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ABSTRACT

We introduce and study an axiomatic theory of V -normed U-modules, where V  is a Riesz space and U is an 
f -algebra; the spaces U and V  also have some additional structure and are required to satisfy a compatibility 
condition. Roughly speaking, a V -normed U-module is a module over U that is endowed with a pointwise 
norm operator taking values in V. The aim of our approach is to develop a unified framework, which is tai-
lored to the differential calculus on metric measure spaces, where U and V  can take many different spaces of 
functions.
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1 . I N T R O D U CT I O N
1.1. General overview and motivations

In this paper, we introduce and study a class of structures named V-normed U-modules, where V  is 
a Riesz space and U is an f -algebra (that is, a Riesz space together with a multiplication operation), 
which fulfil suitable compatibility requirements. Roughly speaking, a V -normed U-module is a mod-
ule over U (thus in particular, a vector space) equipped with a ‘pointwise norm’ operator that takes 
values into the positive cone of V. Several structures of these kinds—where, typically, U and V  are 
function spaces—have been investigated in the literature: we refer to them as ‘functional’ normed 
modules. Different theories of functional normed modules were developed in the last 35 years, with 
a variety of applications, for example, in analysis, geometry and mathematical finance. Before delv-
ing into a more precise description of our notion of V -normed U-module (in Subsection 1.2), let us 
provide a brief overview of various classes of spaces that are covered by our axiomatization.

• Normed spaces, which are ℝ-normed ℝ-modules.
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2 • D. LUČIĆ AND E. PASQUALETTO

• Lebesgue–Bochner spaces, that is, spaces of p-integrable maps from a measure space to a normed 
space. These spaces are V -normed U-modules, where V  is the space of p-integrable functions and 
U is the space of bounded measurable functions.

• More generally, direct integrals of Banach spaces [31] and different spaces of measurable sections of a 
measurable Banach bundle [34].

• Random normed modules, which were introduced by Guo [25, 26] after the work of Schweizer and 
Sklar [37] on probabilistic metric spaces. The theory of random normed modules has been thor-
oughly developed in a long series of works (mostly by Guo and his coauthors); see the survey paper 
[27]. Particular attention was devoted to the study of random conjugate spaces (see, for example, 
[29]), which have applications in mathematical finance and in the modelling of conditional risk 
measures [15].

• Randomly normed L0-modules, which were developed by Haydon, Levy and Raynaud in [31] as 
a tool to study ultraproducts of Lebesgue–Bochner spaces. In this case, the Riesz spaces under 
consideration are Köthe function spaces, which are order-dense order-ideals in the space L0(𝜇)
of measurable functions on a given measure space. This theory and Guo’s one—which were 
developed independently and concurrently—are fully consistent.

• Lp-normed L∞-modules and their variants, which were introduced by Gigli [20], with the goal of 
developing an effective theory of measurable 1-forms and vector fields in the non-smooth setting 
of metric measure spaces. This approach was based on the work of Weaver [40] and on his defini-
tion of L∞-module. Similar structures have been widely considered in the framework of Dirichlet 
forms (see, for example, [14, 33]) and in the investigation of 1-forms induced by Dirichlet spaces 
[5]. Gigli’s theory is consistent with the above-mentioned notions of random normed modules 
(cf. with [20, Section 1.4] and [28]).

• Normed A-modules in the sense of [8, 9], where A is a suitable f -algebra. This approach, which is 
similar in spirit to the one that we adopt in this paper, has been applied to the study of mathematical 
models in finance.

Our interest in the language of normed modules is motivated by its applications in the differential 
calculus on metric measure spaces. Below, we briefly describe some important concepts and results 
from [20]. The goal of this description is 2-fold: to give a heuristic presentation of our definition of V -
normed U-module and to expound the advantages of an axiomatic approach. However, we underline 
that our theory may be relevant even beyond the analysis of metric measure spaces.

On metric measure spaces (X,d,𝔪), the study of Sobolev spaces W 1,p(X) for p ∈ (1,∞) has been 
a fruitful field of research in the last decades (see, for example, [4, 10, 30, 38]). In order to develop 
a differential calculus modelled over W 1,p(X), several notions of ‘measurable (co)vector fields’ were 
studied, for example, by [10] in the setting of doubling spaces supporting a Poincaré inequality. One of 
the objectives of [20] was to provide a meaningful notion of ‘space of measurable 1-forms’ for arbitrary 
metric measure spaces. This is encoded in the concept of cotangent module, which we are going to 
remind. It is proved in [20, Section 2.2.1] that it is possible to construct a vector space Lp(T*X) and a 
linear operator d : W 1,p(X) → Lp(T*X) having the following features:

(i) The elements of Lp(T*X) can be multiplied by L∞(𝔪)-functions; to be precise, Lp(T*X) is a 
module over the commutative ring L∞(𝔪).

(ii) There exists a map | ⋅ | : Lp(T*X) → Lp(𝔪)+ that vanishes only at 0, that satisfies 

|𝜔 + 𝜂| ≤ |𝜔| + |𝜂|, for every 𝜔,𝜂 ∈ Lp(T*X),

and that is compatible with the L∞(𝔪)-module structure, in the sense that |f ⋅ 𝜔| = |f ||𝜔|
for every f ∈ L∞(𝔪) and 𝜔 ∈ Lp(T*X). The map | ⋅ | is said to be a pointwise norm operator. 
Moreover, the norm on Lp(T*X) induced by the pointwise norm via integration, that is, 

‖𝜔‖Lp(T*X) := ‖|𝜔|‖Lp(𝔪), for every 𝜔 ∈ Lp(T*X),
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 3

is required to be complete.
(iii) The operator d : W 1,p(X) → Lp(T*X), which is called the differential, satisfies 

‖f ‖W 1,p(X) = (‖f ‖p
Lp(𝔪) + ‖|df |‖p

Lp(𝔪))
1/p, for every f ∈ W 1,p(X),

and has the property that the L∞(𝔪)-module generated by its image is dense in Lp(T*X).

Following [20, Definition 1.2.10], any couple (ℳ, | ⋅ |) verifying i) and ii) is called an Lp(𝔪)-Banach
L∞(𝔪)-module (in fact, in [20] the term ‘Lp(𝔪)-normed L∞(𝔪)-module’ is used, but in this paper 
we need to distinguish between complete and non-complete modules). Nevertheless, a number of 
variants of this notion have been considered in [20] and in the subsequent literature:

• It might be convenient (and sometimes necessary) to drop the Lp-integrability assumption. 
Technically speaking, this is made precise by the notion of L0(𝔪)-Banach L0(𝔪)-module; see 
[20, Section 1.3]. For example, the notion of L0-Banach L0-module becomes essential in the 
construction of tensor products of L2(𝔪)-Hilbert L∞(𝔪)-modules, cf. with [20, Section 1.5].

• The case p = ∞ has been studied as well. Indeed, L∞(𝔪)-Banach L∞(𝔪)-modules are funda-
mental in order to apply the lifting theory by von Neumann in the Banach module setting [13], 
which in turn allows us to provide ‘fibrewise descriptions’, that is, to show that any Banach module 
is the space of sections of some generalized Banach bundle [21]. At present, using fibres is the only 
way to provide an explicit characterization of duals and of pullbacks of Banach modules, which are 
useful objects for the applications in metric measure geometry.

• Under suitable curvature bounds (for example, in the setting of RCD(K ,∞) spaces), one is often 
interested in extending the differential calculus to codimension-one measures (for example, to 
perimeter measures). The functional-analytic framework that allows us to achieve this goal is based 
on the concept of L0(Cap)-Banach L0(Cap)-module, which was introduced in [11]. Here, Cap
denotes the Sobolev capacity, which is an outer measure on X that is not Borel regular.

The aim of this work is to provide a unified theory of Banach modules, which covers—at least—all 
the notions of Banach modules discussed above. Indeed, albeit similar on some aspects, the several 
variants of Banach module often required different ad hoc definitions and proof strategies. Our goal 
is to introduce an ‘axiomatic framework’, where instead of function spaces we consider more general 
classes of Riesz spaces and f -algebras, as well as to obtain rather general existence results, which can 
be applied in all the specific cases we described above, whenever needed.

1.2. Main definitions
Let us now discuss the various objects we are going to introduce, also motivating the reasons behind 
our definitions. First, a key feature of all the ‘functional’ Banach modules from Section 1.1 is the pos-
sibility to multiply by characteristic functions. This is fundamental, for example, when constructing the 
cotangent module. Observe that in L∞(𝔪) the characteristic functions of Borel sets are given exactly 
by the idempotent elements, that is, by those f ∈ L∞(𝔪) satisfying f 2 = f . Moreover, two different func-
tion spaces appear in the definition of Banach module: the ring of functions that can be multiplied by 
the elements of the Banach module (for example, L∞(𝔪) ), and the vector space of functions where 
the pointwise norm takes values (for example, Lp(𝔪) ). These two function spaces must be related. 
For example, the compatibility requirement between the pointwise norm and the module structure 
uses the fact that fg ∈ Lp(𝔪) whenever f ∈ L∞(𝔪) and g ∈ Lp(𝔪).

Taking all these features into account, we propose in Definition 2.23 the concept of 

metric f-structure (𝒰, U , V ).

Let us describe informally what a metric f -structure (𝒰, U , V ) is:
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4 • D. LUČIĆ AND E. PASQUALETTO

• 𝒰 is an ambient localizable f -algebra (see Definition 2.15), which means that it is an f -algebra 
(that is, a Riesz space together with a compatible multiplication operation, see Definition 2.5) 
having plenty of idempotent elements (see (eq: idem)). This corresponds, for example, to the fact 
that simple functions are order-dense in L0(𝔪).

• (U ,dU ) is a metric f-algebra (see Definition 2.22) that is an f -subalgebra of 𝒰. This means that 
U is an f -algebra endowed with a complete distance dU  that verifies suitable compatibility condi-
tions. For example, the space L∞(𝔪) is an f -subalgebra of L0(𝔪), and together with (the distance 
induced by) its norm, L∞(𝔪) is a metric f -algebra.

• (V ,dV ) is a metric Riesz space (see Definition 2.20) that is also a Riesz subspace of 𝒰 satisfying 
UV = V. For example, Lp(𝔪) is a metric Riesz space and L∞(𝔪) ⋅ Lp(𝔪) = Lp(𝔪).

Our axiomatization of a metric f -structure is tailored to the kinds of Banach modules we are interested 
in. However, already in the framework of differential calculus on metric measure spaces, some impor-
tant objects studied in the literature (for example, Lipschitz derivations [39] or local vector measures 
[6]) are not covered by our theory, roughly speaking because the f -algebra of bounded continuous 
functions is not localizable (as characteristic functions are typically not continuous).

As we discussed above, an example of metric f -structure is (L0(𝔪), L∞(𝔪), Lp(𝔪)). Taking into 
consideration the notion of Lp(𝔪)-Banach L∞(𝔪)-module from Section 1.1, one can think of the 
elements of U as those that can be multiplied by the elements of the Banach module, and the role of V
is ‘the space where the pointwise norm takes values’, while 𝒰 is an ambient space where both U and 
V  can be embedded (which is convenient to formulate the requirement that UV = V  ). Having this 
discussion in mind, we propose in Definition 3.1 the concept of 

V -BanachU-module ℳ.

The definition of V -Banach U-module roughly states the following:

• ℳ is a module over the commutative ring U endowed with a pointwise norm | ⋅ | : ℳ → V +, 
which verifies the pointwise triangle inequality and is compatible with the module operations.

• ℳ has the gluing property, which means every admissible sequence of disjoint elements (vn)n∈ℕ
of ℳ can be ‘glued together’, thus obtaining a new element ∑n∈ℕ vn ∈ ℳ. The order structure 
of (𝒰, U , V ) comes into play here, that is, when declaring which sequences are admissible, see 
Definition 3.1 (ii). We also point out that, in general, ∑n∈ℕ vn is just a formal series, which does 
not necessarily coincide with any kind of limit of finite sums.

• The distance dℳ(v, w) := dV (|v − w|, 0) on ℳ is complete.

In the class of Lp(𝔪)-Banach L∞(𝔪)-modules with p ∈ [1,∞) we described in Section 1.1, we 
did not mention the gluing property, the reason being that in that specific framework it follows 
automatically from the other axioms. On the other hand, this is not always the case. For exam-
ple, the gluing property has to be required when dealing with L∞(𝔪)-Banach L∞(𝔪)-modules 
(see [20, Example 1.2.5] or [13, Remark 2.22]). Moreover—different from what happens with 
Lp(𝔪)-Banach L∞(𝔪)-modules, where |∑k

n=1 vn − ∑n∈ℕ vn| → 0 in Lp(𝔪) – on L∞(𝔪)-Banach 
L∞(𝔪)-modules it is clear that the expression ∑n∈ℕ vn might be only formal: in the space L∞(ℝ)
itself (which is an L∞(ℝ)-Banach L∞(ℝ)-module), the elements fn := 𝟙[n,n+1) for n ∈ ℤ can be ‘glued 
together’, obtaining the constant function 1 ; however, 1 is not the limit in the L∞(ℝ)-norm of the 
partial sums ∑k

n=−k fk = 𝟙[−k,k+1) as k → ∞. In this example, it is still true that the partial sums con-
verge in some sense to the glued object (for example, in the weak * topology), but this needs not be 
the case for arbitrary L∞(𝔪)-Banach L∞(𝔪)-modules, which do not always have a predual.

We also mention that taking duals is very useful in differential calculus on metric measure spaces. 
For instance, the so-called tangent module Lq(TX), which can be regarded as the space of ‘q-integrable 
vector fields’ on a metric measure space (X,d,𝔪), is defined as the Banach module dual of the cotan-
gent module Lp(T*X) ; see [20, Definition 2.3.1]. An important observation is that, according to 
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 5

[20, Proposition 1.2.14 i)], the dual of an Lp(𝔪)-Banach L∞(𝔪)-module ℳ is an Lq(𝔪)-Banach 
L∞(𝔪)-module ℳ*, where p and q are conjugate exponents. This means that in our axiomatiza-
tion when constructing the dual of a Banach module we have to change also the underlying metric 
f -structure. To address this issue, we propose in Definition 2.25 the concept of 

dual system of metricf -structures (𝒰, U , V , W , Z).

We omit the details here. However, the definition of dual system is given so that the module dual of 
a V -Banach U-module ℳ is a W -Banach U-module, see Definition 3.15. More generally, the space 
Hom(ℳ, 𝒩) of all homomorphisms (Definition 3.11) from a V -Banach U-module ℳ to a Z-Banach 
U-module 𝒩 inherits a natural structure of W -Banach U-module (Theorem 3.12). An example of dual 
system of metric f -structures is (L0(𝔪), L∞(𝔪), Lp(𝔪), Lq(𝔪), L1(𝔪)). When proving finer results 
about homomorphisms and dual modules, one often has to require a further regularity on the under-
lying f -algebras and Riesz spaces, namely, that they are Dedekind complete and they have the countable 
sup property (or CSP, for short); see Definition 2.4. The above assumptions amount to saying that 
every set that is bounded from above (resp. from below) has a supremum (resp. an infimum) and that 
such supremum (resp. infimum) can be expressed as a countable supremum (resp. a countable infi-
mum) of elements of the given set. These properties are enjoyed, for example, by Lp(𝔪) whenever 
p ∈ {0} ∪ [1,∞] and 𝔪 is a 𝜎-finite measure (Proposition 4.3), but they fail in L0(Cap) (Exam-
ple 4.4). Dedekind completeness and CSP are also needed, for instance, to construct local inverses
(Proposition 3.6) or to define the support of a metric f -structure (Definition 3.7).

1.3. Main results
Another objective of this work is to provide a rather complete toolbox of results and techniques con-
cerning Banach modules over a metric f -structure, which we plan to apply in the future, as a ‘black 
box’, to many particular cases of interest. Our two main achievements are the following:

• Theorem 3.19: Given a metric f -structure (𝒰, U , V ), a vector space 𝒱 and an even sublinear map 
𝜓 : 𝒱 → V +, there exists a unique couple (ℳ⟨𝜓⟩, T⟨𝜓⟩), where ℳ⟨𝜓⟩ is a V -Banach U-module, 
while T⟨𝜓⟩ : 𝒱 → ℳ⟨𝜓⟩ is a linear operator with ‘generating image’ (in a suitable sense) such that 
|T⟨𝜓⟩v| = 𝜓(v) for every v ∈ 𝒱. The uniqueness is formulated in categorical terms, that is, via a 
universal property (see also Corollary 3.22). This quite general existence result incorporates most 
of the existence results for Banach modules considered so far in the related literature. For example, 
the cotangent module Lp(T*X) and the differential d are given by (Lp(T*X), d) ≅ (ℳ⟨𝜓p⟩, T⟨𝜓p⟩), 
where the map 𝜓p : W 1,p(X) → Lp(𝔪)+ is defined as 𝜓p(f ) := |Df |. See Section 4.2.5 for this 
example, as well as for other relevant constructions of Banach modules induced by an even 
sublinear map.

• Theorem 3.16 is an existence criterion for homomorphisms of Banach modules. Indeed, given that 
the theory of V -Banach U-modules fits well in a categorical framework (see Definition 3.14), it is 
natural to couple Theorem 3.19 with an existence result for homomorphisms. For simplicity of pre-
sentation, let us state here only a corollary of Theorem 3.12: given a dual system (𝒰, U , V , W , Z), 
a V -Banach U-module ℳ, a Z-Banach U-module 𝒩, a ‘generating’ vector subspace 𝒱 of ℳ and 
a linear operator T : 𝒱 → 𝒩 satisfying |Tv| ≤ b|v| for some b ∈ W +, there is a unique extension 
T̄ ∈ Hom(ℳ, 𝒩) of T, which still satisfies |T̄v| ≤ b|v|.

Finally, we conclude the introduction by briefly mentioning other results we obtain in the paper:

• Using Theorems 3.19 and 3.12, we prove that each homomorphism of metric f -structures induces 
a pushforward functor (or, to be more precise, a ‘direct image functor’) in the categories of Banach 
modules; see Section 3.3.2.
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6 • D. LUČIĆ AND E. PASQUALETTO

• We prove a version of the Hahn–Banach extension theorem for V -Banach U-modules; see Theo-
rem 3.30. It is used, for example, for studying module duals and embedding operators into the 
bidual; see Sections 3.4 and 3.4.1.

• We study Hilbert modules, for example, Banach modules whose pointwise norm verifies a point-
wise parallelogram identity; see Definition 3.5. Among the several results we obtain, let us mention 
a Hilbert projection theorem and a Riesz representation theorem; see Section 3.5.

• We prove that V -Banach U-modules admit a dimensional decomposition (assuming Dedekind 
completeness and CSP of the metric f -structure); see Section 3.6.

In Sections 2 and 3 the whole treatment is at the level of ‘abstract’ Riesz spaces and f -algebras, without 
ever mentioning any kind of function spaces. The applications of our axiomatic theory to the various 
classes of Banach modules over spaces of functions are discussed in Section 4.

2 . LO C A L I Z A BL E F- A LG E BR A S A N D M ET R I C F- ST RU CT U R E S
In Section 2.1 we recall many useful definitions and results concerning Riesz spaces and f -algebras, 
which are quite standard and well-established; our presentation is essentially taken from [18, 17] 
(see also [1, 2]). In Section 2.2 we study the set of idempotent elements, while in Sections 2.3 and 
2.4 we introduce the language of localizable f -algebras and of (dual systems of) metric f -structures, 
respectively.

2.1. Reminder on Riesz spaces and f -algebras
Let (P,≤) be a partially ordered set, and S ≠ ∅ a subset of P. We recall the following definitions:

(i) We say that S is upwards directed if for every p, p′ ∈ S there exists q ∈ S such that p ≤ q and 
p′ ≤ q. We say that S is downwards directed if for every p, p′ ∈ S there exists q ∈ S such that 
q ≤ p and q ≤ p′.

(ii) A sequence (pn)n∈ℕ ⊂ P is said to be non-decreasing provided pn ≤ pn+1 for every n ∈ ℕ, while 
it is said to be non-increasing provided pn ≥ pn+1 for every n ∈ ℕ.

(iii) An element p ∈ P is said to be an upper bound for S provided that s ≤ p holds for every s ∈ S. 
We say that p is the supremum of S, and we write p = supS, provided that p ≤ p′ holds for any 
other upper bound p′ ∈ P for S. If supS exists, then it is uniquely determined.

(iv) An element q ∈ P is said to be a lower bound for S provided that q ≤ s holds for every s ∈ S. We 
say that q is the infimum of S, and we write q = infS, provided that q′ ≤ q holds for any other 
lower bound q′ ∈ P for S. If infS exists, then it is uniquely determined.

(v) We say that S is order-bounded provided that it has both an upper bound and a lower bound.
(vi) We say that P is Dedekind 𝜎-complete provided that every countable non-empty subset of P with 

an upper bound has a supremum and every countable non-empty subset of P with a lower bound 
has an infimum.

(vii) P is Dedekind complete if every non-empty subset of P with an upper bound has a supremum or 
equivalently every non-empty subset of P with a lower bound has an infimum.

A map 𝜙 : P → Q  between partially ordered sets P and Q  is said to be order-preserving provided 

𝜙(p) ≤ 𝜙(q), for every p, q ∈ Pwith p ≤ q.

An order-preserving map 𝜙 : P → Q  is said to be order-continuous provided that it holds that 

∃sup{𝜙(p) ∣ p ∈ R} = 𝜙(p̄), whenever R ⊂ P is upwards directed and ∃ p̄ := supR ∈ P,

∃ inf{𝜙(q) ∣ q ∈ S} = 𝜙(q̄), whenever S ⊂ P is downwards directed and ∃ q̄ := infS ∈ P.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haae053/7904734 by Jyvaskyla U

niversity user on 20 N
ovem

ber 2024



AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 7

We say that an order-preserving map 𝜙 : P → Q  is 𝜎-order-continuous provided it holds that 

∃sup
n∈ℕ

𝜙(pn) = 𝜙(sup
n∈ℕ

pn), whenever (pn)n∈ℕ ⊂ P is non-decreasing and sup
n∈ℕ

pn exists,

∃ inf
n∈ℕ

𝜙(qn) = 𝜙( inf
n∈ℕ

qn), whenever (qn)n∈ℕ ⊂ P is non-increasing and inf
n∈ℕ

qn exists,

where supn∈ℕ pn stands for sup{pn}n∈ℕ. Note that order-continuity implies 𝜎-order-continuity.
A lattice is a partially ordered set (P,≤) such that p ∨ q := sup{p, q} and p ∧ q := inf{p, q} exist for 

all p, q ∈ P. A set S ⊂ P is called a sublattice of P if it is closed under ∨ and ∧, that is, 

p ∨ q, p ∧ q ∈ S, for every p, q ∈ S.

A map 𝜙 : P → Q  between lattices P and Q  is said to be a lattice homomorphism provided 

𝜙(p ∨ q) = 𝜙(p) ∨ 𝜙(q), 𝜙(p ∧ q) = 𝜙(p) ∧ 𝜙(q), for every p, q ∈ P.

For an arbitrary family {Pi}i∈I  of partially ordered sets Pi = (Pi,≤i), the product P := ∏i∈I Pi can be 
endowed with the following partial order: for any (pi)i∈I , (qi)i∈I ∈ ∏i∈I Pi, we declare that (pi)i∈I ≤
(qi)i∈I  if and only if pi ≤i qi for every i ∈ I. Observe that (P,≤) is a lattice if and only if (Pi,≤i) is a 
lattice for every i ∈ I.

2.1.1. The theory of Riesz spaces
A partially ordered linear space (U ,≤) is a vector space U = (U , +, ⋅) over the field ℝ of real numbers, 
together with a partial order ≤ on U such that the following properties are verified: 

u + w ≤ v + w, for every u, v, w ∈ Uwith u ≤ v,

𝜆u ≥ 0, for every 𝜆 ∈ ℝ+and u ∈ Uwith u ≥ 0.

