Projection method (Larson and Taulu 2018). 

External disturbances were further removed using the spatiotem-
poral signal space separation method (Taulu and Simola 2006) 
that was used also to transform the subjects’ heads to a com-
mon position to facilitate group-level analysis of sensor-level data. 
Last, independent component analysis (Hyvärinen 1999) was used 
to suppress ocular and cardiac artifacts.

Sensor-level analysis
Sensor-level averaged evoked responses were calculated across 
both color and grayscale images within each stimulus category 
in the time window of −200 to 500 ms with respect to stimulus 
onsets. The responses were baseline-corrected (baseline time win-
dow −200 to 0 ms) and low-pass filtered at 40 Hz. Category-specific 
areal averages of the evoked responses were computed across the 
204 gradiometers across 12 different sensor groups (12–20 sensors 
per group; left/right frontal, central, parieto-occipital, occipital, 
and both anterior and posterior temporal cortex). Vector sums 
were computed for each gradiometer pair before averaging the 
signals within regions.

Source modeling of evoked responses
The cortical sources of the evoked responses were estimated 
with MNE (Gramfort et al. 2014). Cortically constrained noise-
normalized L2-minimum-norm estimates were obtained in eight 
100 ms-long time windows between 50 and 500 ms in a regu-
larly spanned grid consisting of ∼4700 points across subjects. The 
noise covariance matrix used in the estimation was obtained from 
empty room recordings, and fixed source orientations were used 
in the source modeling. The source-level responses were baseline-
corrected (baseline −200 to 0 ms) and low-pass filtered at 40 Hz. 
Z-scores at each time point and source location were computed 
by dividing the responses with the standard deviation within the 
baseline time-window. The individual-level Z-scores were trans-
formed to a template anatomy (Fischl et al. 1999) and averaged 
across the 14 subjects for whom the source-modeling could be 
performed successfully. The group-level Z-scores were visualized 
using Freesurfer 5.3 (Fischl 2012). Additionally, response strengths 
for human faces were compared with dog faces (see Supplemen-
tary Material).

Analysis with machine learning
Machine-learning-based classification analyses were conducted 
using the Statistics and Machine Learning Toolbox in Matlab 
R2020b. Two different analyses were performed across the color 
and grayscale stimuli utilizing support vector machine (SVM) clas-
sifiers, separately for MEG and EEG data. First, time-resolved 
binary classification was performed in 80 ms time-windows with 
50% overlap between 0 and 500 ms. The individual trials were 
baseline-corrected (baseline time window −200 to 0 ms) and low-
pass filtered at 40 Hz. Separate SVM classifiers were trained for 
each binary classification task across all pairs of categories, that 
is (7 × 8)/2 = 28 classifiers for each subject and time-window. For 
MEG and for each classification, those 50 sensors were selected 
that showed the highest inter-trial synchrony across the trials and 
categories in the time window 0–500 ms. This approach allows 
reducing the number of features to be reasonable by focusing 
the analysis to sensors with stable neural response patterns out-
weighing noise in the data (Mitchell et al. 2008). In the EEG clas-
sification, data from all 32 sensors were used. Before applying the 
SVM classifiers, the data were vectorized into 2450-dimensional 
(49 time points × 50 MEG channels) and 1568 feature vectors (49 
time points × 32 EEG sensors) within each time-window. A linear 
kernel was used in the SVM, and a 5-fold cross-validation was 
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applied to estimate the accuracy of the classification. Before divid-
ing the data into the different folds, the order of the trials was 
shuffled to avoid using sequential data samples in the training 
and testing data. The classification accuracies for each binary 
comparison were determined by averaging the classification accu-
racies across the different fold combinations (four folds used for 
training, one for testing).

The significance of the classification was determined via a 
permutation-based maximum statistics approach. The category 
labels of the data we randomly permuted 200 times prior to 
training and testing and a null distribution was generated from 
the obtained classification accuracies. A maximum-statistics 
approach was applied simultaneously across all time-windows 
and category-pairs to determine the 95% confidence limit, corre-
sponding to P < .05 (corrected across all comparisons). SVM-based 
classification was also performed using all time points within the 
0–500 ms time-window. The procedure was otherwise identical 
with the time-resolved classification, except that for this static 
classification the feature vector had 15 050 (301 time points × 50 
MEG channels) or 9632 dimensions (301 time points × 32 MEG 
channels) and that here we averaged three separate trials together 
to increase the signal-to-noise ratio of the training and testing 
data samples.