A Riesz space is a partially ordered linear space U = (U , +, ⋅,≤) that is a lattice. We define 

u+ := u ∨ 0, u− := (−u) ∨ 0, |u| := (−u) ∨ u,

for every u ∈ U . We have that |u| ≥ 0 holds for every u ∈ U , with equality if and only if u = 0.
For a proof of the next result, we refer, for example, to [17, 352D] or [1, Theorem 1.3].

Proposition 2.1 (Basic properties of Riesz spaces)  Let U be a Riesz space. Then it holds that 

𝜆(u ∨ v) = 𝜆u ∨ 𝜆v, for every 𝜆 ∈ ℝwith 𝜆 > 0 and u, v ∈ U , (1a)

|𝜆u| = 𝜆|u|, for every 𝜆 ∈ ℝ+and u ∈ U , (1b)

−u ∨ v = (−u) ∧ (−v), for every u, v ∈ U , (1c)

u + v ∨ w = (u + v) ∨ (u + w), for every u, v, w ∈ U , (1d)

u + v ∧ w = (u + v) ∧ (u + w), for every u, v, w ∈ U , (1e)

u ∨ v + u ∧ v = u + v, for every u, v ∈ U , (1f)

u = u+ − u−, for every u ∈ U , (1g)

|u| = u+ ∨ u− = u+ + u−, for every u ∈ U , (1h)

u+ ∧ u− = 0, for every u ∈ U , (1i)
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8 • D. LUČIĆ AND E. PASQUALETTO

(u + v)+ ≤ u+ + v+, for every u, v ∈ U , (1j)

|u + v| ≤ |u| + |v|, for every u, v ∈ U , (1k)

u ∧ (v + w) ≤ u ∧ v + u ∧ w, for every u, v, w ∈ U+. (1l)

A Riesz subspace of U is a linear subspace which is also a sublattice. A homomorphism of Riesz spaces
𝜙 : U → V  is a linear operator such that 

𝜙(u) ∧ 𝜙(v) = 0, for every u, v ∈ Usuch that u ∧ v = 0.

By virtue of [17, 352G], each homomorphism of Riesz spaces 𝜙 : U → V  has the following property:

|𝜙(u)| = 𝜙(|u|), for every u ∈ U . (2)

We denote by U+ the positive cone of a Riesz space U, namely, 

U+ := {u ∈ U ∣ u ≥ 0}.

We recall from [1, Definition 1.22] that a Riesz subspace V  of a given Riesz space U is said to be super-
order-dense in U if for any u ∈ U+ there exists a non-decreasing sequence (un)n∈ℕ ⊂ V + such that 
u = supn∈ℕ un. Moreover, a Riesz subspace V  of a Riesz space U is said to be solid provided that v ∈ V
holds whenever v ∈ U , and there exists u ∈ V  such that |v| ≤ |u|. We also recall from [18, Proposition 
15B] the following result:

Proposition 2.2 Any Dedekind 𝜎-complete Riesz space U is Archimedean, that is, for any 
u, v ∈ U

nu ≤ v, for every n ∈ ℕ ⟹ u ≤ 0.

Definition 2.3 (Disjoint set) Let U be a Riesz space. Let S be a non-empty subset of U. 
Then we say that S is disjoint provided that it holds that 

|u| ∧ |v| = 0, for every u, v ∈ S such that u ≠ v.

When S is a finite disjoint set {u1,… , un} ⊂ U , we say that the elements u1,… , un are 
pairwise disjoint.

Observe that if 𝜙 : U → V  is a homomorphism of Riesz spaces, then it holds that 

{𝜙(u) ∣ u ∈ S} ⊂ V is disjoint, for every ∅ ≠ S ⊂ U  disjoint. (3)

Indeed, if u, v ∈ S and 𝜙(u) ≠ 𝜙(v), then u ≠ v and |𝜙(u)| ∧ |𝜙(v)| = 𝜙(|u|) ∧ 𝜙(|v|) = 0 by (2).
We also recall (see [2, p. 3] or [1, Definition 1.43]) the following notion:

Definition 2.4 (CSP) Let U be a Riesz space. Then we say that U has the CSP (or that U is a 
CSP space ) if it holds that 

∀∅ ≠ V ⊂ U  such that ∃supV , ∃(vn)n∈ℕ ⊂ V : sup
n∈ℕ

vn = supV ,

∀∅ ≠ Ṽ ⊂ U  such that ∃ infV , ∃(ṽn)n∈ℕ ⊂ Ṽ : inf
n∈ℕ

ṽn = inf Ṽ .
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 9

2.1.2. The theory of f-algebras
Next, we recall the definition of f-algebra, which is—roughly speaking—a Riesz space endowed with 
a multiplication operation that verifies suitable compatibility properties.

Definition 2.5 ( f -algebra) An f-algebra U = (U , +, ⋅,≤,×) is a Riesz space (U , +, ⋅,≤)
together with a map × : U × U → U—called a multiplication—such that the following 
properties hold: 

u × (v × w) = (u × v) × w, for every u, v, w ∈ U , (4a)

(u + v) × w = (u × w) + (v × w), for every u, v, w ∈ U , (4b)

𝜆(u × v) = (𝜆u) × v, for every u, v ∈ U  and 𝜆 ∈ ℝ, (4c)

u × v = v × u, for every u, v ∈ U , (4d)

u × v ≥ 0, for every u, v ∈ U+, (4e)

(u × w) ∧ v = 0, for every u, v ∈ U  with u ∧ v = 0 and w ∈ U+, (4f)

∃1U ∈ U : u × 1U = u, for every u ∈ U . (4g)

A homomorphism of f-algebras 𝜙 : U → V  is a homomorphism of Riesz spaces that is 
uniferent, that is, 𝜙(1U ) = 1V , and preserves the multiplication, that is
𝜙(u × v) = 𝜙(u) × 𝜙(v) for all u, v ∈ U . An f-subalgebra of U is a Riesz subspace V  of U
closed under multiplication and with 1V = 1U .

Remark 2.6 Some comments on Definition 2.5 are in order:

(i) The structure (U , +, ⋅,≤,×) introduced in Definition 2.5 is usually called a commutative
f-algebra with multiplicative identity. For the sake of brevity, we call it just an f-algebra.

(ii) It follows from (4a), (4b), (4d) and (4g) that the triple (U , +,×) is a commutative ring 
with identity 1U . The field ℝ can be viewed as a subring of U via the map 
ℝ ∋ 𝜆 ↦ 𝜆1U ∈ U .

(iii) It follows from (4c) and (4g) that 𝜆u = (𝜆1U ) × u holds for every 𝜆 ∈ ℝ and u ∈ U , 
and thus the multiplicative identity 1U  can be unambiguously denoted by 1.

Given any u, v ∈ U , for the sake of brevity we will typically write uv instead of u × v.

Example 2.7 The real line ℝ = (ℝ, +, ⋅,≤, ⋅) is an f -algebra.

Proposition 2.8 (Basic properties of f -algebras)  Let U be an f-algebra. Then it holds that 

u+u− = 0, for every u ∈ U , (5a)

(uv)+ = uv+, for every u ∈ U+ and v ∈ U , (5b)

|u − v| = |u + v|, for every u, v ∈ U with u ∧ v = 0, (5c)
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10 • D. LUČIĆ AND E. PASQUALETTO

|u + v| = |u| + |v|, for every u, v ∈ U with |u| ∧ |v| = 0, (5d)

|uv| = |u||v|, for every u, v ∈ U , (5e)

uv ≤ uw, for every u ∈ U+ and v, w ∈ U with v ≤ w. (5f)

Proof. (5a) Given that u+ ∧ u− = 0 by (1i) and u− ≥ 0, we obtain that u+u− ∧ u− = 0 by (4f). 
Since also u+ ≥ 0, by using again (4f) we can conclude that u+u− = u+u− ∧ u+u− = 0.

(5b) Since v+ ∧ v− = 0 by (1i) and u ≥ 0, we deduce from (4f) that uv+ ∧ uv− = 0, so 

(uv)+ (1g)
= (uv+ − uv−)+ (1d)

= uv+ + (−uv−) ∨ (−uv+)
(1c)
= uv+ − uv+ ∧ uv− = uv+.

(5c) Note that (1d) yields (u − v)+ = (u − v) ∨ 0 = u − u ∧ v = u and (u − v)− = v. Then an 
application of (1h) gives |u − v| = (u − v)+ + (u − v)− = u + v = |u + v|, thus getting (5c).

(5d) Let us start by observing that 

(u+ + v+) ∧ (u− + v−)
(1l)
≤ u+ ∧ u− + v+ ∧ u− + u+ ∧ v− + v+ ∧ v−

(1i)
= v+ ∧ u− + u+ ∧ v− ≤ 2 |u| ∧ |v| = 0.

Hence, (5c) yields |u + v| = |(u+ + v+) − (u− + v−)| = |u+ + v+| + |u− + v−| = |u| + |v|.
(5e) Given that u+ ∧ u− = v+ ∧ v− = 0 by (1i), we deduce from (4f) that w ∧ w′ = 0 holds 

whenever w, w′ ∈ {u+v+, u+v−, u−v+, u−v−} satisfy w ≠ w′. Then by applying (5d) we get 

|uv| = |(u+ − v−)(v+ − v−)| = |u+v+ − u+v− − u−v+ + u−v−|
= u+v+ + u+v− + u−v+ + u−v− = (u+ + u−)(v+ + v−) = |u||v|.

(5f) Since w − v ≥ 0, we know from (4e) that uw − uv = (w − v)u ≥ 0, as desired.

Proposition 2.9 Let U be an f-algebra. Let S ⊂ U be a given non-empty set. Then it holds 

Sis disjoint ⟹ uv = 0,  for every u, v ∈ S such that u ≠ v.

If in addition the f-algebra U is Archimedean, then the converse implication is verified as well.

Proof. Let us prove the first part of the statement. Fix any u, v ∈ S with u ≠ v and |u| ∧ |v| = 0. 
We can argue as in the proof of (5a): using (4f) twice, we first obtain that |u||v| ∧ |v| = 0 and 
then that |u||v| = |u||v| ∧ |u||v| = 0. Therefore, (5e) yields |uv| = 0 and thus accordingly 
uv = 0.

To prove the second part of the statement, assume that U is Archimedean. We aim to 
show that if there exist u, v ∈ S such that w := |u| ∧ |v| ≠ 0, then S is not disjoint. Notice that 
there exists n ∈ ℕ such that nw ≰ 1. Denote w+ := (nw − 1)+ and w− := (nw − 1)−, thus 
w+ ≠ 0. Observe also that w− = 1 − nw ∧ 1 by (1c) and (1d) and that 
w− = (|u| ∧ |v|)2 ≤ |u||v|. Therefore, 

w+ = w+(w− + nw ∧ 1) = w+w− + w+(nw ∧ 1)
(5a)
= w+(nw ∧ 1) ≤ nw(nw ∧ 1) ≤ (nw)2 ≤ n2|u||v|.

Given that w+ ≠ 0, we finally deduce that |uv| = |u||v| ≠ 0, yielding the sought conclusion.
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 11

2.2. Idempotent elements
Given an f -algebra U, we define the family of all idempotent elements of U as follows: 

Idem(U) := {u ∈ U ∣ u2 = u}, (6)

where we adopt the shorthand notation 

uk := u × ⋯ × u⏟
ktimes

∈ U , for every u ∈ Uand k ∈ ℕ,

with the convention that u0 := 1. Note that 0 ∈ Idem(U) and 1 ∈ Idem(U) for any f -algebra U.
The content of the next lemma is inspired by [17, 363X(g)]. Although elementary, we provide a 

proof for the reader’s usefulness, since we did not find a suitable reference for it.

Lemma 2.10 (Properties of Idem(U) )  Let U be an f-algebra. Then the following properties hold:

(i) uv ∈ Idem(U) for every u, v ∈ Idem(U).
(ii) u + v − 2uv ∈ Idem(U) for every u, v ∈ Idem(U).

(iii) 1 − u ∈ Idem(U) for every u ∈ Idem(U).
(iv) 0 ≤ u ≤ 1 for every u ∈ Idem(U). In particular, Idem(U) is order-bounded in U.
(v) If u, v ∈ Idem(U) satisfy uv = 0, then u + v ∈ Idem(U) and u + v = u ∨ v.

(vi) If u ∈ U and v ∈ Idem(U), then u − uv and v are disjoint.

Proof. (i) Trivially, it holds that (uv)2 = uvuv = u2v2 = uv.
(ii) It follows from the observation that 

(u + v − 2uv)2 = u2 + uv − 2u2v + vu + v2 − 2uv2 − 2u2v − 2uv2 + 4u2v2

= u + uv − 2uv + uv + v − 2uv − 2uv − 2uv + 4uv = u + v − 2uv.

(iii) Just observe that (1 − u)(1 − u) = 1 − 2u + u2 = 1 − 2u + u = 1 − u.
(iv) Given any u ∈ U , it holds u = u+ − u− and u+u− = 0 by (1g) and (5a), respectively. 

Then 

u2 = (u+ − u−)(u+ − u−) = (u+)2 − u+u− − u−u+ + (u−)2 = (u+)2 + (u−)2 ≥ 0,

where the last inequality follows from (4e). In particular, u = u2 ≥ 0 for every u ∈ Idem(U). 
Since 1 − u ∈ Idem(U) by item (ii), we also have that 1 − u ≥ 0 or equivalently that u ≤ 1.

(v) First, we may compute (u + v)2 = u2 + 2uv + v2 = u + v, which shows that 
u + v ∈ Idem(U). Moreover, thanks to the fact that u ≤ u + v and v ≤ u + v, we have that 
u ∨ v ≤ u + v. Conversely, it holds that u(u + v) = u2 ≤ u(u ∨ v) and 
(1 − u)(u + v) = u + v − u2 − uv = (1 − u)v ≤ (1 − u)(u ∨ v), thus accordingly 
u + v = u(u + v) + (1 − u)(u + v) ≤ u(u ∨ v) + (1 − u)(u ∨ v) = u ∨ v.

vi) First of all, we aim to show that (1 − v) ∧ v = 0. Item (iv) ensures that (1 − v) ∧ v ≥ 0. 
Conversely, if w ∈ U  is a lower bound for {v, 1 − v}, then using (5f) we can estimate 

w = vw + (1 − v)w ≤ v(1 − v) + (1 − v)v = v − v2 + v − v2 = 0,

which yields (1 − v) ∧ v = 0. Hence, (4f) ensures that |u − uv| ∧ v = (|u|(1 − v)) ∧ v = 0.

Observe that if 𝜙 : U → V  is a homomorphism of f -algebras, then it holds that 

𝜙(u) ∈ Idem(V ), for every u ∈ Idem(U). (7)

Indeed, since 𝜙 preserves the multiplication, we have 𝜙(u)2 = 𝜙(u2) = 𝜙(u) for every u ∈ Idem(U).
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12 • D. LUČIĆ AND E. PASQUALETTO

Remark 2.11 Given an f -algebra U and two elements u, v ∈ Idem(U), it holds that 

u ≤ v ⟺ uv = u.

Indeed, if uv = u, then u = uv ≤ v. On the other hand, if u ≤ v, then u = u2 ≤ uv ≤ u.

Definition 2.12 (Finite partition) Let U be an f -algebra. Then a given set 
(ui)

n
i=1 ⊂ Idem(U) is said to be a finite partition of an element u ∈ Idem(U) provided that it 

is disjoint and it satisfies 

u1 + … + un = u.

We denote by 𝒫f (u) the family of all finite partitions of u.

Thanks to Lemma 2.10 (v), a disjoint family (ui)
n
i=1 ⊂ Idem(U) belongs to 𝒫f (u) if and only if 

sup{u1,… , un} = u.

Notice also that if 𝜙 : U → V  is a homomorphism of f -algebras, then it holds that 

(𝜙(ui))n
i=1 ∈ 𝒫f (𝜙(u)), for every u ∈ Idem(U) and (ui)

n
i=1 ∈ 𝒫f (u). (8)

Indeed, one has 𝜙(ui) ∈ Idem(𝜙(v)) for every i = 1,… , n by (7), the elements 𝜙(u1),… ,𝜙(un) are 
pairwise disjoint by (3) and 𝜙(u1) + … + 𝜙(un) = 𝜙(u1 + … + un) = 𝜙(u) by the linearity of 𝜙.

Definition 2.13 (Simple elements) The simple elements of an f -algebra U are defined as 

𝒮(U) := {
n

∑
i=1

𝜆iui ∣ n ∈ ℕ, (𝜆i)
n
i=1 ⊂ ℝ, (ui)

n
i=1 ∈ 𝒫f (1U )} ⊂ U .

The family of all non-negative simple elements of U is defined as 𝒮+(U) := 𝒮(U) ∩ U+.

Lemma 2.14 Let U be an f-algebra and u ∈ Idem(U). Then it holds that 

(uivj)i,j ∈ 𝒫f (u), for every (ui)
n
i=1, (vj)

m
j=1 ∈ 𝒫f (u). (9)

In particular, the space 𝒮(U) is an f-subalgebra of U. More precisely, it holds that 

u + v = ∑
i,j

(𝜆i + 𝜇j)uivj, uv = ∑
i,j

𝜆i𝜇juivj, u ∨ v = ∑
i,j

(𝜆i ∨ 𝜇j)uivj, u ∧ v = ∑
i,j

(𝜆i ∧ 𝜇j)uivj,

for every u = ∑n
i=1 𝜆iui ∈ 𝒮(U) and v = ∑m

j=1 𝜇jvj ∈ 𝒮(U).

Proof. Let us only check (9). Once (9) is established, the remaining part of the statement 
follows via elementary computations. Fix any (ui)

n
i=1, (vj)

m
j=1 ∈ 𝒫f (u). Lemma 2.10 (i) 

ensures that uivj ∈ Idem(U) for every i = 1,… , n and j = 1,… , m. Moreover, whenever 
(i, j) ≠ (i′, j′) we have that (uivj) ∧ (ui′vj′) ≤ (ui ∧ ui′) ∧ (vj ∧ vj′) = 0, thus (uivj)i,j is a 
disjoint set. Finally, it holds that ∑i,j uivj = (u1 + … + un)(v1 + … + vm) = u, which gives 
(uivj)i,j ∈ 𝒫f (u).

2.3. Localizable f -algebras
Let us now introduce the concept of localizable f-algebra, which is a Dedekind 𝜎-complete f -algebra 
‘having plenty of idempotent elements’. Namely:
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 13

Definition 2.15 (Localizable f -algebra) Let U be a Dedekind 𝜎-complete f -algebra whose 
multiplication map is 𝜎-order-continuous on U+ × U+. Then we say that U is localizable
provided that the space of simple elements 𝒮(U) is super-order-dense in U. By a 
homomorphism of localizable f-algebras we mean a 𝜎-order-continuous homomorphism of 
f -algebras.

Remark 2.16 On any Dedekind 𝜎-complete f -algebra U, the sum operator + : U × U → U  is 
𝜎-order-continuous on U+ × U+. Indeed, if (un)n∈ℕ, (vm)m∈ℕ ⊂ U+ are non-decreasing 
sequences, and we set u := supn∈ℕ un ∈ U+ and v := supm∈ℕ vm ∈ U+, then for any n, m ∈ ℕ
we have that 

un = (un + vm) − vm ≤ (un∨m + vn∨m) − vm ≤ sup
k∈ℕ

(uk + vk) − vm.

Thanks to the arbitrariness of n ∈ ℕ, we deduce that u ≤ supk∈ℕ(uk + vk) − vm. By 
arbitrariness of m ∈ ℕ, we conclude that u + v ≤ supk∈ℕ(uk + vk). The converse inequality is 
trivial.

Lemma 2.17 Let U be a localizable f-algebra. Then it holds that 

sup
n∈ℕ

un ∈ Idem(U), inf
n∈ℕ

un ∈ Idem(U), for every (un)n∈ℕ ⊂ Idem(U).

Proof. Since the set Idem(U) is order-bounded by Lemma 2.10 iv), both v := supn∈ℕ un ∈ U+

and w := infn∈ℕ un ∈ U+ exist thanks to the Dedekind 𝜎-completeness of U. Define u′
1 := u1

and u′
n := un − ∑k<n unu′

k for every n ≥ 2. By using items (iii), (v) and (vi) of Lemma 2.10 
and an induction argument, one can show that the sequence (u′

n)n∈ℕ is disjoint and made of 
idempotent elements. Lemma 2.10 (v) also yields supk≤n u′

k = supk≤n uk for every n ∈ ℕ, so 
that accordingly 

sup
n∈ℕ

u′
n = sup

n∈ℕ
sup
k≤n

uk = sup
n∈ℕ

un = v.

Now define vn := ∑n
k=1 u′

k for every n ∈ ℕ. Lemma 2.10 (v) ensures that (vn)n∈ℕ ⊂ Idem(U)
and that vn = supk≤n u′

k for every n ∈ ℕ, and thus v = supn∈ℕ vn. Given that the sequence 
(vn)n∈ℕ is non-decreasing by construction, the 𝜎-order-continuity of the multiplication on 
U+ × U+ guarantees that v2 = (supn∈ℕ vn)2 = supn∈ℕ v2

n = supn∈ℕ vn = v, proving that 
v ∈ Idem(U). Finally, notice that we have 1 − w = supn∈ℕ(1 − un) ∈ Idem(U), so that 
w ∈ Idem(U) by Lemma 2.10 (iii).

Definition 2.18 (Countable partition) Let U be a Dedekind 𝜎-complete f -algebra. Then a 
disjoint family (un)n∈ℕ ⊂ Idem(U) is said to be a countable partition of u ∈ Idem(U)
provided 

sup
n∈ℕ

un = u.

We denote by 𝒫(u) the family of all countable partitions of u. Observe that 𝒫f (u) ⊂ 𝒫(u).

Proposition 2.19 Let U be a localizable f-algebra and u ∈ Idem(U). Then it holds that 

(unvm)n,m∈ℕ ∈ 𝒫(u), for every (un)n∈ℕ, (vm)m∈ℕ ∈ 𝒫(u).

Proof. Lemma 2.10 (i) ensures that unvm ∈ Idem(U) for every n, m ∈ ℕ. Arguing as in 
Lemma 2.14, we see that (unvm)n∈ℕ is a disjoint set. It remains to show that 
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14 • D. LUČIĆ AND E. PASQUALETTO

v := supn,m∈ℕ unvm = u. Since unvm ≤ 1 for all n, m ∈ ℕ, we have v ≤ 1. Let w ∈ U  be an 
upper bound for (unvm)n,m∈ℕ. Then un(w − vm) = un(w − unvm) ≥ 0 for every n, m ∈ ℕ, so 
that un(w − vm)+ ≥ un(w − vm)− holds for every n, m ∈ ℕ as a consequence of (5b), thus 
accordingly 

(w − vm)+ = sup
n∈ℕ

un(w − vm)+ ≥ sup
n∈ℕ

un(w − vm)− = (w − vm)−, for every m ∈ ℕ.

This means that w ≥ vm for every m ∈ ℕ, which gives w ≥ 1. We conclude that v = u.

Observe that if 𝜙 : U → V  a homomorphism of localizable f -algebras, then it holds that 

(𝜙(un))n∈ℕ ∈ 𝒫(𝜙(u)), for every u ∈ Idem(U)and (un)n∈ℕ ∈ 𝒫(u). (10)

Indeed, the sequence (𝜙(un))n∈ℕ ⊂ V  is made of idempotent elements by (7) and is a disjoint set by 
(3) and supn∈ℕ𝜙(un) = 𝜙(supn∈ℕ un) = 𝜙(u), thanks to the 𝜎-order-continuity of 𝜙.