Examination of classification accuracy
Classification accuracy between stimulus categories in the 500 ms 
time-window was first divided into three classes: ≥ 90% accuracy 
(excellent); ≥ 70% accuracy (good) and 60–70% accuracy (fair). The 
classification pairs with good or fair accuracy were examined 
for the dependency of the categories with subject individual dif-
ferences in empathic reactivity (Davis 1980) and/or behavioral 
response times in rating the stimulus valence/arousal.

Good/fair classification pairs with angry/aggressive expres-
sions (AD and AH) as well as happy human expressions (HH) were 
included in the empathic reactivity analyses due to the corre-
lation of their valence/arousal rating with EC and/or PT (Kujala 
et al. 2017). Thus, the correlation of subject EC and PT with the 
classification accuracy between the pairs AD versus HD; AD ver-
sus ND; AH versus. HH; AH versus NH and HH versus NH was 
examined with Spearman’s rho using a bootstrapping procedure 
(1000 samples, bias corrected and accelerated); for dog expres-
sions, also ani-EC and ani-PT was calculated. As empathy affects 
the emotion detection from human faces (Besel and Yuille 2010, 
Kosonogov et al. 2015), the correlation of subject response times in 
stimulus valence/arousal rating with the good/fair classification 
accuracy of human expressions was examined with Spearman’s 
rho using bootstrapping procedure (1000 samples, bias corrected 
and accelerated).

Results
Behavioral rating and response times
Subjects’ evaluation of the valence, arousal, and six emotions in 
each of the stimuli, and statistical analysis of valence/arousal 
ratings, are shown in Supplementary Materials and Table S1. 
Supplementary Fig. S2 shows the results generally following the 
stimulus behavioral ratings of a previous study (Kujala et al. 2017) 
in a separate sample.

Average response times for each stimulus category are shown 
in Table 1. As the questions were presented in a fixed order, 
the response times between questions are not comparable; how-
ever, the response times between the stimulus categories can be 
compared. Response times differed in evaluating the valence of 

facial expressions [χ2(5) = 12.20, P = .032; Friedman and W = 0.174, 
Kendall]. Pairwise comparisons showed that the differences in 
response times originated in the human expressions; responses 
were quicker to HH versus AH as well as to NH versus AH (z = −3.3, 
P < .001; z = −2.3, P = .02, respectively). Response times in evaluat-
ing the arousal of human and dog stimuli did not differ between 
categories [χ2(5) = 3.39, P = .640; Friedman]. 

Event-related responses
Figure 1 shows the sensor-level MEG responses for the selected 
cortical regions to the human and dog angry/aggressive, happy, 
and neutral facial expressions, averaged across participants. All 
face stimulus categories showed the highest amplitude responses 
at 105–110 ms and sustained response strengths above the base-
line level until the end of the examined time-interval, with subtle 
variations between the stimulus categories.

Cortical sources
Figure 2 shows the group-level cortical responses averaged across 
different facial expressions for human and dog stimuli in eight dif-
ferent 100 ms time windows. Overall, the cortical responses were 
similar for human and dog faces, with neural activity in the bilat-
eral occipital cortex throughout the 500 ms time window, in the 
bilateral parietal cortex ∼150–350 ms, and in the bilateral tempo-
ral cortex ∼100–500 ms. Statistical comparison between human 
faces versus dog faces are shown in Supplementary Fig. S3.

Machine-learning analysis
Figure 3 shows the results of the time-resolved classification. For 
each time-window, the percentage of significant (P < .05, corrected 
for multiple comparisons) pairwise classifications was calculated 
across the 28 category pairs. In the MEG analysis, significant clas-
sifications were detected after 50 ms with the highest percentage 
of classifications occurring between 100 and 150 ms. The per-
centage of significant classifications remained at ∼60% until the 
latest 80 ms window (Figure 3a). The time-resolved classifications 
were successful especially for comparisons across species and 
against the object and scrambled images, whereas the success 
rate was lower for the within-species comparisons (see Figure 3b). 
The EEG analyses revealed qualitatively similar findings but with 
lower levels of significant classifications. For EEG, the maximum 
classification percentage did not reach as high levels and the per-
centage tended to drop faster towards the end of the examined 
time-interval compared to MEG.

For the MEG data, discrimination of event-related brain 
responses over the whole 0–500 ms time window was success-
ful in 20–100% of the subjects between all stimulus categories 
(see Figure 4), and discriminating the scrambled images from 
any other stimulus category yielded the highest accuracies. Dis-
crimination of all face categories versus scrambled was >99% 
(across-subjects range 94–100%; and for object versus scrambled 
98% (range 95–100%). Discrimination of human faces from dog 
faces with comparable valence also yielded excellent accuracy 
of 93–91% (range 74–100%). The EEG classification findings across 
the 0–500 ms time window are shown in Supplementary Materials 
(Supplementary Fig. S4).

Classification accuracy of MEG data across subjects in compar-
isons of species, emotions, or objects is depicted in the top part 
of Figure 4. Classification accuracy between the different facial 
expressions within species was either good or fair and it followed 
a similar pattern in both species. Aggressive expressions were best 
discriminated from neutral or happy expressions; discrimination 
of happy from neutral expressions of both species yielded only 
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Human neurophysiological responses to emotional facial expressions of humans and dogs  5

Table 1. Subject response times for each stimulus category (in seconds; mean ± SEM).

HH HD NH ND AH AD OB SD

Valence 14.1 ± 1.5 16.3 ± 1.3 16.2 ± 1.7 16.6 ± 1.8 19.6 ± 2.3 16.9 ± 2.4 10.0 ± 1.4 6.2 ± 0.6
Arousal 12.1 ± 2.0 11.7 ± 1.4 10.6 ± 1.2 10.1 ± 1.0 10.7 ± 1.0 11.3 ± 1.6 8.2 ± 1.4 5.7 ± 0.8
Happiness 8.2 ± 0.7 8.1 ± 0.9 8.0 ± 0.9 7.0 ± 0.8 6.0 ± 1.0 5.6 ± 0.7 3.9 ± 0.8 2.3 ± 0.4
Sadness 5.3 ± 0.5 5.9 ± 0.6 8.7 ± 0.9 7.4 ± 0.8 7.1 ± 1.0 6.9 ± 0.8 3.0 ± 0.5 2.3 ± 0.3
Surprise 6.8 ± 0.6 6.9 ± 0.6 6.0 ± 0.6 5.8 ± 0.6 8.0 ± 0.7 8.6 ± 0.8 3.8 ± 0.8 2.2 ± 0.4
Disgust 5.0 ± 0.6 5.9 ± 0.8 6.7 ± 0.9 5.1 ± 0.4 9.5 ± 0.9 8.1 ± 0.9 3.2 ± 0.7 2.5 ± 0.3
Fear 5.8 ± 0.9 6.3 ± 0.9 8.1 ± 1.0 7.3 ± 1.0 9.3 ± 0.9 9.9 ± 1.4 2.7 ± 0.5 2.3 ± 0.4
Anger 4.6 ± 0.5 5.4 ± 0.6 7.3 ± 0.9 6.4 ± 0.8 8.3 ± 0.7 8.1 ± 1.3 3.3 ± 0.7 2.4 ± 0.3

Figure 1. Group-level event-related brain responses plotted as areal averages of sensor-level MEG data (vector sums of each planar gradiometer pair) 
over the left and right parieto-occipital and occipital regions.

Figure 2. Temporal progression of the grand-averaged event-related MEG responses to dog and human faces are shown from 50 ms of the onset, 
averaged over 100 ms with a 50 ms overlap, visualized at the level of the cortical current sources. Top: left hemisphere, bottom: right hemisphere.

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/19/1/nsae082/7884269 by Jyvaskyla U

niversity user on 03 D
ecem

ber 2024



6  Kujala et al.

Figure 3. Percentage of significant classification results in different 80 ms time windows illustrating the successful classification utilizing the 
time-resolved information (a) across all condition pairs and (b) in different comparison pairs of dog versus human facial expressions, dog facial 
expressions, human facial expression, and other comparisons.