2.4. Metric f -structures
For our purposes, the algebraic and order properties of a localizable f -algebra are not sufficient. Rather, 
we want to consider localizable f -algebras (and Riesz spaces) endowed with a well-behaved complete 
distance. In this regard, the first concept we introduce is that of metric Riesz space:

Definition 2.20 (Metric Riesz space) By a metric Riesz space we mean a couple (U ,dU ) – 
where U is a Dedekind 𝜎-complete Riesz space and dU  is a complete distance on U – such 
that

(i) The identity dU (u, 0) = dU (|u|, 0) holds for every u ∈ U .
(ii) The distance dU  is translation-invariant, in the sense that 

dU (u, v) = dU (u + w, v + w), for every u, v, w ∈ U .

(iii) The distance-from-zero function dU (⋅, 0) : U+ → ℝ+ is order-preserving.

A homomorphism of metric Riesz spaces is a Lipschitz homomorphism of Riesz spaces.

We remark that the notion of homomorphism in the above definition is not intended as a mor-
phism in the categorical sense. In fact, in this paper we will not consider any category of metric Riesz 
spaces. The main reason is that the class of metric Riesz spaces includes the function spaces L0(𝜇) (see 
Section 4.1). The latter are metrizable topological vector spaces, but —as far as we know—they are 
not endowed with a ‘canonical’ distance, and thus neither Lipschitz nor 1-Lipschitz homomorphisms 
of Riesz spaces seem to be an effective choice of morphism in the categorical sense. Arguably, one 
should introduce, for example, a more general concept of ‘uniform Riesz space’ (that is, a Riesz space 
equipped with a compatible uniform structure) in order to have a well-behaved category. A similar 
discussion applies to the notions of (homomorphisms of) metric f -algebras, metric f -structures and 
dual systems that we will introduce below.

Remark 2.21 Given a metric Riesz space (U ,dU ), it holds that 

dU (u + v, 0) ≤ dU (u, 0) + dU (v, 0), for every u, v ∈ U . (11)

Indeed, by using the translation invariance of dU , we obtain that 

dU (u + v, 0) = dU (u, −v) ≤ dU (u, 0) + dU (0, −v) = dU (u, 0) + dU (v, 0).

Repeatedly applying (11), we get dU(∑n
i=1 ui, 0) ≤ ∑n

i=1dU (ui, 0) for all u1,… , un ∈ U .
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 15

In Definitions 2.22 and 2.23, given two metric spaces (X,dX) and (Y,dY), we will consider the 
distance dX ×dY on the Cartesian product X × Y, which is given by 

(dX ×dY)((x, y), (x̃, ỹ)) := dX(x, x̃) + dY(y, ỹ), for every (x, y), (x̃, ỹ) ∈  X × Y.

Next, we introduce the family of metric f-algebras:

Definition 2.22 (Metric f -algebra) By a metric f-algebra we mean a couple (U ,dU ), where

(i) U is a localizable f -algebra, and (U ,dU ) is a metric Riesz space.
(ii) The multiplication × : U × U → U  is continuous from (U × U ,dU ×dU ) to 

(U ,dU ).
(iii) The family 𝒮(U) of all simple elements of U is dense in (U ,dU ).
(iv) dU (𝜀1U , 0) → 0 as 𝜀 ↘ 0.

A homomorphism of metric f-algebras is a Lipschitz homomorphism of localizable 
f -algebras.

For some examples of metric f -algebras in the case of function spaces we are interested in, see Sub-
section 4.2.1. Having the notions of metric Riesz space and of metric f -algebra at our disposal, we can 
finally introduce metric f-structures:

Definition 2.23 (Metric f -structure) A metric f-structure is a triple (𝒰, U , V ), where

(i) 𝒰 is a localizable f -algebra.
(ii) U = (U ,dU ) is a metric f -algebra such that U is a solid f -subalgebra of 𝒰.

(iii) V = (V ,dV ) is metric Riesz space such that V  is a solid Riesz subspace of 𝒰.
(iv) It holds UV = V, and the multiplication is continuous from (U × V ,dU ×dV ) to 

(V ,dV ).
(v) Given any (un)n∈ℕ ∈ 𝒫(1U ) and 𝜀 > 0, there exists 𝛿 > 0 such that for any 

(vn)n∈ℕ ⊂ V + with ∑n∈ℕdV (unvn, 0) ≤ 𝛿 it holds that 

(unvn)n∈ℕ is order-bounded in V , dV (sup
n∈ℕ

unvn, 0) ≤ 𝜀.

We say that a metric f -structure (𝒰, U , V ) is Dedekind complete (resp. CSP), provided that 
the spaces 𝒰, U and V  are Dedekind complete (resp. CSP).

A homomorphism of metric f-structures between two metric f -structures (𝒰1, U1, V1) and 
(𝒰2, U2, V2) is a homomorphism 𝜑 : 𝒰1 → 𝒰2 of f -algebras such that 𝜑|U1

: U1 → U2 is a 
homomorphism of metric f -algebras and 𝜑|V1

: V1 → V2 a is homomorphism of metric 
Riesz spaces.

In the case of function spaces, some examples of metric f -structures are listed in Subsection 4.2.2.

Example 2.24 If U = (U ,dU ) is a metric f -algebra, then (U , U , U) is a metric f -structure.

As we discussed in Section 1, in order to study dual modules (and, more generally, spaces of 
homomorphisms) we also have to define the dual systems of metric f -structures:

Definition 2.25 (Dual system of metric f -structures) A quintuplet (𝒰, U , V , W , Z) is said to 
be a dual system of metric f-structures provided that the following conditions are verified:

(i) (𝒰, U , V ), (𝒰, U , W ) and (𝒰, U , Z) are metric f -structures.
(ii) It holds Z = VW  and the multiplication is continuous from (V × W ,dV ×dW ) to 

(Z,dZ).
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16 • D. LUČIĆ AND E. PASQUALETTO

We say that (𝒰, U , V , W , Z) is a complete dual system of metric f-structures if in addition:

(iii) 𝒰, U, V, W, Z are Dedekind complete and the multiplication is order-continuous 
from U+ × V + to V +, from U+ × W + to W +, from U+ × Z+ to Z+ and from 
V + × W + to Z+.

Also, we say that a complete dual system (𝒰, U , V , W , Z) is CSP if in addition (𝒰, U , V ), 
(𝒰, U , W ) and (𝒰, U , Z) are CSP.
By a homomorphism of dual systems between two given dual systems of metric f -structures 
(𝒰1, U1, V1, W1, Z1) and (𝒰2, U2, V2, W2, Z2) we mean a map 𝜑 : 𝒰1 → 𝒰2 that is a 
homomorphism of metric f -structures from (𝒰1, U1, V1) to (𝒰2, U2, V2), from (𝒰1, U1, W1)
to (𝒰2, U2, W2) and from (𝒰1, U1, Z1) to (𝒰2, U2, Z2).

Some relevant examples of dual systems in the case of function spaces are presented in Section 4.2.3.

Example 2.26 Let (𝒰, U , V ) be a metric f -structure. Then (𝒰, U , V , U , V ) is a dual system of 
metric f -structures. If U is Dedekind complete and the multiplication map is 
order-continuous from U+ × V + to V +, then (𝒰, U , V , U , V ) is a complete dual system of 
metric f -structures.

Remark 2.27 If (𝒰, U , V , W , Z) is a dual system of metric f -structures, then (𝒰, U , W , V , Z) is 
a dual system of metric f -structures as well. Moreover, if (𝒰, U , V , W , Z) is a complete (resp. 
CSP complete) dual system, then (𝒰, U , W , V , Z) is a complete (resp. CSP complete) dual 
system.

3 . N O R M E D M O D U L E S OV E R A M ET R I C F- ST RU CT U R E
In Sections 3.1 and 3.2 we introduce the category of Banach modules over a metric f -structure; in 
the former we study the objects, while in the latter we study the morphisms. In Section 3.3 we prove 
some existence results concerning Banach modules and their homomorphisms, as well as some of their 
consequences. In Sections 3.4, 3.5 and 3.6 we study the Hahn–Banach theorem, the class of Hilbert 
modules and the dimensional decomposition of a Banach module, respectively.

3.1. Definitions and basic properties
First of all, let us give the definition of normed/Banach module over a metric f -structure:

Definition 3.1 (Normed module) Let (𝒰, U , V ) be a metric f -structure and ℳ a module 
over U. Then we say that ℳ is a V-normed U-module provided that it is endowed with a map 
| ⋅ | : ℳ → V + – called a V -pointwise norm operator on ℳ—such that the following 
properties are verified:

(i) Given any u ∈ U  and v, w ∈ ℳ, it holds that 

|v| = 0 ⟺ v = 0, (12a)

|v + w| ≤ |v| + |w|, (12b)

|u ⋅ v| = |u||v|. (12c)

(ii) Gluing property. Let (un)n∈ℕ ∈ 𝒫(1U ) and (vn)n∈ℕ ⊂ ℳ be chosen so that the 
family (|un ⋅ vn|)n∈ℕ is order-bounded in V. Then there exists an element v ∈ ℳ
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 17

such that 

un ⋅ v = un ⋅ vn, for every n ∈ ℕ. (13)

We call Adm(ℳ) the set of all families (un, vn)n∈ℕ as above, while ∑n∈ℕ un ⋅ vn
stands for the element v ∈ ℳ satisfying (eq: glueing)—whose uniqueness follows 
from Lemma 3.2.

Moreover, we endow the space ℳ with the distance dℳ, which is defined as 

dℳ(v, w) := dV (|v − w|, 0), for every v, w ∈ ℳ. (14)

Whenever (ℳ,dℳ) is a complete metric space, we say that ℳ is a V-Banach U-module.

Some examples of functional normed/Banach modules that are covered by the above definition are 
presented in Section 4.2.4.

Lemma 3.2 (Locality property)  Let (𝒰, U , V ) be a metric f-structure, and let ℳ be a V-normed 
U-module. Let (un)n∈ℕ ∈ 𝒫(1U ) and v ∈ ℳ satisfy un ⋅ v = 0 for every n ∈ ℕ. Then v = 0.

Proof. Given that the multiplication map is 𝜎-order-continuous on 𝒰+ ×𝒰+, we deduce that 

|v| = |v|sup
n∈ℕ

un = sup
n∈ℕ

un|v| = sup
n∈ℕ

|un ⋅ v| = 0,

whence it follows that v = 0, as we claimed in the statement.

Given any non-empty subset S of a V -normed U-module ℳ, we denote by 𝒢(S) ⊂ ℳ the family 
of those elements that can be obtained by gluing together elements of S. Namely, we set 

𝒢(S) = 𝒢ℳ(S) := {∑
n∈ℕ

un ⋅ vn ∣ (un)n∈ℕ ∈ 𝒫(1U ), (vn)n∈ℕ ⊂ S, (un, vn)n∈ℕ ∈ Adm(ℳ)}.

Observe that if S is a vector subspace of ℳ, then 𝒢(S) is a vector subspace of ℳ as well.

Proposition 3.3 Let (𝒰, U , V ) be a metric f-structure. Then V is a V-Banach U-module, with the 
scalar multiplication ⋅ : U × V → V  being given by the multiplication × in 𝒰. Moreover, it holds 

∑
n∈ℕ

unvn = sup
n∈ℕ

unv+
n − sup

n∈ℕ
unv−

n , for every (un, vn)n∈ℕ ∈ Adm(V ). (15)

Proof. The fact that V  is a U-module verifying item (i) of Definition 3.1 readily follows from 
the very definition of a metric f -algebra. Moreover, the distance on V  defined as in (14) 
coincides with the original distance dV  itself, which is complete by assumption. It only 
remains to check the validity of the gluing property. To this aim, fix any 
(un, vn)n∈ℕ ∈ Adm(V ). In particular, both sequences (unv+

n )n∈ℕ and (unv−
n )n∈ℕ are 

order-bounded, and thus the Dedekind 𝜎-completeness of V  yields existence of 
w+ := supn∈ℕ unv+

n ∈ V + and w− := supn∈ℕ unv−
n ∈ V +. We claim that 

un(w+ − w−) = unvn, for every n ∈ ℕ. (16)

To prove it, notice that unw+ = unv+
n  for every n ∈ ℕ : the inequality ≥ is trivial, while to get 

the converse one it suffices to observe that (1 − un)w+ + unv+
n  is an upper bound for 

(umv+
m)m∈ℕ. Similarly, one can show that unw− = unv−

n , whence it follows that 
un(w+ − w−) = unv+

n − unv−
n , yielding (16). This proves the validity of the gluing property, as 

well as formula (15).
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18 • D. LUČIĆ AND E. PASQUALETTO

Proposition 3.4 (Continuity of normed module operations)  Let (𝒰, U , V ) be a metric 
f-structure and ℳ a V-normed U-module. Then the following properties are verified:

(i) The map | ⋅ | : ℳ → V + is 1-Lipschitz from (ℳ,dℳ) to (V ,dV ).
(ii) The map + : ℳ × ℳ → ℳ is 1-Lipschitz from (ℳ × ℳ,dℳ ×dℳ) to (ℳ,dℳ).

(iii) The map ⋅ : U × ℳ → ℳ is continuous from (U × ℳ,dU ×dℳ) to (ℳ,dℳ).

Proof. (i) Given that |v| ≤ |v − w| + |w| and |w| ≤ |w − v| + |v| hold for every v, w ∈ ℳ, we 
deduce that 

∣|v| − |w|∣ ≤ |v − w|, for every v, w ∈ ℳ.

In particular, for any v, w ∈ ℳ one has 
dV (|v|, |w|) = dV (∣|v| − |w|∣, 0) ≤dV (|v − w|, 0) = dℳ(v, w), which shows that 
| ⋅ | : ℳ → V + is a 1-Lipschitz mapping from (ℳ,dℳ) to (V ,dV ), as required.

(ii) For any v, v′, w, w′ ∈ ℳ we have |(v + w) − (v′ + w′)| ≤ |v − v′| + |w − w′|, thus 
accordingly 

dℳ(v + w, v′ + w′) = dV (∣(v + w) − (v′ + w′)∣, 0) ≤ dV (|v − v′| + |w − w′|, 0)

≤ dV (|v − v′|, 0) + dV (|w − w′|, 0) = dℳ(v, v′) + dℳ(w, w′)

= (dℳ ×dℳ)((v, v′), (w, w′)),

for every v, v′, w, w′ ∈ ℳ. This proves that + is 1-Lipschitz from (ℳ × ℳ,dℳ ×dℳ) to 
(ℳ,dℳ).

(iii) Fix (un)n∈ℕ ⊂ U  and u ∈ U  with limn→∞dU (un, u) = 0. Fix (vn)n∈ℕ ⊂ ℳ and 
v ∈ ℳ with limn→∞dℳ(vn, v) = 0. The continuity of | ⋅ | : ℳ → V + from (i) ensures that 
|un| → |u| in (U ,dU ) and |vn − v| → 0 in (V ,dV ). Hence, by letting n → ∞ in 
|un ⋅ vn − u ⋅ v| ≤ |un||vn − v| + |un − u||v| we obtain limn→∞dℳ(un ⋅ vn, u ⋅ v) = 0, which 
shows that ⋅ : U × ℳ → ℳ is continuous.

Let (𝒰, U , V ) be a metric f -structure, and let ℳ be a V -normed U-module. Then a given U-
submodule 𝒩 of ℳ is said to be a V-normed U-submodule of ℳ, provided that it satisfies 

𝒢ℳ(𝒩) = 𝒩.

In the case where ℳ is a V -Banach U-module and 𝒩 is dℳ-closed in ℳ, we say that 𝒩 is a V-Banach
U-submodule of ℳ. These are some useful examples of V -Banach U-submodule:

• The ‘localized’ module u ⋅ ℳ := {u ⋅ v : v ∈ ℳ} for every u ∈ Idem(U).
• The ‘one-dimensional’ module U ⋅ v := {u ⋅ v : u ∈ U} for every v ∈ ℳ.
• The sum 𝒩1 + 𝒩2 := {v + w : v ∈ 𝒩1, w ∈ 𝒩2} where 𝒩1, 𝒩2 are V -Banach U-submodules of 

ℳ. We say that ℳ is the direct sum of 𝒩1 and 𝒩2, and we write 

ℳ = 𝒩1 ⊕ 𝒩2,

if ℳ = 𝒩1 + 𝒩2 and 𝒩1 ∩ 𝒩2 = {0}. In this case, the map 𝒩1 × 𝒩2 ∋ (v, w) ↦ v + w ∈ ℳ is 
bijective.

If (𝒰, U , V ) is a metric f -structure such that V  is Dedekind complete, ℳ is a V -Banach U-module 
and 𝒩 is a V -Banach U-submodule of ℳ, then the quotient module ℳ/𝒩 is a V -Banach U-module if 
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 19

endowed with the following V -pointwise norm operator: 

|v + 𝒩| := inf{|v + w| ∣ w ∈ 𝒩} ∈ V +, for every v + 𝒩 ∈ ℳ/𝒩.

Definition 3.5 (Hilbert module) Let (𝒰, U , V , V , Z) be a dual system of metric f -structures. 
Then by a V-Hilbert U-module we mean a V -Banach U-module ℋ such that 

|v + w|2 + |v − w|2 = 2|v|2 + 2|w|2, for every v, w ∈ ℋ. (17)

We refer to (17) as the pointwise parallelogram law of ℋ.

The pointwise scalar product on ℋ is defined as follows: 

ℋ × ℋ ∋ (v, w) ↦ v ⋅ w := 1
2

(|v + w|2 − |v|2 − |w|2) ∈ Z, for every v, w ∈ ℋ.

One can readily check that the pointwise scalar product is U-bilinear, which means that 

ℋ ∋ v ↦ v ⋅ z ∈ Z, is U-linear,

ℋ ∋ w ↦ z ⋅ w ∈ Z, is U-linear,

for any given z ∈ ℋ. We will study Hilbert modules more in detail in Section 3.5.

3.1.1. Local invertibility
Let (𝒰, U , V ) be a Dedekind complete CSP metric f -structure, and ℳ a V -normed U-module. Then 
each v ∈ ℳ is associated with the element 𝜒{v=0} ∈ Idem(U), which we define as 

𝜒{v=0} := sup{u ∈ Idem(U) ∣ u ⋅ v = 0} ∈ Idem(U).

The idempotency of 𝜒{v=0} follows from Lemma 2.17 and the fact that U is Dedekind complete CSP. 
The gluing property of ℳ ensures that 𝜒{v=0} ⋅ v = 0. We also define 𝜒{v≠0} := 1 − 𝜒{v=0} ∈ Idem(U), 
so that v = 𝜒{v≠0} ⋅ v. Similarly, we define 𝜒{v=w} := 𝜒{v−w=0} and so on.

Proposition 3.6 (Local inverses)  Let U be a Dedekind complete CSP metric f-algebra. Let 
u ∈ U+ be given. Then there exist a partition (un)n∈ℕ of 𝜒{u>0} and a sequence (wn)n∈ℕ ⊂ U+

such that 

un(uwn − 1) = 0, for every n ∈ ℕ.

Proof. First, recall that (U , U , U) is a metric f -structure (Example 2.24) and that U is a 
U-Banach U-module (Proposition 3.3). Since 𝒮(U) is super-order-dense in U (as 
guaranteed by the very definition of a localizable f -algebra), we can find a non-decreasing 
sequence (sn)n∈ℕ ⊂ 𝒮+(U) such that u = supn∈ℕ sn. Note that, setting bn := 𝜒{sn>0} for every 
n ∈ ℕ, we have 𝜒{u>0} = supn∈ℕ bn. Indeed, on the one hand 𝜒{sn>0} ≤ 𝜒{u>0} for every 
n ∈ ℕ and thus supn bn ≤ 𝜒{u>0}. On the other hand, if we denote 
s := 𝜒{u>0} − supn bn ∈ Idem(U), then s = 0 in view of the fact that 

su = ssup
n∈ℕ

sn = sup
n∈ℕ

ssn = 0.

Moreover, for any n ∈ ℕ there exists a real number 𝜆n > 0 with 𝜆nbn ≤ u. More precisely, if sn

is written as ∑kn
i=1 𝜆i

nui
n for some kn ∈ ℕ, (𝜆i

n)kn
i=1 ⊂ ℝ∩ (0, +∞) and (ui

n)kn
i=0 ∈ 𝒫f (1U ), then 
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20 • D. LUČIĆ AND E. PASQUALETTO

we have that bn = u1
n ∨ ⋯ ∨ ukn

n  and that 𝜆1
n ∧ ⋯ ∧ 𝜆kn

n  can be chosen as 𝜆n. Now we define 
u1 := b1 and un+1 := bn+1(1 − bn) for every n ∈ ℕ. Observe that (un)n∈ℕ is a partition of 

𝜒{u>0}. Next we consider the simple elements tj := ∑
kj

i=1
1
𝜆i

j
ui

j for every j ∈ ℕ. Given any 

n ∈ ℕ, we have that the sequence (untj)
∞
j=n is non-increasing and satisfies 0 ≤ untj ≤ 1

𝜆n
un for 

every j ≥ n. Then the infimum wn := infj≥n untj ∈ U+ exists and, since sjtj = bj ≥ un for every 
j ≥ n, it holds that 

unuwn = 𝜆−1
n unu − unu(𝜆−1

n un − wn) = 𝜆−1
n unu − un(sup

j≥n
sj)(𝜆−1

n un − inf
j≥n

untj)

= 𝜆−1
n unu − (sup

j≥n
sj)sup

j≥n
(𝜆−1

n un − untj) = 𝜆−1
n unu − sup

j≥n
(𝜆−1

n unsj − unsjtj)

= 𝜆−1
n unu − sup

j≥n
(𝜆−1

n unsj − un) = 𝜆−1
n unu − un(𝜆−1

n u − 1) = un.

Consequently, the statement is finally achieved.

3.1.2. Support of a metric f-structure
Given a metric f -structure (𝒰, U , V ) that is Dedekind complete and CSP, we can define its support, 
which is the ‘largest idempotent element where at least an element of V  does not vanish’. Namely:

Definition 3.7 (Support) Let (𝒰, U , V ) be a Dedekind complete CSP metric f -structure. 
Then we define S(V ) as 

S(V ) := sup{𝜒{v≠0} ∣ v ∈ V +} ∈ Idem(U).

We say that S(V ) is the support of V  or of the metric f -structure (𝒰, U , V ).

Let us check that the previous definition is well-posed. Since 𝜒{v≠0} ≤ 1 for every v ∈ V +, the 
Dedekind completeness of V  ensures that S(V ) exists. Moreover, the countable representability 
assumption ensures the existence of a sequence (vn)n∈ℕ ⊂ V + such that S(V ) = supn 𝜒{vn≠0}. Taking 
into account Lemma 2.17, it also follows that S(V ) ∈ Idem(U).

Remark 3.8 If (𝒰, U , V , W , Z) is a CSP complete dual system of metric f -structures, then it 
holds that 

S(V ) ∧ S(W ) ≤ S(Z).

In order to prove it, fix two sequences (vi)i∈ℕ ⊂ V + and (wj)j∈ℕ ⊂ W + with 
S(V ) = supi 𝜒{vi≠0} and S(W ) = supj 𝜒{wj≠0}. Notice that 
𝜒{vi≠0} ∧ 𝜒{wj≠0} ≤ 𝜒{viwj≠0} ≤ S(Z) for every i, j ∈ ℕ. Taking the supremum over i, j ∈ ℕ, 
we conclude that S(V ) ∧ S(W ) ≤ S(Z), as we claimed.

Next we prove two technical results concerning the support of a metric f -structure.

Lemma 3.9 Let (𝒰, U , V ) be a Dedekind complete CSP metric f-structure. Then there exists an 
element h ∈ V + ∩ U+ such that h ≤ 1 and 𝜒{h>0} = S(V ).

Proof. Pick a sequence (vn)n∈ℕ ⊂ V + such that vn ≤ 1 for every n ∈ ℕ and 
S(V ) = supn 𝜒{vn≠0}. Define u1 := 𝜒{v1≠0} ∈ Idem(U) and, recursively, 
un+1 := 𝜒{vn+1≠0}(1 − u1)…(1 − un) ∈  Idem(U) for every n ∈ ℕ. Notice that (un)n∈ℕ is a 
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 21

partition of S(V ). Recalling item (v) of Definition 2.23, we can find 𝛿 > 0 such that 
(unwn)n∈ℕ is order-bounded in V  whenever (wn)n∈ℕ ⊂ V + is chosen so that 
∑n∈ℕdV (unwn, 0) ≤ 𝛿. Now pick (𝜆n)n∈ℕ ⊂ (0, 1) with dV (𝜆nunvn, 0) ≤ 𝛿

2n  for all n ∈ ℕ. 
Therefore, the element h := ∑n∈ℕ𝜆nunvn ∈ V + exists. Notice that h ≤ 1 and 
𝜒{h≠0} = S(V ). In particular, 𝜒{h=0}|v| = (1 − S(V ))𝜒{v=0}|v| = 0 for every v ∈ V , whence 
the statement follows.

Lemma 3.10 Let (𝒰, U , V ) be a Dedekind complete CSP metric f-structure. Let W ⊂ 𝒰 be a 
Dedekind complete CSP metric Riesz space such that (𝒰, U , W ) is a metric f-structure and 
S(V ) ≤ S(W ). Let v ∈ V + be given. Then there exists a partition (un)n∈ℕ ⊂ W ∩ Idem(U) of 
𝜒{v≠0} such that unv ∈ W ∩ U holds for every n ∈ ℕ.

Proof. Thanks to Lemma 3.9, we can find an element h ∈ W + ∩ U+ such that 𝜒{h≠0} = S(W ). 
We then define ̃si := 𝜒{0<v≤ih} and ̃tj := 𝜒{v≠0}𝜒{h≥j−11U} for every i, j ∈ ℕ. We claim that 

sup
i∈ℕ

s̃i = 𝜒{v≠0} = sup
j∈ℕ

t̃j. (18)

We prove the first equality, since the proof of the second one is similar. Clearly, 
supi s̃i ≤ 𝜒{v≠0}. For the converse inequality, we argue by contradiction: suppose that 
s := 𝜒{v≠0} − supi s̃i ≠ 0. Then ish ≤ v for every i ∈ ℕ, whence it follows (since 𝒰 is 
Archimedean) that sh = 0, which leads to a contradiction. Therefore, the claim (18) is 
proved. Now let us define s1 := s̃1, t1 := t̃1 and, recursively, si+1 := s̃i+1 − s1 … si s̃i+1 and 
tj+1 := t̃j+1 − t1 … tj t̃j+1 for every i, j ∈ ℕ. Notice that (18) implies that (si)i∈ℕ and (tj)j∈ℕ are 
partitions of 𝜒{v≠0}. Moreover, siv ≤ ih ∈ W + ∩ U+ and tj ≤ jh ∈ W + for every i, j ∈ ℕ, thus 
accordingly siv ∈ W + ∩ U+ and tj ∈ W +. Relabelling the family {sitj : i, j ∈ ℕ} as {un}n∈ℕ, 
we finally obtain a partition (un)n∈ℕ ⊂ W ∩ Idem(U) of the element 𝜒{v≠0} satisfying 
unv ∈ W ∩ U  for every n ∈ ℕ, as desired.

3.2. Homomorphisms of normed modules
To begin with, we introduce the notion of a homomorphism between normed modules.

Definition 3.11 (Homomorphism of normed modules) Let (𝒰, U , V , W , Z) be a dual 
system of metric f -structures, ℳ a V -normed U-module and 𝒩 a Z-normed U-module. 
Then we define 

Hom(ℳ, 𝒩) := {T : ℳ → 𝒩 U-linear ∣ ∃w ∈ W + : |Tv| ≤ w|v|, for every v ∈ ℳ}.

Next, we endow Hom(ℳ, 𝒩) with a U-module structure. Given any T, S ∈ Hom(ℳ, 𝒩) and u ∈
U , we define the elements T + S ∈ Hom(ℳ, 𝒩) and u ⋅ T ∈ Hom(ℳ, 𝒩) as 

(T + S)v := Tv + Sv, for every v ∈ ℳ,

(u ⋅ T)v := u ⋅ Tv, for every v ∈ ℳ,

respectively. One can readily check that the triple (Hom(ℳ, 𝒩), +, ⋅) is a module over U.
In the case where W  is Dedekind complete, for any given T ∈ Hom(ℳ, 𝒩) it holds that 

∃|T| := inf{w ∈ W + ∣ |Tv| ≤ w|v|, for every v ∈ ℳ} ∈ W +.

The space of homomorphisms between two normed modules inherits a normed module structure:
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22 • D. LUČIĆ AND E. PASQUALETTO

Theorem 3.12 Let (𝒰, U , V , W , Z) be a complete dual system of metric f-structures. Let ℳ be a 
V-normed U-module, and 𝒩 a Z-normed U-module. Let T ∈ Hom(ℳ, 𝒩) be given. Then 

|Tv| ≤ |T||v|, for every v ∈ ℳ.

Moreover, the space (Hom(ℳ, 𝒩), | ⋅ |) is a W-normed U-module and 

∣∑
n∈ℕ

un ⋅ Tn∣ = ∑
n∈ℕ

un|Tn|, for every (un, Tn)n∈ℕ ∈ Adm(Hom(ℳ, 𝒩)). (19)

If in addition 𝒩 is a Z-Banach U-module, then Hom(ℳ, 𝒩) is a W-Banach U-module.

Proof. Verification of the W -pointwise norm axioms. Given any T ∈ Hom(ℳ, 𝒩), we 
define 

ℱT := {w ∈ W + ∣ |Tv| ≤ w|v|, for every v ∈ ℳ} ≠ ∅. (20)

Since ℱT  is a sublattice of W +—thus in particular it is downwards directed—we deduce that 

|Tv| ≤ inf
w∈ℱT

w|v| = |v| inf
w∈ℱT

w = |T||v|, for every v ∈ ℳ,

as a consequence of the order continuity of the multiplication from V + × W + to Z+. It 
readily follows that | ⋅ | : Hom(ℳ, 𝒩) → W + satisfies (12a) and (12b). It is also easy to 
check that the identity |𝜆T| = |𝜆||T| holds for every 𝜆 ∈ ℝ and T ∈ Hom(ℳ, 𝒩). We now 
pass to the verification of (12c). For any u ∈ U  and T ∈ Hom(ℳ, 𝒩), one has 
|(u ⋅ T)v| = |u||Tv| ≤ |u||T||v| for every v ∈ ℳ, whence it follows that |u ⋅ T| ≤ |u||T|. On 
the other hand, we claim that also 

|u||T| ≤ |u ⋅ T|, for every u ∈ Uand T ∈ Hom(ℳ, 𝒩). (21)

In the case where u ∈ Idem(U), the inequality stated in (21) follows from the observation 
that 

u|T| = u|(1 − u) ⋅ T + u ⋅ T| ≤ u|(1 − u) ⋅ T| + u|u ⋅ T| ≤ u(1 − u)|T| + |u ⋅ T| = |u ⋅ T|.

Moreover, if u = ∑k
i=1 𝜆iui ∈ 𝒮+(U) is given, then for any j = 1,… , k it holds that 

uj

k

∑
i=1

𝜆i|ui ⋅ T| ≤
k

∑
i=1

𝜆iuiuj|T| = 𝜆ju
2
j |T| = |uju ⋅ T| ≤ uj|u ⋅ T|,

which implies that u|T| = ∑k
i=1 𝜆iui|T| = ∑k

i=1 𝜆i|ui ⋅ T| ≤ |u ⋅ T|, proving (21) for all 
u ∈ 𝒮+(U). Given any u ∈ U+, we can pick (un)n∈ℕ ⊂ 𝒮+(U) such that 
limn→∞dU (un, u) = 0 and thus 

|u||T| = lim
n→∞

|un||T| ≤ lim
n→∞

|un ⋅ T| = |u ⋅ T|,

which proves (21) for all u ∈ U+. Finally, given an arbitrary element u ∈ U  we have that 

|u+ ⋅ T| ∧ |u− ⋅ T| ≤ (u+|T|) ∧ (u−|T|) = (u+ ∧ u−)|T| (5a)
= 0,

so that |u ⋅ T| = |u+ ⋅ T| + |u− ⋅ T| by (5d) and thus 
|u||T| = u+|T| + u−|T| ≤ |u+ ⋅ T| + |u− ⋅ T| = |u ⋅ T|. This proves (21) for general u ∈ U . 
Therefore, the proof of the validity of (12c) is complete.
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Verification of the gluing property. To prove that (Hom(ℳ, 𝒩), | ⋅ |) is a 
W -normed U-module, it only remains to show the validity of the gluing property. Fix any 
(un)n∈ℕ ∈ 𝒫(1U ) and (Tn)n∈ℕ ⊂ Hom(ℳ, 𝒩) with (|un ⋅ Tn|)n∈ℕ order-bounded in W. 
Since |un ⋅ Tn| = |un||Tn|, this means that (un, |Tn|)n∈ℕ ∈ Adm(W ) and thus 
w := ∑n∈ℕ un|Tn| ∈ W + exists, cf. with Proposition 3.3. Given any v ∈ ℳ, we have that 
|un ⋅ Tnv| ≤ |un ⋅ Tn||v| for every n ∈ ℕ, which ensures that (un, Tnv)n∈ℕ ∈ Adm(𝒩), so it 
makes sense to consider Tv := ∑n∈ℕ un ⋅ Tnv ∈ 𝒩. The U-linearity of the resulting map 
T : ℳ → 𝒩 can be easily checked. Given that for any n ∈ ℕ and v ∈ ℳ one has that 
un|Tv| = |un ⋅ Tv| = |un ⋅ Tnv| ≤ un|Tn||v| = unw|v|, we deduce that 

|Tv| = sup
n∈ℕ

un|Tv| ≤ sup
n∈ℕ

unw|v| = w|v|, for every v ∈ ℳ.

This yields T ∈ Hom(ℳ, 𝒩) and |T| ≤ w. Note that 
(un ⋅ T)v = un ⋅ Tv = un ⋅ Tnv = (un ⋅ Tn)v for every v ∈ ℳ, so that T = ∑n∈ℕ un ⋅ Tn. Finally, 
for any n ∈ ℕ we have un ⋅ Tn = un ⋅ T and thus un|Tn| = un|T|, which gives 
w = ∑n∈ℕ un|Tn| = supn∈ℕ un|T| = |T|. This proves (19).

Completeness. Suppose (𝒩,d𝒩) is complete. Let (Tn)n∈ℕ ⊂ Hom(ℳ, 𝒩) be a Cauchy 
sequence. Until taking a not relabeled subsequence, we may assume that 
dW (|Tn+1 − Tn|, 0) ≤ 2−n for every n ∈ ℕ. Define Sn := |T1| + ∑k<n |Tk+1 − Tk| ∈ W + for 
every n ∈ ℕ. If n, m ∈ ℕ are such that n < m, then we have that Sm − Sn = ∑m−1

k=n |Tk+1 − Tk|, 
and thus accordingly 

dW (|Sm − Sn|, 0) ≤
m−1

∑
k=n

dW (|Tk+1 − Tk|, 0) ≤
m−1

∑
k=n

1
2k

≤ 1
2n−1 .

This shows that (Sn)n∈ℕ is a Cauchy sequence in W +, so that it dW -converges to some 
S ∈ W +. Notice that (Sn)n∈ℕ is a non-decreasing sequence by construction, and thus in 
particular it holds 

|Tn| = ∣(Tn − Tn−1) + (Tn−1 − Tn−2) + ⋯ + (T2 − T1) + T1∣ ≤ Sn ≤ S, ∀n ∈ ℕ. (22)

Since the multiplication is continuous from V × W  to Z and dW (|Tm − Tn|, 0) → 0 as 
n, m → ∞, for any fixed element v ∈ ℳ we have that 
d𝒩(Tmv, Tnv) ≤ dZ(|Tm − Tn||v|, 0) → 0 as n, m → ∞, which shows that (Tnv)n∈ℕ is a 
Cauchy sequence in 𝒩. We then define Tv := limn→∞ Tnv ∈ 𝒩. The resulting mapping 
T : ℳ → 𝒩 is U-linear, as it is a pointwise limit of U-linear maps. Also, 

|Tv| = lim
n→∞

|Tnv|
(22)
≤ S|v|, for every v ∈ ℳ,

whence it follows that T ∈ Hom(ℳ, 𝒩) and |T| ≤ S. Now set 
Pn

m := ∑m−1
k=n |Tk+1 − Tk| ∈ W + for every n, m ∈ ℕ with n < m. Arguing as we did before, we 

see that (Pn
m)m∈ℕ is dW -Cauchy, and thus limm→∞ Pn

m = Pn for some Pn ∈ W +. Note that 
Pn

m ≤ Pn and dW (Pn, 0) ≤ 2−n+1. Hence, 

|(T − Tn)v| = lim
m→∞

|(Tm − Tn)v| ≤ lim
m→∞

Pn
m|v| = Pn|v|, for every v ∈ ℳ,

which implies |T − Tn| ≤ Pn → 0 as n → ∞. The completeness of Hom(ℳ, 𝒩) follows.

In the case where the dual system under consideration is CSP complete, the W -pointwise norm 
|T| of any given T ∈ Hom(ℳ, 𝒩) can be also characterized as follows:
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Lemma 3.13 Let (𝒰, U , V , W , Z) be a CSP complete dual system of metric f-structures, ℳ a 
V-normed U-module and 𝒩 a Z-normed U-module. Then it holds that 

|T| = sup{|Tv| ∣ v ∈ ℳ, |v| ≤ 1}, for every T ∈ Hom(ℳ, 𝒩). (23)

Proof. On the one hand, |Tv| ≤ |T||v| ≤ |T| for all v ∈ ℳ with |v| ≤ 1, and thus the 
right-hand side in (23) exists and defines an element b ∈ W + with b ≤ |T|. On the other 
hand, we claim that 

|Tv| ≤ b|v|, for every v ∈ ℳ. (24)

In order to prove it, fix any v ∈ ℳ. By using Lemma 3.10 and Proposition 3.6, we can find a 
partition (un)n∈ℕ of 𝜒{v≠0} and a sequence (wn)n∈ℕ ⊂ U+ such that un|v| ∈ U  and 
unwn|v| = un for every n ∈ ℕ. Letting vn := (unwn) ⋅ v ∈ ℳ, we have |vn| = un ≤ 1 and thus 
|Tvn| ≤ b. Then 

|Tv| = ∑
n∈ℕ

(unwn|v|)|Tv| = ∑
n∈ℕ

|v||Tvn| ≤ ∑
n∈ℕ

unb|v| = b|v|.

This proves (24) and accordingly that b = |T|, thus concluding the proof of the statement.

Given a dual system of metric f -structures (𝒰, U , V , W , Z), a V -Banach U-module ℳ and a Z-
Banach U-module 𝒩, we define the kernel of a homomorphism T ∈ Hom(ℳ, 𝒩) as 

ker(T) := T−1({0}) = {v ∈ ℳ | Tv = 0}.

It can be readily checked that ker(T) is a V -Banach U-submodule of ℳ.
It is natural to introduce the categories of normed modules and of Banach modules:

Definition 3.14 (Category of normed modules) Let (𝒰, U , V ) be a metric f -structure. Then 
we define the category NormMod(𝒰,U ,V ) of normed modules over (𝒰, U , V ) as follows:

(i) The objects of NormMod(𝒰,U ,V ) are given by the V -normed U-modules.
(ii) For any two objects ℳ and 𝒩 of NormMod(𝒰,U ,V ), the morphisms between ℳ and 

𝒩 are given by those homomorphisms T ∈ Hom(ℳ, 𝒩) satisfying |Tv| ≤ |v| for 
every v ∈ ℳ.

Moreover, we denote by BanMod(𝒰,U ,V ) the full subcategory of NormMod(𝒰,U ,V ) whose 
objects are the V -Banach U-modules.

It would be interesting—but outside the scope of this work—to investigate which results of [36] 
are valid for Banach modules over a more general class of metric f -structures.

Let us also define the dual of a Banach module:

Definition 3.15 (Dual Banach module) Let (𝒰, U , V , W , Z) be a complete dual system of 
metric f -structures, and ℳ a V -normed U-module. Then the dual of ℳ is the W -Banach 
U-module 

ℳ* := Hom(ℳ, Z).

The duality pairing between ℳ and ℳ* is given by 

ℳ* × ℳ ∋ (𝜔, v) ↦ ⟨𝜔, v⟩ := 𝜔(v) ∈ Z.
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3.2.1. On the existence of homomorphisms
As we will see later (in Section 4.2), when working with normed modules over a function space, one 
often has to prove the existence of homomorphisms of normed modules verifying suitable properties. 
All these existence statements can be deduced from the following general result.

Theorem 3.16 Let (𝒰1, U1, V1) be a metric f-structure, and (𝒰2, U2, V2, W2, Z2) a dual system of 
metric f-structures. Let 𝜙 : (𝒰1, U1, V1) → (𝒰2, U2, V2) be a homomorphism of metric 
f-structures. Let ℳ be a V1-normed U1-module, and 𝒩 a Z2-Banach U2-module. Let 𝒱 be a 
vector subspace of ℳ such that 𝒢(𝒱) is dense in ℳ. Fix T : 𝒱 → 𝒩 linear such that for some 
b ∈ W +

2  it holds 

|Tv| ≤ b𝜙(|v|), for every v ∈ 𝒱. (25)

Then there exists a unique linear operator T̄ : ℳ → 𝒩 such that T̄|𝒱 = T and 

|T̄v| ≤ b𝜙(|v|), for every v ∈ ℳ. (26)

In particular, the map T̄ : ℳ → 𝒩 is continuous. Moreover, it holds that 

T̄(u ⋅ v) = 𝜙(u) ⋅ T̄(v), for every u ∈ U1 and v ∈ ℳ. (27)

Proof. First of all, we define the operator S : 𝒢(𝒱) → 𝒩 as 

S(∑
n∈ℕ

un ⋅ vn) := ∑
n∈ℕ

𝜙(un) ⋅ Tvn, for every ∑
n∈ℕ

un ⋅ vn ∈ 𝒢(𝒱).

Let us check that S is well-defined. Letting z ∈ V +
1  be an upper bound for (un|vn|)n∈ℕ, we 

infer from (25) that |𝜙(un) ⋅ Tvn| = 𝜙(un)|Tvn| ≤ b𝜙(un|vn|) ≤ b𝜙(z) ∈ Z+
2  for every 

n ∈ ℕ. Given that (𝜙(un))n∈ℕ ∈ 𝒫(U2) by (10), we deduce that 
(𝜙(un), Tvn)n∈ℕ ∈ Adm(𝒩) and thus accordingly ∑n∈ℕ𝜙(un) ⋅ Tvn ∈ 𝒩 is well-defined. 
Also, if ∑n∈ℕ un ⋅ vn = ∑m∈ℕ ũm ⋅ ṽm, then 

∣𝜙(unũm) ⋅ Tvn − 𝜙(unũm) ⋅ Tṽm∣ = 𝜙(unũm)∣T(vn − ṽm)∣
(25)
≤ b𝜙(unũm|vn − ṽm|)

= b𝜙(∣(unũm) ⋅ vn − (unũm) ⋅ ṽm∣) = 0

holds for every n, m ∈ ℕ, which implies that ∑n∈ℕ𝜙(un) ⋅ vn = ∑m∈ℕ𝜙(ũm) ⋅ ṽm. All in all, 
the definition of S is well-posed. Observe that S is linear by construction. Moreover, one has 
that 

|Sw| = ∑
n∈ℕ

𝜙(un)|Tvn|
(25)
≤ b∑

n∈ℕ
𝜙(un)𝜙(|vn|) = b𝜙(|w|), ∀w = ∑

n∈ℕ
un ⋅ vn ∈ 𝒢(𝒱). (28)

Notice that S is the unique linear map from 𝒢(𝒱) to 𝒩 satisfying both S|𝒱 = T and (28). It 
also follows from (28) that the map S is Cauchy-continuous: if a given sequence 
(wi)i∈ℕ ⊂ 𝒢(𝒱) is dℳ-Cauchy, then dV2

(𝜙(|wi − wj|), 0) → 0 as i, j → ∞, and thus 

lim
i,j→∞

dZ2
(|Swi − Swj|, 0)

(28)
≤ lim

i,j→∞
dZ2

(b𝜙(|wi − wj|), 0) = 0,

which shows that (Swi)i∈ℕ is d𝒩-Cauchy. Therefore, S can be uniquely extended to a linear, 
continuous map T̄ : ℳ → 𝒩. Thanks to an approximation argument, we can deduce from 
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26 • D. LUČIĆ AND E. PASQUALETTO

(28) that T̄ verifies (26), whence the continuity of T̄ immediately follows. Finally, we can 
estimate 

∣T̄(u ⋅ v) − 𝜙(u) ⋅ T̄(v)∣ ≤ ∣T̄(u ⋅ v) − 𝜙(u) ⋅ T̄(u ⋅ v)∣ + ∣𝜙(u) ⋅ T̄(u ⋅ v) − 𝜙(u) ⋅ T̄(v)∣

= (1 − 𝜙(u))|T̄(u ⋅ v)| + 𝜙(u)|T̄(u ⋅ v − v)|
≤ b𝜙(1 − u)𝜙(|u ⋅ v|) + b𝜙(u)𝜙(|u ⋅ v − v|)

= 2b𝜙(u(1 − u)|v|) = 0,

for every v ∈ ℳ and u ∈ Idem(U1), proving (27) when u is idempotent. By linearity, we 
deduce that (27) holds whenever u ∈ 𝒮(U1). Thanks to the density of 𝒮(U1) in U1, as well 
as to the continuity of T̄, 𝜙 and the scalar multiplications, we conclude that (27) is verified.

Let us isolate a useful byproduct of the last part of the proof of Theorem 3.16:

Lemma 3.17 Let (𝒰1, U1, V1) be a metric f-structure, and (𝒰2, U2, V2, W2, Z2) a dual system of 
metric f-structures. Let 𝜙 : (𝒰1, U1, V1) → (𝒰2, U2, V2) be a homomorphism of metric 
f-structures. Let ℳ be a V1-normed U1-module, and 𝒩 a Z2-normed U2-module. Let T : ℳ → 𝒩
be a linear operator having the following property: there exists an element b ∈ W +

2  such that 

|Tv| ≤ b𝜙(|v|), for every v ∈ ℳ. (29)

Then T is a continuous operator satisfying T(u ⋅ v) = 𝜙(u) ⋅ T(v) for every u ∈ U1 and v ∈ ℳ.

As an immediate consequence of Lemma 3.17, we obtain a criterion to detect homomorphisms:

Corollary 3.18 Let (𝒰, U , V , W , Z) be a dual system of metric f -structures, ℳ a V -normed 
U-module and 𝒩 a Z-normed U-module. Let T : ℳ → 𝒩 be a linear operator such that 

|Tv| ≤ w|v|, for every v ∈ ℳ,

for some w ∈ W +. Then T is U-linear and continuous, and thus in particular 
T ∈ Hom(ℳ, 𝒩).

Proof. Apply Lemma 3.17 with (𝒰1, U1, V1) := (𝒰, U , V ), 
(𝒰2, U2, V2, W2, Z2) := (𝒰, U , V , W , Z) and 𝜙 := id𝒰.

3.3. Constructions of normed modules
3.3.1. Banach module induced by an even sublinear map

We fix some terminology. Consider a vector space 𝒱, a Riesz space U and a map 𝜓 : 𝒱 → U+. Then 
we say that 𝜓 is positively homogeneous if 𝜓(𝜆v) = 𝜆𝜓(v) for every v ∈ 𝒱 and 𝜆 ∈ ℝ+, while we say 
that 𝜓 is subadditive if 𝜓(v +w) ≤ 𝜓(v) + 𝜓(w) for every v,w ∈ 𝒱. The map 𝜓 is said to be sublinear
provided that it is both positively homogeneous and subadditive. Finally, we say that the map 𝜓 is even
provided that it satisfies 𝜓(−v) = 𝜓(v) for every v ∈ 𝒱.