Figure 4. Top: Classification accuracy across subjects as a boxplot in pairwise comparisons of dog versus human, dog facial expression, human facial 
expression; and faces (aggressive dog/human) versus objects or scrambled images. Bottom: Percentage of subjects with significant classification 
results in the pairwise comparisons. The pairs are given below the figure, background shadowing differentiates dog versus human comparisons; 
comparisons of dog emotional expressions; comparisons of human emotional expressions and face versus control image comparisons.

fair level of accuracy. Between dog expressions, the classifica-
tion accuracy was as follows: AD versus ND 72% (across-subject 
range 63–86%), AD versus HD 71% (range 62–83%), and HD versus 
ND 65% (range 52–77%). Between human expressions, the accu-
racy was the following: AH versus NH 70% (range 60–84%), AH 

versus HH 69% (range 51–83%), and HH versus NH 63% (range 
51–83%). These classification accuracies were significant (P < .05, 
corrected for multiple comparisons) in all 15 subjects when com-
paring facial stimuli across species or between human or dog 
faces and objects or scrambled images (see Figure 4 bottom).
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Figure 5. Correlation of subject trait-level empathy scores with the classification accuracies between aggressive versus happy dog expressions (AD 
versus HD; MEG) and human happy versus neutral expressions (HH versus NH; EEG). Correlations are z-scored data utilizing comparable scales for 
visualization.

Association of classification accuracy with 
behavioral variables
Figure 5 shows the correlation of subject empathy with the clas-
sification accuracies between AD versus HD and HH versus NH. 
Both EC and PT correlated with the EEG classification accuracy 
between HH versus NH; animal-directed PT also correlated with 
AD versus HD, whereas AD versus ND, AH versus HH or AH ver-
sus NH did not correlate with empathy scores (Supplementary
Table S2).

Examination of the classification accuracy between the human 
facial expression categories with respect to the subject response 
times revealed the connection of AH versus HH classification 
accuracy with the response times of AH valence and HH arousal 
(Supplementary Table S3).

Discussion
Behavioral and brain processing of human and 
dog facial expressions
Our primary goals were to characterize the temporal dynamics 
of human brain responses to human and dog emotional facial 
expressions, and to examine the accuracy of classifying these 
responses with machine learning. Human and dog facial expres-
sions followed similar behavioral evaluations: happy faces were 
rated as most positive, whereas angry/aggressive faces provoked 
the most emotional arousal, followed by happy and neutral faces, 
in line with previous data (Schirmer et al. 2013, Kujala et al. 
2017, Törnqvist et al. 2023). Also, the brain results are concordant 
with the previous fMRI studies examining nonconspecific affec-
tive expressions (Franklin et al. 2013, Spunt et al. 2017). Starting 
at 50 ms after the stimulus onset, the brain responses to human 
and dog facial expressions followed a similar temporo–spatial
pattern.

The machine learning-based classification results aligned with 
our previous experiment with dogs (Kujala et al. 2017). Differen-
tiation of the responses was most successful for visually most 
differing categories (faces versus non-faces), and the informative 
time windows were largely similar, with most significant results 
occurring at around 100–150 ms and 200–300 ms. Previously, clas-
sification of human electrophysiological responses to human 
facial expressions of differing valence have been successful in 
the frequency domain (Li and Lu 2009). Here, face versus nonface 
and human versus. dog comparisons during the first 500 ms were 
the most successful, and responses to angry/aggressive versus. 

other expression categories were also differentiated satisfactorily. 
However, distinguishing brain responses to happy versus neu-
tral expressions of either species yielded lower accuracy—
classification of the EEG data was close to chance level. This 
may reflect the contribution of the later processing stages, from 
200 ms onward, to the static classification, as the angry/aggres-
sive faces were rated higher in arousal than other expressions in 
both species.

Processing of threat from human and dog faces
We were also interested in the threat-processing related to the 
human and dog facial expressions. Emotion, attention, and image 
properties have interconnected effects within different stages of 
visual processing, with image properties having greater effects 
on the early responses and emotional attention modulating the 
later responses (Pourtois et al. 2013, Schindler et al. 2018). There-
fore, perhaps through multiple additive effects, angry human 
faces elicit larger neural responses starting at 50 ms (Rellecke 
et al. 2012). Consistent with previous work, we observed high-
amplitude responses for both human and dog angry/aggres-
sive facial expressions at the parietal and parieto–occipital sen-
sors from 100 ms onwards. Previously, the canine ERPs were 
likewise pronounced to facial expressions of threat (Kujala
et al. 2020).