Theorem 3.19 (Banach module generated by an even sublinear map)  Let (𝒰, U , V ) be a 
metric f-structure. Let 𝒱 be a vector space, and 𝜓 : 𝒱 → V + an even, sublinear mapping. Then 
there exists a unique couple (ℳ⟨𝜓⟩, T⟨𝜓⟩)—where ℳ⟨𝜓⟩ is a V-Banach U-module and the 
operator T⟨𝜓⟩ : 𝒱 → ℳ⟨𝜓⟩ is linear—such that the following properties are verified:

(i) |T⟨𝜓⟩v| = 𝜓(v) for every v ∈ 𝒱.
(ii) 𝒢(T⟨𝜓⟩(𝒱)) is dense in ℳ⟨𝜓⟩.
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 27

Uniqueness is up to unique isomorphism: given another couple (ℳ, T) with the same 
properties, there exists a unique isomorphism of V-Banach U-modules Φ : ℳ⟨𝜓⟩ → ℳ such that

is a commutative diagram.

Proof. Existence. Let us denote by ℱ̄ the family of all sequences (un,vn)n∈ℕ such that 
(un)n∈ℕ ∈ 𝒫(1U ), (vn)n∈ℕ ⊂ 𝒱 and (un𝜓(vn))n∈ℕ are order-bounded in V. We introduce a 
relation ~ on the set ℱ̄ : given any (un,vn)n, (ũm, ṽm)m ∈ ℱ̄, we declare that 
(un,vn)n ∼ (ũm, ṽm)m if and only if 

unũm𝜓(vn − ṽm) = 0, for every n, m ∈ ℕ.

One can readily check that ~ is an equivalence relation on ℱ̄ : reflexivity follows from 
𝜓(0) = 0, symmetry from the symmetry of 𝜓 and transitivity from the subadditivity of 𝜓. 
We then define 

ℱ := ℱ̄/ ∼ .

For any (un,vn)n ∈ ℱ̄, we denote by [un,vn]n ∈ ℱ̄ its equivalence class with respect to ~. We 
set 

[un,vn]n + [ũm, ṽm]m := [unũm,vn + ṽm]n,m, ∀[un,vn]n, [ũm, ṽm]m ∈ ℱ,

u ⋅ [ũm, ṽm]m := [uiũm,𝜆iṽm]i,m, ∀u =
n

∑
i=1

𝜆iui ∈ 𝒮(U), [ũm, ṽm]m ∈ ℱ,

∣[un,vn]n∣ := sup
n∈ℕ

un𝜓(vn), ∀[un,vn]n ∈ ℱ.

Routine verifications show the well-posedness of the resulting operations 

+ : ℱ×ℱ → ℱ, ⋅ : 𝒮(U) ×ℱ → ℱ, | ⋅ | : ℱ → V +. (30)

We also define the map T̃ : 𝒱 → ℱ as T̃(v) := [1U ,v] for all v ∈ 𝒱 and the distance dℱ on 
ℱ as 

dℱ(w, w̃) := dV (|w − w̃|, 0), for every w, w̃ ∈ ℱ.

Next we denote by (ℳ⟨𝜓⟩,dℳ⟨𝜓⟩
) the metric completion of (ℱ,dℱ) and by 𝜄 : ℱ → ℳ⟨𝜓⟩

the canonical isometric embedding map. Define also T⟨𝜓⟩ : 𝒱 → ℳ⟨𝜓⟩ as T⟨𝜓⟩ := 𝜄 ∘ T̃. 
With a slight abuse of notation, we regard ℱ as a subset of ℳ⟨𝜓⟩. Standard verifications show 
that the operations in (30) are Cauchy-continuous, so they can be uniquely extended to 
continuous maps 

+ : ℳ⟨𝜓⟩ × ℳ⟨𝜓⟩ → ℳ⟨𝜓⟩, ⋅ : U × ℳ⟨𝜓⟩ → ℳ⟨𝜓⟩, | ⋅ | : ℳ⟨𝜓⟩ → V +.

By an approximation argument, one can show that ℳ⟨𝜓⟩ is a U-module, | ⋅ | : ℳ⟨𝜓⟩ → V +

verifies the V -pointwise norm axioms and 

dℳ⟨𝜓⟩
(w, w̃) := dV (|w − w̃|, 0), for every w, w̃ ∈ ℳ⟨𝜓⟩.
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28 • D. LUČIĆ AND E. PASQUALETTO

In order to prove that ℳ⟨𝜓⟩ is a V -Banach U-module, it only remains to check the validity of 
the gluing property. Fix any (un)n∈ℕ ∈ 𝒫(1U ) and (wn)n∈ℕ ⊂ ℳ⟨𝜓⟩ such that (un|wn|)n∈ℕ
is order-bounded in V. In view of Definition 2.23 v), for any k ∈ ℕ we can find (wk

n)n∈ℕ ⊂ ℱ
such that (un|wn − wk

n|)n∈ℕ is order-bounded in V —thus (un|wk
n|)n∈ℕ is order-bounded in 

V —and 

∑
n∈ℕ

dV (un|wn − wk
n|, 0) ≤ 1

2k
, dV (sup

n∈ℕ
un|wn − wk

n|, 0) ≤ 1
2k

.

Writing wk
n in the form [ũk

n,j,v
k
n,j]j, we define the element zk ∈ ℱ as zk := [unũk

n,j,v
k
n,j]n,j. Then 

dℳ⟨𝜓⟩
(zk, zk+1) = dV (|zk − zk+1|, 0) = dV (sup

n∈ℕ
um|wk

n − wk+1
n |, 0)

≤ dV (sup
n∈ℕ

um|wk
n − wn|, 0) +dV (sup

n∈ℕ
um|wn − wk+1

n |, 0) ≤ 3
2k+1

,

for every k ∈ ℕ. This implies that (zk)k∈ℕ is a Cauchy sequence in (ℳ⟨𝜓⟩,dℳ⟨𝜓⟩
), so that it 

converges to some element z ∈ ℳ⟨𝜓⟩. For any n ∈ ℕ, we deduce that 

dℳ⟨𝜓⟩
(un ⋅ z, un ⋅ wn) = lim

k→∞
dℳ⟨𝜓⟩

(un ⋅ zk, un ⋅ wn) = lim
k→∞

dV (un|wn − wk
n|, 0) ≤ lim

k→∞

1
2k

= 0,

so that un ⋅ z = un ⋅ wn. This shows that z = ∑n∈ℕ un ⋅ wn, and thus the gluing property is 
proved.

To conclude, let us check that (ℳ⟨𝜓⟩, T⟨𝜓⟩) verifies (i) and (ii). The mapping T⟨𝜓⟩ is 
linear and satisfies |T⟨𝜓⟩v| = |[1,v]| = 𝜓(v) for every v ∈ 𝒱, so that (i) is proved. Finally, 
𝒢(T⟨𝜓⟩(𝒱)) = ℱ and ∑n∈ℕ un ⋅ T⟨𝜓⟩vn = [un,vn]n for all [un,vn]n ∈ ℱ. Being ℱ dense in 
ℳ⟨𝜓⟩, (ii) is also proved.

Uniqueness. It is a consequence of Corollary 3.22. Indeed, initial objects are colimits (of 
empty diagrams), and thus in particular they are unique up to a unique isomorphism (cf. 
with [35]).

Proposition 3.20 Let (𝒰1, U1, V1) be a metric f-structure, and let (𝒰2, U2, V2, W2, Z2) be a dual 
system of metric f-structures. Let 𝜙 : (𝒰1, U1, V1) → (𝒰2, U2, V2) be a homomorphism of metric 
f-structures. Let 𝒱 be a vector space, and 𝜓 : 𝒱 → V +

1  an even, sublinear mapping. Let 𝒩 be a 
Z2-Banach U2-module. Let S : 𝒱 → 𝒩 be a linear map such that for some b ∈ W +

2  it holds 

|Sv| ≤ b (𝜙 ∘ 𝜓)(v), for every v ∈ 𝒱.

Then there exists a unique linear operator Φ : ℳ⟨𝜓⟩ → 𝒩 such that Φ ∘ T⟨𝜓⟩ = S and 

|Φv| ≤ b𝜙(|v|), for every v ∈ ℳ⟨𝜓⟩.

In particular, the map Φ : ℳ⟨𝜓⟩ → 𝒩 is continuous. Moreover, it holds that 

Φ(u ⋅ v) = 𝜙(u) ⋅ Φ(v), for every u ∈ U1and v ∈ ℳ⟨𝜓⟩.

Proof. Since T⟨𝜓⟩ is linear, we have that 𝒲 := T⟨𝜓⟩(𝒱) is a vector subspace of ℳ⟨𝜓⟩. Item (ii) of 
Theorem 3.19 ensures that 𝒢(𝒲) is dense in ℳ⟨𝜓⟩. Moreover, let us define T : 𝒲 → 𝒩 as 

T(T⟨𝜓⟩v) := Sv, for every v ∈ 𝒱.
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 29

Since |Sv| ≤ b (𝜙 ∘ 𝜓)(v) = b𝜙(|T⟨𝜓⟩v|) by item (i) of Theorem 3.19, we deduce that T is 
well-defined. Notice also that T is linear and satisfies |Tv| ≤ b𝜙(|v|) for every v ∈ 𝒲. 
Therefore, the statement follows from Theorem 3.16 applied to the operator T.

Corollary 3.21 Let (𝒰, U , V ) be a metric f -structure. Let 𝒱 be a vector space, and 
𝜓 : 𝒱 → V + an even, sublinear mapping. Let 𝒩 be a V -Banach U-module, and S : 𝒱 → 𝒩 a 
linear operator such that |Sv| ≤ 𝜓(v) for every v ∈ 𝒱. Let (ℳ⟨𝜓⟩, T⟨𝜓⟩) be as in 
Theorem 3.19. Then there exists a unique homomorphism of V -Banach U-modules 
Φ : ℳ⟨𝜓⟩ → 𝒩 with Φ ∘ T⟨𝜓⟩ = S. Moreover, it holds that |Φv| ≤ |v| for every v ∈ ℳ⟨𝜓⟩.

Proof. Use Proposition 3.20 with (𝒰1, U1, V1) := (𝒰, U , V ), 
(𝒰2, U2, V2, W2, Z2) := (𝒰, U , V , U , V ), 𝜙 := id𝒰 and b := 1U .

Next, we aim to interpret the couple (ℳ⟨𝜓⟩, T⟨𝜓⟩) given by Theorem 3.19 in categorical terms. 
Given (𝒰, U , V ), 𝒱 and 𝜓 as in Theorem 3.19, we denote by C𝜓 the category defined as follows:

(i) The objects of C𝜓 are the couples (ℳ, T), with ℳ being a V -Banach U-module and T : 𝒱 →
ℳ a linear map satisfying |Tv| ≤ 𝜓(v) for every v ∈ 𝒱.

(ii) The morphisms between two objects (ℳ1, T1) and (ℳ2, T2) of C𝜓 are given by those mor-
phisms Φ : ℳ1 → ℳ2 in the category BanMod(𝒰,U ,V ) for which

is a commutative diagram.

Corollary 3.22 Let (𝒰, U , V ) be a metric f -structure. Let 𝒱 be a vector space, and 
𝜓 : 𝒱 → V + an even, sublinear mapping. Then (ℳ⟨𝜓⟩, T⟨𝜓⟩) is the initial object of the 
category C𝜓, meaning that for any object (ℳ, T) of C𝜓 there exists a unique morphism 
Φ : (ℳ⟨𝜓⟩, T⟨𝜓⟩) → (ℳ, T).

Proof. Let (ℳ, T) be an arbitrary object of C𝜓. Then Corollary 3.21 ensures that there exists a 
unique morphism Φ : (ℳ⟨𝜓⟩, T⟨𝜓⟩) → (ℳ, T) in C𝜓 such that Φ ∘ T⟨𝜓⟩ = T, as desired.

3.3.2. Pushforward of a normed module
As a consequence of Theorem 3.19, we can prove that each homomorphism of metric f -structures 
induces a ‘pushforward functor’ between the respective categories of Banach modules:

Theorem 3.23 (Pushforward of a normed module)  Let (𝒰1, U1, V1) and (𝒰2, U2, V2) be 
metric f-structures. Let 𝜙 : 𝒰1 → 𝒰2 be a homomorphism of metric f-structures. Let ℳ be a 
V1-normed U1-module. Then there exists a unique couple (𝜙*ℳ,𝜙*)—where 𝜙*ℳ is a 
V2-Banach U2-module and the operator 𝜙* : ℳ → 𝜙*ℳ is linear—such that the following 
properties are verified:

(i) |𝜙*v| = 𝜙(|v|) for every v ∈ ℳ.
(ii) 𝒢(𝜙*(ℳ)) is dense in 𝜙*ℳ.

Uniqueness is up to unique isomorphism: given another couple (𝒩, T) with the same properties, 
there exists a unique isomorphism of V2-Banach U2-modules Φ : 𝜙*ℳ → 𝒩 such that
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30 • D. LUČIĆ AND E. PASQUALETTO

is a commutative diagram.

Proof. Define 𝜓 : ℳ → V +
2  as 𝜓(v) := 𝜙(|v|) for every v ∈ ℳ. Notice that 𝜓 is even and 

sublinear, and thus it makes sense to consider the V 2-Banach U2-module 𝜙*ℳ := ℳ⟨𝜓⟩ and 
the linear operator 𝜙* := T⟨𝜓⟩ : ℳ → 𝜙*ℳ. Observe that |𝜙*v| = 𝜓(v) = 𝜙(|v|) for every 
v ∈ ℳ, which shows (i), while (ii) is only a rephrasing of Theorem 3.19 (ii). This proves the 
existence part of the statement. Finally, the uniqueness part follows from the uniqueness 
stated in Theorem 3.19.

Proposition 3.24 Let (𝒰1, U1, V1) be a metric f-structure, and let (𝒰2, U2, V2, W2, Z2) be a dual 
system of metric f-structures. Let 𝜙 : (𝒰1, U1, V1) → (𝒰2, U2, V2) be a homomorphism of metric 
f-structures. Fix a V1-normed U1-module ℳ and a Z2-Banach U2-module 𝒩. Let T : ℳ → 𝒩 be 
a linear operator such that there exists an element b ∈ W +

2  satisfying 

|Tv| ≤ b𝜙(|v|), for every v ∈ ℳ. (31)

Then there exists a unique homomorphism T̂ ∈ Hom(𝜙*ℳ, 𝒩) such that 

T̂(𝜙*v) = Tv, for every v ∈ ℳ. (32)

Moreover, it holds that |T̂w| ≤ b|w| for every w ∈ 𝜙*ℳ.

Proof. Recall from (the proof of) Theorem 3.23 that, letting 𝜓 : ℳ → V +
2  be 𝜓(v) := 𝜙(|v|), it 

holds (𝜙*ℳ,𝜙*) ≅ (ℳ⟨𝜓⟩, T⟨𝜓⟩). The statement then follows from Proposition 3.20.

Corollary 3.25 Let (𝒰1, U1, V1), (𝒰2, U2, V2) be metric f -structures, and 𝜙 : 𝒰1 → 𝒰2 a 
homomorphism of metric f -structures. Let ℳ, 𝒩 be V 1-normed U1-modules. Let 
T ∈ Hom(ℳ, 𝒩) be given. Then there exists a unique homomorphism 
𝜙*T ∈ Hom(𝜙*ℳ,𝜙*𝒩) such that

is a commutative diagram. Moreover, if both U1 and U2 are Dedekind complete, then it 
holds that 

|𝜙*T| ≤ 𝜙(|T|).

Proof. Define T̃ := 𝜙* ∘ T : ℳ → 𝜙*𝒩. Let w ∈ U+
1  such that |Tv| ≤ w|v| for every v ∈ ℳ, 

|T̃v| = |𝜙*(Tv)| = 𝜙(|Tv|) ≤ 𝜙(w|v|) = 𝜙(w)𝜙(|v|), for every v ∈ ℳ. (33)

Therefore, the existence and the uniqueness of 𝜙*T follow from Proposition 3.24 applied to 
T̃. Finally, suppose that U1 and U2 are Dedekind complete. Then we can choose w := |T| in 
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 31

(33), so that we have |(𝜙*T)w| ≤ 𝜙(|T|)|w| for every w ∈ 𝜙*ℳ, whence it follows that 
|𝜙*T| ≤ 𝜙(|T|).

Combining Theorem 3.23 and Corollary 3.25, any homomorphism 
𝜙 : (𝒰1, U1, V1) → (𝒰2, U2, V2) induces a functor 

𝜙* : BanMod(𝒰1,U1,V1) → BanMod(𝒰2,U2,V2).

We point out that, even though we chose the term ‘pushforward’ by analogy with [20, Section 1.6], 
from the categorical perspective the correct term would be the direct image functor.

Remark 3.26 Let (𝒰1, U1, V1, V1, Z1), (𝒰2, U2, V2, V2, Z2) be dual systems of metric 
f -structures. Let 𝜙 : 𝒰1 → 𝒰2 be a homomorphism of dual systems. Let ℋ be a V 1-Hilbert 
U1-module. Then 

𝜙*ℋ, is a V2-Hilbert U2-module, (34a)

𝜙*v ⋅ 𝜙*w = 𝜙(v ⋅ w), for every v, w ∈ ℋ. (34b)

To prove (34a), notice that Theorem 3.23 (i) implies that the elements of 𝒢(𝜙*(ℋ))—thus 
all the elements of 𝜙*ℋ, thanks to Theorem 3.23 (ii)—satisfy the pointwise parallelogram 
law. Also, 

𝜙*v ⋅ 𝜙*w = 1
2

(|𝜙*(v + w)|2 − |𝜙*v|2 − |𝜙*w|2) = 𝜙(1
2

(|v + w|2 − |v|2 − |w|2)) = 𝜙(v ⋅ w)

hold for every v, w ∈ ℋ, which shows that (34b) is verified.

Theorem 3.27 Let (𝒰1, U1, V1, W1, Z1) and (𝒰2, U2, V2, W2, Z2) be CSP complete dual systems 
of metric f-structures. Let 𝜙 : 𝒰1 → 𝒰2 be a homomorphism of dual systems. Let ℳ be a 
V1-Banach U1-module. Then there exists a unique homomorphism I𝜙 ∈ Hom(𝜙*ℳ*, (𝜙*ℳ)*)
such that 

⟨I𝜙(𝜙*𝜔),𝜙*v⟩ = 𝜙(⟨𝜔, v⟩), for every 𝜔 ∈ ℳ*and v ∈ ℳ. (35)

Moreover, it holds that 

|I𝜙(𝜂)| = |𝜂|, for every 𝜂 ∈ 𝜙*ℳ*. (36)

Proof. Given any 𝜔 ∈ ℳ*, we define the operator ̃i𝜙(𝜔) : ℳ → Z2 as 

ĩ𝜙(𝜔)v := 𝜙(⟨𝜔, v⟩), for every v ∈ ℳ.

Note that ̃i𝜙(𝜔) is linear and satisfies |̃i𝜙(𝜔)v| ≤ 𝜙(|𝜔|)𝜙(|v|) for all v ∈ ℳ. Hence, we 
know from Proposition 3.24 that there is a unique element i𝜙(𝜔) ∈ (𝜙*ℳ)* such that 
|i𝜙(𝜔)| ≤ 𝜙(|𝜔|) and 

⟨i𝜙(𝜔),𝜙*v⟩ = ĩ𝜙(𝜔)v = 𝜙(⟨𝜔, v⟩), for every v ∈ ℳ.

Since the resulting operator i𝜙 : ℳ* → (𝜙*ℳ)* is linear, by applying Proposition 3.24 again 
we deduce that there exists a unique I𝜙 ∈ Hom(𝜙*ℳ*, (𝜙*ℳ)*) with |I𝜙| ≤ 1 such that 
(35) holds.
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It remains to check (36). Thanks to Proposition 3.4 (i) and Theorem 3.23 (ii), it suffices 
to prove (36) for 𝜂 ∈ 𝒢(𝜙*(ℳ*)), say 𝜂 = ∑n∈ℕ un ⋅ 𝜙*𝜔n with (un)n ∈ 𝒫(1U2

) and 
(𝜔n)n ⊂ ℳ*. Given any n ∈ ℕ, we deduce from Lemma 3.13 that 
|𝜔n| = sup{⟨𝜔n, v⟩ : v ∈ ℳ, |v| ≤ 1}, so we can pick a sequence (vi

n)i∈ℕ ⊂ ℳ such that 
|vi

n| ≤ 1 for all i ∈ ℕ and |𝜔n| = supi⟨𝜔n, vi
n⟩. Then 

𝜙(|𝜔n|) = |𝜙*𝜔n| = sup
i∈ℕ

𝜙(⟨𝜔n, vi
n⟩)

(23)
= sup

i∈ℕ
⟨I𝜙(𝜙*𝜔n),𝜙*vi

n⟩. (37)

Multiplying by un and summing over n, we deduce (using Lemma 3.13 again and |𝜙*vi
n| ≤ 1 ) 

that 

|𝜂| = ∑
n∈ℕ

un|𝜙*𝜔n|
(37)
= ∑

n∈ℕ
un sup

i∈ℕ
⟨I𝜙(𝜙*𝜔n),𝜙*vi

n⟩ = ∑
n∈ℕ

sup
i∈ℕ

⟨un ⋅ I𝜙(𝜙*𝜔n),𝜙*vi
n⟩

= ∑
n∈ℕ

sup
i∈ℕ

⟨I𝜙(un ⋅ 𝜂),𝜙*vi
n⟩ ≤ ∑

n∈ℕ
|I𝜙(un ⋅ 𝜂)| = ∑

n∈ℕ
un|I𝜙(𝜂)| = |I𝜙(𝜂)|.

Since |I𝜙| ≤ 1 yields the converse inequality |I𝜙(𝜂)| ≤ |𝜂|, the statement is finally achieved.

3.3.3. Completion of a normed module
It follows from Theorem 3.23 that each V -normed U-module can be ‘completed’ to a V -Banach U-
module, and much like the metric, completion of a normed space has a Banach space structure:

Theorem 3.28 (Completion of a normed module)  Let (𝒰, U , V ) be a metric f-structure, and 
let ℳ be a V-normed U-module. Then there exists a unique couple (ℳ̄, 𝜄) such that ℳ̄ is a 
V-Banach U-module and 𝜄 : ℳ → ℳ̄ is a U-linear map with a dense range satisfying |𝜄v| = |v|
for every v ∈ ℳ. Uniqueness is up to unique isomorphism: given another couple (ℳ̃, 𝜄) with the 
same properties, there is a unique isomorphism Φ : ℳ̄ → ℳ̃ of V-Banach U-modules such that

is a commutative diagram. We say that the couple (ℳ̄, 𝜄), or just ℳ̄, is the completion of ℳ.
Moreover, if ℳ, 𝒩 are V-normed U-modules and T ∈ Hom(ℳ, 𝒩) is given, then there exists a 

unique homomorphism T̄ ∈ Hom(ℳ̄, 𝒩) such that T̄|ℳ = T, where we regard ℳ and 𝒩 as 
subsets of ℳ̄ and 𝒩, respectively. If in addition U is Dedekind complete, then it holds |T̄| = |T|.

Proof. The identity mapping id𝒰 : 𝒰 → 𝒰 is a homomorphism of metric f -structures from 
(𝒰, U , V ) to itself, and thus we can define ℳ̄ := (id𝒰)*ℳ and 𝜄 := (id𝒰)* : ℳ → ℳ̄. By 
Theorem 3.23, to prove the first part of the statement amounts to showing that 𝜄 is U-linear 
and that 𝜄(ℳ) is dense in ℳ̄. The former property follows from Corollary 3.18. About the 
latter, recall that 𝒢(𝜄(ℳ)) is dense in ℳ̄, and thus it only remains to show that 
𝜄(ℳ) = 𝒢(𝜄(ℳ)). The inclusion 𝜄(ℳ) ⊂ 𝒢(𝜄(ℳ)) is trivial. Conversely, fix 
w = ∑n∈ℕ un ⋅ 𝜄vn ∈ 𝒢(𝜄(ℳ)). Since (un, 𝜄vn)n∈ℕ ∈ Adm(ℳ̄), we have that 
(un, vn)n∈ℕ ∈ Adm(ℳ), and thus it makes sense to consider v := ∑n∈ℕ un ⋅ vn ∈ ℳ. We 
claim that 𝜄v = w, whence it follows that w ∈ 𝜄(ℳ) and thus 𝒢(𝜄(ℳ)) ⊂ 𝜄(ℳ). Given that 

un ⋅ 𝜄v = 𝜄(un ⋅ v) = 𝜄(un ⋅ vn) = un ⋅ 𝜄vn = un ⋅ w, for every n ∈ ℕ,

we deduce from Lemma 3.2 that 𝜄v = w. Therefore, the first part of the statement is proved.
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About the second part of the statement, observe that T̄ := (id𝒰)*T ∈ Hom(ℳ̄, 𝒩) is the 
unique homomorphism extending T. Note also that if ū ∈ U+ satisfies |Tv| ≤ ū|v| for all 
v ∈ ℳ, then |T̄v| ≤ ū|v| for every v ∈ ℳ̄ by approximation. Finally, borrowing the notation 
from the proof of Theorem 3.12 (see (20)), we get that ℱT = ℱT̄ , so that (assuming that U is 
Dedekind complete) we conclude that |T̄| = |T|.

3.4. Hahn–Banach extension theorem
The aim of this section is to obtain a normed module version of the Hahn–Banach extension theorem 
as well as to investigate some of its basic consequences.

Let (𝒰, U , V ) be a metric f -structure, and ℳ a module over U. Then we say that a given map 
p : ℳ → V + is U-sublinear if it is subadditive (that is, p(v + w) ≤ p(v) + p(w) for every v, w ∈ ℳ ) 
and positively U-homogeneous, which means that p(u ⋅ v) = u p(v) for all u ∈ U+ and v ∈ ℳ.

Lemma 3.29 (One-dimensional dominated extension)  Let (𝒰, U , V ) be a Dedekind complete 
CSP metric f-structure, ℳ a V-normed U-module and 𝒩 ⊊ ℳ a V-normed U-submodule of ℳ. 
Fix any z ∈ ℳ such that u ⋅ z ∉ 𝒩 for every u ∈ Idem(U)\{0}, with u ≤ 𝜒{z≠0}. Let 
f : 𝒩 → V  be a U-linear map, and p : ℳ → V + a U-sublinear map with f ≤ p on 𝒩. Define 
𝒩+z := 𝒩 + U ⋅ z. Then there exists a U-linear map f̄ : 𝒩+z → V  with f̄ |𝒩 = f  such that f̄ ≤ p on 
𝒩+z.

Proof. Given any v, w ∈ 𝒩, we can estimate 

f (v) − f (w) = f (v − w) ≤ p(v − w) = p(v + z − (w + z)) ≤ p(v + z) + p(−w − z),

whence it follows that −p(−w − z) − f (w) ≤ p(v + z) − f (v) for every v, w ∈ 𝒩. Substituting 
w = 0, we obtain that p(z) ≤ p(v + z) − f (v) for every v ∈ 𝒩, and thus the Dedekind 
completeness of V  ensures that b := inf{p(v + z) − f (v) : v ∈ 𝒩} ∈ V  exists. Then we have 
that 

−p(−w − z) − f (w) ≤ b ≤ p(v + z) − f (v), for every v, w ∈ 𝒩. (38)

Substituting v = w = 0 in (38) and multiplying by 𝜒{z=0}, we deduce that 𝜒{z=0} ⋅ b = 0, so 
that 

𝜒{z=0} ≤ 𝜒{b=0}. (39)

Next we claim that for any v, ṽ ∈ 𝒩 and u, ũ ∈ U  it holds that 

v + u ⋅ z = ṽ + ũ ⋅ z ⟹ v = ṽ and u ⋅ b = ũ ⋅ b. (40)

To prove it, suppose that (u − ũ) ⋅ z = ṽ − v. Pick a partition (un)n∈ℕ of 𝜒{u≠ũ} and 
(wn)n∈ℕ ⊂ U  such that un(u − ũ)wn = un for every n ∈ ℕ. Multiplying (u − ũ) ⋅ z = ṽ − v by 
unwn, we obtain 

un ⋅ z = (un(u − ũ)wn) ⋅ z = (unwn) ⋅ (ṽ − v) ∈ 𝒩, for every n ∈ ℕ.

Hence, the gluing property of 𝒩 ensures that 𝜒{u≠ũ} ⋅ z ∈ 𝒩, and thus accordingly 
𝜒{u≠ũ} ≤ 𝜒{z=0}. This implies that ṽ − v = u ⋅ z − ũ ⋅ z = 0 and (recalling (39)) that 
u ⋅ b = ũ ⋅ b, proving (40). Therefore, the map f̄ : 𝒩+z → V  defined as follows is well-posed: 

f̄ (v + u ⋅ z) := f (v) + u ⋅ b, for every v ∈ 𝒩and u ∈ U .

It is immediate to check that f̄  is a U-linear extension of f. It only remains to show that f̄ ≤ p
on 𝒩+z. To this aim, fix v ∈ 𝒩 and u ∈ U\{0}. Pick a partition (un)n∈ℕ of {u > 0}, a 
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partition (ũn)n∈ℕ of {u < 0} and (wn)n∈ℕ, (w̃n)n∈ℕ ⊂ U+ such that unu+wn = un and 
ũnu−w̃n = ũn for all n ∈ ℕ. It follows from (38) that p(wn ⋅ v + z) − f (wn ⋅ v) ≥ b and 
−p(w̃n ⋅ v − z) + f (w̃n ⋅ v) ≤ b. Multiplying by unu+ and ũnu−, respectively, we obtain 
un ⋅ (f (v) + u ⋅ b) ≤ un ⋅ p(v + u ⋅ z) and 

ũn ⋅ (f (v) + u ⋅ b) = ũn ⋅ (f (v) − u− ⋅ b) ≤ ũn ⋅ p(v − u− ⋅ z) = ũn ⋅ p(v + u ⋅ z),

respectively. Using the gluing property, we conclude that 
f̄ (v + u ⋅ z) = f (v) + u ⋅ b ≤ p(v + u ⋅ z).

Theorem 3.30 (Hahn–Banach theorem for normed modules)  Let (𝒰, U , V ) be a Dedekind 
complete CSP metric f-structure. Let ℳ be a V-normed U-module, and let 𝒩 ⊊ ℳ be a V-normed 
U-submodule of ℳ. Let f : 𝒩 → V  be a U-linear map, and p : ℳ → V + a U-sublinear map 
with f ≤ p on 𝒩. Then there exists a U-linear map f̄ : ℳ → V  such that f̄ |𝒩 = f  such that f̄ ≤ p
on ℳ.

Proof. Let us denote by ℱ the family of all couples (𝒬, g), where 𝒬 is a V -normed 
U-submodule of ℳ containing 𝒩 and g : 𝒬 → V  is a U-linear extension of f  satisfying q ≤ p
on 𝒬. Clearly ℱ is non-empty, as it contains (𝒩, f ). We endow ℱ with the partial order ⪯
defined as follows: given (𝒬, g), (𝒬̃, g̃) ∈ ℱ, we declare that (𝒬, g) ⪯ (𝒬̃, g̃) provided 𝒬 ⊂ 𝒬̃
and g̃|𝒬 = g. It is easy to check that any totally ordered subset 𝒞 of (ℱ,⪯) has an upper 
bound, namely, (𝒬, g0), where 𝒬0 := ⋃(𝒬,g)∈ℱ𝒬 and g0 : 𝒬0 → V  is given by g0(v) := g(v)
for every (𝒬, g) ∈ ℱ with v ∈ 𝒬. Hence, an application of Zorn’s lemma yields the existence 
of a maximal element (𝒩0, f0) of (ℱ,⪯). In order to conclude, we aim to show that 𝒩0 = ℳ. 
We argue by contradiction: suppose that ℳ\𝒩0 ≠ ∅. Fix any z̃ ∈ ℳ\𝒩0. The fact that U is 
Dedekind complete and CSP ensures that 

∃q := sup{u ∈ Idem(U) ∣ u ⋅ z̃ ∈ 𝒩0} ∈ Idem(U).

Moreover, the gluing property implies that q ⋅ z̃ ∈ 𝒩0. Then we define z := (1 − q) ⋅ z̃ ∈ ℳ. 
Observe that u ⋅ z ∉ 𝒩0 holds for every u ∈ Idem(U)\{0}, with u ≤ 1 − q = 𝜒{z≠0}. 
Therefore, Lemma 3.29 yields the existence of a map f̄ : 𝒩0 + U ⋅ z → V  such that 
(𝒩0 + U ⋅ z, f̄ ) ∈ ℱ and (𝒩0, f0) ⪯ (𝒩0 + U ⋅ z, f̄ ), which leads to a contradiction with the 
maximality of (𝒩0, f0).

Corollary 3.31 Let (𝒰, U , V , W , Z) be a CSP complete dual system of metric f -structures. 
Let ℳ be a V -Banach U-module. Let v ∈ ℳ satisfy |v| ∈ Z ∩ U  and 𝜒{v≠0} ∈ W . Then 
there exists an element 𝜔 ∈ ℳ* such that ⟨𝜔, v⟩ = |v| and |𝜔| = 𝜒{v≠0}.

Proof. Notice that U ⋅ v is a V -Banach U-submodule of ℳ. We define the map T : U ⋅ v → Z as 

T(u ⋅ v) := u|v|, for every u ∈ U .

Clearly, T is well-posed and U-linear. Moreover, we have |T(u ⋅ v)| = 𝜒{v≠0}|u ⋅ v| for every 
u ∈ U , and thus T ∈ Hom(U ⋅ v, Z) and |T| ≤ 𝜒{v≠0}. Now let us define p : ℳ → Z+ as 
p(w) := 𝜒{v≠0}|w| for every w ∈ ℳ. It can be readily checked that p is U-sublinear. Since 
T ≤ p on U ⋅ v, an application of Theorem 3.30 yields a U-linear map 𝜔 : ℳ → Z satisfying 
𝜔|U⋅v = T and 𝜔 ≤ p on ℳ. The latter gives |𝜔(w)| ≤ 𝜒{v≠0}|w| for every w ∈ ℳ, which 
shows that 𝜔 ∈ ℳ* and |𝜔| ≤ 𝜒{v≠0}. Notice also that ⟨𝜔, v⟩ = |v| by construction. 
Therefore, in order to conclude it suffices to check that |𝜔| ≥ 𝜒{v≠0}. To this aim, pick a 
partition (un)n∈ℕ of {v ≠ 0} and a sequence (wn)n∈ℕ ⊂ U+ such that unwn|v| = un holds for 
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every n ∈ ℕ. Now fix any g ∈ W + satisfying |⟨𝜔, w⟩| ≤ g|w| for every w ∈ ℳ. Then for any 
n ∈ ℕ we can estimate 

ung = unwn|v|g = g|(unwn) ⋅ v| ≥ |⟨𝜔, (unwn) ⋅ v⟩| = unwn|v| = un,

which implies that g ≥ 𝜒{v≠0} thanks to the arbitrariness of n ∈ ℕ. The statement is 
achieved.

3.4.1. Reflexive Banach modules
Let (𝒰, U , V , W , Z) be a complete dual system of metric f -structures, and let ℳ be a V -Banach U-
module. Then we denote the bidual of ℳ by ℳ** := (ℳ*)*. Here, we are considering the dual of 
ℳ* with respect to the dual system (𝒰, U , W , V , Z) (recall Remark 2.27), so that ℳ** is a V -Banach 
U-module.

Definition 3.32 (Embedding into the bidual) Let (𝒰, U , V , W , Z) be a complete dual 
system of metric f -structures. Let ℳ be a V -Banach U-module. Then we define 
Jℳ : ℳ → ℳ** as 

⟨Jℳ(v),𝜔⟩ := ⟨𝜔, v⟩, for every v ∈ ℳand 𝜔 ∈ ℳ*.

Notice that the map ℳ × ℳ* ∋ (v,𝜔) ↦ ⟨Jℳ(v),𝜔⟩ ∈ Z is U-bilinear. Moreover, one has 

|⟨Jℳ(v),𝜔⟩| ≤ |𝜔||v|, for every v ∈ ℳand 𝜔 ∈ ℳ*.

It follows that Jℳ(v) ∈ ℳ** for every v ∈ ℳ, Jℳ ∈ Hom(ℳ, ℳ**) and |Jℳ| ≤ 1. Under suitable 
assumptions, the homomorphism Jℳ actually preserves the pointwise norm:

Proposition 3.33 Let (𝒰, U , V , W , Z) be a CSP complete dual system of metric f-structures. 
Suppose that S(V ) ≤ S(W ). Let ℳ be a V-Banach U-module. Then it holds that

∣Jℳ(v)∣ = |v|, for every v ∈ ℳ.

Proof. Let v ∈ ℳ be fixed. We aim to show that |Jℳ(v)| ≥ |v|. In view of Remark 3.8, we know 
that S(V ) ≤ S(Z). Hence, applying Lemma 3.10 we obtain a partition (un)n∈ℕ of {v ≠ 0}
such that un|v| ∈ Z ∩ U  and 𝜒{un⋅v≠0} ∈ W  for every n ∈ ℕ. Using Corollary 3.31, we can 
find a sequence (𝜔n)n∈ℕ ⊂ ℳ* such that ⟨𝜔n, un ⋅ v⟩ = un|v| and |𝜔n| = 𝜒{un⋅v≠0} for all 
n ∈ ℕ. Then 

un⟨Jℳ(v),𝜔n⟩ = ⟨𝜔n, un ⋅ v⟩ = un|v| = un|𝜔n||v|, for every n ∈ ℕ.

This implies that un|Jℳ(v)| ≥ un|v| for every n ∈ ℕ, whence it follows that |Jℳ(v)| ≥ |v|.

In view of Proposition 3.33, it is then natural to give the following definition of reflexivity:

Definition 3.34 (Reflexive Banach module) Let (𝒰, U , V , W , Z) be a CSP complete dual 
system of metric f -structures. Suppose that S(V ) = S(W ). Then we say that a V -Banach 
U-module ℳ is reflexive provided that the embedding operator Jℳ : ℳ → ℳ** is surjective.
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3.5. Hilbert modules
In this section we investigate the properties of Hilbert modules. Among others, we will prove a 
Cauchy–Schwarz inequality (Lemma 3.35) and a Riesz-representation-type result (Theorem 3.38), 
we will study orthogonal projections (Theorem 3.36 and Proposition 3.37) and we will show that 
Hilbert modules are reflexive (Proposition 3.39).

Let (𝒰, U , V , V , Z) be a dual system of metric f -structures, and ℋ a V -Hilbert U-module. Then 

v ⋅ w = 1
4

|v + w|2 − 1
4

|v − w|2, for every v, w ∈ ℋ. (41)

Indeed, recalling the definition of the pointwise parallelogram law, we obtain that 

1
4

|v + w|2 = 1
4

|v|2 + 1
4

|w|2 + 1
2

v ⋅ w,

1
4

|v − w|2 = 1
4

|v|2 + 1
4

|w|2 − 1
2

v ⋅ w.

Subtracting the second identity from the first one, we get (41).

Lemma 3.35 (Cauchy–Schwarz inequality)  Let (𝒰, U , V , V , Z) be a dual system of metric 
f-structures, and ℋ a V-Hilbert U-module. Then 

|v ⋅ w| ≤ |v||w|, for every v, w ∈ ℋ. (42)

Proof. Using (41) and the fact that |v| − |w| ≤ |v + w| ≤ |v| + |w|, we obtain that 

v ⋅ w = 1
4

|v + w|2 − 1
4

|v − w|2 ≤ 1
4

((|v| + |w|)2 − (|v| − |w|)2)

= 1
4

(|v|2 + |w|2 + 2|v||w| − |v|2 − |w|2 + 2|v||w|) = |v||w|.

We also have that −(v ⋅ w) = (−v) ⋅ w ≤ | − v||w| = |v||w|. Therefore, (eq: CS) is proved.

Given a V -Hilbert U-module ℋ and a V -Hilbert U-submodule 𝒩 of ℋ, we define the orthogonal 
complement of 𝒩 in ℋ as 

𝒩 ⟂ := {v ∈ ℋ ∣ v ⋅ w = 0,  for every w ∈ 𝒩}.

One can readily check that 𝒩 ⟂ is a V -Hilbert U-submodule of ℋ.

Theorem 3.36 (Hilbert projection theorem for Hilbert modules)  Let (𝒰, U , V , V , Z) be a 
CSP complete dual system of metric f-structures. Let ℋ be a V-Hilbert U-module satisfying 

dℋ(v, 0)2 ≤ dZ(|v|2, 0), for every v ∈ ℋ. (43)

Let C ≠ ∅ be a closed, convex subset of ℋ such that 𝒢(C) = C. Let v ∈ ℋ be fixed. We define 

|v − C| := inf{|v − w| ∣ w ∈ C} ∈ V +, dℋ(v, C) := inf{dℋ(v, w) ∣ w ∈ C} ∈ ℝ+.

Then it holds that 

dV (|v − C|, 0) = dℋ(v, C). (44)

Moreover, there exists a unique PC(v) ∈ C, the orthogonal projection of v onto C, such that 

|v − C| = |v − PC(v)|.
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 37

Proof. Applying Lemma 3.9, we can find an element h ∈ V + such that h ≤ 1 and 
𝜒{h=0}V = {0}. By our assumptions, there exists a sequence (w̃k)k∈ℕ ⊂ C such that 
|v − C| = infk∈ℕ |v − w̃k|. One can readily check that for any n ∈ ℕ there exists a partition 
(un

k)k∈ℕ of 𝜒{h≠0} such that 

un
k|v − C| ≤ un

k|v − w̃k| ≤ un
k(|v − C| + 1

n
h), for every k ∈ ℕ.

In particular, it holds (un
k, w̃k)k∈ℕ ∈ Adm(ℋ), and thus it makes sense to set 

𝜔n := ∑k∈ℕ un
k ⋅ w̃k ∈ ℋ. Given that C is closed under the gluing operation, we have that 

(wn)n∈ℕ ⊂ C. Notice also that 

|v − C| ≤ |v − wn| ≤ |v − C| + 1
n

h, for every n ∈ ℕ. (45)

Since limndV (n−1h, 0) = 0, we deduce from (45) that limndV (|v − C|, |v − wn|) = 0, and 
thus 

dℋ(v, C) ≤ lim
n→∞

dℋ(v, wn) = lim
n→∞

dV (|v − wn|, 0) = dV (|v − C|, 0).

On the other hand, we have |v − C| ≤ |v − w|, and thus dV (|v − C|, 0) ≤ dℋ(v, w), for every 
w ∈ C. By taking the infimum over w ∈ C, we get dV (|v − C|, 0) ≤ dℋ(v, C). All in all, (44) 
is proved.

The Hilbertianity of ℋ and the convexity of C ensure that for any n, m ∈ ℕ it holds that 

|wn − wm|2 = 2|v − wn|2 + 2|v − wm|2 − 4∣v −
wn + wm

2
∣

2

≤ 2|v − wn|2 + 2|v − wm|2 − 4|v − C|2

(45)
≤ 2( 1

n2 + 1
m2 )h2 + 4(1

n
+ 1

m
)|v − C|h,

(46)

whence it follows that dV (|wn − wm|, 0) ≤ √dZ(|wn − wm|2, 0) → 0 as n, m → ∞. Hence, 
(wn)n∈ℕ is a Cauchy sequence in ℋ, and thus limndℋ(wn, w̄) = 0 holds for some w̄ ∈ C. In 
particular, we have that dV (|v − C|, |v − w̄|) = limndV (|v − C|, |v − wn|) = 0, so that 
|v − C| = |v − w̄|. To prove that w̄ is the unique element of C with this property, fix any w̃ ∈ C
with |v − w̃| = |v − C|. Then 

0 ≤ |w̃ − w̄|2 = 2|v − w̃|2 + 2|v − w̄|2 − 4∣v − w̃ + w̄
2

∣
2

≤ 2|v − C|2 + 2|v − C|2 − 4|v − C|2 = 0,

which forces the identity w̃ = w̄. All in all, the statement is finally achieved.

The choice of the terminology ‘orthogonal projection’ is justified by the following result:

Proposition 3.37 Let (𝒰, U , V , V , Z) be a CSP complete dual system of metric f-structures. Let 
ℋ be a V-Hilbert U-module satisfying (43). Let 𝒩 be a V-Hilbert U-submodule of ℋ. Then:

(i) v − P𝒩(v) ∈ 𝒩 ⟂ for every v ∈ ℋ.
(ii) It holds that 𝒩 ⊕ 𝒩 ⟂.

(iii) The map P𝒩 : ℋ → 𝒩 belongs to Hom(ℋ, 𝒩).
(iv) v = P𝒩(v) + P𝒩 ⟂(v) and |v|2 = |P𝒩(v)|2 + |P𝒩 ⟂(v)|2 for every v ∈ ℋ.
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38 • D. LUČIĆ AND E. PASQUALETTO

Proof. Fix w ∈ 𝒩. Denote w̄ := P𝒩(v). Pick a partition (un)n∈ℕ of 1U  such that 
un(v − w̄) ⋅ w ∈ U  for every n ∈ ℕ. Since w̄ − u ⋅ w ∈ 𝒩 for every u ∈ U , we have that 
|v − w̄| ≤ |v − w̄ + u ⋅ w|, and thus 

|v − w̄|2 ≤ |v − w̄ + u ⋅ w|2 = |v − w̄|2 + u|w|2 − 2u(v − w̄) ⋅ w. (47)

Fix any n ∈ ℕ and 𝜀 ∈ ℝ with 𝜀 > 0. Substituting u = −𝜀un(v − w̄) ⋅ w into (47), multiplying 
both sides by 𝜀−1un and rearranging the various terms, we obtain that 

2un|(v − w̄) ⋅ w|2 ≤ 𝜀un|(v − w̄) ⋅ w|2|w|2.

Letting 𝜀 ↘ 0, we get un|(v − w̄) ⋅ w| = 0 for every n ∈ ℕ, and thus v − w̄ ∈ 𝒩 ⟂. Then (i) is 
proved.

To prove (ii), we aim to show that 𝒩 + 𝒩 ⟂ = ℋ and 𝒩 ∩ 𝒩 ⟂ = {0}. For the former, just 
observe that any v ∈ ℋ can be written as (v − P𝒩(v)) + P𝒩(v), where v − P𝒩(v) ∈ 𝒩 ⟂ by (i) 
and P𝒩(v) ∈ 𝒩. For the latter, note that if v ∈ 𝒩 ∩ 𝒩 ⟂, then |v|2 = v ⋅ v = 0 and thus v = 0.

Let us now pass to the verification of (iii). Given any v, w ∈ ℋ, we deduce from (i) that 

(v + w − P𝒩(v + w))⏟⏟⏟⏟⏟⏟⏟
∈𝒩 ⟂

+ P𝒩(v + w)⏟
∈𝒩

= v + w = (v − P𝒩(v) + w − P𝒩(w))⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈𝒩 ⟂

+ P𝒩(v) + P𝒩(w)⏟⏟⏟⏟⏟
∈𝒩

,

and thus accordingly (ii) implies that P𝒩(v + w) = P𝒩(v) + P𝒩(w). Similarly, for any element 
u ∈ U  we have that (u ⋅ v − P𝒩(u ⋅ v)) + P𝒩(u ⋅ v) = u ⋅ v = u ⋅ (v − P𝒩(v)) + u ⋅ P𝒩(v), which 
forces the identity P𝒩(u ⋅ v) = u ⋅ P𝒩(v). All in all, we showed that P𝒩 is a U-linear map. We 
also have that |v|2 = |v − P𝒩(v)|2 + |P𝒩(v)|2 ≥ |P𝒩(v)|2 for every v ∈ ℋ, and thus 
P𝒩 ∈ Hom(ℋ, 𝒩).