Here, the electrophysiological brain responses to dog faces 
appear pronounced also in temporal cortices at 200–500 ms, cor-
responding to the time windows of EPN and LPP (for a review, 
Schupp et al. 2006). These later processing stages are connected to 
highly arousing emotional content, including threatening animals 
(Schupp and Kirmse 2021) and correspond to early attentional 
selection (Schupp et al. 2004). These late processing stages are 
also largely independent of other low-level properties (Schettino 
et al. 2016, Schindler et al. 2018) than the stimulus size, which may 
recruit stronger arousal (Codispoti and De Cesarei 2007). Thus, 
as ecologically salient stimuli, the threatening (angry/aggressive) 
expressions likely cause sustained attention that is reflected in 
the late brain responses.

Subject emotional empathy enhances decoding 
accuracy of emotional visual stimuli
Empathy has been associated with faster and more accurate 
detection of human expressions (Besel and Yuille 2010, Kosono-
gov et al. 2015, Kujala et al. 2017) and with rating threatening 
human and dog faces, together with happy human faces, higher 
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in valence and/or arousal (Kujala et al. 2017). Subjective relevance 
of threatening stimuli also facilitates attention and behavioral 
responses (Öhman et al. 2001). Here, we asked whether this 
kind of subjective experience affects the machine learning-based 
classification of brain responses.

Our results show that the brain responses of subjects with 
higher trait-level emotional empathy yielded higher classifica-
tion accuracy for differentiating aggressive from happy dog faces 
and happy from neutral human faces, with strong or moderate 
correlation between empathy and classification accuracy (Cohen 
1988). As emotional arousal affects the electrophysiological brain 
responses related to the early selection of attention (Schupp et al. 
2004, Pourtois et al. 2013, Schindler et al. 2018), and, in turn, 
increased attention facilitates the classification of visual stimuli 
(Carlson et al. 2003), our current results likely reflect attentional 
enhancement provoked by the subjective ecological salience of 
the stimuli.

The results are consistent with findings that images high in 
emotional arousal amplify the attention-related brain responses 
within the first 500 ms regardless of the valence (Schupp and 
Kirmse 2021). As the stimuli of aggressive dogs and happy humans 
have received the highest arousal ratings and correlated with sub-
ject EC and PT (Kujala et al. 2017), the current results may reflect 
the differential emotional reactivity of the subjects, captured by 
the trait-level empathy. The classification accuracy of aggres-
sive versus other human faces also correlated with the response 
times, suggesting that these images provoked more subjective 
evaluation. Generally, happy human faces are recognized faster 
than neutral faces (Leppänen and Hietanen 2004), and emotional 
empathy may further strengthen the recognition (Besel and Yuille 
2010). As emotions have widespread effects in the visual areas 
through the bidirectional connections with amygdala (Vuilleu-
mier et al. 2001, Amaral et al. 2003, Pourtois et al. 2013), empathy-
mediated attentional recruitment appears to strengthen the dif-
ferentiation between ecologically salient stimuli during the first 
500 ms of the response.

Early attentional modulation of brain responses by ecologically 
salient stimuli through the subcortical magnocellular pathway 
is well established (Vuilleumier 2005, Pessoa 2008). However, the 
effect of subjective appreciation of the stimulus salience, modu-
lated by empathy, on the classification of brain responses has not 
been reported before. The correlation of empathy and decoding 
accuracy was conducted with bootstrapping, but it is noteworthy 
that the current sample size may pose restrictions to the general-
izability of the results. Thus, similar studies aiming to improve 
our understanding of brain decoding at individual-level are
needed.

After the suggestion of subjective mind-reading by Kamitani 
and Tong (2005), brain decoding has focused on classifying per-
ceptual responses with high degree of similarity across subjects 
(for review, Contini et al. 2017). Recently, large-scale brain activity 
has been associated to different personality characteristics (for 
review, Wagner et al. 2019). Our current work adds to this liter-
ature by showing that meaningful subjective differences can be 
connected to the classification of human brain responses already 
during the first 500 ms following stimulus presentation.
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