Finally, we prove (iv). Given any w ∈ 𝒩 ⟂, we have that |w − v|2 = |w|2 + |v|2 for every 
v ∈ 𝒩 and thus |w − 𝒩|2 = |w|2, which implies that P𝒩(w) = 0. Using also (iii), we deduce 
that 

∣v − (v − P𝒩(v))∣2 = ∣P𝒩(v)∣2 = ∣P𝒩(v) − P𝒩(w)∣2 = ∣P𝒩(v − w)∣2 ≤ |v − w|2

for every v ∈ ℋ. Hence, ∣v − (v − P𝒩(v))∣ = |v − 𝒩 ⟂|, which implies P𝒩 ⟂(v) = v − P𝒩(v). In 
particular, one has |v|2 = ∣P𝒩(v) + P𝒩 ⟂(v)∣2 = |P𝒩(v)|2 + |P𝒩 ⟂(v)|2, so (iv) is also proved.

Theorem 3.38 (Riesz representation theorem for Hilbert modules)  Let (𝒰, U , V , V , Z) be a 
CSP complete dual system of metric f-structures. Let ℋ be a V-Hilbert U-module satisfying (43). 
We define the operator Rℋ : ℋ → ℋ * as 

⟨Rℋ(w), v⟩ := v ⋅ w, for every v, w ∈ ℋ.

Then Rℋ is an isomorphism of V-Banach U-modules, ℋ * is a V-Hilbert U-module and 

Rℋ(v) ⋅ Rℋ(w) = v ⋅ w, for every v, w ∈ ℋ. (48)

Proof. The properties of the pointwise scalar product and the Cauchy–Schwartz inequality 
ensure that Rℋ(w) ∈ ℋ * and |Rℋ(w)| ≤ |w| for all w ∈ ℋ. Then Rℋ ∈ Hom(ℋ, ℋ *) and 
|Rℋ| ≤ 1 (recall Example 2.26). To conclude, it remains to prove that Rℋ is surjective and 
that it holds that |Rℋ(w)| ≥ |w| for every v ∈ ℋ. To this aim, fix any 𝜂 ∈ ℋ *\{0}. We know 
that ker(𝜂) is a V -Banach U-submodule of ℋ with ker(𝜂) ≠ ℋ, so that there exists 
w̃ ∈ ker(𝜂)⟂\{0}. We can find a partition (un)n∈ℕ of 𝜒{w̃≠0} and a sequence (an)n∈ℕ ⊂ U+

such that un|w̃|, un⟨𝜂, w̃⟩ ∈ U  and unan|w̃| = un for every n ∈ ℕ. Then we define 
wn := (un⟨𝜂, w̃⟩a2

n) ⋅ w̃ ∈ ℋ for every n ∈ ℕ. Notice that |wn| = unan|⟨𝜂, w̃⟩| and 
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 39

⟨𝜂, wn⟩ = |wn|2. In particular, |wn| ≤ un|𝜂| for all n ∈ ℕ, and thus it makes sense to define 
w := ∑n∈ℕ un ⋅ wn ∈ ℋ. It holds that |w| ≤ |𝜂| and ⟨𝜂, w⟩ = |w|2. Pick a partition (ũk)k∈ℕ of 
𝜒{w≠0} and (bk)k∈ℕ ⊂ U+ such that ũk|w|2 ∈ U  and ũkbk|w|2 = ũk for every k ∈ ℕ. Given 
any element v ∈ ℋ, we have that for every k ∈ ℕ it holds that 

ũk ⋅ (v ⋅ w) = (ũk ⋅ v − (ũk⟨𝜂, v⟩bk) ⋅ w) ⋅ w + ũk⟨𝜂, v⟩bk|w|2. (49)

Observe that ũk ⋅ v − (ũk⟨𝜂, v⟩bk) ⋅ w ∈ ker(𝜂), as a consequence of the following 
computation: 

⟨𝜂, ũk ⋅ v − (ũk⟨𝜂, v⟩bk) ⋅ w⟩ = ũk⟨𝜂, v⟩ − ũk⟨𝜂, v⟩bk⟨𝜂, w⟩ = ũk⟨𝜂, v⟩ − ũk⟨𝜂, v⟩bk|w|2 = 0.

It holds w ∈ ker(𝜂)⟂, whence it follows that (ũk ⋅ v − (ũk⟨𝜂, v⟩bk) ⋅ w) ⋅ w = 0, and thus (49) 
yields 

ũk ⋅ (v ⋅ w) = ũk⟨𝜂, v⟩bk|w|2 = ũk⟨𝜂, v⟩.

 Thanks to the arbitrariness of k ∈ ℕ, we finally conclude that ⟨𝜂, v⟩ = v ⋅ w for every v ∈ ℋ, 
which means that 𝜂 = Rℋ(w) and |Rℋ(w)| = |𝜂| ≥ |w|. This completes the proof.

Proposition 3.39 Let (𝒰, U , V , V , Z) be a CSP complete dual system of metric f-structures. Let 
ℋ be a V-Hilbert U-module satisfying (43). Then it holds that ℋ is reflexive.

Proof. Given any v ∈ ℋ and 𝜔 ∈ ℋ *, we have that 

⟨Rℋ *(Rℋ(v)),𝜔⟩ = 𝜔 ⋅ Rℋ(v) = Rℋ(R−1
ℋ (𝜔)) ⋅ Rℋ(v)

(48)
= R−1

ℋ (𝜔) ⋅ v

= ⟨Rℋ(R−1
ℋ (𝜔)), v⟩ = ⟨𝜔, v⟩ = ⟨Jℋ(v),𝜔⟩.

This shows that Jℋ = Rℋ * ∘ Rℋ. Since both Rℋ and Rℋ *  are surjective by Theorem 3.38, we 
conclude that Jℋ is surjective, and thus ℋ is reflexive, yielding the sought conclusion.

Proposition Let (𝒰1, U1, V1, V1, Z1), (𝒰2, U2, V2, V2, Z2) be CSP complete dual systems of 
metric f-structures. Let 𝜙 : 𝒰1 → 𝒰2 be a homomorphism of dual systems. Let ℋ be a V1-Hilbert 
U1-module satisfying (43). Then I𝜙 : 𝜙*ℋ * → (𝜙*ℋ)* is an isomorphism of V2-Banach 
U2-modules.

Proof. By Theorem 3.27, it suffices to check that I𝜙 : 𝜙*ℋ * → (𝜙*ℋ)* is invertible. Recall from 
Remark 3.26 that 𝜙*ℋ is a V 2-Hilbert U2-module and 𝜙*v ⋅ 𝜙*w = 𝜙(v ⋅ w) for all v, w ∈ ℋ. 
Then 

⟨(I𝜙 ∘ 𝜙* ∘ Rℋ)(v),𝜙*w⟩ = 𝜙(⟨Rℋ(v), w⟩) = 𝜙(v ⋅ w) = 𝜙*v ⋅ 𝜙*w = ⟨(R𝜙*ℋ ∘ 𝜙*)(v),𝜙*w⟩

for every v, w ∈ ℋ. Moreover, 𝜙* ∘ Rℋ : ℋ → 𝜙*ℋ * is linear and satisfies ∣𝜙*(Rℋ(v))∣ = |v|
for every v ∈ ℋ, and thus Proposition 3.24 gives an element T ∈ Hom(𝜙*ℋ,𝜙*ℋ *) such 
that

is a commutative diagram. Hence, I𝜙 is invertible and I−1
𝜙 = T ∘ R−1

𝜙*ℋ
, concluding the 

proof.
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40 • D. LUČIĆ AND E. PASQUALETTO

3.6. Dimensional decomposition
Given a commutative ring R and a non-empty subset S of an R-module M, we denote by ⟨S⟩R  the 
R-submodule of M generated (in the algebraic sense) by S. Namely, we define 

⟨S⟩R = {
n

∑
i=1

ri ⋅ vi ∣ n ∈ ℕ, (ri)
n
i=1 ⊂ R, (vi)

n
i=1 ⊂ S}.

Definition 3.41 (Independence, generators, local basis) Let (𝒰, U , V ) be a metric 
f -structure, and ℳ a V -Banach U-module. Let v1,… , vn ∈ ℳ and u ∈ Idem(U) be given. 
Then we say that

(i) v1,… , vn are independent of  u if for any u1,… , un ∈ U  it holds that 
n

∑
i=1

(uui) ⋅ vi = 0 ⟺ uui = 0,  for every i = 1,… , n.

(ii) v1,… , vn generate ℳ on u provided 𝒢(⟨u ⋅ S⟩U ) = u ⋅ ℳ, where S := {v1,… , vn}.
(iii) v1,… , vn form a local basis of  ℳ on u provided that they are independent of u and 

they generate ℳ on u.

For brevity, in the case where u = 1U  we do not specify ‘on 1U ’ in the above terminology.

In order to provide a well-defined notion of local dimension, we first need to show that two local 
bases on the same idempotent element must have the same cardinality:

Lemma 3.42 Let (𝒰, U , V ) be a Dedekind complete CSP metric f-structure, and ℳ a V-Banach 
U-module. Let v1,… , vn ∈ ℳ and w1,… , wm ∈ ℳ be local bases of ℳ on u ∈ Idem(U). Then it 
holds that n = m.

Proof. Observe that it suffices to check that if v1,… , vn generate ℳ on u and w1,… , wm are 
independent of u, then n ≥ m. Moreover, thanks to a finite induction argument, it is enough 
to show that if k ≤ m and w1,… , wk−1, vk,… , vn generate ℳ on some u0 ∈ Idem(U)\{0}
with u0 ≤ u, then there exists u1 ∈ Idem(U)\{0} with u1 ≤ u0 such that 
w1,… , wk, vk+1,… , vn generate ℳ on u1 (up to reordering vk,… , vn ). First of all, we can find 
elements ũ ∈ Idem(U)\{0} with ũ ≤ u0 and ũ1,… , ũn ∈ U  such that 

ũ ⋅ wk =
k−1

∑
i=1

ũi ⋅ wi +
n

∑
i=k

ũi ⋅ vi. (50)

Since w1,… , wk are independent of ũ, it cannot happen that ũk = … = ũn = 0. Hence, until 
reordering vk,… , vn, we can assume that z := 𝜒{ũk≠0}ũ ≠ 0. Now take a partition (zj)j∈ℕ of z
and elements (z̃j)j∈ℕ ⊂ U  such that zj(ũkz̃j − 1) = 0 for every j ∈ ℕ. There exists j0 ∈ ℕ such 
that zj0

≠ 0, so that multiplying both sides of (50) by zj0
z̃j0

 we obtain that 

zj0
⋅ vk = (zj0

z̃j0
ũk) ⋅ vk = (zj0

z̃j0
) ⋅ wk −

k−1

∑
i=1

(zj0
z̃j0

ũi) ⋅ wi −
n

∑
i=k+1

(zj0
z̃j0

ũi) ⋅ vi.

This implies that, letting u1 := zj0
, it holds that w1,… , wk, vk+1,… , vn generate ℳ on u1.

In view of Lemma 3.42, the following definition is thus well-posed:

Definition 3.43 (Local dimension) Let (𝒰, U , V ) be a Dedekind complete CSP metric 
f -structure, and let ℳ be a V -Banach U-module. Then we say that ℳ has local dimension 
n ∈ ℕ on u ∈ Idem(U) if there exists a local basis v1,… , vn of ℳ on u.
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AN AXIOMATIC THEORY OF NORMED MODULES VIA RIESZ SPACES • 41

Finally, we can show that each Banach module admits a (unique) dimensional decomposition:

Theorem 3.44 (Dimensional decomposition)  Let (𝒰, U , V ) be a Dedekind complete CSP 
metric f-structure, and ℳ a V-Banach U-module. Then there exists a unique partition 
(Dn)n∈ℕ∪{∞} of 1U  such that

(i) ℳ has local dimension n on Dn, for every n ∈ ℕ.
(ii) Given any n ∈ ℕ and u ∈ Idem(U)\{0} such that u ≤ D∞, it holds that ℳ does not have local 

dimension n on u.

We say that (Dn)n∈ℕ∪{∞} ⊂ Idem(U) is the dimensional decomposition of ℳ.

Proof. Thanks to the countable representability assumption, it makes sense to define 

Dn := sup{u ∈ Idem(U) ∣ ℳ has local dimension n on u} ∈ Idem(U), for every n ∈ ℕ,

as well as D∞ := 1U − supn∈ℕDn ∈ Idem(U). We know from Lemma 3.42 that Dn and Dm
are disjoint whenever n, m ∈ ℕ and n ≠ m, and thus it follows that (Dn)n∈ℕ∪{∞} is a 
partition of 1U . In order to conclude, it suffices to check that ℳ has local dimension n on Dn
for every n ∈ ℕ. Using again the Dedekind completeness and CSP assumptions, we can 
construct a partition (uj)j∈ℕ of Dn such that ℳ has local dimension n on each uj. For any 
j ∈ ℕ, take a local basis vj

1,… , vj
n ∈ uj ⋅ ℳ of ℳ on uj. Thanks to Lemma 3.10 and until 

further refining the partition (uj)j∈ℕ, it is not restrictive to require also that |vj
i| ∈ U  for every 

i = 1,… , n and j ∈ ℕ. Fix an element h as in Lemma 3.9. The dependence of vj
1,… , vj

n on uj

ensures that 𝜒{|vj
i|>0} = uj for every i = 1,… , n, and thus we can find a partition (uj

i,k)k∈ℕ of uj

and (zj
i,k)k∈ℕ ⊂ U+ such that 

uj
i,k(zj

i,k|v
j
i| − 1) = 0, for every k ∈ ℕ.

Define vj
i,k := (uj

i,kzj
i,kh) ⋅ vj

i ∈ ℳ for every k ∈ ℕ. Since |vj
i,k| = uj

i,kzj
i,kh|vj

i| = uj
i,kh and (uj

i,k)j,k

is a partition of Dn, for any i = 1,… , n it holds that (uj
i,k, vj

i,k)j,k ∈ Adm(ℳ), and thus 

∃vi := ∑
j,k∈ℕ

uj
i,k ⋅ vj

i,k ∈ ℳ.

It is then easy to check that v1,… , vn is local basis of ℳ on Dn, whence the statement follows.

Remark 3.45 At the level of functional Banach modules (cf. with Section 4.2.4), a 
dimensional decomposition result has been first obtained in [31, Theorem 6.5] (see also 
Lemma 6.4 therein) and a similar result was provided later in [20, Proposition 1.4.5]. Taking 
into account [31, Theorem 3.7] together with Remark 4.8, it might be possible to obtain a 
version of Theorem 3.44 as a consequence of [31, Theorem 3.7].

4 . A P P L I C AT I O N S TO F U N CT I O N A L N O R M E D M O D U L E S
In Section 4.1 we introduce the various spaces of functions that are typically used in metric measure 
geometry. In Section 4.2 we explain the relation between the ‘functional’ Banach modules and the 
axiomatic Banach modules we introduced in this paper. In Section 4.3 we obtain a side result, which 
states that every localizable f -algebra can be in fact realized as a space of functions.
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42 • D. LUČIĆ AND E. PASQUALETTO

4.1. Function spaces
A measurable space (X,Σ) is a set X ≠ ∅ together with a 𝜎-algebra Σ. Whenever X is a topological 
space, we implicitly assume that Σ is the Borel 𝜎-algebra of X. We define 

ℒ0(Σ) := {f : X → ℝ ∣ f  is measurable}.

Then ℒ0(Σ) is an f -algebra if endowed with the following operations: for any f , g ∈ ℒ0(Σ), we set 

(f + g)(x) := f (x) + g(x), for every x ∈ X,

(𝜆f )(x) := 𝜆f (x), for every 𝜆 ∈ ℝ and x ∈ X,

f ≤ g, if and only if f (x) ≤ g(x)for every x ∈ X,

(fg)(x) := f (x)g(x), for every x ∈ X.

The space ℒ∞(Σ) of all bounded measurable real-valued functions on (X,Σ), which is given by 

ℒ∞(Σ) := {f ∈ ℒ0(Σ) ∣ ‖f ‖ℒ∞(Σ) := sup
x∈X

|f |(x) < +∞},

is an f -subalgebra of ℒ0(Σ). Moreover, (ℒ∞(Σ),‖ ⋅ ‖ℒ∞(Σ)) is a Banach space. Given any E ∈ Σ, we 
denote by 𝟙E ∈ ℒ∞(Σ) the characteristic function of E, which is defined as 

𝟙E(x) := { 1,
0,

if x ∈ E,
if x ∈ X\E.

The space Sf(Σ) ⊂ ℒ∞(Σ) of all simple functions on (X,Σ) is then defined in the following way: 

Sf(Σ) := {
n

∑
i=1

𝜆i𝟙Ei
∣ n ∈ ℕ, (𝜆i)

n
i=1 ⊂ ℝ, (Ei)

n
i=1 ⊂ Σ partition of X}.

Remark 4.1 (Density of simple functions) Given any f ∈ ℒ0(Σ)+, there exists 
(fn)n∈ℕ ⊂ Sf(Σ) such that 0 ≤ fn ≤ fn+1 for every n ∈ ℕ and f = supn∈ℕ fn. If in addition 
f ∈ ℒ∞(Σ), then the sequence (fn)n∈ℕ can also be chosen so that ‖f − fn‖ℒ∞(Σ) → 0, so 
that Sf(Σ) is dense in ℒ∞(Σ). For example, the functions 
fn := ∑n2n−1

i=0 i2−n𝟙{i2−n≤f <(i+1)2−n} ∈ ℒ∞(Σ)+ do the job.

It is immediate to verify that 

Idem(ℒ0(Σ)) = Idem(ℒ∞(Σ)) = {𝟙E | E ∈ Σ},

𝒮(ℒ0(Σ)) = 𝒮(ℒ∞(Σ)) = Sf(Σ).
(51)

It then follows from (51) and Remark 4.1 that ℒ0(Σ) and ℒ∞(Σ) are localizable f -algebras.

4.1.1. Enhanced measurable spaces
By an enhanced measurable space we mean a triple (X,Σ,𝒩), where (X,Σ) is a measurable space and 
𝒩 ⊂ Σ is a 𝜎-ideal, meaning that it verifies the following conditions:

(i) ∅ ∈ 𝒩.
(ii) If N ∈ 𝒩 and N′ ∈ Σ satisfy N′ ⊂ N , then N′ ∈ 𝒩.

(iii) ⋃n∈ℕNn ∈ 𝒩 for every countable family (Nn)n∈ℕ ⊂ 𝒩.
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The 𝜎-ideal 𝒩 induces an equivalence relation on ℒ0(Σ) : given any f , g ∈ ℒ0(Σ), we declare that 

f ∼𝒩 g ⟺ {f ≠ g} := {x ∈ X ∣ f (x) ≠ g(x)} ∈ 𝒩.

When f ∼𝒩 g, we say that f = g holds 𝒩-almost everywhere or 𝒩-a.e. for short. We define 

L0(𝒩) := ℒ0(Σ)/ ∼𝒩, L∞(𝒩) := ℒ∞(Σ)/ ∼𝒩 .

We denote by [f ]𝒩 ∈ L0(𝒩) the equivalence class of f ∈ ℒ0(Σ). For brevity, we set 

𝟙𝒩E := [𝟙E]𝒩, for every E ∈ Σ.

Passing to the quotient, L0(𝒩) and L∞(𝒩) inherit an f -algebra structure from ℒ0(Σ) and ℒ∞(Σ), 
respectively. Moreover, L∞(𝒩) becomes a Banach space if endowed with the quotient norm 

‖f ‖L∞(𝒩) := inf
f̄ ∈[f ]𝒩

‖f̄ ‖ℒ∞(Σ), for every f ∈ L∞(𝒩).

The map ℒ∞(Σ) ∋ f ↦ [f ]𝒩 ∈ L∞(𝒩) is linear 1-Lipschitz. Note that {∅} is a 𝜎-ideal of Σ and 

L0({∅}) = ℒ0(Σ), (L∞({∅}),‖ ⋅ ‖L∞({∅})) = (ℒ∞(Σ),‖ ⋅ ‖ℒ∞(Σ)).

Example 4.2 (of enhanced measurable space) Let (X,Σ) be a measurable space. Consider 
the restriction 𝜇 : Σ → [0, +∞] of an outer measure on X. Then the set 𝒩𝜇 of 𝜇-null sets, 
given by 

𝒩𝜇 := {N ∈ Σ ∣ 𝜇(N) = 0},

is a 𝜎-ideal, and thus (X,Σ,𝒩𝜇) is an enhanced measurable space. In this case, we abbreviate 
L0(𝒩𝜇) and L∞(𝒩𝜇) to L0(𝜇) and L∞(𝜇), respectively. Similarly for ∼𝜇, [⋅]𝜇, and 𝟙𝜇

E .

4.1.2. σ-Finite measure spaces
A measure space (X,Σ,𝜇) is a measurable space (X,Σ) together with a 𝜎-additive measure 𝜇. We 
assume that the measure 𝜇 is 𝜎-finite. Given any exponent p ∈ [1,∞), we define 

ℒp(𝜇) := {f ∈ ℒ0(Σ) ∣ ‖f ‖ℒp(𝜇) := ∫|f |p d𝜇 < +∞}.

It holds that ℒp(𝜇) is a vector subspace of ℒ0(Σ) and (ℒp(𝜇),‖ ⋅ ‖ℒp(𝜇)) is a complete seminormed 
space. The p-Lebesgue space (Lp(𝜇),‖ ⋅ ‖Lp(𝜇)) on (X,Σ,𝜇) is the Banach space defined as 

Lp(𝜇) := {[f ]𝜇 ∈ L0(𝜇) ∣ f ∈ ℒp(𝜇)} = ℒp(𝜇)/ ∼𝜇

together with the quotient norm ‖ ⋅ ‖Lp(𝜇), which is given as follows: for any f ∈ Lp(𝜇), one has 

‖f ‖Lp(𝜇) := ‖f̄ ‖ℒp(𝜇), for some (thus, for any) representative f̄ ∈ [f ]𝜇.

Observe that Lp(𝜇) is also a Riesz subspace of L0(𝜇) for every exponent p ∈ [1,∞).
We endow the space L0(𝜇) with the following distance: fix a finite measure 𝜇 on (X,Σ) such that 

𝜇 ≪ 𝜇 ≪ 𝜇, whose existence is guaranteed by the 𝜎-finiteness of 𝜇 ; then we define 

dL0(𝜇)(f , g) := ∫|f − g| ∧ 1 d𝜇 for every f , g ∈ L0(𝜇).

Whenever 𝜇 is finite already, we implicitly choose 𝜇 := 𝜇. The distance dL0(𝜇) is complete, and the 
inclusion Lp(𝜇) ↪ L0(𝜇) is continuous with a dense image for every p ∈ [1,∞]. Notice also that 
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the distance dL0(𝜇) is not canonical (since it depends on the chosen auxiliary measure 𝜇 ), but the 
induced topology is independent of the specific 𝜇. Given any (fn)n∈ℕ ⊂ L0(𝜇) and f ∈ L0(𝜇), it holds 
that limn→∞dL0(𝜇)(fn, f ) = 0 if and only if there exists a subsequence (fni

)i∈ℕ of (fn)n∈ℕ satisfying 
f (x) = limi→∞ fni

(x) for 𝜇-a.e. x ∈ X.
The following result is well-known:

Proposition 4.3 Let (X,Σ,𝜇) be a 𝜎-finite measure space. Then the space L0(𝜇) is Dedekind 
complete and CSP. In particular, Lp(𝜇) is Dedekind complete and CSP for every p ∈ [1,∞].

Proof. Thanks to [16, 241Y(e)] we know that L0(𝜇) is CSP, which implies that Lp(𝜇) is CSP 
for all p ∈ [1,∞]. The Dedekind completeness of L0(𝜇) (and thus of Lp(𝜇) for all 
p ∈ [1,∞] ) follows from [16, 211L(c), 211L(d) and 241G].

In fact, if p ∈ [1,∞), then Lp(𝜇) is Dedekind complete for any (possibly non- 𝜎-finite) measure 
space (X,Σ,𝜇) ; cf. with [16, 244L].

4.1.3. Submodular outer measures
Given a metric space (X,d), we denote by ℬ(X) its Borel 𝜎-algebra. If 𝜇 is an outer measure on the 
set X, then we say that:

• 𝜇 is boundedly finite if 𝜇(B) < +∞ whenever B ∈ ℬ(X) is bounded.
• 𝜇 is submodular (see, for example, [12, p. 16]) if it verifies 

𝜇(E ∪ F) + 𝜇(E ∩ F) ≤ 𝜇(E) + 𝜇(F) for every E, F ∈ ℬ(X).

The integral of a Borel function f : X → [0, +∞] with respect to an outer measure 𝜇 on X can be 
defined via Cavalieri’s formula, in the following way: 

∫
E

f d𝜇 := ∫
+∞

0
𝜇({x ∈ E : f (x) > t})dt for every E ∈ ℬ(X).

Observe that the above integral is well-defined because [0, +∞) ∋ t ↦ 𝜇({x ∈ E : f (x) > t}) is a 
non-increasing function. As proved in [12, Chapter 6] (see also [11, Theorem 1.5]), a given outer 
measure 𝜇 is submodular if and only if the associated integral is subadditive, meaning that 

∫
X

f + g d𝜇 ≤ ∫
X

f d𝜇 + ∫
X

g d𝜇 for every f , g : X → [0, +∞]Borel.

Two classes of boundedly finite, submodular outer measures are particularly relevant to us:

• The outer measure induced (via Carathéodory construction) by a boundedly finite Borel measure 
on X.

• The Sobolev p-capacity Capp on a metric measure space, see, for example, [32].

Given any boundedly finite, submodular outer measure 𝜇 on (X,d), we introduce a distance dL0(𝜇) as 
follows: we fix an increasing sequence (Bn)n of bounded open subsets of X with the property that each 
bounded subset B of X is contained in Bn for some n ∈ ℕ, and we define 

dL0(𝜇)(f , g) := ∑
n∈ℕ

1
2n(𝜇(Bn) ∨ 1)

∫
Bn

|f − g| ∧ 1 d𝜇 for every f , g ∈ L0(𝜇).
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The submodularity of 𝜇 guarantees that dL0(𝜇) is a distance. Arguing as in [12, Proposition 1.10], one 
can see that (fi)i∈ℕ ⊂ L0(𝜇) satisfies dL0(𝜇)(fi, f ) → 0 for some f ∈ L0(𝜇) if and only if 

lim
i→∞

𝜇(B ∩ {|fi − f | > 𝜀}) = 0 for every 𝜀 > 0 and B ∈ ℬ(X) bounded.

In particular, arguing as in [11, Proposition 1.12] one can see that if dL0(𝜇)(fi, f ) → 0, then there 
exists a subsequence (ij)j∈ℕ ⊂ ℕ such that f (x) = limj fij

(x) holds for 𝜇-a.e. x ∈ X. The converse 
implication—different from what happens with boundedly finite Borel measures—might fail (see, for 
example, [11, Remark 1.13]).

Example 4.4 Consider the real line ℝ equipped with the Sobolev 2-capacity Cap2. Since all 
singletons have positive capacity, we have 𝒩Cap2

= {∅}, and thus L0(Cap2) = ℒ0(ℬ(ℝ)). 
Then 

L0(Cap2) is neither Dedekind complete nor CSP.

Indeed, the set {𝟙{t} : t ∈ ℝ} ⊂ L0(Cap2) has an upper bound and supt∈ℝ 𝟙{t} = 𝟙ℝ, but 
whenever C ⊂ ℝ is a countable set we have supt∈C 𝟙{t} = 𝟙C ≠ 𝟙ℝ. Also, since L0(Cap2) is 
the space of ( Cap2-a.e. equivalence classes of) Borel functions from ℝ to ℝ, we have that 
L0(Cap2) is not even Dedekind complete: given any Q ⊂ ℝ that is not Borel, we have that 
{𝟙{t} : t ∈ Q } has an upper bound, but does not admit a supremum (which ought to be 𝟙Q ) 
in L0(Cap2).

4.2. Normed modules over function spaces
4.2.1. Examples of metric f-algebras

Some examples of metric f -algebras:

• Let (X,Σ,𝒩) be an enhanced measurable space. Then (L∞(𝒩),‖ ⋅ ‖L∞(𝒩)) is a metric f -algebra. 
If 𝒩 = 𝒩𝜇 for some 𝜎-finite measure 𝜇 on (X,Σ), then L∞(𝜇) is Dedekind complete and CSP.

• Let (X,Σ,𝜇) be a 𝜎-finite measure space. Then (L0(𝜇),dL0(𝜇)) is a Dedekind complete CSP 
metric f -algebra.

• Let 𝜇 be a boundedly finite, submodular outer measure on some metric space (X,d). Then 
(L0(𝜇),dL0(𝜇)) is a metric f -algebra.

Notice also that if (X,Σ,𝜇) is a 𝜎-finite measure space and p ∈ [1,∞), then (Lp(𝜇),‖ ⋅ ‖Lp(𝜇)) is a 
Dedekind complete CSP metric Riesz space.

4.2.2. Examples of metric f-structures
Below we list some important examples of metric f -structures:

• Let (X,Σ,𝒩) be an enhanced measurable space. Then 

(L∞(𝒩), L∞(𝒩), L∞(𝒩))

is a metric f -structure. It is Dedekind complete and CSP if 𝒩 = 𝒩𝜇 for some 𝜎-finite measure 𝜇
on (X,Σ).

• Let (X,Σ,𝜇) be a 𝜎-finite measure space and p ∈ [1,∞). Then 

(L0(𝜇), L0(𝜇), L0(𝜇)), (L0(𝜇), L∞(𝜇), Lp(𝜇))

are Dedekind complete CSP metric f -structures.
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• Let 𝜇 be a boundedly finite, submodular outer measure on some metric space (X,d). Then 

(L0(𝜇), L0(𝜇), L0(𝜇))

is a metric f -structure.

Let us point out that the example of (L0(𝜇), L0(𝜇), L0(𝜇)) is one of the reasons why we consider 
metric rather than just normed f -structures (that is, where the distance is induced by a norm).

4.2.3. Examples of dual systems
Some examples of dual systems of metric f -structures:

• Let (X,Σ,𝒩) be an enhanced measurable space. Then 

(L∞(𝒩), L∞(𝒩), L∞(𝒩), L∞(𝒩), L∞(𝒩))

is a dual system of metric f -structures. It is a CSP complete dual system if 𝒩 = 𝒩𝜇 for some 𝜎-finite 
measure 𝜇.

• Let (X,Σ,𝜇) be a 𝜎-finite measure space. Fix p, q, r ∈ [1,∞] such that 1
p

+ 1
q

= 1
r

. Then 

(L0(𝜇), L0(𝜇), L0(𝜇), L0(𝜇), L0(𝜇)), (L0(𝜇), L∞(𝜇), Lp(𝜇), Lq(𝜇), Lr(𝜇))

are Dedekind complete CSP metric f -structures.
• Let 𝜇 be a boundedly finite, submodular outer measure on some metric space (X,d). Then 

(L0(𝜇), L0(𝜇), L0(𝜇), L0(𝜇), L0(𝜇))

is a dual system of metric f -structures.

4.2.4. Examples of functional normed modules
Below we list some classes of Banach modules that have been studied in the literature and fall into the 
category of Banach modules over a metric f -structure:

• Lp(𝜇)-Banach L∞(𝜇)-modules, where (X,Σ,𝜇) is a 𝜎-finite measure space and p ∈ [1,∞], 
which have been introduced in [20, Definition 1.2.10]. We point out that in [20] the terminol-
ogy is different: every Lp(𝜇)-normed L∞(𝜇)-module is assumed to be complete (thus a Banach 
module with our definitions), and non-complete normed modules are not considered.

• L0(𝜇)-Banach L0(𝜇)-modules, where (X,Σ,𝜇) is a 𝜎-finite measure space. The definition was 
given in [19, Definition 2.6], but the concept appeared previously in [20, Section 1.3].

• L0(𝜇)-Banach L0(𝜇)-modules, where 𝜇 is a boundedly-finite, submodular outer measure on a 
metric space (X,d), see [7, Definition 2.1]. In the particular case where 𝜇 is the Sobolev 2-capacity 
on a metric measure space, it appeared previously in [11, Definition 3.1].

• ℒ∞(Σ)-Banach ℒ∞(Σ)-modules, where (X,Σ) is a measurable space. See [13, Definition 3.1].
• L∞(𝒩)-Banach L∞(𝒩)-modules, where (X,Σ,𝒩) is an enhanced measurable space, which were 

introduced in [21, Definition 4.3].

Notice that, given a 𝜎-finite measure space (X,Σ,𝜇) and an L∞(𝜇)-Banach L∞(𝜇)-module ℳ, two 
different notions of duals of ℳ have been considered (corresponding to two different underlying dual 
systems of metric f -structures):

• The dual of ℳ in the sense of [20, Definition 1.2.6] is an L1(𝜇)-Banach L∞(𝜇)-module, since 
the dual system under consideration is (L0(𝜇), L∞(𝜇), L∞(𝜇), L1(𝜇), L1(𝜇)).

• The dual of ℳ in the sense of [21, Definition 4.15] is an L∞(𝜇)-Banach L∞(𝜇)-module, since 
the dual system under consideration is (L∞(𝜇), L∞(𝜇), L∞(𝜇), L∞(𝜇), L∞(𝜇)).
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4.2.5. Some applications
We list some examples of known constructions that follow from Theorems 3.19, 3.16 and 3.23:

• Cotangent module. Let (X,d,𝜇) be a metric measure space and p ∈ (1,∞). We denote by 
W 1,p(X) the p-Sobolev space of (X,d,𝜇) and by |Df | ∈ Lp(𝜇) the minimal weak upper gradient 
of f ∈ W 1,p(X) (for example, in the sense of [4, 10, 38]; all these approaches are equivalent by 
[3]). Consider the metric f -structure (L0(𝜇), L∞(𝜇), Lp(𝜇)), as well as the map 𝜓p : W 1,p( X) →
Lp(𝔪)+ given by 𝜓p(f ) := |Df | for every f ∈ W 1,p(X). Then the cotangent module Lp(T*X) and the 
differential operator d : W 1,p(X) → Lp(T*X) are 

(Lp(T*X), d) ≅ (ℳ⟨𝜓p⟩, T⟨𝜓p⟩).

The cotangent module (for p = 2 ) has been introduced in [20, Definition 2.2.1] and refined in 
[19, Theorem/Definition 2.8]. Many other generalizations appeared later: for example, one can 
drop the Lp-integrability assumption (see [23, Proposition 4.18]), one can construct the capaci-
tary tangent module on an RCD(K ,∞) space (see [11, Theorem 3.6]) or one can consider the 
cotangent modules induced by axiomatic classes of Sobolev-type spaces (see [22, Theorem 3.2]). 
Concerning the latter notion, we point out that—thanks to Theorem 3.19—the strong locality 
assumption on the D-structure in [22, Theorem 3.2] can be removed.

• Pullback module. Let (X,ΣX,𝜇X), (Y,ΣY,𝜇Y) be 𝜎-finite measure spaces and 𝜑 : X →  Y a 
map of bounded compression, that is, 𝜑 is measurable and there exists a constant C > 0 such that 
𝜑#𝜇X ≤ C𝜇Y. Notice that 𝜑 induces a homomorphism of metric f -structures 

𝝋 : (L0(𝜇Y), L∞(𝜇Y), Lp(𝜇Y)) → (L0(𝜇X), L∞(𝜇X), Lp(𝜇X))

for every exponent p ∈ [1,∞) via pre-composition. Namely, given any f ∈ L0(𝜇Y) we define 

𝝋(f ) := [f̄ ∘ 𝜑]𝜇X
, for any f̄ ∈ ℒ0(ΣY)with [f̄ ]𝜇Y

= f .

Let ℳ be an Lp(𝜇Y)-Banach L∞(𝜇Y)-module. Then the pullback module is given by 

(𝜑*ℳ,𝜑*) ≅ (𝝋*ℳ,𝝋*).

The pullback module was introduced in [20, Definition 1.6.2], [19, Theorem/Definition 2.23] 
and has many generalizations: for example, for L0-Banach L0-modules and under the weaker 
assumption 𝜑#𝜇X ≪ 𝜇Y (see [24, Theorem/Definition 3.2]) or for L∞-Banach L∞-modules 
(see [21, Theorem/Definition 4.11]).

• L0-completion. Let (X,Σ,𝜇) be a 𝜎-finite measure space, and let ℳ be an Lp(𝜇)-Banach 
L∞(𝜇)-module, for some exponent p ∈ [1,∞]. Then the L0-completion of ℳ (in the sense of 
[19, Theorem/Definition 1.7]) is given by 

(ℳ̄, 𝜄) ≅ (ℳ⟨𝜓ℳ⟩, T⟨𝜓ℳ⟩),

where we define 𝜓ℳ : ℳ → L0(𝜇)+ as 𝜓ℳ(v) := |v| for every v ∈ ℳ.
• von Neumann lifting. Let (X,Σ,𝜇) be a complete 𝜎-finite measure space, ℓ a von Neumann 

lifting of 𝜇 and ℳ an L∞(𝜇)-Banach L∞(𝜇)-module. Then the von Neumann lifting of ℳ (see 
[13, Theorem 3.5]) is given by 

(ℓℳ,ℓ) ≅ (ℳ⟨𝜓ℓ⟩, T⟨𝜓ℓ⟩),

where we define 𝜓ℓ : ℳ → ℒ∞(Σ)+ as 𝜓ℓ(v) := ℓ(|v|) for every v ∈ ℳ.
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We point out that, in addition to the objects we discussed above, also the associated existence results 
for homomorphisms (for example, the universal property of pullback modules [20, Proposition 1.6.3] 
or the lifting of a homomorphism [21, Proposition 4.14]) can be deduced from Proposition 3.20.

4.3. The Realization Theorem
In this conclusive section of the paper, we show (see Theorem 4.7) that any localizable f -algebra can 
be ‘realized’ as a space of functions.

A Boolean ring is a ring (R, +, ⋅) such that r2 = r for every r ∈ R. In particular, r = −r and rs = sr
for every r, s ∈ R. A Boolean algebra is a a Boolean ring (A, +, ⋅) with a multiplicative identity 1A. 
A ring homomorphism 𝜙 : A → B between two Boolean algebras A and B is said to be a Boolean 
homomorphism, provided that it is also uniferent, meaning that 𝜙(1A) = 1B.

Given a set X ≠ ∅ and an algebra Σ of subsets of X, the triple (Σ,Δ,∩) is a Boolean algebra with 
zero ∅ and identity X. The following fundamental result—which is known as the Stone’s Representation 
Theorem for Boolean algebras—states that in fact any Boolean algebra can be expressed as an algebra of 
sets. We will employ it in the proof of Proposition 4.6.

Theorem 4.5 (Stone’s Theorem)  Let A be a Boolean algebra. Then there exist a set X and an 
algebra Σ of subsets of X such that (A, +, ⋅) and (Σ,Δ,∩) are isomorphic as Boolean algebras.

Let U be a given f -algebra. Then we define the operations ⊞ : Idem(U) × Idem(U) → Idem(U)
and ⊠ : Idem(U) × Idem(U) → Idem(U) on Idem(U) as 

u ⊞ v := u + v − 2uv, u ⊠ v := uv, for every u, v ∈ Idem(U).

Their well-posedness follows from items (i) and (ii) of Lemma 2.10. It is easy to check that the triple 
(Idem(U),⊞,⊠) is a Boolean algebra with zero element 0 and multiplicative identity 1.

Proposition 4.6 Let U be a Dedekind 𝜎-complete f-algebra whose multiplication map is 
𝜎-order-continuous on U+ × U+. Then the space (Idem(U),⊞,⊠) is Boolean isomorphic to a 
𝜎-algebra.

Proof. Thanks to Stone’s Representation Theorem 4.5, we can find a set X ≠ ∅, an algebra Σ of 
subsets of X and a Boolean isomorphism I : (Idem(U),⊞,⊠) → (Σ,Δ,∩). We claim that 

I(sup
n∈ℕ

un) = ⋃
n∈ℕ

I(un), for every (un)n∈ℕ ⊂ Idem(U). (52)

Call u := supn∈ℕ un. Recall that u ∈ Idem(U) by Lemma 2.17. Given any n ∈ ℕ, it holds that 
un ≤ u, and thus Remark 2.11 gives I(un) ∩ I(u) = I(unu) = I(un), which yields 
⋃n∈ℕ I(un) ⊂ I(u). Conversely, pick any set E ∈ Σ with I(un) ⊂ E for every n ∈ ℕ. Calling 
v := I−1(E), we have that I(unv) = I(un) ∩ I(v) = I(un), so that unv = vn. Hence, it holds that 

u = sup
n∈ℕ

un = sup
n∈ℕ

unv = v sup
n∈ℕ

un = uv,

thus I(v) ∩ I(u) = I(uv) = I(u). We obtain that I(u) ⊂ I(v) = E, whence (52) follows. We 
deduce that Σ is a 𝜎-algebra, so that (X,Σ) is a measurable space. This completes the proof.

Theorem 4.7 (Realization Theorem)  Let U be a localizable f-algebra. Then there exists a 
measurable space (X,Σ) such that U is isomorphic (as an f-algebra) to an f-subalgebra of ℒ0(Σ).

More precisely, the measurable space (X,Σ) can be chosen so that (Σ,Δ,∩) is isomorphic (as a 
Boolean algebra) to (Idem(U),⊞,⊠).
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Proof. Proposition 4.6 yields a measurable space (X,Σ) such that (Σ,Δ,∩) and 
(Idem(U),⊞,⊠) are isomorphic as Boolean algebras. We introduce the mapping 
𝜄 : 𝒮+(U) → ℒ0(Σ) as follows: given any simple element u = ∑k

i=1 𝜆iui ∈ 𝒮+(U), we define 
the function 𝜄(u) : X → [0, +∞] as 

𝜄(u)(x) :=
k

∑
i=1

𝜆i𝟙I(ui)(x), for every x ∈ X,

where I : Idem(U) → Σ is some fixed Boolean isomorphism. Observe that 𝜄(u) belongs to 
Sf(Σ). In order to extend the mapping 𝜄 to U+, we first need to prove the following two 
auxiliary results:

(a) If u ∈ U+ and (un)n∈ℕ ⊂ 𝒮+(U) is a non-decreasing sequence satisfying u = supn∈ℕ un, then it 
holds that supn∈ℕ 𝜄(un)(x) < +∞ for every x ∈ X.

(b) If u ∈ U+ and (un)n∈ℕ, (vn)n∈ℕ ⊂ 𝒮+(U) are non-decreasing sequences with u = supn∈ℕ un
and u = supn∈ℕ vn, then it holds that supn∈ℕ 𝜄(un)(x) = supn∈ℕ 𝜄(vn)(x) for every x ∈ X.

To prove (a), we argue by contradiction: suppose that supn∈ℕ 𝜄(un)(x0) = +∞ for some 
x0 ∈ X. For any n ∈ ℕ, we can find 𝜆n ∈ [0, +∞) and ũn ∈ Idem(U) with 𝜆nũn = ũnun and 
x0 ∈ I(ũn). One has 𝜆n = 𝜄(un)(x) → +∞ as n → ∞. Define E := ⋂n∈ℕ I(ũn) ∈ Σ and 
w := I−1(E) ∈ Idem(U). Notice that x0 ∈ E and w ≤ ũn for every n ∈ ℕ. Given k ∈ ℕ, there 
is nk ∈ ℕ with 𝜆nk

≥ k, and thus 

kw ≤ 𝜆nk
ũnk

= ũnk
unk

≤ u.

Since U is Archimedean by Proposition 2.2, we deduce that w = 0 and thus E = ∅. This leads 
to a contradiction with the fact that x0 ∈ E so that (a) is proved. We pass to the verification of 
(b). Fix any point x ∈ X. For any n ∈ ℕ, we can pick 𝜆n,𝜇n ∈ [0, +∞) and ũn, ṽn ∈ Idem(U)
such that 𝜆nũn = ũnun, 𝜇nṽn = ṽnvn and x ∈ I(ũn) ∩ I(ṽn). Setting 
E := ⋂n∈ℕ I(ũn) ∩ I(ṽn) ∈ Σ, we have x ∈ E, and thus w := I−1(E) ≠ 0. By the 𝜎-order 
continuity of the multiplication, we obtain 

(sup
n∈ℕ

𝜄(un)(x))w = (sup
n∈ℕ

𝜆n)w = sup
n∈ℕ

𝜆nw = sup
n∈ℕ

𝜆nũnw = sup
n∈ℕ

unũnw = (sup
n∈ℕ

un)w = uw

= (sup
n∈ℕ

vn)w = sup
n∈ℕ

𝜇nṽnw = (sup
n∈ℕ

𝜇n)w = (sup
n∈ℕ

𝜄(vn)(x))w,

where we used that ũnw = ṽnw = w. This yields supn∈ℕ 𝜄(un)(x) = supn∈ℕ 𝜄(vn)(x), proving 
(b).

We now define the function 𝜄(u) : X → [0, +∞) for any u ∈ U+ in the following way: 
given any non-decreasing sequence (un)n∈ℕ ⊂ 𝒮+(U) such that u = supn∈ℕ un—whose 
existence is guaranteed by the assumption that the f -algebra U is localizable—we define 

𝜄(u)(x) := sup
n∈ℕ

𝜄(un)(x), for every x ∈ X.

The properties (a) and (b) ensure that 𝜄(u) is well-posed. Notice that 𝜄(u) ∈ ℒ0(Σ), as a 
countable supremum of elements of ℒ0(Σ). The 𝜎-order continuity of the sum and 
multiplication maps gives 

𝜄(u) + 𝜄(v) = 𝜄(u + v), 𝜄(uv) = 𝜄(u)𝜄(v), for every u, v ∈ U+. (53)

Finally, we extend 𝜄 to a mapping 𝜄 : U → ℒ0(Σ) by setting 

𝜄(u) := 𝜄(u+) − 𝜄(u−), for every u ∈ U .
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Using (53), one can easily show that 𝜄 is a homomorphism of f -algebras. In order to 
conclude, it only remains to check that 𝜄 is injective. To this aim, fix any u ∈ U  such that 
𝜄(u) = 0. We want to show that u = 0. Since u+u− = 0 by (5a), we deduce that 
𝜄(u+)𝜄(u−) = 𝜄(u+u−) = 0, which yields 𝜄(u+) = 𝜄(u−) = 0. Hence, it suffices to prove the 
implication 𝜄(u) = 0 ⟹ u = 0 in the case where u ∈ U+. Choose a non-decreasing sequence 
(un)n∈ℕ ⊂ 𝒮+(U) such that u = supn∈ℕ un. We have that supn∈ℕ 𝜄(un) = 0, whence it 
follows that un = 0 for every n ∈ ℕ and thus u = 0.

Remark 4.8 Several variants of ‘realization theorems’—regarding even more general 
structures, such as Banach/Orlicz lattices—can be found in the literature (see [31]). An 
instance of such a result is [31, Theorem 3.7], which provides the following characterization: 
a Dedekind complete vector lattice E is isomorphic to an order-dense order-ideal in some 
space L0(𝜇) (see the definition of Köthe function space in [31, p. 17]) if and only if the 
Boolean algebra 𝔅(E) consisting of the band projections on E is a measure algebra; we refer 
to [31] for the precise definitions of the involved concepts. It would be interesting—but 
currently unclear and outside the scope of this paper—to understand whether Theorem 4.7 
can be actually deduced from [31, Theorem 3.7].
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